mirror of
https://github.com/erg-lang/erg.git
synced 2025-08-04 10:49:54 +00:00
refactor: move external
packages to package-index
This commit is contained in:
parent
6b681c5fd1
commit
12a425a8da
116 changed files with 0 additions and 1031 deletions
|
@ -1,8 +0,0 @@
|
|||
.erg_parser = pyimport "erg_parser"
|
||||
|
||||
.compile: (code: Str, mode: Str) -> Code
|
||||
.compile_ast: (ast: .erg_parser.ast.AST, mode: Str) -> Code
|
||||
.compile_file: (path: Str) -> Code
|
||||
.exec: (code: Str) -> Module
|
||||
.exec_ast: (ast: .erg_parser.ast.AST) -> Module
|
||||
.__import__: (name: Str) -> Module
|
|
@ -1,4 +0,0 @@
|
|||
.ast = pyimport "./ast"
|
||||
.expr = pyimport "./expr"
|
||||
|
||||
.parse: (code: Str) -> .ast.Module
|
|
@ -1,38 +0,0 @@
|
|||
.Token: ClassType
|
||||
.TokenKind: ClassType
|
||||
|
||||
.Literal: ClassType
|
||||
.VarName: ClassType
|
||||
.Identifier: ClassType
|
||||
.Attribute: ClassType
|
||||
.TupleAttribute: ClassType
|
||||
.Subscript: ClassType
|
||||
.TypeApp: ClassType
|
||||
.NormalArray: ClassType
|
||||
.NormalTuple: ClassType
|
||||
.NormalDict: ClassType
|
||||
.NormalSet: ClassType
|
||||
.NormalRecord: ClassType
|
||||
.BinOp: ClassType
|
||||
.UnaryOp: ClassType
|
||||
.Call: ClassType
|
||||
.Args: ClassType
|
||||
.Block: ClassType
|
||||
.DataPack: ClassType
|
||||
.Lambda: ClassType
|
||||
.TypeAscription: ClassType
|
||||
.VarSignature: ClassType
|
||||
.SubrSignature: ClassType
|
||||
.Def: ClassType
|
||||
.Methods: ClassType
|
||||
.ClassDef: ClassType
|
||||
.PatchDef: ClassType
|
||||
.ReDef: ClassType
|
||||
.Compound: ClassType
|
||||
.InlineModule: ClassType
|
||||
.Dummy: ClassType
|
||||
.Module: ClassType
|
||||
|
||||
.AST: ClassType
|
||||
.AST.
|
||||
new: (name: Str, mod: .Module) -> .AST
|
|
@ -1,20 +0,0 @@
|
|||
.Literal: ClassType
|
||||
.NormalArray: ClassType
|
||||
.NormalTuple: ClassType
|
||||
.NormalDict: ClassType
|
||||
.NormalSet: ClassType
|
||||
.NormalRecord: ClassType
|
||||
.BinOp: ClassType
|
||||
.UnaryOp: ClassType
|
||||
.Call: ClassType
|
||||
.DataPack: ClassType
|
||||
.Lambda: ClassType
|
||||
.TypeAscription: ClassType
|
||||
.Def: ClassType
|
||||
.Methods: ClassType
|
||||
.ClassDef: ClassType
|
||||
.PatchDef: ClassType
|
||||
.ReDef: ClassType
|
||||
.Compound: ClassType
|
||||
.InlineModule: ClassType
|
||||
.Dummy: ClassType
|
|
@ -1,26 +0,0 @@
|
|||
.BaseLoader: ClassType
|
||||
|
||||
.PackageLoader: ClassType
|
||||
.PackageLoader <: .BaseLoader
|
||||
.PackageLoader.
|
||||
__call__: (package_name: Str, package_path: Str) -> .PackageLoader
|
||||
|
||||
.FileSystemLoader: ClassType
|
||||
.FileSystemLoader <: .BaseLoader
|
||||
.FileSystemLoader.
|
||||
__call__: (path: Str) -> .FileSystemLoader
|
||||
|
||||
.DictLoader: ClassType
|
||||
.DictLoader <: .BaseLoader
|
||||
.DictLoader.
|
||||
__call__: (mapping: {Str: Str}) -> .DictLoader
|
||||
|
||||
.Template: ClassType
|
||||
.Template.
|
||||
__call__: (source: Str, autoescape := Bool, enable_async := Bool) -> .Template
|
||||
render: (self: Ref(.Template), **kwargs: Obj) -> Str
|
||||
|
||||
.Enviroment: ClassType
|
||||
.Enviroment.
|
||||
__call__: (loader := .BaseLoader, trim_blocks := Bool) -> .Enviroment
|
||||
get_template: (self: Ref(.Enviroment), name := Str) -> .Template
|
|
@ -1,4 +0,0 @@
|
|||
.pyplot = pyimport "./pyplot"
|
||||
.scale = pyimport "./scale"
|
||||
|
||||
.use!: Str => NoneType
|
|
@ -1,3 +0,0 @@
|
|||
._axes = pyimport "./_axes"
|
||||
|
||||
.Axes! = ._axes.Axes!
|
|
@ -1,21 +0,0 @@
|
|||
.Axes!: ClassType
|
||||
.Axes!.
|
||||
scatter!: (
|
||||
self: RefMut(.Axes!),
|
||||
x: Num, # TODO: Float | ArrayLike
|
||||
y: Num,
|
||||
s := Num,
|
||||
c := Iterable(Int),
|
||||
vmin := Float,
|
||||
vmax := Float,
|
||||
) => NoneType
|
||||
set!: (
|
||||
self: RefMut(.Axes!),
|
||||
xlabel := Str,
|
||||
xlim := (Float, Float),
|
||||
xticks := Iterable(Obj),
|
||||
ylabel := Str,
|
||||
ylim := (Float, Float),
|
||||
yticks := Iterable(Obj),
|
||||
title := Str
|
||||
) => NoneType
|
|
@ -1,5 +0,0 @@
|
|||
axes = pyimport "./axes"
|
||||
|
||||
.Figure!: ClassType
|
||||
.Figure!.
|
||||
add_axes!: (self: RefMut(.Figure!), rect: [Nat; 4], projection := Str or NoneType, polar := Bool, label := Str) => axes.Axes!
|
|
@ -1,4 +0,0 @@
|
|||
_ImageBase: ClassType
|
||||
|
||||
.AxesImage!: ClassType
|
||||
.AxesImage! <: _ImageBase
|
|
@ -1 +0,0 @@
|
|||
.Legend: ClassType
|
|
@ -1,2 +0,0 @@
|
|||
.Line2D: ClassType
|
||||
.Line3D: ClassType
|
|
@ -1,30 +0,0 @@
|
|||
contextlib = pyimport "contextlib"
|
||||
|
||||
# lines = pyimport "../lines"
|
||||
text = pyimport "../text"
|
||||
legend = pyimport "../legend"
|
||||
.style = pyimport "../style"
|
||||
figure = pyimport "../figure"
|
||||
axes = pyimport "../axes"
|
||||
image = pyimport "../image"
|
||||
|
||||
.plot!: (*args: Obj, scaleX := Bool, scaleY := Bool) => [Obj; _]
|
||||
.imshow!: (X: Obj, cmap := Str, interpolation := Str) => image.AxesImage!
|
||||
.show!: () => NoneType
|
||||
.text!: (x: Float, y: Float, s: Str, fontdict := {Str: Obj}, fontsize := Nat) => text.Text
|
||||
.title!: (title: Str) => text.Text
|
||||
.xlabel!: (label: Str) => text.Text
|
||||
.ylabel!: (label: Str) => text.Text
|
||||
.xlim!: (left := Float, right := Float) => (Float, Float) \
|
||||
and ((left_right: (Float, Float)) => (Float, Float))
|
||||
.ylim!: (bottom := Float, top := Float) => (Float, Float) \
|
||||
and ((bottom_top: (Float, Float)) => (Float, Float))
|
||||
.legend!: (labels := [Str; _]) => legend.Legend
|
||||
.savefig!: (fname: Str, dpi := Float or Str, format := Str) => NoneType
|
||||
.subplots!: (() => (figure.Figure!, axes.Axes!)) \
|
||||
and ((nrows: {1}, ncols: {1}) => (figure.Figure!, axes.Axes!)) \
|
||||
and ((nrows: {1}, ncols: Nat) => (figure.Figure!, [axes.Axes!; _])) \
|
||||
and ((nrows: Nat, ncols: {1}) => (figure.Figure!, [axes.Axes!; _])) \
|
||||
and ((nrows: Nat, ncols: Nat) => (figure.Figure!, [[axes.Axes!; _]; _]))
|
||||
.figure!: (num := Int or Str, figsize := [Float; _], dpi := Float) => figure.Figure!
|
||||
.xkcd!: (scale := Float, length := Float, randomness := Float) => contextlib.ExitStack!
|
|
@ -1 +0,0 @@
|
|||
.use!: Str => NoneType
|
|
@ -1 +0,0 @@
|
|||
.Text: ClassType
|
|
@ -1,89 +0,0 @@
|
|||
.Complex64 = 'complex64': ClassType
|
||||
.Complex128 = 'complex128': ClassType
|
||||
|
||||
.Float16 = 'float16': ClassType
|
||||
.Float32 = 'float32': ClassType
|
||||
.Float64 = 'float64': ClassType
|
||||
|
||||
.Int8 = 'int8': ClassType
|
||||
.Int16 = 'int16': ClassType
|
||||
.Int32 = 'int32': ClassType
|
||||
.Int64 = 'int64': ClassType
|
||||
|
||||
.UInt8 = 'uint8': ClassType
|
||||
.UInt16 = 'uint16': ClassType
|
||||
.UInt32 = 'uint32': ClassType
|
||||
.UInt64 = 'uint64': ClassType
|
||||
|
||||
.Bool_ = 'bool_': ClassType
|
||||
.Str_ = 'str_': ClassType
|
||||
|
||||
.NDArray = 'ndarray': (T: Type, Shape: [Nat; _]) -> ClassType
|
||||
.NDArray(T, _) <: Output T
|
||||
.NDArray(_, _) <: Num
|
||||
.NDArray(T, S)|<: Add .NDArray(T, S)|.
|
||||
Output: {.NDArray(T, S)}
|
||||
__add__: (self: .NDArray(T, S), other: .NDArray(T, S)) -> .NDArray(T, S)
|
||||
.NDArray(T, S)|<: Add T|.
|
||||
Output: {.NDArray(T, S)}
|
||||
__add__: (self: .NDArray(T, S), other: T) -> .NDArray(T, S)
|
||||
.NDArray(T, S)|<: Sub .NDArray(T, S)|.
|
||||
Output: {.NDArray(T, S)}
|
||||
__sub__: (self: .NDArray(T, S), other: .NDArray(T, S)) -> .NDArray(T, S)
|
||||
.NDArray(T, S)|<: Sub T|.
|
||||
Output: {.NDArray(T, S)}
|
||||
__sub__: (self: .NDArray(T, S), other: T) -> .NDArray(T, S)
|
||||
.NDArray(T, S)|<: Mul .NDArray(T, S)|.
|
||||
Output: {.NDArray(T, S)}
|
||||
__mul__: (self: .NDArray(T, S), other: .NDArray(T, S)) -> .NDArray(T, S)
|
||||
.NDArray(T, S)|<: Mul T|.
|
||||
Output: {.NDArray(T, S)}
|
||||
__mul__: (self: .NDArray(T, S), other: T) -> .NDArray(T, S)
|
||||
.NDArray(T, S)|<: Div .NDArray(T, S)|.
|
||||
Output: {.NDArray(T, S)}
|
||||
__div__: (self: .NDArray(T, S), other: .NDArray(T, S)) -> .NDArray(T, S)
|
||||
.NDArray(T, S)|<: Div T|.
|
||||
Output: {.NDArray(T, S)}
|
||||
__div__: (self: .NDArray(T, S), other: T) -> .NDArray(T, S)
|
||||
.NDArray.
|
||||
shape: [Nat; _]
|
||||
ndim: Nat
|
||||
dtype: Type
|
||||
size: Nat
|
||||
copy: |T, S: [Nat; _]|(self: .NDArray(T, S),) -> .NDArray(T, S)
|
||||
reshape: |T, Old: [Nat; _], S: {A: [Nat; _] | A.prod() == Old.prod()}|(
|
||||
self: .NDArray(T, Old),
|
||||
shape: {S},
|
||||
) -> .NDArray(T, S)
|
||||
sum: |T <: Num|(self: .NDArray(T, _),) -> T
|
||||
take: (|T|(self: .NDArray(T, _), indice: Nat) -> T) \
|
||||
and (|T|(self: .NDArray(T, _), indices: .NDArray(Nat) or [Nat; _]) -> .NDArray(T, _))
|
||||
tobytes: |T|(self: .NDArray(T, _),) -> Bytes
|
||||
tolist: |T|(self: .NDArray(T, _),) -> [T; _]
|
||||
|
||||
.nan: Float
|
||||
.Nan: Float
|
||||
|
||||
.abs: |T, S: [Nat; _]|(object: .NDArray(T, S),) -> .NDArray(T, S)
|
||||
.add: |T, S: [Nat; _]|(object: .NDArray(T, S), other: .NDArray(T, S)) -> .NDArray(T, S)
|
||||
.all: |T <: Num|(object: .NDArray(T),) -> Bool
|
||||
.any: |T <: Num|(object: .NDArray(T),) -> Bool
|
||||
.arange: |T <: Num|(start: T, stop := T, step := T) -> .NDArray(T)
|
||||
.array: |T, S: [Nat; _]|(object: HasScalarType(T) and HasShape(S),) -> .NDArray(T, S)
|
||||
.linspace: |T <: Num|(start: T, stop: T, num := Nat, endpoint := Bool, retstep := Bool, dtype := Type, axis := Nat) -> .NDArray(T)
|
||||
.max: |T <: Num|(object: .NDArray(T),) -> T
|
||||
.mean: |T <: Num|(object: .NDArray(T),) -> T
|
||||
.min: |T <: Num|(object: .NDArray(T),) -> T
|
||||
.ones: |T|(shape: Nat or [Nat; _], dtype := Type) -> .NDArray(T)
|
||||
.reshapce: |T|(object: .NDArray(T), shape: [Nat; _]) -> .NDArray(T)
|
||||
.std: |T <: Num|(object: .NDArray(T),) -> T
|
||||
.sum: |T|(object: .NDArray(T),) -> T
|
||||
.sqrt: |T|(object: .NDArray(T),) -> .NDArray(T)
|
||||
.transpose: |T|(object: .NDArray(T), axes := [Nat; _]) -> .NDArray(T)
|
||||
.zeros: (|N: Nat|(shape: {N}, dtype := Type) -> .NDArray(Nat, [N])) \
|
||||
and (|S: [Nat; _]|(shape: {S}, dtype := Type) -> .NDArray(Nat, S))
|
||||
.empty: (|N: Nat|(shape: {N}, dtype := Type) -> .NDArray(Nat, [N])) \
|
||||
and (|S: [Nat; _]|(shape: {S}, dtype := Type) -> .NDArray(Nat, S))
|
||||
.dot: (|T, I: Nat, J: Nat, K: Nat|(l: .NDArray(T, [I, J]), r: .NDArray(T, [J, K])) -> .NDArray(T, [I, K])) \
|
||||
and (|T, I: Nat, J: Nat|(l: .NDArray(T, [I]), r: .NDArray(T, [I, J])) -> .NDArray(T, [J])) \
|
||||
and (|T, I: Nat|(l: .NDArray(T, [I]), r: .NDArray(T, [I])) -> T)
|
|
@ -1 +0,0 @@
|
|||
.version = pyimport "./version"
|
|
@ -1,23 +0,0 @@
|
|||
.Version: ClassType
|
||||
.Version <: Eq
|
||||
.Version <: Ord
|
||||
.Version.
|
||||
epoch: Nat
|
||||
release: (Nat, Nat, Nat)
|
||||
pre: (Str, Nat) or NoneType
|
||||
post: Nat or NoneType
|
||||
dev: Nat or NoneType
|
||||
local: Str or NoneType
|
||||
public: Str
|
||||
base_version: Str
|
||||
is_prerelease: Bool
|
||||
is_postrelease: Bool
|
||||
is_devrelease: Bool
|
||||
major: Nat
|
||||
minor: Nat
|
||||
micro: Nat
|
||||
__call__: (ver: Str) -> .Version
|
||||
|
||||
.InvalidVersion: ClassType
|
||||
|
||||
.parse: (ver: Str) -> .Version
|
|
@ -1,17 +0,0 @@
|
|||
.core = pyimport "core"
|
||||
.io = pyimport "io"
|
||||
.plotting = pyimport "plotting"
|
||||
.util = pyimport "util"
|
||||
|
||||
{
|
||||
.DataFrame!;
|
||||
.Series!;
|
||||
.Index;
|
||||
} = pyimport "core/api"
|
||||
|
||||
{
|
||||
.read_csv!;
|
||||
} = pyimport "io/parsers"
|
||||
{
|
||||
.read_json!;
|
||||
} = pyimport "io/json"
|
|
@ -1,5 +0,0 @@
|
|||
.algorithms = pyimport "algorithms"
|
||||
.api = pyimport "api"
|
||||
.frame = pyimport "frame"
|
||||
.indexes = pyimport "indexes"
|
||||
.series = pyimport "series"
|
|
@ -1,3 +0,0 @@
|
|||
{.DataFrame!;} = pyimport "./frame"
|
||||
{.Series!;} = pyimport "./series"
|
||||
{.Index;} = pyimport "./indexes/api"
|
|
@ -1,14 +0,0 @@
|
|||
{.Index;} = pyimport "./indexes/api"
|
||||
|
||||
# I := Nat, V := Obj
|
||||
.DataFrame!: (C: Type, I: Type, V: Type) -> ClassType
|
||||
.DataFrame!(C, I, V) <: Input(C)
|
||||
.DataFrame!(C, I, V) <: Input(I)
|
||||
.DataFrame!(C, I, V) <: Output(V)
|
||||
.DataFrame!.
|
||||
__call__: |K, V, I|(dic: {K: [V; _]} or Iterable(Iterable(V)), index: [I; _] := [Nat; _]) -> .DataFrame!(K, I, V)
|
||||
shape: (Nat, Nat)
|
||||
index: .Index(_) # TODO
|
||||
head: |C, I, V|(self: .DataFrame!(C, I, V), tail: Nat := {5}) -> .DataFrame!(C, I, V)
|
||||
tail: |C, I, V|(self: .DataFrame!(C, I, V), tail: Nat := {5}) -> .DataFrame!(C, I, V)
|
||||
info!: (self: .DataFrame!(_, _, _)) => NoneType
|
|
@ -1 +0,0 @@
|
|||
{.Index;} = pyimport "./base"
|
|
@ -1,2 +0,0 @@
|
|||
.Index: (T: Type) -> ClassType
|
||||
.Index(T) <: Output(T)
|
|
@ -1,8 +0,0 @@
|
|||
{.Index;} = pyimport "./indexes/api"
|
||||
|
||||
# K := Nat, V := Obj
|
||||
.Series!: (K: Type, V: Type) -> ClassType
|
||||
.Series!(K, V) <: Input(K)
|
||||
.Series!(K, V) <: Output(V)
|
||||
.Series!.
|
||||
__call__: |K, V|(iterable: Iterable(V), index: [K; _] or .Index(K) := [Nat; _]) -> .Series! K, V
|
|
@ -1,7 +0,0 @@
|
|||
.api = pyimport "api"
|
||||
.clipboads = pyimport "clipboards"
|
||||
.common = pyimport "common"
|
||||
.excel = pyimport "excel"
|
||||
.html = pyimport "html"
|
||||
.json = pyimport "json"
|
||||
.parsers = pyimport "parsers"
|
|
@ -1,3 +0,0 @@
|
|||
{DataFrame!;} = pyimport "../../core/frame"
|
||||
|
||||
.read_json!: (path: PathLike) => DataFrame!
|
|
@ -1,3 +0,0 @@
|
|||
{DataFrame!;} = pyimport "../../core/frame"
|
||||
|
||||
.read_csv!: (path: PathLike) => DataFrame!
|
|
@ -1 +0,0 @@
|
|||
.version = pyimport "version"
|
|
@ -1 +0,0 @@
|
|||
.Version: ClassType
|
|
@ -1 +0,0 @@
|
|||
.setup!: (*Obj,) => NoneType
|
|
@ -1,3 +0,0 @@
|
|||
.Develop = 'develop': ClassType
|
||||
.Develop.
|
||||
run!: (self: .Develop) => NoneType
|
|
@ -1,3 +0,0 @@
|
|||
.Install = 'install': ClassType
|
||||
.Install.
|
||||
run!: (self: .Install) => NoneType
|
|
@ -1,13 +0,0 @@
|
|||
.PY2: Bool
|
||||
.PY3: Bool
|
||||
|
||||
.class_types: [Type; _]
|
||||
.intger_types: [Type; _]
|
||||
.string_types: [Type; _]
|
||||
.float_types: [Type; _]
|
||||
.text_type: Type
|
||||
.binary_type: Type
|
||||
.MAXSIZE: Nat
|
||||
|
||||
.exec_!: (code: Str, globals := {Str: Obj}, locals := {Str: Obj}) => Obj
|
||||
.print_!: (*objs: [Obj; _], end := Str, sep := Str) => NoneType
|
|
@ -1,87 +0,0 @@
|
|||
np = pyimport "numpy"
|
||||
|
||||
.backends = pyimport "./backends"
|
||||
.cuda = pyimport "./cuda"
|
||||
.nn = pyimport "./nn"
|
||||
.optim = pyimport "./optim"
|
||||
.serialization = pyimport "./serialization"
|
||||
.utils = pyimport "./utils"
|
||||
|
||||
{.load!; .save!;} = pyimport "./serialization"
|
||||
{.manual_seed!;} = pyimport "./random"
|
||||
{.no_grad;} = pyimport "./autograd"
|
||||
|
||||
.Device = 'device': ClassType
|
||||
.device: (type: Str) => .Device
|
||||
|
||||
.DType = 'dtype': ClassType
|
||||
.dtype: (type: Str) => .DType
|
||||
|
||||
.UInt8 = 'uint8': ClassType
|
||||
.Int8 = 'int8': ClassType
|
||||
.Int16 = 'int16': ClassType
|
||||
.Int32 = 'int32': ClassType
|
||||
.Int64 = 'int64': ClassType
|
||||
.Float16 = 'float16': ClassType
|
||||
.Float32 = 'float32': ClassType
|
||||
.Float64 = 'float64': ClassType
|
||||
.Complex32 = 'complex32': ClassType
|
||||
.Complex64 = 'complex64': ClassType
|
||||
.Complex128 = 'complex128': ClassType
|
||||
|
||||
.Size: (S: [Nat; _]) -> ClassType
|
||||
.Size(S).
|
||||
__call__: (size: {S}) -> .Size(S)
|
||||
.Size(S)|<: Eq|.
|
||||
__eq__: (self: .Size(S), other: .Size(S)) -> Bool
|
||||
.Tensor!: (T: Type, Shape: [Nat; _]) -> ClassType
|
||||
.Tensor!(T, _) <: Output T
|
||||
.Tensor!(T, S)|<: IrregularEq|.
|
||||
Output: {Tensor!(Bool, S)}
|
||||
__eq__: (self: .Tensor!(T, S), other: .Tensor!(T, S)) -> .Tensor!(Bool, S)
|
||||
.Tensor!(T, S)|<: Indexable(Nat, .Tensor!(T, _))|.
|
||||
__getitem__: (self: .Tensor!(T, S), index: Nat or [Nat; _]) -> .Tensor!(T, _)
|
||||
.Tensor!(T, S).
|
||||
data: .Tensor!(T, S)
|
||||
shape: .Size(S)
|
||||
.Tensor!(_, _).
|
||||
dtype: .DType
|
||||
clone: |T, S: [Nat; _]|(self: .Tensor!(T, S)) -> .Tensor!(T, S)
|
||||
cpu: |T, S: [Nat; _]|(self: .Tensor!(T, S)) -> .Tensor!(T, S)
|
||||
detach: |T, S: [Nat; _]|(self: .Tensor!(T, S)) -> .Tensor!(T, S)
|
||||
numpy: |T, S: [Nat; _]|(self: .Tensor!(T, S)) -> np.NDArray(T, S)
|
||||
view: (|T, Old: [Nat; _], S: {A: [Nat; _] | A.prod() == Old.prod()}|(
|
||||
self: .Tensor!(T, Old),
|
||||
shape: {S},
|
||||
) -> .Tensor!(T, S)) \
|
||||
and (|T|(self: .Tensor!(T, _), shape: [Int; _]) -> .Tensor!(T, _))
|
||||
backward!: |T, S: [Nat; _]|(
|
||||
self: RefMut(.Tensor!(T, S)),
|
||||
gradient := .Tensor!(T, S),
|
||||
retain_graph := Bool,
|
||||
create_graph := Bool,
|
||||
) => NoneType
|
||||
# TODO: S bound
|
||||
item: |T|(self: Ref .Tensor!(T, _)) -> T
|
||||
to: (|T, S: [Nat; _]|(
|
||||
self: .Tensor!(T, S),
|
||||
other: .DType or .Device,
|
||||
non_blocking := Bool,
|
||||
copy := Bool,
|
||||
) -> .Tensor!(T, S))
|
||||
size: (|T, S: [Nat; _]|(self: .Tensor!(T, S), dim: Nat) -> Nat) \
|
||||
and (|T, S: [Nat; _]|(self: .Tensor!(T, S)) -> .Size)
|
||||
sum: |T, S: [Nat; _]|(self: .Tensor!(T, S)) -> .Tensor!(T, [])
|
||||
squeeze: (|T, S: [Nat; _]|(self: .Tensor!(T, S)) -> .Tensor!(T, S.remove_all(1))) \
|
||||
and (|T|(self: .Tensor!(T, _)) -> .Tensor!(T, _))
|
||||
unsqueeze: (|T, S: [Nat; _], Dim: Nat|(self: .Tensor!(T, S), dim: {Dim}) -> .Tensor!(T, S.insert(Dim, 1))) \
|
||||
and (|T|(self: .Tensor!(T, _), dim: Nat) -> .Tensor!(T, _))
|
||||
|
||||
.relu: |T, S: [Nat; _]|(x: .Tensor!(T, S)) -> .Tensor!(T, S)
|
||||
.softmax: |T, S: [Nat; _]|(x: .Tensor!(T, S), dim: Nat) -> .Tensor!(T, S)
|
||||
.max: (|T|(input: .Tensor!(T, _), dim: Nat, keepdim := Bool) -> (.Tensor!(T, _)), .Tensor!(T, _)) \
|
||||
and (|T|(input: .Tensor!(T, _)) -> .Tensor!(T, _))
|
||||
.min: (|T|(input: .Tensor!(T, _), dim: Nat, keepdim := Bool) -> (.Tensor!(T, _)), .Tensor!(T, _)) \
|
||||
and (|T|(input: .Tensor!(T, _)) -> .Tensor!(T, _))
|
||||
.tensor: (|T, S: [Nat; _]|(data: HasScalarType(T) and HasShape(S), dtype := .DType, device := .Device) -> .Tensor!(T, S)) \
|
||||
and (|T|(data: [T; _], dtype := .DType, device := .Device) -> .Tensor!(T, _))
|
|
@ -1 +0,0 @@
|
|||
{.no_grad;} = import "./grad_mode"
|
|
@ -1,3 +0,0 @@
|
|||
.NoGrad = 'no_grad': ClassType
|
||||
.NoGrad <: ContextManager
|
||||
.no_grad: () -> .NoGrad
|
|
@ -1 +0,0 @@
|
|||
.mps = pyimport "./mps"
|
|
@ -1 +0,0 @@
|
|||
.is_available!: () => Bool
|
|
@ -1 +0,0 @@
|
|||
.is_available!: () => Bool
|
|
@ -1,17 +0,0 @@
|
|||
.modules = pyimport "./modules"
|
||||
.parameter = pyimport "./parameter"
|
||||
|
||||
{
|
||||
.Conv1d;
|
||||
.Conv2d;
|
||||
.Conv3d;
|
||||
.CrossEntropyLoss;
|
||||
.Flatten;
|
||||
.Linear;
|
||||
.MaxPool1d;
|
||||
.MaxPool2d;
|
||||
.MaxPool3d;
|
||||
.Module;
|
||||
.ReLU;
|
||||
} = .modules
|
||||
{.Parameter;} = .parameter
|
|
@ -1,17 +0,0 @@
|
|||
.activation = pyimport "./activation"
|
||||
.container = pyimport "./container"
|
||||
.conv = pyimport "./conv"
|
||||
.flatten = pyimport "./flatten"
|
||||
.linear = pyimport "./linear"
|
||||
.loss = pyimport "./loss"
|
||||
.module = pyimport "./module"
|
||||
.pooling = pyimport "./pooling"
|
||||
|
||||
{.ReLU;} = .activation
|
||||
{.Sequential;} = .container
|
||||
{.Conv1d; .Conv2d; .Conv3d;} = .conv
|
||||
{.Flatten;} = .flatten
|
||||
{.Linear;} = .linear
|
||||
{.CrossEntropyLoss;} = .loss
|
||||
{.Module;} = .module
|
||||
{.MaxPool1d; .MaxPool2d; .MaxPool3d;} = .pooling
|
|
@ -1,10 +0,0 @@
|
|||
{Tensor!;} = pyimport "torch"
|
||||
|
||||
.ReLU: ClassType
|
||||
.ReLU.
|
||||
__call__: () -> .ReLU
|
||||
.ReLU|<: GenericCallable|.
|
||||
__call__: |T, S: [Nat; _]|(
|
||||
self: .ReLU,
|
||||
input: Tensor!(T, S),
|
||||
) -> Tensor!(T, S)
|
|
@ -1,11 +0,0 @@
|
|||
{Tensor!;} = pyimport "torch"
|
||||
{Module;} = pyimport "torch/nn"
|
||||
|
||||
.Sequential: ClassType
|
||||
.Sequential.
|
||||
__call__: (*args: Module) -> .Sequential
|
||||
.Sequential|<: GenericCallable|.
|
||||
__call__: |T, S: [Nat; _]|(
|
||||
self: .Sequential,
|
||||
input: Tensor!(T, S),
|
||||
) -> Tensor!(T, S)
|
|
@ -1,71 +0,0 @@
|
|||
{Device; DType; Tensor!;} = pyimport "torch"
|
||||
{Module;} = pyimport "torch/nn"
|
||||
|
||||
_ConvNd: ClassType
|
||||
_ConvNd <: Module
|
||||
|
||||
.Conv1d: ClassType
|
||||
.Conv1d <: _ConvNd
|
||||
.Conv1d.
|
||||
__call__: (
|
||||
in_channels: Nat,
|
||||
out_channels: Nat,
|
||||
kernel_size: Nat or [Nat; 1] or (Nat,),
|
||||
stride := Nat or [Nat; 1] or (Nat,),
|
||||
padding := Str or Nat or [Nat; 1] or (Nat,),
|
||||
dilation := Nat or [Nat; 1] or (Nat,),
|
||||
groups := Nat,
|
||||
bias := Bool,
|
||||
padding_mode := Str,
|
||||
device := Device or Str or Nat,
|
||||
dtype := DType or Str,
|
||||
) -> .Conv1d
|
||||
.Conv1d|<: GenericCallable|.
|
||||
__call__: |T, S: [Nat; _]|(
|
||||
self: .Conv1d,
|
||||
input: Tensor!(T, S),
|
||||
) -> Tensor!(T, S)
|
||||
|
||||
.Conv2d: ClassType
|
||||
.Conv2d <: _ConvNd
|
||||
.Conv2d.
|
||||
__call__: (
|
||||
in_channels: Nat,
|
||||
out_channels: Nat,
|
||||
kernel_size: Nat or [Nat; 2] or (Nat, Nat),
|
||||
stride := Nat or [Nat; 2] or (Nat, Nat),
|
||||
padding := Str or Nat or [Nat; 2] or (Nat, Nat),
|
||||
dilation := Nat or [Nat; 2] or (Nat, Nat),
|
||||
groups := Nat,
|
||||
bias := Bool,
|
||||
padding_mode := Str,
|
||||
device := Device or Str or Nat,
|
||||
dtype := DType or Str,
|
||||
) -> .Conv2d
|
||||
.Conv2d|<: GenericCallable|.
|
||||
__call__: |T, S: [Nat; _]|(
|
||||
self: .Conv2d,
|
||||
input: Tensor!(T, S),
|
||||
) -> Tensor!(T, S)
|
||||
|
||||
.Conv3d: ClassType
|
||||
.Conv3d <: _ConvNd
|
||||
.Conv3d.
|
||||
__call__: (
|
||||
in_channels: Nat,
|
||||
out_channels: Nat,
|
||||
kernel_size: Nat or [Nat; 3] or (Nat, Nat, Nat),
|
||||
stride := Nat or [Nat; 3] or (Nat, Nat, Nat),
|
||||
padding := Str or Nat or [Nat; 3] or (Nat, Nat, Nat),
|
||||
dilation := Nat or [Nat; 3] or (Nat, Nat, Nat),
|
||||
groups := Nat,
|
||||
bias := Bool,
|
||||
padding_mode := Str,
|
||||
device := Device or Str or Nat,
|
||||
dtype := DType or Str,
|
||||
) -> .Conv3d
|
||||
.Conv3d|<: GenericCallable|.
|
||||
__call__: |T, S: [Nat; _]|(
|
||||
self: .Conv3d,
|
||||
input: Tensor!(T, S),
|
||||
) -> Tensor!(T, S)
|
|
@ -1,10 +0,0 @@
|
|||
{Tensor!;} = pyimport "torch"
|
||||
|
||||
.Flatten: ClassType
|
||||
.Flatten.
|
||||
__call__: (start_dim: Nat, end_dim: Int) -> .Flatten
|
||||
.Flatten|<: GenericCallable|.
|
||||
__call__: |T, S: [Nat; _]|(
|
||||
self: .Flatten,
|
||||
input: Tensor!(T, S),
|
||||
) -> Tensor!(T, S)
|
|
@ -1,18 +0,0 @@
|
|||
{Module;} = pyimport "torch/nn"
|
||||
{Device; DType; Tensor!;} = pyimport "torch"
|
||||
|
||||
.Linear: ClassType
|
||||
.Linear <: Module
|
||||
.Linear.
|
||||
__call__: (
|
||||
in_features: Nat,
|
||||
out_features: Nat,
|
||||
bias := Bool,
|
||||
device := Device or Str or Nat,
|
||||
dtype := DType or Str,
|
||||
) -> .Linear
|
||||
.Linear|<: GenericCallable|.
|
||||
__call__: |T, S: [Nat; _]|(
|
||||
self: .Linear,
|
||||
input: Tensor!(T, S),
|
||||
) -> Tensor!(T, S)
|
|
@ -1,27 +0,0 @@
|
|||
{Tensor!;} = pyimport "torch"
|
||||
{Module;} = pyimport "torch/nn"
|
||||
|
||||
_Loss: ClassType
|
||||
_Loss <: Module
|
||||
_Loss.
|
||||
reduction: Str
|
||||
|
||||
_WeightedLoss: ClassType
|
||||
_WeightedLoss <: _Loss
|
||||
|
||||
.CrossEntropyLoss: ClassType
|
||||
.CrossEntropyLoss <: _WeightedLoss
|
||||
.CrossEntropyLoss.
|
||||
__call__: () -> .CrossEntropyLoss
|
||||
.CrossEntropyLoss|<: GenericCallable|.
|
||||
__call__: |T|(
|
||||
self: .CrossEntropyLoss,
|
||||
input: Tensor!(T, _),
|
||||
target: Tensor!(T, _),
|
||||
) -> Tensor!(T, [])
|
||||
.CrossEntropyLoss.
|
||||
forward: |T|(
|
||||
self: .CrossEntropyLoss,
|
||||
input: Tensor!(T, _),
|
||||
target: Tensor!(T, _),
|
||||
) -> Tensor!(T, [])
|
|
@ -1,43 +0,0 @@
|
|||
{Tensor!;} = pyimport "torch"
|
||||
{Parameter;} = pyimport "torch/nn/parameter"
|
||||
|
||||
.Module: ClassType
|
||||
.Module <: InheritableType
|
||||
.Module|<: GenericCallable|.
|
||||
__call__: |T|(
|
||||
self: .Module,
|
||||
input: Tensor!(T, _),
|
||||
) -> Tensor!(T, _)
|
||||
.Module.
|
||||
__init__: (self: RefMut(.Module)) => NoneType
|
||||
parameters: (self: Ref(.Module), recurse := Bool) -> Iterator Parameter
|
||||
named_parameters: (self: Ref(.Module), prefix := Str, recurse := Bool, remove_duplicate := Bool) -> Iterator((Str, Parameter))
|
||||
# buffers: (self: Ref(.Module), recurse := Bool) -> Iterator .Tensor!
|
||||
# named_buffers: (self: Ref(.Module), prefix := Str, recurse := Bool, remove_duplicate := Bool) -> Iterator((Str, .Tensor!))
|
||||
children: (self: Ref(.Module)) -> Iterator .Module
|
||||
named_children: (self: Ref(.Module), prefix := Str) -> Iterator((Str, .Module))
|
||||
modules: (self: Ref(.Module)) -> Iterator .Module
|
||||
named_modules: (self: Ref(.Module), memo := {.Module; _}, prefix := Str, remove_duplicate := Bool) -> Iterator((Str, .Module))
|
||||
train: |T <: .Module|(self: Ref(T), mode := Bool) -> T
|
||||
eval: |T <: .Module|(self: Ref(T)) -> T
|
||||
zero_grad!: (self: RefMut(.Module), set_to_none := Bool) => NoneType
|
||||
compile: (self: Ref(.Module), *args: Obj, **kwargs: Obj) -> .Module
|
||||
# register_buffer!: (self: RefMut(.Module), name: Str, tensor := Tensor!, persistent := Bool) => NoneType
|
||||
register_parameter!: (self: RefMut(.Module), name: Str, param := Parameter) => NoneType
|
||||
add_module!: (self: RefMut(.Module), name: Str, module := .Module) => NoneType
|
||||
register_module!: (self: RefMut(.Module), name: Str, module := .Module) => NoneType
|
||||
get_submodule: (self: Ref(.Module), name: Str) -> .Module
|
||||
get_parameter: (self: Ref(.Module), name: Str) -> Parameter
|
||||
# get_buffer: (self: Ref(.Module), name: Str) -> .Tensor!
|
||||
get_extra_state: (self: Ref(.Module)) -> Obj
|
||||
set_extra_state!: (self: RefMut(.Module), state: Obj) => NoneType
|
||||
apply!: |T <: .Module|(self: T, fn: (module: RefMut(T)) => NoneType) => T
|
||||
cuda!: |T <: .Module|(self: T, device := Int) => T
|
||||
ipu!: |T <: .Module|(self: T, device := Int) => T
|
||||
xpu!: |T <: .Module|(self: T, device := Int) => T
|
||||
cpu!: |T <: .Module|(self: T) => T
|
||||
float: |T <: .Module|(self: T) -> T
|
||||
double: |T <: .Module|(self: T) -> T
|
||||
half: |T <: .Module|(self: T) -> T
|
||||
bfloat16: |T <: .Module|(self: T) -> T
|
||||
to: |T <: .Module|(self: T, *args: Obj, **kwargs: Obj) -> T
|
|
@ -1,57 +0,0 @@
|
|||
{Tensor!;} = pyimport "torch"
|
||||
{Module;} = pyimport "torch/nn"
|
||||
|
||||
_MaxPoolNd: ClassType
|
||||
_MaxPoolNd <: Module
|
||||
|
||||
.MaxPool1d: ClassType
|
||||
.MaxPool1d <: _MaxPoolNd
|
||||
.MaxPool1d <: GenericCallable
|
||||
.MaxPool1d.
|
||||
__call__: (
|
||||
kernel_size: Nat or [Nat; 1] or (Nat,),
|
||||
stride := Nat or [Nat; 1] or (Nat,),
|
||||
padding := Str or Nat or [Nat; 1] or (Nat,),
|
||||
dilation := Nat or [Nat; 1] or (Nat,),
|
||||
return_indices := Bool,
|
||||
ceil_mode := Bool,
|
||||
) -> .MaxPool1d
|
||||
.MaxPool1d|<: GenericCallable|.
|
||||
__call__: |T, S: [Nat; _]|(
|
||||
self: .MaxPool1d,
|
||||
input: Tensor!(T, S),
|
||||
) -> Tensor!(T, S)
|
||||
|
||||
.MaxPool2d: ClassType
|
||||
.MaxPool2d <: _MaxPoolNd
|
||||
.MaxPool2d.
|
||||
__call__: (
|
||||
kernel_size: Nat or [Nat; 2] or (Nat, Nat),
|
||||
stride := Nat or [Nat; 2] or (Nat, Nat),
|
||||
padding := Str or Nat or [Nat; 2] or (Nat, Nat),
|
||||
dilation := Nat or [Nat; 2] or (Nat, Nat),
|
||||
return_indices := Bool,
|
||||
ceil_mode := Bool,
|
||||
) -> .MaxPool2d
|
||||
.MaxPool2d|<: GenericCallable|.
|
||||
__call__: |T, S: [Nat; _]|(
|
||||
self: .MaxPool2d,
|
||||
input: Tensor!(T, S),
|
||||
) -> Tensor!(T, S)
|
||||
|
||||
.MaxPool3d: ClassType
|
||||
.MaxPool3d <: _MaxPoolNd
|
||||
.MaxPool3d.
|
||||
__call__: (
|
||||
kernel_size: Nat or [Nat; 3] or (Nat, Nat, Nat),
|
||||
stride := Nat or [Nat; 3] or (Nat, Nat, Nat),
|
||||
padding := Str or Nat or [Nat; 3] or (Nat, Nat, Nat),
|
||||
dilation := Nat or [Nat; 3] or (Nat, Nat, Nat),
|
||||
return_indices := Bool,
|
||||
ceil_mode := Bool,
|
||||
) -> .MaxPool3d
|
||||
.MaxPool3d|<: GenericCallable|.
|
||||
__call__: |T, S: [Nat; _]|(
|
||||
self: .MaxPool3d,
|
||||
input: Tensor!(T, S),
|
||||
) -> Tensor!(T, S)
|
|
@ -1 +0,0 @@
|
|||
.Parameter: ClassType
|
|
@ -1,47 +0,0 @@
|
|||
{Parameter;} = pyimport "torch/nn/parameter"
|
||||
|
||||
.Optimizer!: ClassType
|
||||
.Optimizer! <: InheritableType
|
||||
.Optimizer!.
|
||||
__call__: (params: Iterable(Parameter)) -> .Optimizer!
|
||||
zero_grad!: (self: RefMut .Optimizer!) => NoneType
|
||||
step!: (self: RefMut .Optimizer!) => NoneType
|
||||
|
||||
.ASGD!: ClassType
|
||||
.ASGD! <: .Optimizer!
|
||||
.Adadelta!: ClassType
|
||||
.Adadelta! <: .Optimizer!
|
||||
.Adagrad!: ClassType
|
||||
.Adagrad! <: .Optimizer!
|
||||
.Adam!: ClassType
|
||||
.Adam! <: .Optimizer!
|
||||
.Adam!.
|
||||
__call__: (
|
||||
params: Iterable(Parameter),
|
||||
lr := Float,
|
||||
betas := (Float, Float),
|
||||
eps := Float,
|
||||
weight_decay := Float,
|
||||
amsgrad := Bool,
|
||||
foreach := Bool,
|
||||
maximize := Bool,
|
||||
) -> .Adam!
|
||||
|
||||
.AdamW!: ClassType
|
||||
.AdamW! <: .Optimizer!
|
||||
.Adamax!: ClassType
|
||||
.Adamax! <: .Optimizer!
|
||||
.LBFGS!: ClassType
|
||||
.LBFGS! <: .Optimizer!
|
||||
.NAdam!: ClassType
|
||||
.NAdam! <: .Optimizer!
|
||||
.RAdam!: ClassType
|
||||
.RAdam! <: .Optimizer!
|
||||
.RMSprop!: ClassType
|
||||
.RMSprop! <: .Optimizer!
|
||||
.Rprop!: ClassType
|
||||
.Rprop! <: .Optimizer!
|
||||
.SGD!: ClassType
|
||||
.SGD! <: .Optimizer!
|
||||
.SparseAdam!: ClassType
|
||||
.SparseAdam! <: .Optimizer!
|
|
@ -1 +0,0 @@
|
|||
.manual_seed!: (seed: Int) => Obj
|
|
@ -1,2 +0,0 @@
|
|||
.load!: (f: PathLike) => NoneType
|
||||
.save!: (obj: Obj, f: PathLike) => NoneType
|
|
@ -1 +0,0 @@
|
|||
.data = pyimport "./data"
|
|
@ -1,9 +0,0 @@
|
|||
{.DataLoader;} = pyimport "./dataloader"
|
||||
{.Dataset;} = pyimport "./dataset"
|
||||
{
|
||||
.Sampler;
|
||||
.SequentialSampler;
|
||||
.RandomSampler;
|
||||
.SubsetRandomSampler;
|
||||
.WeightedRandomSampler;
|
||||
} = pyimport "./sampler"
|
|
@ -1,25 +0,0 @@
|
|||
torch = pyimport "torch"
|
||||
dataset = pyimport "./dataset"
|
||||
{Sampler;} = pyimport "./sampler"
|
||||
|
||||
.DataLoader: ClassType
|
||||
.DataLoader <: Iterable((torch.Tensor!(_, _), torch.Tensor!(_, _)))
|
||||
.DataLoader.
|
||||
__call__: (
|
||||
dataset: dataset.Dataset,
|
||||
batch_size := Nat,
|
||||
shuffle := Bool,
|
||||
sampler := Sampler,
|
||||
batch_sampler := Sampler,
|
||||
num_workers := Nat,
|
||||
collate_fn := Obj,
|
||||
pin_memory := Bool,
|
||||
drop_last := Bool,
|
||||
timeout := Float,
|
||||
worker_init_fn := Obj,
|
||||
multiprocessing_context := Obj,
|
||||
generator := Obj,
|
||||
prefetch_factor := Nat,
|
||||
persistent_workers := Bool,
|
||||
pin_memory_device := Str,
|
||||
) -> .DataLoader
|
|
@ -1 +0,0 @@
|
|||
.Dataset: ClassType
|
Some files were not shown because too many files have changed in this diff Show more
Loading…
Add table
Add a link
Reference in a new issue