mirror of
https://github.com/erg-lang/erg.git
synced 2025-09-30 12:51:10 +00:00
add external files
This commit is contained in:
parent
7823243dbe
commit
92aa3ea078
122 changed files with 1087 additions and 0 deletions
87
crates/erg_compiler/lib/external/torch.d/__init__.d.er
vendored
Normal file
87
crates/erg_compiler/lib/external/torch.d/__init__.d.er
vendored
Normal file
|
@ -0,0 +1,87 @@
|
|||
np = pyimport "numpy"
|
||||
|
||||
.backends = pyimport "./backends"
|
||||
.cuda = pyimport "./cuda"
|
||||
.nn = pyimport "./nn"
|
||||
.optim = pyimport "./optim"
|
||||
.serialization = pyimport "./serialization"
|
||||
.utils = pyimport "./utils"
|
||||
|
||||
{.load!; .save!;} = pyimport "./serialization"
|
||||
{.manual_seed!;} = pyimport "./random"
|
||||
{.no_grad;} = pyimport "./autograd"
|
||||
|
||||
.Device = 'device': ClassType
|
||||
.device: (type: Str) => .Device
|
||||
|
||||
.DType = 'dtype': ClassType
|
||||
.dtype: (type: Str) => .DType
|
||||
|
||||
.UInt8 = 'uint8': ClassType
|
||||
.Int8 = 'int8': ClassType
|
||||
.Int16 = 'int16': ClassType
|
||||
.Int32 = 'int32': ClassType
|
||||
.Int64 = 'int64': ClassType
|
||||
.Float16 = 'float16': ClassType
|
||||
.Float32 = 'float32': ClassType
|
||||
.Float64 = 'float64': ClassType
|
||||
.Complex32 = 'complex32': ClassType
|
||||
.Complex64 = 'complex64': ClassType
|
||||
.Complex128 = 'complex128': ClassType
|
||||
|
||||
.Size: (S: [Nat; _]) -> ClassType
|
||||
.Size(S).
|
||||
__call__: (size: {S}) -> .Size(S)
|
||||
.Size(S)|<: Eq|.
|
||||
__eq__: (self: .Size(S), other: .Size(S)) -> Bool
|
||||
.Tensor!: (T: Type, Shape: [Nat; _]) -> ClassType
|
||||
.Tensor!(T, _) <: Output T
|
||||
.Tensor!(T, S)|<: IrregularEq|.
|
||||
Output: {Tensor!(Bool, S)}
|
||||
__eq__: (self: .Tensor!(T, S), other: .Tensor!(T, S)) -> .Tensor!(Bool, S)
|
||||
.Tensor!(T, S)|<: Indexable(Nat, .Tensor!(T, _))|.
|
||||
__getitem__: (self: .Tensor!(T, S), index: Nat or [Nat; _]) -> .Tensor!(T, _)
|
||||
.Tensor!(T, S).
|
||||
data: .Tensor!(T, S)
|
||||
shape: .Size(S)
|
||||
.Tensor!(_, _).
|
||||
dtype: .DType
|
||||
clone: |T, S: [Nat; _]|(self: .Tensor!(T, S)) -> .Tensor!(T, S)
|
||||
cpu: |T, S: [Nat; _]|(self: .Tensor!(T, S)) -> .Tensor!(T, S)
|
||||
detach: |T, S: [Nat; _]|(self: .Tensor!(T, S)) -> .Tensor!(T, S)
|
||||
numpy: |T, S: [Nat; _]|(self: .Tensor!(T, S)) -> np.NDArray(T, S)
|
||||
view: (|T, Old: [Nat; _], S: {A: [Nat; _] | A.prod() == Old.prod()}|(
|
||||
self: .Tensor!(T, Old),
|
||||
shape: {S},
|
||||
) -> .Tensor!(T, S)) \
|
||||
and (|T|(self: .Tensor!(T, _), shape: [Int; _]) -> .Tensor!(T, _))
|
||||
backward!: |T, S: [Nat; _]|(
|
||||
self: RefMut(.Tensor!(T, S)),
|
||||
gradient := .Tensor!(T, S),
|
||||
retain_graph := Bool,
|
||||
create_graph := Bool,
|
||||
) => NoneType
|
||||
# TODO: S bound
|
||||
item: |T|(self: Ref .Tensor!(T, _)) -> T
|
||||
to: (|T, S: [Nat; _]|(
|
||||
self: .Tensor!(T, S),
|
||||
other: .DType or .Device,
|
||||
non_blocking := Bool,
|
||||
copy := Bool,
|
||||
) -> .Tensor!(T, S))
|
||||
size: (|T, S: [Nat; _]|(self: .Tensor!(T, S), dim: Nat) -> Nat) \
|
||||
and (|T, S: [Nat; _]|(self: .Tensor!(T, S)) -> .Size)
|
||||
sum: |T, S: [Nat; _]|(self: .Tensor!(T, S)) -> .Tensor!(T, [])
|
||||
squeeze: (|T, S: [Nat; _]|(self: .Tensor!(T, S)) -> .Tensor!(T, S.remove_all(1))) \
|
||||
and (|T|(self: .Tensor!(T, _)) -> .Tensor!(T, _))
|
||||
unsqueeze: (|T, S: [Nat; _], Dim: Nat|(self: .Tensor!(T, S), dim: {Dim}) -> .Tensor!(T, S.insert(Dim, 1))) \
|
||||
and (|T|(self: .Tensor!(T, _), dim: Nat) -> .Tensor!(T, _))
|
||||
|
||||
.relu: |T, S: [Nat; _]|(x: .Tensor!(T, S)) -> .Tensor!(T, S)
|
||||
.softmax: |T, S: [Nat; _]|(x: .Tensor!(T, S), dim: Nat) -> .Tensor!(T, S)
|
||||
.max: (|T|(input: .Tensor!(T, _), dim: Nat, keepdim := Bool) -> (.Tensor!(T, _)), .Tensor!(T, _)) \
|
||||
and (|T|(input: .Tensor!(T, _)) -> .Tensor!(T, _))
|
||||
.min: (|T|(input: .Tensor!(T, _), dim: Nat, keepdim := Bool) -> (.Tensor!(T, _)), .Tensor!(T, _)) \
|
||||
and (|T|(input: .Tensor!(T, _)) -> .Tensor!(T, _))
|
||||
.tensor: (|T, S: [Nat; _]|(data: HasScalarType(T) and HasShape(S), dtype := .DType, device := .Device) -> .Tensor!(T, S)) \
|
||||
and (|T|(data: [T; _], dtype := .DType, device := .Device) -> .Tensor!(T, _))
|
1
crates/erg_compiler/lib/external/torch.d/autograd.d/__init__.d.er
vendored
Normal file
1
crates/erg_compiler/lib/external/torch.d/autograd.d/__init__.d.er
vendored
Normal file
|
@ -0,0 +1 @@
|
|||
{.no_grad;} = import "./grad_mode"
|
3
crates/erg_compiler/lib/external/torch.d/autograd.d/grad_mode.d.er
vendored
Normal file
3
crates/erg_compiler/lib/external/torch.d/autograd.d/grad_mode.d.er
vendored
Normal file
|
@ -0,0 +1,3 @@
|
|||
.NoGrad = 'no_grad': ClassType
|
||||
.NoGrad <: ContextManager
|
||||
.no_grad: () -> .NoGrad
|
1
crates/erg_compiler/lib/external/torch.d/backends.d/__init__.d.er
vendored
Normal file
1
crates/erg_compiler/lib/external/torch.d/backends.d/__init__.d.er
vendored
Normal file
|
@ -0,0 +1 @@
|
|||
.mps = pyimport "./mps"
|
1
crates/erg_compiler/lib/external/torch.d/backends.d/mps.d/__init__.d.er
vendored
Normal file
1
crates/erg_compiler/lib/external/torch.d/backends.d/mps.d/__init__.d.er
vendored
Normal file
|
@ -0,0 +1 @@
|
|||
.is_available!: () => Bool
|
1
crates/erg_compiler/lib/external/torch.d/cuda.d/__init__.d.er
vendored
Normal file
1
crates/erg_compiler/lib/external/torch.d/cuda.d/__init__.d.er
vendored
Normal file
|
@ -0,0 +1 @@
|
|||
.is_available!: () => Bool
|
17
crates/erg_compiler/lib/external/torch.d/nn.d/__init__.d.er
vendored
Normal file
17
crates/erg_compiler/lib/external/torch.d/nn.d/__init__.d.er
vendored
Normal file
|
@ -0,0 +1,17 @@
|
|||
.modules = pyimport "./modules"
|
||||
.parameter = pyimport "./parameter"
|
||||
|
||||
{
|
||||
.Conv1d;
|
||||
.Conv2d;
|
||||
.Conv3d;
|
||||
.CrossEntropyLoss;
|
||||
.Flatten;
|
||||
.Linear;
|
||||
.MaxPool1d;
|
||||
.MaxPool2d;
|
||||
.MaxPool3d;
|
||||
.Module;
|
||||
.ReLU;
|
||||
} = .modules
|
||||
{.Parameter;} = .parameter
|
17
crates/erg_compiler/lib/external/torch.d/nn.d/modules.d/__init__.d.er
vendored
Normal file
17
crates/erg_compiler/lib/external/torch.d/nn.d/modules.d/__init__.d.er
vendored
Normal file
|
@ -0,0 +1,17 @@
|
|||
.activation = pyimport "./activation"
|
||||
.container = pyimport "./container"
|
||||
.conv = pyimport "./conv"
|
||||
.flatten = pyimport "./flatten"
|
||||
.linear = pyimport "./linear"
|
||||
.loss = pyimport "./loss"
|
||||
.module = pyimport "./module"
|
||||
.pooling = pyimport "./pooling"
|
||||
|
||||
{.ReLU;} = .activation
|
||||
{.Sequential;} = .container
|
||||
{.Conv1d; .Conv2d; .Conv3d;} = .conv
|
||||
{.Flatten;} = .flatten
|
||||
{.Linear;} = .linear
|
||||
{.CrossEntropyLoss;} = .loss
|
||||
{.Module;} = .module
|
||||
{.MaxPool1d; .MaxPool2d; .MaxPool3d;} = .pooling
|
10
crates/erg_compiler/lib/external/torch.d/nn.d/modules.d/activation.d.er
vendored
Normal file
10
crates/erg_compiler/lib/external/torch.d/nn.d/modules.d/activation.d.er
vendored
Normal file
|
@ -0,0 +1,10 @@
|
|||
{Tensor!;} = pyimport "torch"
|
||||
|
||||
.ReLU: ClassType
|
||||
.ReLU.
|
||||
__call__: () -> .ReLU
|
||||
.ReLU|<: GenericCallable|.
|
||||
__call__: |T, S: [Nat; _]|(
|
||||
self: .ReLU,
|
||||
input: Tensor!(T, S),
|
||||
) -> Tensor!(T, S)
|
11
crates/erg_compiler/lib/external/torch.d/nn.d/modules.d/container.d.er
vendored
Normal file
11
crates/erg_compiler/lib/external/torch.d/nn.d/modules.d/container.d.er
vendored
Normal file
|
@ -0,0 +1,11 @@
|
|||
{Tensor!;} = pyimport "torch"
|
||||
{Module;} = pyimport "torch/nn"
|
||||
|
||||
.Sequential: ClassType
|
||||
.Sequential.
|
||||
__call__: (*args: Module) -> .Sequential
|
||||
.Sequential|<: GenericCallable|.
|
||||
__call__: |T, S: [Nat; _]|(
|
||||
self: .Sequential,
|
||||
input: Tensor!(T, S),
|
||||
) -> Tensor!(T, S)
|
71
crates/erg_compiler/lib/external/torch.d/nn.d/modules.d/conv.d.er
vendored
Normal file
71
crates/erg_compiler/lib/external/torch.d/nn.d/modules.d/conv.d.er
vendored
Normal file
|
@ -0,0 +1,71 @@
|
|||
{Device; DType; Tensor!;} = pyimport "torch"
|
||||
{Module;} = pyimport "torch/nn"
|
||||
|
||||
_ConvNd: ClassType
|
||||
_ConvNd <: Module
|
||||
|
||||
.Conv1d: ClassType
|
||||
.Conv1d <: _ConvNd
|
||||
.Conv1d.
|
||||
__call__: (
|
||||
in_channels: Nat,
|
||||
out_channels: Nat,
|
||||
kernel_size: Nat or [Nat; 1] or (Nat,),
|
||||
stride := Nat or [Nat; 1] or (Nat,),
|
||||
padding := Str or Nat or [Nat; 1] or (Nat,),
|
||||
dilation := Nat or [Nat; 1] or (Nat,),
|
||||
groups := Nat,
|
||||
bias := Bool,
|
||||
padding_mode := Str,
|
||||
device := Device or Str or Nat,
|
||||
dtype := DType or Str,
|
||||
) -> .Conv1d
|
||||
.Conv1d|<: GenericCallable|.
|
||||
__call__: |T, S: [Nat; _]|(
|
||||
self: .Conv1d,
|
||||
input: Tensor!(T, S),
|
||||
) -> Tensor!(T, S)
|
||||
|
||||
.Conv2d: ClassType
|
||||
.Conv2d <: _ConvNd
|
||||
.Conv2d.
|
||||
__call__: (
|
||||
in_channels: Nat,
|
||||
out_channels: Nat,
|
||||
kernel_size: Nat or [Nat; 2] or (Nat, Nat),
|
||||
stride := Nat or [Nat; 2] or (Nat, Nat),
|
||||
padding := Str or Nat or [Nat; 2] or (Nat, Nat),
|
||||
dilation := Nat or [Nat; 2] or (Nat, Nat),
|
||||
groups := Nat,
|
||||
bias := Bool,
|
||||
padding_mode := Str,
|
||||
device := Device or Str or Nat,
|
||||
dtype := DType or Str,
|
||||
) -> .Conv2d
|
||||
.Conv2d|<: GenericCallable|.
|
||||
__call__: |T, S: [Nat; _]|(
|
||||
self: .Conv2d,
|
||||
input: Tensor!(T, S),
|
||||
) -> Tensor!(T, S)
|
||||
|
||||
.Conv3d: ClassType
|
||||
.Conv3d <: _ConvNd
|
||||
.Conv3d.
|
||||
__call__: (
|
||||
in_channels: Nat,
|
||||
out_channels: Nat,
|
||||
kernel_size: Nat or [Nat; 3] or (Nat, Nat, Nat),
|
||||
stride := Nat or [Nat; 3] or (Nat, Nat, Nat),
|
||||
padding := Str or Nat or [Nat; 3] or (Nat, Nat, Nat),
|
||||
dilation := Nat or [Nat; 3] or (Nat, Nat, Nat),
|
||||
groups := Nat,
|
||||
bias := Bool,
|
||||
padding_mode := Str,
|
||||
device := Device or Str or Nat,
|
||||
dtype := DType or Str,
|
||||
) -> .Conv3d
|
||||
.Conv3d|<: GenericCallable|.
|
||||
__call__: |T, S: [Nat; _]|(
|
||||
self: .Conv3d,
|
||||
input: Tensor!(T, S),
|
||||
) -> Tensor!(T, S)
|
10
crates/erg_compiler/lib/external/torch.d/nn.d/modules.d/flatten.d.er
vendored
Normal file
10
crates/erg_compiler/lib/external/torch.d/nn.d/modules.d/flatten.d.er
vendored
Normal file
|
@ -0,0 +1,10 @@
|
|||
{Tensor!;} = pyimport "torch"
|
||||
|
||||
.Flatten: ClassType
|
||||
.Flatten.
|
||||
__call__: (start_dim: Nat, end_dim: Int) -> .Flatten
|
||||
.Flatten|<: GenericCallable|.
|
||||
__call__: |T, S: [Nat; _]|(
|
||||
self: .Flatten,
|
||||
input: Tensor!(T, S),
|
||||
) -> Tensor!(T, S)
|
18
crates/erg_compiler/lib/external/torch.d/nn.d/modules.d/linear.d.er
vendored
Normal file
18
crates/erg_compiler/lib/external/torch.d/nn.d/modules.d/linear.d.er
vendored
Normal file
|
@ -0,0 +1,18 @@
|
|||
{Module;} = pyimport "torch/nn"
|
||||
{Device; DType; Tensor!;} = pyimport "torch"
|
||||
|
||||
.Linear: ClassType
|
||||
.Linear <: Module
|
||||
.Linear.
|
||||
__call__: (
|
||||
in_features: Nat,
|
||||
out_features: Nat,
|
||||
bias := Bool,
|
||||
device := Device or Str or Nat,
|
||||
dtype := DType or Str,
|
||||
) -> .Linear
|
||||
.Linear|<: GenericCallable|.
|
||||
__call__: |T, S: [Nat; _]|(
|
||||
self: .Linear,
|
||||
input: Tensor!(T, S),
|
||||
) -> Tensor!(T, S)
|
27
crates/erg_compiler/lib/external/torch.d/nn.d/modules.d/loss.d.er
vendored
Normal file
27
crates/erg_compiler/lib/external/torch.d/nn.d/modules.d/loss.d.er
vendored
Normal file
|
@ -0,0 +1,27 @@
|
|||
{Tensor!;} = pyimport "torch"
|
||||
{Module;} = pyimport "torch/nn"
|
||||
|
||||
_Loss: ClassType
|
||||
_Loss <: Module
|
||||
_Loss.
|
||||
reduction: Str
|
||||
|
||||
_WeightedLoss: ClassType
|
||||
_WeightedLoss <: _Loss
|
||||
|
||||
.CrossEntropyLoss: ClassType
|
||||
.CrossEntropyLoss <: _WeightedLoss
|
||||
.CrossEntropyLoss.
|
||||
__call__: () -> .CrossEntropyLoss
|
||||
.CrossEntropyLoss|<: GenericCallable|.
|
||||
__call__: |T|(
|
||||
self: .CrossEntropyLoss,
|
||||
input: Tensor!(T, _),
|
||||
target: Tensor!(T, _),
|
||||
) -> Tensor!(T, [])
|
||||
.CrossEntropyLoss.
|
||||
forward: |T|(
|
||||
self: .CrossEntropyLoss,
|
||||
input: Tensor!(T, _),
|
||||
target: Tensor!(T, _),
|
||||
) -> Tensor!(T, [])
|
43
crates/erg_compiler/lib/external/torch.d/nn.d/modules.d/module.d.er
vendored
Normal file
43
crates/erg_compiler/lib/external/torch.d/nn.d/modules.d/module.d.er
vendored
Normal file
|
@ -0,0 +1,43 @@
|
|||
{Tensor!;} = pyimport "torch"
|
||||
{Parameter;} = pyimport "torch/nn/parameter"
|
||||
|
||||
.Module: ClassType
|
||||
.Module <: InheritableType
|
||||
.Module|<: GenericCallable|.
|
||||
__call__: |T|(
|
||||
self: .Module,
|
||||
input: Tensor!(T, _),
|
||||
) -> Tensor!(T, _)
|
||||
.Module.
|
||||
__init__: (self: RefMut(.Module)) => NoneType
|
||||
parameters: (self: Ref(.Module), recurse := Bool) -> Iterator Parameter
|
||||
named_parameters: (self: Ref(.Module), prefix := Str, recurse := Bool, remove_duplicate := Bool) -> Iterator((Str, Parameter))
|
||||
# buffers: (self: Ref(.Module), recurse := Bool) -> Iterator .Tensor!
|
||||
# named_buffers: (self: Ref(.Module), prefix := Str, recurse := Bool, remove_duplicate := Bool) -> Iterator((Str, .Tensor!))
|
||||
children: (self: Ref(.Module)) -> Iterator .Module
|
||||
named_children: (self: Ref(.Module), prefix := Str) -> Iterator((Str, .Module))
|
||||
modules: (self: Ref(.Module)) -> Iterator .Module
|
||||
named_modules: (self: Ref(.Module), memo := {.Module; _}, prefix := Str, remove_duplicate := Bool) -> Iterator((Str, .Module))
|
||||
train: |T <: .Module|(self: Ref(T), mode := Bool) -> T
|
||||
eval: |T <: .Module|(self: Ref(T)) -> T
|
||||
zero_grad!: (self: RefMut(.Module), set_to_none := Bool) => NoneType
|
||||
compile: (self: Ref(.Module), *args: Obj, **kwargs: Obj) -> .Module
|
||||
# register_buffer!: (self: RefMut(.Module), name: Str, tensor := Tensor!, persistent := Bool) => NoneType
|
||||
register_parameter!: (self: RefMut(.Module), name: Str, param := Parameter) => NoneType
|
||||
add_module!: (self: RefMut(.Module), name: Str, module := .Module) => NoneType
|
||||
register_module!: (self: RefMut(.Module), name: Str, module := .Module) => NoneType
|
||||
get_submodule: (self: Ref(.Module), name: Str) -> .Module
|
||||
get_parameter: (self: Ref(.Module), name: Str) -> Parameter
|
||||
# get_buffer: (self: Ref(.Module), name: Str) -> .Tensor!
|
||||
get_extra_state: (self: Ref(.Module)) -> Obj
|
||||
set_extra_state!: (self: RefMut(.Module), state: Obj) => NoneType
|
||||
apply!: |T <: .Module|(self: T, fn: (module: RefMut(T)) => NoneType) => T
|
||||
cuda!: |T <: .Module|(self: T, device := Int) => T
|
||||
ipu!: |T <: .Module|(self: T, device := Int) => T
|
||||
xpu!: |T <: .Module|(self: T, device := Int) => T
|
||||
cpu!: |T <: .Module|(self: T) => T
|
||||
float: |T <: .Module|(self: T) -> T
|
||||
double: |T <: .Module|(self: T) -> T
|
||||
half: |T <: .Module|(self: T) -> T
|
||||
bfloat16: |T <: .Module|(self: T) -> T
|
||||
to: |T <: .Module|(self: T, *args: Obj, **kwargs: Obj) -> T
|
57
crates/erg_compiler/lib/external/torch.d/nn.d/modules.d/pooling.d.er
vendored
Normal file
57
crates/erg_compiler/lib/external/torch.d/nn.d/modules.d/pooling.d.er
vendored
Normal file
|
@ -0,0 +1,57 @@
|
|||
{Tensor!;} = pyimport "torch"
|
||||
{Module;} = pyimport "torch/nn"
|
||||
|
||||
_MaxPoolNd: ClassType
|
||||
_MaxPoolNd <: Module
|
||||
|
||||
.MaxPool1d: ClassType
|
||||
.MaxPool1d <: _MaxPoolNd
|
||||
.MaxPool1d <: GenericCallable
|
||||
.MaxPool1d.
|
||||
__call__: (
|
||||
kernel_size: Nat or [Nat; 1] or (Nat,),
|
||||
stride := Nat or [Nat; 1] or (Nat,),
|
||||
padding := Str or Nat or [Nat; 1] or (Nat,),
|
||||
dilation := Nat or [Nat; 1] or (Nat,),
|
||||
return_indices := Bool,
|
||||
ceil_mode := Bool,
|
||||
) -> .MaxPool1d
|
||||
.MaxPool1d|<: GenericCallable|.
|
||||
__call__: |T, S: [Nat; _]|(
|
||||
self: .MaxPool1d,
|
||||
input: Tensor!(T, S),
|
||||
) -> Tensor!(T, S)
|
||||
|
||||
.MaxPool2d: ClassType
|
||||
.MaxPool2d <: _MaxPoolNd
|
||||
.MaxPool2d.
|
||||
__call__: (
|
||||
kernel_size: Nat or [Nat; 2] or (Nat, Nat),
|
||||
stride := Nat or [Nat; 2] or (Nat, Nat),
|
||||
padding := Str or Nat or [Nat; 2] or (Nat, Nat),
|
||||
dilation := Nat or [Nat; 2] or (Nat, Nat),
|
||||
return_indices := Bool,
|
||||
ceil_mode := Bool,
|
||||
) -> .MaxPool2d
|
||||
.MaxPool2d|<: GenericCallable|.
|
||||
__call__: |T, S: [Nat; _]|(
|
||||
self: .MaxPool2d,
|
||||
input: Tensor!(T, S),
|
||||
) -> Tensor!(T, S)
|
||||
|
||||
.MaxPool3d: ClassType
|
||||
.MaxPool3d <: _MaxPoolNd
|
||||
.MaxPool3d.
|
||||
__call__: (
|
||||
kernel_size: Nat or [Nat; 3] or (Nat, Nat, Nat),
|
||||
stride := Nat or [Nat; 3] or (Nat, Nat, Nat),
|
||||
padding := Str or Nat or [Nat; 3] or (Nat, Nat, Nat),
|
||||
dilation := Nat or [Nat; 3] or (Nat, Nat, Nat),
|
||||
return_indices := Bool,
|
||||
ceil_mode := Bool,
|
||||
) -> .MaxPool3d
|
||||
.MaxPool3d|<: GenericCallable|.
|
||||
__call__: |T, S: [Nat; _]|(
|
||||
self: .MaxPool3d,
|
||||
input: Tensor!(T, S),
|
||||
) -> Tensor!(T, S)
|
1
crates/erg_compiler/lib/external/torch.d/nn.d/parameter.d.er
vendored
Normal file
1
crates/erg_compiler/lib/external/torch.d/nn.d/parameter.d.er
vendored
Normal file
|
@ -0,0 +1 @@
|
|||
.Parameter: ClassType
|
47
crates/erg_compiler/lib/external/torch.d/optim.d/__init__.d.er
vendored
Normal file
47
crates/erg_compiler/lib/external/torch.d/optim.d/__init__.d.er
vendored
Normal file
|
@ -0,0 +1,47 @@
|
|||
{Parameter;} = pyimport "torch/nn/parameter"
|
||||
|
||||
.Optimizer!: ClassType
|
||||
.Optimizer! <: InheritableType
|
||||
.Optimizer!.
|
||||
__call__: (params: Iterable(Parameter)) -> .Optimizer!
|
||||
zero_grad!: (self: RefMut .Optimizer!) => NoneType
|
||||
step!: (self: RefMut .Optimizer!) => NoneType
|
||||
|
||||
.ASGD!: ClassType
|
||||
.ASGD! <: .Optimizer!
|
||||
.Adadelta!: ClassType
|
||||
.Adadelta! <: .Optimizer!
|
||||
.Adagrad!: ClassType
|
||||
.Adagrad! <: .Optimizer!
|
||||
.Adam!: ClassType
|
||||
.Adam! <: .Optimizer!
|
||||
.Adam!.
|
||||
__call__: (
|
||||
params: Iterable(Parameter),
|
||||
lr := Float,
|
||||
betas := (Float, Float),
|
||||
eps := Float,
|
||||
weight_decay := Float,
|
||||
amsgrad := Bool,
|
||||
foreach := Bool,
|
||||
maximize := Bool,
|
||||
) -> .Adam!
|
||||
|
||||
.AdamW!: ClassType
|
||||
.AdamW! <: .Optimizer!
|
||||
.Adamax!: ClassType
|
||||
.Adamax! <: .Optimizer!
|
||||
.LBFGS!: ClassType
|
||||
.LBFGS! <: .Optimizer!
|
||||
.NAdam!: ClassType
|
||||
.NAdam! <: .Optimizer!
|
||||
.RAdam!: ClassType
|
||||
.RAdam! <: .Optimizer!
|
||||
.RMSprop!: ClassType
|
||||
.RMSprop! <: .Optimizer!
|
||||
.Rprop!: ClassType
|
||||
.Rprop! <: .Optimizer!
|
||||
.SGD!: ClassType
|
||||
.SGD! <: .Optimizer!
|
||||
.SparseAdam!: ClassType
|
||||
.SparseAdam! <: .Optimizer!
|
0
crates/erg_compiler/lib/external/torch.d/package.er
vendored
Normal file
0
crates/erg_compiler/lib/external/torch.d/package.er
vendored
Normal file
1
crates/erg_compiler/lib/external/torch.d/random.d.er
vendored
Normal file
1
crates/erg_compiler/lib/external/torch.d/random.d.er
vendored
Normal file
|
@ -0,0 +1 @@
|
|||
.manual_seed!: (seed: Int) => Obj
|
2
crates/erg_compiler/lib/external/torch.d/serialization.d.er
vendored
Normal file
2
crates/erg_compiler/lib/external/torch.d/serialization.d.er
vendored
Normal file
|
@ -0,0 +1,2 @@
|
|||
.load!: (f: PathLike) => NoneType
|
||||
.save!: (obj: Obj, f: PathLike) => NoneType
|
1
crates/erg_compiler/lib/external/torch.d/utils.d/__init__.d.er
vendored
Normal file
1
crates/erg_compiler/lib/external/torch.d/utils.d/__init__.d.er
vendored
Normal file
|
@ -0,0 +1 @@
|
|||
.data = pyimport "./data"
|
9
crates/erg_compiler/lib/external/torch.d/utils.d/data.d/__init__.d.er
vendored
Normal file
9
crates/erg_compiler/lib/external/torch.d/utils.d/data.d/__init__.d.er
vendored
Normal file
|
@ -0,0 +1,9 @@
|
|||
{.DataLoader;} = pyimport "./dataloader"
|
||||
{.Dataset;} = pyimport "./dataset"
|
||||
{
|
||||
.Sampler;
|
||||
.SequentialSampler;
|
||||
.RandomSampler;
|
||||
.SubsetRandomSampler;
|
||||
.WeightedRandomSampler;
|
||||
} = pyimport "./sampler"
|
25
crates/erg_compiler/lib/external/torch.d/utils.d/data.d/dataloader.d.er
vendored
Normal file
25
crates/erg_compiler/lib/external/torch.d/utils.d/data.d/dataloader.d.er
vendored
Normal file
|
@ -0,0 +1,25 @@
|
|||
torch = pyimport "torch"
|
||||
dataset = pyimport "./dataset"
|
||||
{Sampler;} = pyimport "./sampler"
|
||||
|
||||
.DataLoader: ClassType
|
||||
.DataLoader <: Iterable((torch.Tensor!(_, _), torch.Tensor!(_, _)))
|
||||
.DataLoader.
|
||||
__call__: (
|
||||
dataset: dataset.Dataset,
|
||||
batch_size := Nat,
|
||||
shuffle := Bool,
|
||||
sampler := Sampler,
|
||||
batch_sampler := Sampler,
|
||||
num_workers := Nat,
|
||||
collate_fn := Obj,
|
||||
pin_memory := Bool,
|
||||
drop_last := Bool,
|
||||
timeout := Float,
|
||||
worker_init_fn := Obj,
|
||||
multiprocessing_context := Obj,
|
||||
generator := Obj,
|
||||
prefetch_factor := Nat,
|
||||
persistent_workers := Bool,
|
||||
pin_memory_device := Str,
|
||||
) -> .DataLoader
|
1
crates/erg_compiler/lib/external/torch.d/utils.d/data.d/dataset.d.er
vendored
Normal file
1
crates/erg_compiler/lib/external/torch.d/utils.d/data.d/dataset.d.er
vendored
Normal file
|
@ -0,0 +1 @@
|
|||
.Dataset: ClassType
|
13
crates/erg_compiler/lib/external/torch.d/utils.d/data.d/sampler.d.er
vendored
Normal file
13
crates/erg_compiler/lib/external/torch.d/utils.d/data.d/sampler.d.er
vendored
Normal file
|
@ -0,0 +1,13 @@
|
|||
.Sampler: ClassType
|
||||
|
||||
.RandomSampler: ClassType
|
||||
.RandomSampler <: .Sampler
|
||||
|
||||
.SequentialSampler: ClassType
|
||||
.SequentialSampler <: .Sampler
|
||||
|
||||
.SubsetRandomSampler: ClassType
|
||||
.SubsetRandomSampler <: .Sampler
|
||||
|
||||
.WeightedRandomSampler: ClassType
|
||||
.WeightedRandomSampler <: .Sampler
|
Loading…
Add table
Add a link
Reference in a new issue