// deno-lint-ignore-file // Copyright 2018-2025 the Deno authors. MIT license. import process from "node:process"; import { primordials } from "ext:core/mod.js"; import EE from "node:events"; import { prependListener, Stream, } from "ext:deno_node/internal/streams/legacy.js"; import { Buffer } from "node:buffer"; import { addAbortSignal } from "ext:deno_node/internal/streams/add-abort-signal.js"; import eos from "ext:deno_node/internal/streams/end-of-stream.js"; import destroyImpl from "ext:deno_node/internal/streams/destroy.js"; import { getDefaultHighWaterMark, getHighWaterMark, } from "ext:deno_node/internal/streams/state.js"; import { kAutoDestroy, kClosed, kCloseEmitted, kConstructed, kDestroyed, kEmitClose, kErrored, kErrorEmitted, kObjectMode, kOnConstructed, kState, } from "ext:deno_node/internal/streams/utils.js"; import imported1 from "ext:deno_node/internal/errors.ts"; import { validateObject } from "ext:deno_node/internal/validators.mjs"; import { StringDecoder } from "node:string_decoder"; import from from "ext:deno_node/internal/streams/from.js"; import * as _mod2 from "ext:deno_node/internal/util/debuglog.ts"; import * as _mod3 from "ext:deno_node/internal/webstreams/adapters.js"; const { AbortError, aggregateTwoErrors, codes: { ERR_INVALID_ARG_TYPE, ERR_METHOD_NOT_IMPLEMENTED, ERR_OUT_OF_RANGE, ERR_STREAM_PUSH_AFTER_EOF, ERR_STREAM_UNSHIFT_AFTER_END_EVENT, ERR_UNKNOWN_ENCODING, }, } = imported1; // Copyright Joyent, Inc. and other Node contributors. // // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the // "Software"), to deal in the Software without restriction, including // without limitation the rights to use, copy, modify, merge, publish, // distribute, sublicense, and/or sell copies of the Software, and to permit // persons to whom the Software is furnished to do so, subject to the // following conditions: // // The above copyright notice and this permission notice shall be included // in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN // NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, // DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE // USE OR OTHER DEALINGS IN THE SOFTWARE. "use strict"; const { ArrayPrototypeIndexOf, NumberIsInteger, NumberIsNaN, NumberParseInt, ObjectDefineProperties, ObjectKeys, ObjectSetPrototypeOf, Promise, SafeSet, Symbol, SymbolAsyncDispose, SymbolAsyncIterator, SymbolSpecies, TypedArrayPrototypeSet, } = primordials; Readable.ReadableState = ReadableState; let debug = _mod2.debuglog("stream", (fn) => { debug = fn; }); const FastBuffer = Buffer[SymbolSpecies]; ObjectSetPrototypeOf(Readable.prototype, Stream.prototype); ObjectSetPrototypeOf(Readable, Stream); const nop = () => {}; const { errorOrDestroy } = destroyImpl; const kErroredValue = Symbol("kErroredValue"); const kDefaultEncodingValue = Symbol("kDefaultEncodingValue"); const kDecoderValue = Symbol("kDecoderValue"); const kEncodingValue = Symbol("kEncodingValue"); const kEnded = 1 << 9; const kEndEmitted = 1 << 10; const kReading = 1 << 11; const kSync = 1 << 12; const kNeedReadable = 1 << 13; const kEmittedReadable = 1 << 14; const kReadableListening = 1 << 15; const kResumeScheduled = 1 << 16; const kMultiAwaitDrain = 1 << 17; const kReadingMore = 1 << 18; const kDataEmitted = 1 << 19; const kDefaultUTF8Encoding = 1 << 20; const kDecoder = 1 << 21; const kEncoding = 1 << 22; const kHasFlowing = 1 << 23; const kFlowing = 1 << 24; const kHasPaused = 1 << 25; const kPaused = 1 << 26; const kDataListening = 1 << 27; // TODO(benjamingr) it is likely slower to do it this way than with free functions function makeBitMapDescriptor(bit) { return { enumerable: false, get() { return (this[kState] & bit) !== 0; }, set(value) { if (value) this[kState] |= bit; else this[kState] &= ~bit; }, }; } ObjectDefineProperties(ReadableState.prototype, { objectMode: makeBitMapDescriptor(kObjectMode), ended: makeBitMapDescriptor(kEnded), endEmitted: makeBitMapDescriptor(kEndEmitted), reading: makeBitMapDescriptor(kReading), // Stream is still being constructed and cannot be // destroyed until construction finished or failed. // Async construction is opt in, therefore we start as // constructed. constructed: makeBitMapDescriptor(kConstructed), // A flag to be able to tell if the event 'readable'/'data' is emitted // immediately, or on a later tick. We set this to true at first, because // any actions that shouldn't happen until "later" should generally also // not happen before the first read call. sync: makeBitMapDescriptor(kSync), // Whenever we return null, then we set a flag to say // that we're awaiting a 'readable' event emission. needReadable: makeBitMapDescriptor(kNeedReadable), emittedReadable: makeBitMapDescriptor(kEmittedReadable), readableListening: makeBitMapDescriptor(kReadableListening), resumeScheduled: makeBitMapDescriptor(kResumeScheduled), // True if the error was already emitted and should not be thrown again. errorEmitted: makeBitMapDescriptor(kErrorEmitted), emitClose: makeBitMapDescriptor(kEmitClose), autoDestroy: makeBitMapDescriptor(kAutoDestroy), // Has it been destroyed. destroyed: makeBitMapDescriptor(kDestroyed), // Indicates whether the stream has finished destroying. closed: makeBitMapDescriptor(kClosed), // True if close has been emitted or would have been emitted // depending on emitClose. closeEmitted: makeBitMapDescriptor(kCloseEmitted), multiAwaitDrain: makeBitMapDescriptor(kMultiAwaitDrain), // If true, a maybeReadMore has been scheduled. readingMore: makeBitMapDescriptor(kReadingMore), dataEmitted: makeBitMapDescriptor(kDataEmitted), // Indicates whether the stream has errored. When true no further // _read calls, 'data' or 'readable' events should occur. This is needed // since when autoDestroy is disabled we need a way to tell whether the // stream has failed. errored: { __proto__: null, enumerable: false, get() { return (this[kState] & kErrored) !== 0 ? this[kErroredValue] : null; }, set(value) { if (value) { this[kErroredValue] = value; this[kState] |= kErrored; } else { this[kState] &= ~kErrored; } }, }, defaultEncoding: { __proto__: null, enumerable: false, get() { return (this[kState] & kDefaultUTF8Encoding) !== 0 ? "utf8" : this[kDefaultEncodingValue]; }, set(value) { if (value === "utf8" || value === "utf-8") { this[kState] |= kDefaultUTF8Encoding; } else { this[kState] &= ~kDefaultUTF8Encoding; this[kDefaultEncodingValue] = value; } }, }, decoder: { __proto__: null, enumerable: false, get() { return (this[kState] & kDecoder) !== 0 ? this[kDecoderValue] : null; }, set(value) { if (value) { this[kDecoderValue] = value; this[kState] |= kDecoder; } else { this[kState] &= ~kDecoder; } }, }, encoding: { __proto__: null, enumerable: false, get() { return (this[kState] & kEncoding) !== 0 ? this[kEncodingValue] : null; }, set(value) { if (value) { this[kEncodingValue] = value; this[kState] |= kEncoding; } else { this[kState] &= ~kEncoding; } }, }, flowing: { __proto__: null, enumerable: false, get() { return (this[kState] & kHasFlowing) !== 0 ? (this[kState] & kFlowing) !== 0 : null; }, set(value) { if (value == null) { this[kState] &= ~(kHasFlowing | kFlowing); } else if (value) { this[kState] |= kHasFlowing | kFlowing; } else { this[kState] |= kHasFlowing; this[kState] &= ~kFlowing; } }, }, }); function ReadableState(options, stream, isDuplex) { // Bit map field to store ReadableState more efficiently with 1 bit per field // instead of a V8 slot per field. this[kState] = kEmitClose | kAutoDestroy | kConstructed | kSync; // Object stream flag. Used to make read(n) ignore n and to // make all the buffer merging and length checks go away. if (options?.objectMode) { this[kState] |= kObjectMode; } if (isDuplex && options?.readableObjectMode) { this[kState] |= kObjectMode; } // The point at which it stops calling _read() to fill the buffer // Note: 0 is a valid value, means "don't call _read preemptively ever" this.highWaterMark = options ? getHighWaterMark(this, options, "readableHighWaterMark", isDuplex) : getDefaultHighWaterMark(false); this.buffer = []; this.bufferIndex = 0; this.length = 0; this.pipes = []; // Should close be emitted on destroy. Defaults to true. if (options && options.emitClose === false) this[kState] &= ~kEmitClose; // Should .destroy() be called after 'end' (and potentially 'finish'). if (options && options.autoDestroy === false) this[kState] &= ~kAutoDestroy; // Crypto is kind of old and crusty. Historically, its default string // encoding is 'binary' so we have to make this configurable. // Everything else in the universe uses 'utf8', though. const defaultEncoding = options?.defaultEncoding; if ( defaultEncoding == null || defaultEncoding === "utf8" || defaultEncoding === "utf-8" ) { this[kState] |= kDefaultUTF8Encoding; } else if (Buffer.isEncoding(defaultEncoding)) { this.defaultEncoding = defaultEncoding; } else { throw new ERR_UNKNOWN_ENCODING(defaultEncoding); } // Ref the piped dest which we need a drain event on it // type: null | Writable | Set. this.awaitDrainWriters = null; if (options?.encoding) { this.decoder = new StringDecoder(options.encoding); this.encoding = options.encoding; } } ReadableState.prototype[kOnConstructed] = function onConstructed(stream) { if ((this[kState] & kNeedReadable) !== 0) { maybeReadMore(stream, this); } }; function Readable(options) { if (!(this instanceof Readable)) { return new Readable(options); } this._events ??= { close: undefined, error: undefined, data: undefined, end: undefined, readable: undefined, // Skip uncommon events... // pause: undefined, // resume: undefined, // pipe: undefined, // unpipe: undefined, // [destroyImpl.kConstruct]: undefined, // [destroyImpl.kDestroy]: undefined, }; this._readableState = new ReadableState(options, this, false); if (options) { if (typeof options.read === "function") { this._read = options.read; } if (typeof options.destroy === "function") { this._destroy = options.destroy; } if (typeof options.construct === "function") { this._construct = options.construct; } if (options.signal) { addAbortSignal(options.signal, this); } } Stream.call(this, options); if (this._construct != null) { destroyImpl.construct(this, () => { this._readableState[kOnConstructed](this); }); } } Readable.prototype.destroy = destroyImpl.destroy; Readable.prototype._undestroy = destroyImpl.undestroy; Readable.prototype._destroy = function (err, cb) { cb(err); }; Readable.prototype[EE.captureRejectionSymbol] = function (err) { this.destroy(err); }; Readable.prototype[SymbolAsyncDispose] = function () { let error; if (!this.destroyed) { error = this.readableEnded ? null : new AbortError(); this.destroy(error); } return new Promise((resolve, reject) => eos(this, (err) => (err && err !== error ? reject(err) : resolve(null))) ); }; // Manually shove something into the read() buffer. // This returns true if the highWaterMark has not been hit yet, // similar to how Writable.write() returns true if you should // write() some more. Readable.prototype.push = function (chunk, encoding) { debug("push", chunk); const state = this._readableState; return (state[kState] & kObjectMode) === 0 ? readableAddChunkPushByteMode(this, state, chunk, encoding) : readableAddChunkPushObjectMode(this, state, chunk, encoding); }; // Unshift should *always* be something directly out of read(). Readable.prototype.unshift = function (chunk, encoding) { debug("unshift", chunk); const state = this._readableState; return (state[kState] & kObjectMode) === 0 ? readableAddChunkUnshiftByteMode(this, state, chunk, encoding) : readableAddChunkUnshiftObjectMode(this, state, chunk); }; function readableAddChunkUnshiftByteMode(stream, state, chunk, encoding) { if (chunk === null) { state[kState] &= ~kReading; onEofChunk(stream, state); return false; } if (typeof chunk === "string") { encoding ||= state.defaultEncoding; if (state.encoding !== encoding) { if (state.encoding) { // When unshifting, if state.encoding is set, we have to save // the string in the BufferList with the state encoding. chunk = Buffer.from(chunk, encoding).toString(state.encoding); } else { chunk = Buffer.from(chunk, encoding); } } } else if (Stream._isArrayBufferView(chunk)) { chunk = Stream._uint8ArrayToBuffer(chunk); } else if (chunk !== undefined && !(chunk instanceof Buffer)) { errorOrDestroy( stream, new ERR_INVALID_ARG_TYPE( "chunk", ["string", "Buffer", "TypedArray", "DataView"], chunk, ), ); return false; } if (!(chunk && chunk.length > 0)) { return canPushMore(state); } return readableAddChunkUnshiftValue(stream, state, chunk); } function readableAddChunkUnshiftObjectMode(stream, state, chunk) { if (chunk === null) { state[kState] &= ~kReading; onEofChunk(stream, state); return false; } return readableAddChunkUnshiftValue(stream, state, chunk); } function readableAddChunkUnshiftValue(stream, state, chunk) { if ((state[kState] & kEndEmitted) !== 0) { errorOrDestroy(stream, new ERR_STREAM_UNSHIFT_AFTER_END_EVENT()); } else if ((state[kState] & (kDestroyed | kErrored)) !== 0) { return false; } else { addChunk(stream, state, chunk, true); } return canPushMore(state); } function readableAddChunkPushByteMode(stream, state, chunk, encoding) { if (chunk === null) { state[kState] &= ~kReading; onEofChunk(stream, state); return false; } if (typeof chunk === "string") { encoding ||= state.defaultEncoding; if (state.encoding !== encoding) { chunk = Buffer.from(chunk, encoding); encoding = ""; } } else if (chunk instanceof Buffer) { encoding = ""; } else if (Stream._isArrayBufferView(chunk)) { chunk = Stream._uint8ArrayToBuffer(chunk); encoding = ""; } else if (chunk !== undefined) { errorOrDestroy( stream, new ERR_INVALID_ARG_TYPE( "chunk", ["string", "Buffer", "TypedArray", "DataView"], chunk, ), ); return false; } if (!chunk || chunk.length <= 0) { state[kState] &= ~kReading; maybeReadMore(stream, state); return canPushMore(state); } if ((state[kState] & kEnded) !== 0) { errorOrDestroy(stream, new ERR_STREAM_PUSH_AFTER_EOF()); return false; } if ((state[kState] & (kDestroyed | kErrored)) !== 0) { return false; } state[kState] &= ~kReading; if ((state[kState] & kDecoder) !== 0 && !encoding) { chunk = state[kDecoderValue].write(chunk); if (chunk.length === 0) { maybeReadMore(stream, state); return canPushMore(state); } } addChunk(stream, state, chunk, false); return canPushMore(state); } function readableAddChunkPushObjectMode(stream, state, chunk, encoding) { if (chunk === null) { state[kState] &= ~kReading; onEofChunk(stream, state); return false; } if ((state[kState] & kEnded) !== 0) { errorOrDestroy(stream, new ERR_STREAM_PUSH_AFTER_EOF()); return false; } if ((state[kState] & (kDestroyed | kErrored)) !== 0) { return false; } state[kState] &= ~kReading; if ((state[kState] & kDecoder) !== 0 && !encoding) { chunk = state[kDecoderValue].write(chunk); } addChunk(stream, state, chunk, false); return canPushMore(state); } function canPushMore(state) { // We can push more data if we are below the highWaterMark. // Also, if we have no data yet, we can stand some more bytes. // This is to work around cases where hwm=0, such as the repl. return (state[kState] & kEnded) === 0 && (state.length < state.highWaterMark || state.length === 0); } function addChunk(stream, state, chunk, addToFront) { if ( (state[kState] & (kFlowing | kSync | kDataListening)) === (kFlowing | kDataListening) && state.length === 0 ) { // Use the guard to avoid creating `Set()` repeatedly // when we have multiple pipes. if ((state[kState] & kMultiAwaitDrain) !== 0) { state.awaitDrainWriters.clear(); } else { state.awaitDrainWriters = null; } state[kState] |= kDataEmitted; stream.emit("data", chunk); } else { // Update the buffer info. state.length += (state[kState] & kObjectMode) !== 0 ? 1 : chunk.length; if (addToFront) { if (state.bufferIndex > 0) { state.buffer[--state.bufferIndex] = chunk; } else { state.buffer.unshift(chunk); // Slow path } } else { state.buffer.push(chunk); } if ((state[kState] & kNeedReadable) !== 0) { emitReadable(stream); } } maybeReadMore(stream, state); } Readable.prototype.isPaused = function () { const state = this._readableState; return (state[kState] & kPaused) !== 0 || (state[kState] & (kHasFlowing | kFlowing)) === kHasFlowing; }; // Backwards compatibility. Readable.prototype.setEncoding = function (enc) { const state = this._readableState; const decoder = new StringDecoder(enc); state.decoder = decoder; // If setEncoding(null), decoder.encoding equals utf8. state.encoding = state.decoder.encoding; // Iterate over current buffer to convert already stored Buffers: let content = ""; for (const data of state.buffer.slice(state.bufferIndex)) { content += decoder.write(data); } state.buffer.length = 0; state.bufferIndex = 0; if (content !== "") { state.buffer.push(content); } state.length = content.length; return this; }; // Don't raise the hwm > 1GB. const MAX_HWM = 0x40000000; function computeNewHighWaterMark(n) { if (n > MAX_HWM) { throw new ERR_OUT_OF_RANGE("size", "<= 1GiB", n); } else { // Get the next highest power of 2 to prevent increasing hwm excessively in // tiny amounts. n--; n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16; n++; } return n; } // This function is designed to be inlinable, so please take care when making // changes to the function body. function howMuchToRead(n, state) { if (n <= 0 || (state.length === 0 && (state[kState] & kEnded) !== 0)) { return 0; } if ((state[kState] & kObjectMode) !== 0) { return 1; } if (NumberIsNaN(n)) { // Only flow one buffer at a time. if ((state[kState] & kFlowing) !== 0 && state.length) { return state.buffer[state.bufferIndex].length; } return state.length; } if (n <= state.length) { return n; } return (state[kState] & kEnded) !== 0 ? state.length : 0; } // You can override either this method, or the async _read(n) below. Readable.prototype.read = function (n) { debug("read", n); // Same as parseInt(undefined, 10), however V8 7.3 performance regressed // in this scenario, so we are doing it manually. if (n === undefined) { n = NaN; } else if (!NumberIsInteger(n)) { n = NumberParseInt(n, 10); } const state = this._readableState; const nOrig = n; // If we're asking for more than the current hwm, then raise the hwm. if (n > state.highWaterMark) { state.highWaterMark = computeNewHighWaterMark(n); } if (n !== 0) { state[kState] &= ~kEmittedReadable; } // If we're doing read(0) to trigger a readable event, but we // already have a bunch of data in the buffer, then just trigger // the 'readable' event and move on. if ( n === 0 && (state[kState] & kNeedReadable) !== 0 && ((state.highWaterMark !== 0 ? state.length >= state.highWaterMark : state.length > 0) || (state[kState] & kEnded) !== 0) ) { debug("read: emitReadable"); if (state.length === 0 && (state[kState] & kEnded) !== 0) { endReadable(this); } else { emitReadable(this); } return null; } n = howMuchToRead(n, state); // If we've ended, and we're now clear, then finish it up. if (n === 0 && (state[kState] & kEnded) !== 0) { if (state.length === 0) { endReadable(this); } return null; } // All the actual chunk generation logic needs to be // *below* the call to _read. The reason is that in certain // synthetic stream cases, such as passthrough streams, _read // may be a completely synchronous operation which may change // the state of the read buffer, providing enough data when // before there was *not* enough. // // So, the steps are: // 1. Figure out what the state of things will be after we do // a read from the buffer. // // 2. If that resulting state will trigger a _read, then call _read. // Note that this may be asynchronous, or synchronous. Yes, it is // deeply ugly to write APIs this way, but that still doesn't mean // that the Readable class should behave improperly, as streams are // designed to be sync/async agnostic. // Take note if the _read call is sync or async (ie, if the read call // has returned yet), so that we know whether or not it's safe to emit // 'readable' etc. // // 3. Actually pull the requested chunks out of the buffer and return. // if we need a readable event, then we need to do some reading. let doRead = (state[kState] & kNeedReadable) !== 0; debug("need readable", doRead); // If we currently have less than the highWaterMark, then also read some. if (state.length === 0 || state.length - n < state.highWaterMark) { doRead = true; debug("length less than watermark", doRead); } // However, if we've ended, then there's no point, if we're already // reading, then it's unnecessary, if we're constructing we have to wait, // and if we're destroyed or errored, then it's not allowed, if ( (state[kState] & (kReading | kEnded | kDestroyed | kErrored | kConstructed)) !== kConstructed ) { doRead = false; debug("reading, ended or constructing", doRead); } else if (doRead) { debug("do read"); state[kState] |= kReading | kSync; // If the length is currently zero, then we *need* a readable event. if (state.length === 0) { state[kState] |= kNeedReadable; } // Call internal read method try { this._read(state.highWaterMark); } catch (err) { errorOrDestroy(this, err); } state[kState] &= ~kSync; // If _read pushed data synchronously, then `reading` will be false, // and we need to re-evaluate how much data we can return to the user. if ((state[kState] & kReading) === 0) { n = howMuchToRead(nOrig, state); } } let ret; if (n > 0) { ret = fromList(n, state); } else { ret = null; } if (ret === null) { state[kState] |= state.length <= state.highWaterMark ? kNeedReadable : 0; n = 0; } else { state.length -= n; if ((state[kState] & kMultiAwaitDrain) !== 0) { state.awaitDrainWriters.clear(); } else { state.awaitDrainWriters = null; } } if (state.length === 0) { // If we have nothing in the buffer, then we want to know // as soon as we *do* get something into the buffer. if ((state[kState] & kEnded) === 0) { state[kState] |= kNeedReadable; } // If we tried to read() past the EOF, then emit end on the next tick. if (nOrig !== n && (state[kState] & kEnded) !== 0) { endReadable(this); } } if (ret !== null && (state[kState] & (kErrorEmitted | kCloseEmitted)) === 0) { state[kState] |= kDataEmitted; this.emit("data", ret); } return ret; }; function onEofChunk(stream, state) { debug("onEofChunk"); if ((state[kState] & kEnded) !== 0) return; const decoder = (state[kState] & kDecoder) !== 0 ? state[kDecoderValue] : null; if (decoder) { const chunk = decoder.end(); if (chunk?.length) { state.buffer.push(chunk); state.length += (state[kState] & kObjectMode) !== 0 ? 1 : chunk.length; } } state[kState] |= kEnded; if ((state[kState] & kSync) !== 0) { // If we are sync, wait until next tick to emit the data. // Otherwise we risk emitting data in the flow() // the readable code triggers during a read() call. emitReadable(stream); } else { // Emit 'readable' now to make sure it gets picked up. state[kState] &= ~kNeedReadable; state[kState] |= kEmittedReadable; // We have to emit readable now that we are EOF. Modules // in the ecosystem (e.g. dicer) rely on this event being sync. emitReadable_(stream); } } // Don't emit readable right away in sync mode, because this can trigger // another read() call => stack overflow. This way, it might trigger // a nextTick recursion warning, but that's not so bad. function emitReadable(stream) { const state = stream._readableState; debug("emitReadable"); state[kState] &= ~kNeedReadable; if ((state[kState] & kEmittedReadable) === 0) { debug("emitReadable", (state[kState] & kFlowing) !== 0); state[kState] |= kEmittedReadable; process.nextTick(emitReadable_, stream); } } function emitReadable_(stream) { const state = stream._readableState; debug("emitReadable_"); if ( (state[kState] & (kDestroyed | kErrored)) === 0 && (state.length || (state[kState] & kEnded) !== 0) ) { stream.emit("readable"); state[kState] &= ~kEmittedReadable; } // The stream needs another readable event if: // 1. It is not flowing, as the flow mechanism will take // care of it. // 2. It is not ended. // 3. It is below the highWaterMark, so we can schedule // another readable later. state[kState] |= (state[kState] & (kFlowing | kEnded)) === 0 && state.length <= state.highWaterMark ? kNeedReadable : 0; flow(stream); } // At this point, the user has presumably seen the 'readable' event, // and called read() to consume some data. that may have triggered // in turn another _read(n) call, in which case reading = true if // it's in progress. // However, if we're not ended, or reading, and the length < hwm, // then go ahead and try to read some more preemptively. function maybeReadMore(stream, state) { if ((state[kState] & (kReadingMore | kConstructed)) === kConstructed) { state[kState] |= kReadingMore; process.nextTick(maybeReadMore_, stream, state); } } function maybeReadMore_(stream, state) { // Attempt to read more data if we should. // // The conditions for reading more data are (one of): // - Not enough data buffered (state.length < state.highWaterMark). The loop // is responsible for filling the buffer with enough data if such data // is available. If highWaterMark is 0 and we are not in the flowing mode // we should _not_ attempt to buffer any extra data. We'll get more data // when the stream consumer calls read() instead. // - No data in the buffer, and the stream is in flowing mode. In this mode // the loop below is responsible for ensuring read() is called. Failing to // call read here would abort the flow and there's no other mechanism for // continuing the flow if the stream consumer has just subscribed to the // 'data' event. // // In addition to the above conditions to keep reading data, the following // conditions prevent the data from being read: // - The stream has ended (state.ended). // - There is already a pending 'read' operation (state.reading). This is a // case where the stream has called the implementation defined _read() // method, but they are processing the call asynchronously and have _not_ // called push() with new data. In this case we skip performing more // read()s. The execution ends in this method again after the _read() ends // up calling push() with more data. while ( (state[kState] & (kReading | kEnded)) === 0 && (state.length < state.highWaterMark || ((state[kState] & kFlowing) !== 0 && state.length === 0)) ) { const len = state.length; debug("maybeReadMore read 0"); stream.read(0); if (len === state.length) { // Didn't get any data, stop spinning. break; } } state[kState] &= ~kReadingMore; } // Abstract method. to be overridden in specific implementation classes. // call cb(er, data) where data is <= n in length. // for virtual (non-string, non-buffer) streams, "length" is somewhat // arbitrary, and perhaps not very meaningful. Readable.prototype._read = function (n) { throw new ERR_METHOD_NOT_IMPLEMENTED("_read()"); }; Readable.prototype.pipe = function (dest, pipeOpts) { const src = this; const state = this._readableState; if (state.pipes.length === 1) { if ((state[kState] & kMultiAwaitDrain) === 0) { state[kState] |= kMultiAwaitDrain; state.awaitDrainWriters = new SafeSet( state.awaitDrainWriters ? [state.awaitDrainWriters] : [], ); } } state.pipes.push(dest); debug("pipe count=%d opts=%j", state.pipes.length, pipeOpts); const doEnd = (!pipeOpts || pipeOpts.end !== false) && dest !== process.stdout && dest !== process.stderr; const endFn = doEnd ? onend : unpipe; if ((state[kState] & kEndEmitted) !== 0) { process.nextTick(endFn); } else { src.once("end", endFn); } dest.on("unpipe", onunpipe); function onunpipe(readable, unpipeInfo) { debug("onunpipe"); if (readable === src) { if (unpipeInfo && unpipeInfo.hasUnpiped === false) { unpipeInfo.hasUnpiped = true; cleanup(); } } } function onend() { debug("onend"); dest.end(); } let ondrain; let cleanedUp = false; function cleanup() { debug("cleanup"); // Cleanup event handlers once the pipe is broken. dest.removeListener("close", onclose); dest.removeListener("finish", onfinish); if (ondrain) { dest.removeListener("drain", ondrain); } dest.removeListener("error", onerror); dest.removeListener("unpipe", onunpipe); src.removeListener("end", onend); src.removeListener("end", unpipe); src.removeListener("data", ondata); cleanedUp = true; // If the reader is waiting for a drain event from this // specific writer, then it would cause it to never start // flowing again. // So, if this is awaiting a drain, then we just call it now. // If we don't know, then assume that we are waiting for one. if ( ondrain && state.awaitDrainWriters && (!dest._writableState || dest._writableState.needDrain) ) { ondrain(); } } function pause() { // If the user unpiped during `dest.write()`, it is possible // to get stuck in a permanently paused state if that write // also returned false. // => Check whether `dest` is still a piping destination. if (!cleanedUp) { if (state.pipes.length === 1 && state.pipes[0] === dest) { debug("false write response, pause", 0); state.awaitDrainWriters = dest; state[kState] &= ~kMultiAwaitDrain; } else if (state.pipes.length > 1 && state.pipes.includes(dest)) { debug("false write response, pause", state.awaitDrainWriters.size); state.awaitDrainWriters.add(dest); } src.pause(); } if (!ondrain) { // When the dest drains, it reduces the awaitDrain counter // on the source. This would be more elegant with a .once() // handler in flow(), but adding and removing repeatedly is // too slow. ondrain = pipeOnDrain(src, dest); dest.on("drain", ondrain); } } src.on("data", ondata); function ondata(chunk) { debug("ondata"); const ret = dest.write(chunk); debug("dest.write", ret); if (ret === false) { pause(); } } // If the dest has an error, then stop piping into it. // However, don't suppress the throwing behavior for this. function onerror(er) { debug("onerror", er); unpipe(); dest.removeListener("error", onerror); if (dest.listenerCount("error") === 0) { const s = dest._writableState || dest._readableState; if (s && !s.errorEmitted) { // User incorrectly emitted 'error' directly on the stream. errorOrDestroy(dest, er); } else { dest.emit("error", er); } } } // Make sure our error handler is attached before userland ones. prependListener(dest, "error", onerror); // Both close and finish should trigger unpipe, but only once. function onclose() { dest.removeListener("finish", onfinish); unpipe(); } dest.once("close", onclose); function onfinish() { debug("onfinish"); dest.removeListener("close", onclose); unpipe(); } dest.once("finish", onfinish); function unpipe() { debug("unpipe"); src.unpipe(dest); } // Tell the dest that it's being piped to. dest.emit("pipe", src); // Start the flow if it hasn't been started already. if (dest.writableNeedDrain === true) { pause(); } else if ((state[kState] & kFlowing) === 0) { debug("pipe resume"); src.resume(); } return dest; }; function pipeOnDrain(src, dest) { return function pipeOnDrainFunctionResult() { const state = src._readableState; // `ondrain` will call directly, // `this` maybe not a reference to dest, // so we use the real dest here. if (state.awaitDrainWriters === dest) { debug("pipeOnDrain", 1); state.awaitDrainWriters = null; } else if ((state[kState] & kMultiAwaitDrain) !== 0) { debug("pipeOnDrain", state.awaitDrainWriters.size); state.awaitDrainWriters.delete(dest); } if ( (!state.awaitDrainWriters || state.awaitDrainWriters.size === 0) && (state[kState] & kDataListening) !== 0 ) { src.resume(); } }; } Readable.prototype.unpipe = function (dest) { const state = this._readableState; const unpipeInfo = { hasUnpiped: false }; // If we're not piping anywhere, then do nothing. if (state.pipes.length === 0) { return this; } if (!dest) { // remove all. const dests = state.pipes; state.pipes = []; this.pause(); for (let i = 0; i < dests.length; i++) { dests[i].emit("unpipe", this, { hasUnpiped: false }); } return this; } // Try to find the right one. const index = ArrayPrototypeIndexOf(state.pipes, dest); if (index === -1) { return this; } state.pipes.splice(index, 1); if (state.pipes.length === 0) { this.pause(); } dest.emit("unpipe", this, unpipeInfo); return this; }; // Set up data events if they are asked for // Ensure readable listeners eventually get something. Readable.prototype.on = function (ev, fn) { const res = Stream.prototype.on.call(this, ev, fn); const state = this._readableState; if (ev === "data") { state[kState] |= kDataListening; // Update readableListening so that resume() may be a no-op // a few lines down. This is needed to support once('readable'). state[kState] |= this.listenerCount("readable") > 0 ? kReadableListening : 0; // Try start flowing on next tick if stream isn't explicitly paused. if ((state[kState] & (kHasFlowing | kFlowing)) !== kHasFlowing) { this.resume(); } } else if (ev === "readable") { if ((state[kState] & (kEndEmitted | kReadableListening)) === 0) { state[kState] |= kReadableListening | kNeedReadable | kHasFlowing; state[kState] &= ~(kFlowing | kEmittedReadable); debug("on readable"); if (state.length) { emitReadable(this); } else if ((state[kState] & kReading) === 0) { process.nextTick(nReadingNextTick, this); } } } return res; }; Readable.prototype.addListener = Readable.prototype.on; Readable.prototype.removeListener = function (ev, fn) { const state = this._readableState; const res = Stream.prototype.removeListener.call(this, ev, fn); if (ev === "readable") { // We need to check if there is someone still listening to // readable and reset the state. However this needs to happen // after readable has been emitted but before I/O (nextTick) to // support once('readable', fn) cycles. This means that calling // resume within the same tick will have no // effect. process.nextTick(updateReadableListening, this); } else if (ev === "data" && this.listenerCount("data") === 0) { state[kState] &= ~kDataListening; } return res; }; Readable.prototype.off = Readable.prototype.removeListener; Readable.prototype.removeAllListeners = function (ev) { const res = Stream.prototype.removeAllListeners.apply(this, arguments); if (ev === "readable" || ev === undefined) { // We need to check if there is someone still listening to // readable and reset the state. However this needs to happen // after readable has been emitted but before I/O (nextTick) to // support once('readable', fn) cycles. This means that calling // resume within the same tick will have no // effect. process.nextTick(updateReadableListening, this); } return res; }; function updateReadableListening(self) { const state = self._readableState; if (self.listenerCount("readable") > 0) { state[kState] |= kReadableListening; } else { state[kState] &= ~kReadableListening; } if ( (state[kState] & (kHasPaused | kPaused | kResumeScheduled)) === (kHasPaused | kResumeScheduled) ) { // Flowing needs to be set to true now, otherwise // the upcoming resume will not flow. state[kState] |= kHasFlowing | kFlowing; // Crude way to check if we should resume. } else if ((state[kState] & kDataListening) !== 0) { self.resume(); } else if ((state[kState] & kReadableListening) === 0) { state[kState] &= ~(kHasFlowing | kFlowing); } } function nReadingNextTick(self) { debug("readable nexttick read 0"); self.read(0); } // pause() and resume() are remnants of the legacy readable stream API // If the user uses them, then switch into old mode. Readable.prototype.resume = function () { const state = this._readableState; if ((state[kState] & kFlowing) === 0) { debug("resume"); // We flow only if there is no one listening // for readable, but we still have to call // resume(). state[kState] |= kHasFlowing; if ((state[kState] & kReadableListening) === 0) { state[kState] |= kFlowing; } else { state[kState] &= ~kFlowing; } resume(this, state); } state[kState] |= kHasPaused; state[kState] &= ~kPaused; return this; }; function resume(stream, state) { if ((state[kState] & kResumeScheduled) === 0) { state[kState] |= kResumeScheduled; process.nextTick(resume_, stream, state); } } function resume_(stream, state) { debug("resume", (state[kState] & kReading) !== 0); if ((state[kState] & kReading) === 0) { stream.read(0); } state[kState] &= ~kResumeScheduled; stream.emit("resume"); flow(stream); if ((state[kState] & (kFlowing | kReading)) === kFlowing) { stream.read(0); } } Readable.prototype.pause = function () { const state = this._readableState; debug("call pause"); if ((state[kState] & (kHasFlowing | kFlowing)) !== kHasFlowing) { debug("pause"); state[kState] |= kHasFlowing; state[kState] &= ~kFlowing; this.emit("pause"); } state[kState] |= kHasPaused | kPaused; return this; }; function flow(stream) { const state = stream._readableState; debug("flow"); while ((state[kState] & kFlowing) !== 0 && stream.read() !== null); } // Wrap an old-style stream as the async data source. // This is *not* part of the readable stream interface. // It is an ugly unfortunate mess of history. Readable.prototype.wrap = function (stream) { let paused = false; // TODO (ronag): Should this.destroy(err) emit // 'error' on the wrapped stream? Would require // a static factory method, e.g. Readable.wrap(stream). stream.on("data", (chunk) => { if (!this.push(chunk) && stream.pause) { paused = true; stream.pause(); } }); stream.on("end", () => { this.push(null); }); stream.on("error", (err) => { errorOrDestroy(this, err); }); stream.on("close", () => { this.destroy(); }); stream.on("destroy", () => { this.destroy(); }); this._read = () => { if (paused && stream.resume) { paused = false; stream.resume(); } }; // Proxy all the other methods. Important when wrapping filters and duplexes. const streamKeys = ObjectKeys(stream); for (let j = 1; j < streamKeys.length; j++) { const i = streamKeys[j]; if (this[i] === undefined && typeof stream[i] === "function") { this[i] = stream[i].bind(stream); } } return this; }; Readable.prototype[SymbolAsyncIterator] = function () { return streamToAsyncIterator(this); }; Readable.prototype.iterator = function (options) { if (options !== undefined) { validateObject(options, "options"); } return streamToAsyncIterator(this, options); }; function streamToAsyncIterator(stream, options) { if (typeof stream.read !== "function") { stream = Readable.wrap(stream, { objectMode: true }); } const iter = createAsyncIterator(stream, options); iter.stream = stream; return iter; } async function* createAsyncIterator(stream, options) { let callback = nop; function next(resolve) { if (this === stream) { callback(); callback = nop; } else { callback = resolve; } } stream.on("readable", next); let error; const cleanup = eos(stream, { writable: false }, (err) => { error = err ? aggregateTwoErrors(error, err) : null; callback(); callback = nop; }); try { while (true) { const chunk = stream.destroyed ? null : stream.read(); if (chunk !== null) { yield chunk; } else if (error) { throw error; } else if (error === null) { return; } else { await new Promise(next); } } } catch (err) { error = aggregateTwoErrors(error, err); throw error; } finally { if ( (error || options?.destroyOnReturn !== false) && (error === undefined || stream._readableState.autoDestroy) ) { destroyImpl.destroyer(stream, null); } else { stream.off("readable", next); cleanup(); } } } // Making it explicit these properties are not enumerable // because otherwise some prototype manipulation in // userland will fail. ObjectDefineProperties(Readable.prototype, { readable: { __proto__: null, get() { const r = this._readableState; // r.readable === false means that this is part of a Duplex stream // where the readable side was disabled upon construction. // Compat. The user might manually disable readable side through // deprecated setter. return !!r && r.readable !== false && !r.destroyed && !r.errorEmitted && !r.endEmitted; }, set(val) { // Backwards compat. if (this._readableState) { this._readableState.readable = !!val; } }, }, readableDidRead: { __proto__: null, enumerable: false, get: function () { return this._readableState.dataEmitted; }, }, readableAborted: { __proto__: null, enumerable: false, get: function () { return !!( this._readableState.readable !== false && (this._readableState.destroyed || this._readableState.errored) && !this._readableState.endEmitted ); }, }, readableHighWaterMark: { __proto__: null, enumerable: false, get: function () { return this._readableState.highWaterMark; }, }, readableBuffer: { __proto__: null, enumerable: false, get: function () { return this._readableState?.buffer; }, }, readableFlowing: { __proto__: null, enumerable: false, get: function () { return this._readableState.flowing; }, set: function (state) { if (this._readableState) { this._readableState.flowing = state; } }, }, readableLength: { __proto__: null, enumerable: false, get() { return this._readableState.length; }, }, readableObjectMode: { __proto__: null, enumerable: false, get() { return this._readableState ? this._readableState.objectMode : false; }, }, readableEncoding: { __proto__: null, enumerable: false, get() { return this._readableState ? this._readableState.encoding : null; }, }, errored: { __proto__: null, enumerable: false, get() { return this._readableState ? this._readableState.errored : null; }, }, closed: { __proto__: null, get() { return this._readableState ? this._readableState.closed : false; }, }, destroyed: { __proto__: null, enumerable: false, get() { return this._readableState ? this._readableState.destroyed : false; }, set(value) { // We ignore the value if the stream // has not been initialized yet. if (!this._readableState) { return; } // Backward compatibility, the user is explicitly // managing destroyed. this._readableState.destroyed = value; }, }, readableEnded: { __proto__: null, enumerable: false, get() { return this._readableState ? this._readableState.endEmitted : false; }, }, }); ObjectDefineProperties(ReadableState.prototype, { // Legacy getter for `pipesCount`. pipesCount: { __proto__: null, get() { return this.pipes.length; }, }, // Legacy property for `paused`. paused: { __proto__: null, get() { return (this[kState] & kPaused) !== 0; }, set(value) { this[kState] |= kHasPaused; if (value) { this[kState] |= kPaused; } else { this[kState] &= ~kPaused; } }, }, }); // Exposed for testing purposes only. Readable._fromList = fromList; // Pluck off n bytes from an array of buffers. // Length is the combined lengths of all the buffers in the list. // This function is designed to be inlinable, so please take care when making // changes to the function body. function fromList(n, state) { // nothing buffered. if (state.length === 0) { return null; } let idx = state.bufferIndex; let ret; const buf = state.buffer; const len = buf.length; if ((state[kState] & kObjectMode) !== 0) { ret = buf[idx]; buf[idx++] = null; } else if (!n || n >= state.length) { // Read it all, truncate the list. if ((state[kState] & kDecoder) !== 0) { ret = ""; while (idx < len) { ret += buf[idx]; buf[idx++] = null; } } else if (len - idx === 0) { ret = Buffer.alloc(0); } else if (len - idx === 1) { ret = buf[idx]; buf[idx++] = null; } else { ret = Buffer.allocUnsafe(state.length); let i = 0; while (idx < len) { TypedArrayPrototypeSet(ret, buf[idx], i); i += buf[idx].length; buf[idx++] = null; } } } else if (n < buf[idx].length) { // `slice` is the same for buffers and strings. ret = buf[idx].slice(0, n); buf[idx] = buf[idx].slice(n); } else if (n === buf[idx].length) { // First chunk is a perfect match. ret = buf[idx]; buf[idx++] = null; } else if ((state[kState] & kDecoder) !== 0) { ret = ""; while (idx < len) { const str = buf[idx]; if (n > str.length) { ret += str; n -= str.length; buf[idx++] = null; } else { if (n === buf.length) { ret += str; buf[idx++] = null; } else { ret += str.slice(0, n); buf[idx] = str.slice(n); } break; } } } else { ret = Buffer.allocUnsafe(n); const retLen = n; while (idx < len) { const data = buf[idx]; if (n > data.length) { TypedArrayPrototypeSet(ret, data, retLen - n); n -= data.length; buf[idx++] = null; } else { if (n === data.length) { TypedArrayPrototypeSet(ret, data, retLen - n); buf[idx++] = null; } else { TypedArrayPrototypeSet( ret, new FastBuffer(data.buffer, data.byteOffset, n), retLen - n, ); buf[idx] = new FastBuffer( data.buffer, data.byteOffset + n, data.length - n, ); } break; } } } if (idx === len) { state.buffer.length = 0; state.bufferIndex = 0; } else if (idx > 1024) { state.buffer.splice(0, idx); state.bufferIndex = 0; } else { state.bufferIndex = idx; } return ret; } function endReadable(stream) { const state = stream._readableState; debug("endReadable"); if ((state[kState] & kEndEmitted) === 0) { state[kState] |= kEnded; process.nextTick(endReadableNT, state, stream); } } function endReadableNT(state, stream) { debug("endReadableNT"); // Check that we didn't get one last unshift. if ( (state[kState] & (kErrored | kCloseEmitted | kEndEmitted)) === 0 && state.length === 0 ) { state[kState] |= kEndEmitted; stream.emit("end"); if (stream.writable && stream.allowHalfOpen === false) { process.nextTick(endWritableNT, stream); } else if (state.autoDestroy) { // In case of duplex streams we need a way to detect // if the writable side is ready for autoDestroy as well. const wState = stream._writableState; const autoDestroy = !wState || ( wState.autoDestroy && // We don't expect the writable to ever 'finish' // if writable is explicitly set to false. (wState.finished || wState.writable === false) ); if (autoDestroy) { stream.destroy(); } } } } function endWritableNT(stream) { const writable = stream.writable && !stream.writableEnded && !stream.destroyed; if (writable) { stream.end(); } } Readable.from = function (iterable, opts) { return from(Readable, iterable, opts); }; let webStreamsAdapters; // Lazy to avoid circular references function lazyWebStreams() { if (webStreamsAdapters === undefined) { webStreamsAdapters = _mod3; } return webStreamsAdapters; } Readable.fromWeb = function (readableStream, options) { return lazyWebStreams().newStreamReadableFromReadableStream( readableStream, options, ); }; Readable.toWeb = function (streamReadable, options) { return lazyWebStreams().newReadableStreamFromStreamReadable( streamReadable, options, ); }; Readable.wrap = function (src, options) { return new Readable({ objectMode: src.readableObjectMode ?? src.objectMode ?? true, ...options, destroy(err, callback) { destroyImpl.destroyer(src, err); callback(err); }, }).wrap(src); }; export default Readable; export { Readable };