// (type) getters & validators use std::option::Option; // conflicting to Type::Option use std::path::{Path, PathBuf}; use erg_common::config::Input; use erg_common::error::{ErrorCore, ErrorKind, Location}; use erg_common::levenshtein::get_similar_name; use erg_common::set::Set; use erg_common::traits::{Locational, Stream}; use erg_common::vis::{Field, Visibility}; use erg_common::{enum_unwrap, fmt_option, fmt_slice, log, set}; use erg_common::{option_enum_unwrap, Str}; use Type::*; use ast::VarName; use erg_parser::ast::{self, Identifier}; use erg_parser::token::Token; use crate::ty::constructors::{anon, free_var, func, module, mono, poly, proj, subr_t, v_enum}; use crate::ty::free::Constraint; use crate::ty::typaram::TyParam; use crate::ty::value::{GenTypeObj, TypeObj, ValueObj}; use crate::ty::{HasType, ParamTy, SubrKind, SubrType, TyBound, Type}; use crate::context::instantiate::ConstTemplate; use crate::context::{Context, RegistrationMode, TraitInstance, Variance}; use crate::error::{ binop_to_dname, readable_name, unaryop_to_dname, SingleTyCheckResult, TyCheckError, TyCheckErrors, TyCheckResult, }; use crate::hir; use crate::varinfo::VarInfo; use RegistrationMode::*; use Visibility::*; use super::MethodType; impl Context { pub(crate) fn validate_var_sig_t( &self, ident: &ast::Identifier, t_spec: Option<&ast::TypeSpec>, body_t: &Type, mode: RegistrationMode, ) -> TyCheckResult<()> { let spec_t = self.instantiate_var_sig_t(t_spec, None, mode)?; if self.sub_unify(body_t, &spec_t, ident.loc(), None).is_err() { return Err(TyCheckErrors::from(TyCheckError::type_mismatch_error( self.cfg.input.clone(), line!() as usize, ident.loc(), self.caused_by(), ident.inspect(), &spec_t, body_t, self.get_candidates(body_t), self.get_type_mismatch_hint(&spec_t, body_t), ))); } Ok(()) } pub(crate) fn get_current_scope_var(&self, name: &str) -> Option<&VarInfo> { self.locals .get(name) .or_else(|| self.decls.get(name)) .or_else(|| { self.params .iter() .find(|(opt_name, _)| { opt_name .as_ref() .map(|n| &n.inspect()[..] == name) .unwrap_or(false) }) .map(|(_, vi)| vi) }) .or_else(|| { for (_, methods) in self.methods_list.iter() { if let Some(vi) = methods.get_current_scope_var(name) { return Some(vi); } } None }) } pub(crate) fn get_mut_current_scope_var(&mut self, name: &str) -> Option<&mut VarInfo> { self.locals .get_mut(name) .or_else(|| self.decls.get_mut(name)) .or_else(|| { self.params .iter_mut() .find(|(opt_name, _)| { opt_name .as_ref() .map(|n| &n.inspect()[..] == name) .unwrap_or(false) }) .map(|(_, vi)| vi) }) .or_else(|| { for (_, methods) in self.methods_list.iter_mut() { if let Some(vi) = methods.get_mut_current_scope_var(name) { return Some(vi); } } None }) } pub(crate) fn get_local_kv(&self, name: &str) -> Option<(&VarName, &VarInfo)> { self.locals.get_key_value(name) } pub(crate) fn get_singular_ctx( &self, obj: &hir::Expr, namespace: &Str, ) -> SingleTyCheckResult<&Context> { match obj { hir::Expr::Accessor(hir::Accessor::Ident(ident)) => { self.get_singular_ctx_by_ident(&ident.clone().downcast(), namespace) } hir::Expr::Accessor(hir::Accessor::Attr(attr)) => { // REVIEW: 両方singularとは限らない? let ctx = self.get_singular_ctx(&attr.obj, namespace)?; let attr = hir::Expr::Accessor(hir::Accessor::Ident(attr.ident.clone())); ctx.get_singular_ctx(&attr, namespace) } // TODO: change error _ => Err(TyCheckError::no_var_error( self.cfg.input.clone(), line!() as usize, obj.loc(), self.caused_by(), &obj.to_string(), None, )), } } pub(crate) fn get_singular_ctx_by_ident( &self, ident: &ast::Identifier, namespace: &Str, ) -> SingleTyCheckResult<&Context> { self.get_mod(ident.inspect()) .or_else(|| self.rec_get_type(ident.inspect()).map(|(_, ctx)| ctx)) .ok_or_else(|| { TyCheckError::no_var_error( self.cfg.input.clone(), line!() as usize, ident.loc(), namespace.into(), ident.inspect(), self.get_similar_name(ident.inspect()), ) }) } pub(crate) fn get_mut_singular_ctx_by_ident( &mut self, ident: &ast::Identifier, namespace: &Str, ) -> SingleTyCheckResult<&mut Context> { let err = TyCheckError::no_var_error( self.cfg.input.clone(), line!() as usize, ident.loc(), namespace.into(), ident.inspect(), self.get_similar_name(ident.inspect()), ); self.get_mut_type(ident.inspect()) .map(|(_, ctx)| ctx) .ok_or(err) } pub(crate) fn get_mut_singular_ctx( &mut self, obj: &ast::Expr, namespace: &Str, ) -> SingleTyCheckResult<&mut Context> { match obj { ast::Expr::Accessor(ast::Accessor::Ident(ident)) => { self.get_mut_singular_ctx_by_ident(ident, namespace) } ast::Expr::Accessor(ast::Accessor::Attr(attr)) => { // REVIEW: 両方singularとは限らない? let ctx = self.get_mut_singular_ctx(&attr.obj, namespace)?; let attr = ast::Expr::Accessor(ast::Accessor::Ident(attr.ident.clone())); ctx.get_mut_singular_ctx(&attr, namespace) } _ => Err(TyCheckError::no_var_error( self.cfg.input.clone(), line!() as usize, obj.loc(), self.caused_by(), &obj.to_string(), None, )), } } fn get_match_call_t( &self, pos_args: &[hir::PosArg], kw_args: &[hir::KwArg], ) -> TyCheckResult { if !kw_args.is_empty() { todo!() } for pos_arg in pos_args.iter().skip(1) { let t = pos_arg.expr.ref_t(); // Allow only anonymous functions to be passed as match arguments (for aesthetic reasons) if !matches!(&pos_arg.expr, hir::Expr::Lambda(_)) { return Err(TyCheckErrors::from(TyCheckError::type_mismatch_error( self.cfg.input.clone(), line!() as usize, pos_arg.loc(), self.caused_by(), "match", &mono("LambdaFunc"), t, self.get_candidates(t), self.get_type_mismatch_hint(&mono("LambdaFunc"), t), ))); } } let match_target_expr_t = pos_args[0].expr.ref_t(); // Never or T => T let mut union_pat_t = Type::Never; for (i, pos_arg) in pos_args.iter().skip(1).enumerate() { let lambda = erg_common::enum_unwrap!(&pos_arg.expr, hir::Expr::Lambda); if !lambda.params.defaults.is_empty() { todo!() } // TODO: If the first argument of the match is a tuple? if lambda.params.len() != 1 { return Err(TyCheckErrors::from(TyCheckError::argument_error( self.cfg.input.clone(), line!() as usize, pos_args[i + 1].loc(), self.caused_by(), 1, pos_args[i + 1] .expr .signature_t() .unwrap() .typarams_len() .unwrap_or(0), ))); } let rhs = self.instantiate_param_sig_t(&lambda.params.non_defaults[0], None, None, Normal)?; union_pat_t = self.union(&union_pat_t, &rhs); } // NG: expr_t: Nat, union_pat_t: {1, 2} // OK: expr_t: Int, union_pat_t: {1} or 'T if self .sub_unify(match_target_expr_t, &union_pat_t, pos_args[0].loc(), None) .is_err() { return Err(TyCheckErrors::from(TyCheckError::match_error( self.cfg.input.clone(), line!() as usize, pos_args[0].loc(), self.caused_by(), match_target_expr_t, ))); } let branch_ts = pos_args .iter() .skip(1) .map(|a| ParamTy::anonymous(a.expr.ref_t().clone())) .collect::>(); let mut return_t = branch_ts[0].typ().return_t().unwrap().clone(); for arg_t in branch_ts.iter().skip(1) { return_t = self.union(&return_t, arg_t.typ().return_t().unwrap()); } let param_ty = ParamTy::anonymous(match_target_expr_t.clone()); let param_ts = [vec![param_ty], branch_ts.to_vec()].concat(); let t = func(param_ts, None, vec![], return_t); Ok(t) } fn get_import_call_t( &self, pos_args: &[hir::PosArg], kw_args: &[hir::KwArg], ) -> TyCheckResult { let mod_name = pos_args .get(0) .map(|a| &a.expr) .or_else(|| { kw_args .iter() .find(|k| &k.keyword.inspect()[..] == "Path") .map(|a| &a.expr) }) .unwrap(); let path = match mod_name { hir::Expr::Lit(lit) => { if self.subtype_of(&lit.value.class(), &Str) { enum_unwrap!(&lit.value, ValueObj::Str) } else { return Err(TyCheckErrors::from(TyCheckError::type_mismatch_error( self.cfg.input.clone(), line!() as usize, mod_name.loc(), self.caused_by(), "import::name", &Str, mod_name.ref_t(), self.get_candidates(mod_name.ref_t()), self.get_type_mismatch_hint(&Str, mod_name.ref_t()), ))); } } _other => { return Err(TyCheckErrors::from(TyCheckError::feature_error( self.cfg.input.clone(), mod_name.loc(), "non-literal importing", self.caused_by(), ))) } }; let path = PathBuf::from(&path[..]); let s = ValueObj::Str(Str::rc(path.to_str().unwrap())); let import_t = func( vec![ParamTy::anonymous(v_enum(set! {s.clone()}))], None, vec![], module(TyParam::Value(s)), ); Ok(import_t) } pub(crate) fn rec_get_var_t( &self, ident: &Identifier, input: &Input, namespace: &Str, ) -> SingleTyCheckResult { if let Some(vi) = self.get_current_scope_var(&ident.inspect()[..]) { self.validate_visibility(ident, vi, input, namespace)?; Ok(vi.t()) } else { if let Some(parent) = self.get_outer().or_else(|| self.get_builtins()) { return parent.rec_get_var_t(ident, input, namespace); } Err(TyCheckError::no_var_error( input.clone(), line!() as usize, ident.loc(), namespace.into(), ident.inspect(), self.get_similar_name(ident.inspect()), )) } } pub(crate) fn rec_get_decl_t( &self, ident: &Identifier, input: &Input, namespace: &Str, ) -> SingleTyCheckResult { if let Some(vi) = self.decls.get(&ident.inspect()[..]) { self.validate_visibility(ident, vi, input, namespace)?; Ok(vi.t()) } else { if let Some(parent) = self.get_outer().or_else(|| self.get_builtins()) { return parent.rec_get_decl_t(ident, input, namespace); } Err(TyCheckError::no_var_error( input.clone(), line!() as usize, ident.loc(), namespace.into(), ident.inspect(), self.get_similar_name(ident.inspect()), )) } } pub(crate) fn rec_get_attr_t( &self, obj: &hir::Expr, ident: &Identifier, input: &Input, namespace: &Str, ) -> SingleTyCheckResult { let self_t = obj.t(); let name = ident.name.token(); match self.get_attr_t_from_attributive(obj, &self_t, ident, namespace) { Ok(t) => { return Ok(t); } Err(e) if e.core.kind == ErrorKind::DummyError => {} Err(e) => { return Err(e); } } if let Ok(singular_ctx) = self.get_singular_ctx(obj, namespace) { match singular_ctx.rec_get_var_t(ident, input, namespace) { Ok(t) => { return Ok(t); } Err(e) if e.core.kind == ErrorKind::NameError => {} Err(e) => { return Err(e); } } } for ctx in self.get_nominal_super_type_ctxs(&self_t).ok_or_else(|| { TyCheckError::no_var_error( self.cfg.input.clone(), line!() as usize, obj.loc(), self.caused_by(), &self_t.to_string(), None, // TODO: ) })? { match ctx.rec_get_var_t(ident, input, namespace) { Ok(t) => { return Ok(t); } Err(e) if e.core.kind == ErrorKind::NameError => {} Err(e) => { return Err(e); } } } // TODO: dependent type widening if let Some(parent) = self.get_outer().or_else(|| self.get_builtins()) { parent.rec_get_attr_t(obj, ident, input, namespace) } else { Err(TyCheckError::no_attr_error( input.clone(), line!() as usize, name.loc(), namespace.into(), &self_t, name.inspect(), self.get_similar_attr(&self_t, name.inspect()), )) } } /// get type from given attributive type (Record). /// not ModuleType or ClassType etc. fn get_attr_t_from_attributive( &self, obj: &hir::Expr, t: &Type, ident: &Identifier, namespace: &Str, ) -> SingleTyCheckResult { match t { Type::FreeVar(fv) if fv.is_linked() => { self.get_attr_t_from_attributive(obj, &fv.crack(), ident, namespace) } Type::FreeVar(fv) => { let sup = fv.get_sup().unwrap(); self.get_attr_t_from_attributive(obj, &sup, ident, namespace) } Type::Ref(t) => self.get_attr_t_from_attributive(obj, t, ident, namespace), Type::RefMut { before, .. } => { self.get_attr_t_from_attributive(obj, before, ident, namespace) } Type::Refinement(refine) => { self.get_attr_t_from_attributive(obj, &refine.t, ident, namespace) } Type::Record(record) => { // REVIEW: `rec.get(name.inspect())` returns None (Borrow is implemented for Field). Why? if let Some(attr) = record.get(&Field::new(Public, ident.inspect().clone())) { Ok(attr.clone()) } else { let t = Type::Record(record.clone()); Err(TyCheckError::no_attr_error( self.cfg.input.clone(), line!() as usize, ident.loc(), namespace.into(), &t, ident.inspect(), self.get_similar_attr(&t, ident.inspect()), )) } } other => { if let Some(v) = self.rec_get_const_obj(&other.local_name()) { match v { ValueObj::Type(TypeObj::Generated(gen)) => self .get_gen_t_require_attr_t(gen, &ident.inspect()[..]) .cloned() .ok_or_else(|| { TyCheckError::dummy(self.cfg.input.clone(), line!() as usize) }), ValueObj::Type(TypeObj::Builtin(_t)) => { // FIXME: Err(TyCheckError::dummy( self.cfg.input.clone(), line!() as usize, )) } other => todo!("{other}"), } } else { Err(TyCheckError::dummy( self.cfg.input.clone(), line!() as usize, )) } } } } // returns callee's type, not the return type fn search_callee_t( &self, obj: &hir::Expr, attr_name: &Option, input: &Input, namespace: &Str, ) -> SingleTyCheckResult { if let Some(attr_name) = attr_name.as_ref() { for ctx in self .get_nominal_super_type_ctxs(obj.ref_t()) .ok_or_else(|| { TyCheckError::no_var_error( self.cfg.input.clone(), line!() as usize, obj.loc(), self.caused_by(), &obj.to_string(), None, // TODO: ) })? { if let Some(vi) = ctx .locals .get(attr_name.inspect()) .or_else(|| ctx.decls.get(attr_name.inspect())) { self.validate_visibility(attr_name, vi, input, namespace)?; return Ok(vi.t()); } for (_, methods_ctx) in ctx.methods_list.iter() { if let Some(vi) = methods_ctx .locals .get(attr_name.inspect()) .or_else(|| methods_ctx.decls.get(attr_name.inspect())) { self.validate_visibility(attr_name, vi, input, namespace)?; return Ok(vi.t()); } } } if let Ok(singular_ctx) = self.get_singular_ctx(obj, namespace) { if let Some(vi) = singular_ctx .locals .get(attr_name.inspect()) .or_else(|| singular_ctx.decls.get(attr_name.inspect())) { self.validate_visibility(attr_name, vi, input, namespace)?; return Ok(vi.t()); } for (_, method_ctx) in singular_ctx.methods_list.iter() { if let Some(vi) = method_ctx .locals .get(attr_name.inspect()) .or_else(|| method_ctx.decls.get(attr_name.inspect())) { self.validate_visibility(attr_name, vi, input, namespace)?; return Ok(vi.t()); } } return Err(TyCheckError::singular_no_attr_error( self.cfg.input.clone(), line!() as usize, attr_name.loc(), namespace.into(), obj.qual_name().unwrap_or("?"), obj.ref_t(), attr_name.inspect(), self.get_similar_attr_from_singular(obj, attr_name.inspect()), )); } match self.get_method_type_by_name(attr_name) { Ok(t) => { self.sub_unify(obj.ref_t(), &t.definition_type, obj.loc(), None) // HACK: change this func's return type to TyCheckResult .map_err(|mut errs| errs.remove(0))?; return Ok(t.method_type.clone()); } Err(err) if err.core.kind == ErrorKind::TypeError => { return Err(err); } _ => {} } // TODO: patch Err(TyCheckError::no_attr_error( self.cfg.input.clone(), line!() as usize, attr_name.loc(), namespace.into(), obj.ref_t(), attr_name.inspect(), self.get_similar_attr(obj.ref_t(), attr_name.inspect()), )) } else { Ok(obj.t()) } } fn validate_visibility( &self, ident: &Identifier, vi: &VarInfo, input: &Input, namespace: &str, ) -> SingleTyCheckResult<()> { if ident.vis() != vi.vis { Err(TyCheckError::visibility_error( input.clone(), line!() as usize, ident.loc(), self.caused_by(), ident.inspect(), vi.vis, )) // check if the private variable is loaded from the other scope } else if vi.vis.is_private() && &self.name[..] != "" && &self.name[..] != namespace && !namespace.contains(&self.name[..]) { Err(TyCheckError::visibility_error( input.clone(), line!() as usize, ident.loc(), self.caused_by(), ident.inspect(), Private, )) } else { Ok(()) } } pub(crate) fn get_binop_t( &self, op: &Token, args: &[hir::PosArg], input: &Input, namespace: &Str, ) -> TyCheckResult { erg_common::debug_power_assert!(args.len() == 2); let cont = binop_to_dname(op.inspect()); let symbol = Token::new(op.kind, Str::rc(cont), op.lineno, op.col_begin); let t = self.rec_get_var_t( &Identifier::new(None, VarName::new(symbol.clone())), input, namespace, )?; let op = hir::Expr::Accessor(hir::Accessor::private(symbol, t)); self.get_call_t(&op, &None, args, &[], input, namespace) .map_err(|errs| { let op = enum_unwrap!(op, hir::Expr::Accessor:(hir::Accessor::Ident:(_))); let lhs = args[0].expr.clone(); let rhs = args[1].expr.clone(); let bin = hir::BinOp::new(op.name.into_token(), lhs, rhs, op.t); TyCheckErrors::new( errs.into_iter() .map(|e| { // HACK: dname.loc()はダミーLocationしか返さないので、エラーならop.loc()で上書きする let core = ErrorCore::new( e.core.errno, e.core.kind, bin.loc(), e.core.desc, e.core.hint, ); TyCheckError::new(core, self.cfg.input.clone(), e.caused_by) }) .collect(), ) }) } pub(crate) fn get_unaryop_t( &self, op: &Token, args: &[hir::PosArg], input: &Input, namespace: &Str, ) -> TyCheckResult { erg_common::debug_power_assert!(args.len() == 1); let cont = unaryop_to_dname(op.inspect()); let symbol = Token::new(op.kind, Str::rc(cont), op.lineno, op.col_begin); let t = self.rec_get_var_t( &Identifier::new(None, VarName::new(symbol.clone())), input, namespace, )?; let op = hir::Expr::Accessor(hir::Accessor::private(symbol, t)); self.get_call_t(&op, &None, args, &[], input, namespace) .map_err(|errs| { let op = enum_unwrap!(op, hir::Expr::Accessor:(hir::Accessor::Ident:(_))); let expr = args[0].expr.clone(); let unary = hir::UnaryOp::new(op.name.into_token(), expr, op.t); TyCheckErrors::new( errs.into_iter() .map(|e| { let core = ErrorCore::new( e.core.errno, e.core.kind, unary.loc(), e.core.desc, e.core.hint, ); TyCheckError::new(core, self.cfg.input.clone(), e.caused_by) }) .collect(), ) }) } /// 可変依存型の変更を伝搬させる fn propagate(&self, t: &Type, callee: &hir::Expr) -> TyCheckResult<()> { if let Type::Subr(subr) = t { if let Some(after) = subr.self_t().and_then(|self_t| { if let RefMut { after, .. } = self_t { after.as_ref() } else { None } }) { self.reunify(callee.ref_t(), after, callee.loc())?; } } Ok(()) } /// e.g. /// ```python /// substitute_call(instance: ((?T, ?U) -> ?T), [Int, Str], []) => instance: (Int, Str) -> Int /// substitute_call(instance: ((?T, Int) -> ?T), [Int, Nat], []) => instance: (Int, Int) -> Str /// substitute_call(instance: ((?M(: Nat)..?N(: Nat)) -> ?M+?N), [1..2], []) => instance: (1..2) -> {3} /// substitute_call(instance: ((?L(: Add(?R, ?O)), ?R) -> ?O), [1, 2], []) => instance: (Nat, Nat) -> Nat /// substitute_call(instance: ?T, [Int, Str], []) => instance: (Int, Str) -> Int /// ``` fn substitute_call( &self, obj: &hir::Expr, attr_name: &Option, instance: &Type, pos_args: &[hir::PosArg], kw_args: &[hir::KwArg], ) -> TyCheckResult<()> { match instance { Type::FreeVar(fv) if fv.is_linked() => { self.substitute_call(obj, attr_name, &fv.crack(), pos_args, kw_args) } Type::FreeVar(fv) => { if let Some(_attr_name) = attr_name { todo!() } else { let is_procedural = obj .show_acc() .map(|acc| acc.ends_with('!')) .unwrap_or(false); let kind = if is_procedural { SubrKind::Proc } else { SubrKind::Func }; let ret_t = free_var(self.level, Constraint::new_type_of(Type)); let non_default_params = pos_args.iter().map(|a| anon(a.expr.t())).collect(); let subr_t = subr_t(kind, non_default_params, None, vec![], ret_t); fv.link(&subr_t); Ok(()) } } Type::Refinement(refine) => { self.substitute_call(obj, attr_name, &refine.t, pos_args, kw_args) } Type::Subr(subr) => { let is_method = subr.self_t().is_some(); let callee = if let Some(ident) = attr_name { if is_method { obj.clone() } else { let attr = hir::Attribute::new( obj.clone(), hir::Identifier::bare(ident.dot.clone(), ident.name.clone()), Type::Uninited, ); hir::Expr::Accessor(hir::Accessor::Attr(attr)) } } else { obj.clone() }; let params_len = subr.non_default_params.len() + subr.default_params.len(); if (params_len < pos_args.len() || params_len < pos_args.len() + kw_args.len()) && subr.var_params.is_none() { return Err(TyCheckErrors::from(TyCheckError::too_many_args_error( self.cfg.input.clone(), line!() as usize, callee.loc(), &callee.to_string(), self.caused_by(), params_len, pos_args.len(), kw_args.len(), ))); } let mut passed_params = set! {}; let non_default_params_len = if attr_name.is_some() && is_method { subr.non_default_params.len() - 1 } else { subr.non_default_params.len() }; if pos_args.len() >= non_default_params_len { let (non_default_args, var_args) = pos_args.split_at(non_default_params_len); let non_default_params = if is_method { let mut non_default_params = subr.non_default_params.iter(); let self_pt = non_default_params.next().unwrap(); self.sub_unify(obj.ref_t(), self_pt.typ(), obj.loc(), self_pt.name())?; non_default_params } else { subr.non_default_params.iter() }; for (nd_arg, nd_param) in non_default_args.iter().zip(non_default_params) { self.substitute_pos_arg( &callee, &nd_arg.expr, nd_param, &mut passed_params, )?; } if let Some(var_param) = subr.var_params.as_ref() { for var_arg in var_args.iter() { self.substitute_var_arg(&callee, &var_arg.expr, var_param)?; } } else { for (arg, pt) in var_args.iter().zip(subr.default_params.iter()) { self.substitute_pos_arg(&callee, &arg.expr, pt, &mut passed_params)?; } } for kw_arg in kw_args.iter() { self.substitute_kw_arg( &callee, kw_arg, &subr.default_params, &mut passed_params, )?; } for not_passed in subr .default_params .iter() .filter(|pt| !passed_params.contains(pt.name().unwrap())) { if let ParamTy::KwWithDefault { ty, default, .. } = not_passed { self.sub_unify(default, ty, obj.loc(), not_passed.name())?; } } } else { let missing_len = subr.non_default_params.len() - pos_args.len(); let missing_params = subr .non_default_params .iter() .rev() .take(missing_len) .rev() .map(|pt| pt.name().cloned().unwrap_or(Str::ever(""))) .collect(); return Err(TyCheckErrors::from(TyCheckError::args_missing_error( self.cfg.input.clone(), line!() as usize, callee.loc(), &callee.to_string(), self.caused_by(), missing_len, missing_params, ))); } Ok(()) } other => { if let Some(attr_name) = attr_name { Err(TyCheckErrors::from(TyCheckError::type_mismatch_error( self.cfg.input.clone(), line!() as usize, Location::concat(obj, attr_name), self.caused_by(), &(obj.to_string() + &attr_name.to_string()), &mono("Callable"), other, self.get_candidates(other), None, ))) } else { Err(TyCheckErrors::from(TyCheckError::type_mismatch_error( self.cfg.input.clone(), line!() as usize, obj.loc(), self.caused_by(), &obj.to_string(), &mono("Callable"), other, self.get_candidates(other), None, ))) } } } } fn substitute_pos_arg( &self, callee: &hir::Expr, arg: &hir::Expr, param: &ParamTy, passed_params: &mut Set, ) -> TyCheckResult<()> { let arg_t = arg.ref_t(); let param_t = ¶m.typ(); self.sub_unify(arg_t, param_t, arg.loc(), param.name()) .map_err(|errs| { log!(err "semi-unification failed with {callee}\n{arg_t} !<: {param_t}"); // REVIEW: let name = callee.show_acc().unwrap_or_else(|| "".to_string()); let name = name + "::" + param.name().map(|s| readable_name(&s[..])).unwrap_or(""); TyCheckErrors::new( errs.into_iter() .map(|e| { TyCheckError::type_mismatch_error( self.cfg.input.clone(), line!() as usize, e.core.loc, e.caused_by, &name[..], param_t, arg_t, self.get_candidates(arg_t), self.get_type_mismatch_hint(param_t, arg_t), ) }) .collect(), ) })?; if let Some(name) = param.name() { if passed_params.contains(name) { return Err(TyCheckErrors::from(TyCheckError::multiple_args_error( self.cfg.input.clone(), line!() as usize, callee.loc(), &callee.to_string(), self.caused_by(), name, ))); } else { passed_params.insert(name.clone()); } } Ok(()) } fn substitute_var_arg( &self, callee: &hir::Expr, arg: &hir::Expr, param: &ParamTy, ) -> TyCheckResult<()> { let arg_t = arg.ref_t(); let param_t = ¶m.typ(); self.sub_unify(arg_t, param_t, arg.loc(), param.name()) .map_err(|errs| { log!(err "semi-unification failed with {callee}\n{arg_t} !<: {param_t}"); // REVIEW: let name = callee.show_acc().unwrap_or_else(|| "".to_string()); let name = name + "::" + param.name().map(|s| readable_name(&s[..])).unwrap_or(""); TyCheckErrors::new( errs.into_iter() .map(|e| { TyCheckError::type_mismatch_error( self.cfg.input.clone(), line!() as usize, e.core.loc, e.caused_by, &name[..], param_t, arg_t, self.get_candidates(arg_t), self.get_type_mismatch_hint(param_t, arg_t), ) }) .collect(), ) }) } fn substitute_kw_arg( &self, callee: &hir::Expr, arg: &hir::KwArg, default_params: &[ParamTy], passed_params: &mut Set, ) -> TyCheckResult<()> { let arg_t = arg.expr.ref_t(); let kw_name = arg.keyword.inspect(); if passed_params.contains(&kw_name[..]) { return Err(TyCheckErrors::from(TyCheckError::multiple_args_error( self.cfg.input.clone(), line!() as usize, callee.loc(), &callee.to_string(), self.caused_by(), arg.keyword.inspect(), ))); } else { passed_params.insert(kw_name.clone()); } if let Some(pt) = default_params .iter() .find(|pt| pt.name().unwrap() == kw_name) { self.sub_unify(arg_t, pt.typ(), arg.loc(), Some(kw_name)) .map_err(|errs| { log!(err "semi-unification failed with {callee}\n{arg_t} !<: {}", pt.typ()); // REVIEW: let name = callee.show_acc().unwrap_or_else(|| "".to_string()); let name = name + "::" + readable_name(kw_name); TyCheckErrors::new( errs.into_iter() .map(|e| { TyCheckError::type_mismatch_error( self.cfg.input.clone(), line!() as usize, e.core.loc, e.caused_by, &name[..], pt.typ(), arg_t, self.get_candidates(arg_t), self.get_type_mismatch_hint(pt.typ(), arg_t), ) }) .collect(), ) })?; } else { return Err(TyCheckErrors::from(TyCheckError::unexpected_kw_arg_error( self.cfg.input.clone(), line!() as usize, arg.keyword.loc(), &callee.to_string(), self.caused_by(), kw_name, ))); } Ok(()) } pub(crate) fn get_call_t( &self, obj: &hir::Expr, attr_name: &Option, pos_args: &[hir::PosArg], kw_args: &[hir::KwArg], input: &Input, namespace: &Str, ) -> TyCheckResult { if let hir::Expr::Accessor(hir::Accessor::Ident(local)) = obj { if local.vis().is_private() { match &local.inspect()[..] { "match" => { return self.get_match_call_t(pos_args, kw_args); } "import" | "pyimport" | "py" => { return self.get_import_call_t(pos_args, kw_args); } // handle assert casting /*"assert" => { if let Some(arg) = pos_args.first() { match &arg.expr { hir::Expr::BinOp(bin) if bin.op.is(TokenKind::InOp) && bin.rhs.ref_t() == &Type => { let t = self.eval_const_expr(bin.lhs.as_ref(), None)?.as_type().unwrap(); } _ => {} } } },*/ _ => {} } } } let found = self.search_callee_t(obj, attr_name, input, namespace)?; log!( "Found:\ncallee: {obj}{}\nfound: {found}", fmt_option!(pre ".", attr_name.as_ref().map(|ident| &ident.name)) ); let instance = self.instantiate(found, obj)?; log!( "Instantiated:\ninstance: {instance}\npos_args: ({})\nkw_args: ({})", fmt_slice(pos_args), fmt_slice(kw_args) ); self.substitute_call(obj, attr_name, &instance, pos_args, kw_args)?; log!(info "Substituted:\ninstance: {instance}"); let res = self.eval_t_params(instance, self.level, obj.loc())?; log!(info "Params evaluated:\nres: {res}\n"); self.propagate(&res, obj)?; log!(info "Propagated:\nres: {res}\n"); Ok(res) } pub(crate) fn get_const_local( &self, name: &Token, namespace: &Str, ) -> SingleTyCheckResult { if let Some(obj) = self.consts.get(name.inspect()) { Ok(obj.clone()) } else { if let Some(parent) = self.get_outer().or_else(|| self.get_builtins()) { return parent.get_const_local(name, namespace); } Err(TyCheckError::no_var_error( self.cfg.input.clone(), line!() as usize, name.loc(), namespace.into(), name.inspect(), self.get_similar_name(name.inspect()), )) } } pub(crate) fn _get_const_attr( &self, obj: &hir::Expr, name: &Token, namespace: &Str, ) -> SingleTyCheckResult { let self_t = obj.ref_t(); for ctx in self.get_nominal_super_type_ctxs(self_t).ok_or_else(|| { TyCheckError::no_var_error( self.cfg.input.clone(), line!() as usize, obj.loc(), self.caused_by(), &self_t.to_string(), None, // TODO: ) })? { if let Ok(t) = ctx.get_const_local(name, namespace) { return Ok(t); } } // TODO: dependent type widening if let Some(parent) = self.get_outer().or_else(|| self.get_builtins()) { parent._get_const_attr(obj, name, namespace) } else { Err(TyCheckError::no_attr_error( self.cfg.input.clone(), line!() as usize, name.loc(), namespace.into(), self_t, name.inspect(), self.get_similar_attr(self_t, name.inspect()), )) } } pub(crate) fn get_similar_name(&self, name: &str) -> Option<&str> { match name { "true" => return Some("True"), "false" => return Some("False"), "Null" | "Nil" | "null" | "nil" | "none" => return Some("None"), "del" => return Some("Del"), "int" => return Some("Int"), "nat" => return Some("Nat"), "str" => return Some("Str"), "bool" => return Some("Bool"), _ => {} } let name = readable_name(name); // REVIEW: add decls? get_similar_name( self.params .iter() .filter_map(|(opt_name, _)| opt_name.as_ref().map(|n| &n.inspect()[..])) .chain(self.locals.keys().map(|name| &name.inspect()[..])), name, ) } pub(crate) fn get_similar_attr_from_singular<'a>( &'a self, obj: &hir::Expr, name: &str, ) -> Option<&'a str> { if let Ok(ctx) = self.get_singular_ctx(obj, &self.name) { if let Some(name) = ctx.get_similar_name(name) { return Some(name); } } None } pub(crate) fn get_similar_attr<'a>(&'a self, self_t: &'a Type, name: &str) -> Option<&'a str> { for ctx in self.get_nominal_super_type_ctxs(self_t)? { if let Some(name) = ctx.get_similar_name(name) { return Some(name); } } None } pub(crate) fn type_params_bounds(&self) -> Set { self.params .iter() .filter(|(opt_name, vi)| vi.kind.is_parameter() && opt_name.is_some()) .map(|(name, vi)| { TyBound::instance(name.as_ref().unwrap().inspect().clone(), vi.t.clone()) }) .collect() } // selfが示す型が、各パラメータTypeに対してどのような変性Varianceを持つかを返す // 特に指定されない型に対してはInvariant // e.g. K(T, U) = Class(..., Impl: F(T) and Output(U) and Input(T)) // -> K.variance() == vec![Contravariant, Covariant] // TODO: support keyword arguments pub(crate) fn type_params_variance(&self) -> Vec { self.params .iter() .map(|(opt_name, _)| { if let Some(name) = opt_name { // トレイトの変性を調べるときはsuper_classesも見る必要がある if let Some(t) = self .super_traits .iter() .chain(self.super_classes.iter()) .find(|t| { (&t.qual_name()[..] == "Input" || &t.qual_name()[..] == "Output") && t.inner_ts() .first() .map(|t| &t.qual_name() == name.inspect()) .unwrap_or(false) }) { match &t.qual_name()[..] { "Output" => Variance::Covariant, "Input" => Variance::Contravariant, _ => unreachable!(), } } else { Variance::Invariant } } else { Variance::Invariant } }) .collect() } pub(crate) fn bounds(&self) -> Set { self.params .iter() .filter_map(|(opt_name, vi)| { opt_name .as_ref() .map(|name| TyBound::instance(name.inspect().clone(), vi.t.clone())) }) .collect() } /// Perform types linearization. /// TODO: Current implementation may be very inefficient. /// /// C3 linearization requires prior knowledge of inter-type dependencies, and cannot be used for Erg structural subtype linearization /// /// Algorithm: /// ```python /// [Int, Str, Nat, Never, Obj, Str!, Module] /// => [], [Int, Str, Nat, Never, Obj, Str!, Module] /// => [[Int]], [Str, Nat, Never, Obj, Str!, Module] /// # 1. If related, put them in the same array; if not, put them in different arrays. /// => [[Int], [Str]], [Nat, Never, Obj, Str!, Module] /// => ... /// => [[Int, Nat, Never, Obj]], [Str, Str!], [Module]] /// # 2. Then, perform sorting on the arrays /// => [[Never, Nat, Int, Obj], [Str!, Str], [Module]] /// # 3. Concatenate the arrays /// => [Never, Nat, Int, Obj, Str!, Str, Module] /// # 4. From the left, "slide" types as far as it can. /// => [Never, Nat, Int, Str!, Str, Module, Obj] /// ``` pub fn sort_types<'a>(&self, types: impl Iterator) -> Vec<&'a Type> { let mut buffers: Vec> = vec![]; for t in types { let mut found = false; for buf in buffers.iter_mut() { if buf.iter().all(|buf_inner| self.related(buf_inner, t)) { found = true; buf.push(t); break; } } if !found { buffers.push(vec![t]); } } for buf in buffers.iter_mut() { // this unwrap should be safe buf.sort_by(|lhs, rhs| self.cmp_t(lhs, rhs).try_into().unwrap()); } let mut concatenated = buffers.into_iter().flatten().collect::>(); let mut idx = 0; let len = concatenated.len(); while let Some(maybe_sup) = concatenated.get(idx) { if let Some(pos) = concatenated .iter() .take(len - idx - 1) .rposition(|t| self.supertype_of(maybe_sup, t)) { let sup = concatenated.remove(idx); concatenated.insert(pos, sup); // not `pos + 1` because the element was removed at idx } idx += 1; } concatenated } pub(crate) fn get_nominal_super_type_ctxs<'a>(&'a self, t: &Type) -> Option> { match t { Type::FreeVar(fv) if fv.is_linked() => self.get_nominal_super_type_ctxs(&fv.crack()), Type::FreeVar(fv) => { let sup = fv.get_sup().unwrap(); self.get_nominal_super_type_ctxs(&sup) } Type::And(l, r) => { match ( self.get_nominal_super_type_ctxs(l), self.get_nominal_super_type_ctxs(r), ) { // TODO: sort (Some(l), Some(r)) => Some([l, r].concat()), (Some(l), None) => Some(l), (None, Some(r)) => Some(r), (None, None) => None, } } // TODO Type::Or(l, r) => match (l.as_ref(), r.as_ref()) { (Type::FreeVar(l), Type::FreeVar(r)) if l.is_unbound() && r.is_unbound() => { let (_lsub, lsup) = l.get_bound_types().unwrap(); let (_rsub, rsup) = r.get_bound_types().unwrap(); self.get_nominal_super_type_ctxs(&self.union(&lsup, &rsup)) } (Type::Refinement(l), Type::Refinement(r)) if l.t == r.t => { self.get_nominal_super_type_ctxs(&l.t) } _ => None, }, _ => self .get_simple_nominal_super_type_ctxs(t) .map(|ctxs| ctxs.collect()), } } /// include `t` itself fn get_simple_nominal_super_type_ctxs<'a>( &'a self, t: &Type, ) -> Option> { let ctx = self.get_nominal_type_ctx(t)?; let sups = ctx .super_classes .iter() .chain(ctx.super_traits.iter()) .map(|sup| { self.get_nominal_type_ctx(sup) .unwrap_or_else(|| todo!("compiler bug: {sup} not found")) }); Some(vec![ctx].into_iter().chain(sups)) } pub(crate) fn _get_super_traits(&self, typ: &Type) -> Option> { self.get_nominal_type_ctx(typ) .map(|ctx| ctx.super_traits.clone().into_iter()) } /// if `typ` is a refinement type, include the base type (refine.t) pub(crate) fn get_super_classes(&self, typ: &Type) -> Option> { self.get_nominal_type_ctx(typ).map(|ctx| { let super_classes = ctx.super_classes.clone(); let derefined = typ.derefine(); if typ != &derefined { vec![derefined].into_iter().chain(super_classes) } else { vec![].into_iter().chain(super_classes) } }) } // TODO: Never pub(crate) fn get_nominal_type_ctx<'a>(&'a self, typ: &Type) -> Option<&'a Context> { match typ { Type::FreeVar(fv) if fv.is_linked() => { if let Some(res) = self.get_nominal_type_ctx(&fv.crack()) { return Some(res); } } Type::FreeVar(fv) => { let sup = fv.get_sup().unwrap(); if let Some(res) = self.get_nominal_type_ctx(&sup) { return Some(res); } } Type::Refinement(refine) => { if let Some(res) = self.get_nominal_type_ctx(&refine.t) { return Some(res); } } Type::Quantified(_) => { if let Some((_t, ctx)) = self .get_builtins() .unwrap_or(self) .rec_get_mono_type("QuantifiedFunc") { return Some(ctx); } } Type::Subr(subr) => match subr.kind { SubrKind::Func => { if let Some((_, ctx)) = self .get_builtins() .unwrap_or(self) .rec_get_mono_type("Func") { return Some(ctx); } } SubrKind::Proc => { if let Some((_, ctx)) = self .get_builtins() .unwrap_or(self) .rec_get_mono_type("Proc") { return Some(ctx); } } }, Type::Mono(name) => { if let Some((_, ctx)) = self.rec_get_mono_type(&typ.local_name()) { return Some(ctx); } let path = name.split("::").next().unwrap_or(name); let path = path.split('.').next().unwrap_or(path); let path = self.cfg.input.resolve(Path::new(path)).ok()?; if let Some(ctx) = self .mod_cache .as_ref() .and_then(|cache| cache.ref_ctx(path.as_path())) .or_else(|| { self.py_mod_cache .as_ref() .and_then(|cache| cache.ref_ctx(path.as_path())) }) { if let Some((_, ctx)) = ctx.rec_get_mono_type(&typ.local_name()) { return Some(ctx); } } } Type::Poly { name, .. } => { if let Some((_, ctx)) = self.rec_get_poly_type(&typ.local_name()) { return Some(ctx); } // NOTE: This needs to be changed if we want to be able to define classes/traits outside of the top level let path = name.split("::").next().unwrap_or(name); let path = path.split('.').next().unwrap_or(path); let path = self.cfg.input.resolve(Path::new(path)).ok()?; if let Some(ctx) = self .mod_cache .as_ref() .and_then(|cache| cache.ref_ctx(path.as_path())) .or_else(|| { self.py_mod_cache .as_ref() .and_then(|cache| cache.ref_ctx(path.as_path())) }) { if let Some((_, ctx)) = ctx.rec_get_poly_type(&typ.local_name()) { return Some(ctx); } } } Type::Record(rec) if rec.values().all(|attr| self.supertype_of(&Type, attr)) => { return self .get_builtins() .unwrap_or(self) .rec_get_mono_type("RecordType") .map(|(_, ctx)| ctx); } Type::Record(_) => { return self .get_builtins() .unwrap_or(self) .rec_get_mono_type("Record") .map(|(_, ctx)| ctx); } Type::Or(_l, _r) => { if let Some(ctx) = self.get_nominal_type_ctx(&poly("Or", vec![])) { return Some(ctx); } } // FIXME: `F()`などの場合、実際は引数が省略されていてもmonomorphicになる other if other.is_monomorphic() => { if let Some((_t, ctx)) = self.rec_get_mono_type(&other.local_name()) { return Some(ctx); } } Type::Ref(t) | Type::RefMut { before: t, .. } => { if let Some(res) = self.get_nominal_type_ctx(t) { return Some(res); } } other => { log!("{other} has no nominal definition"); } } None } // TODO: Never pub(crate) fn get_mut_nominal_type_ctx<'a>( &'a mut self, typ: &Type, ) -> Option<(&'a Type, &'a mut Context)> { match typ { Type::FreeVar(fv) if fv.is_linked() => { if let Some(res) = self.get_mut_nominal_type_ctx(&fv.crack()) { return Some(res); } } Type::FreeVar(fv) => { let sup = fv.get_sup().unwrap(); if let Some(res) = self.get_mut_nominal_type_ctx(&sup) { return Some(res); } } Type::Refinement(refine) => { if let Some(res) = self.get_mut_nominal_type_ctx(&refine.t) { return Some(res); } } Type::Quantified(_) => { if let Some(res) = self.get_mut_nominal_type_ctx(&mono("QuantifiedFunc")) { return Some(res); } } Type::Mono(_) => { if let Some((t, ctx)) = self.rec_get_mut_mono_type(&typ.local_name()) { return Some((t, ctx)); } } Type::Poly { .. } => { if let Some((t, ctx)) = self.rec_get_mut_poly_type(&typ.local_name()) { return Some((t, ctx)); } } // FIXME: `F()`などの場合、実際は引数が省略されていてもmonomorphicになる other if other.is_monomorphic() => { if let Some((t, ctx)) = self.rec_get_mut_mono_type(&other.local_name()) { return Some((t, ctx)); } } Type::Ref(t) | Type::RefMut { before: t, .. } => { if let Some(res) = self.get_mut_nominal_type_ctx(t) { return Some(res); } } other => { log!("{other} has no nominal definition"); } } None } pub(crate) fn get_trait_impls(&self, t: &Type) -> Set { match t { // And(Add, Sub) == intersection({Int <: Add(Int), Bool <: Add(Bool) ...}, {Int <: Sub(Int), ...}) // == {Int <: Add(Int) and Sub(Int), ...} Type::And(l, r) => { let l_impls = self.get_trait_impls(l); let l_base = Set::from_iter(l_impls.iter().map(|ti| &ti.sub_type)); let r_impls = self.get_trait_impls(r); let r_base = Set::from_iter(r_impls.iter().map(|ti| &ti.sub_type)); let bases = l_base.intersection(&r_base); let mut isec = set! {}; for base in bases.into_iter() { let lti = l_impls.iter().find(|ti| &ti.sub_type == base).unwrap(); let rti = r_impls.iter().find(|ti| &ti.sub_type == base).unwrap(); let sup_trait = self.intersection(<i.sup_trait, &rti.sup_trait); isec.insert(TraitInstance::new(lti.sub_type.clone(), sup_trait)); } isec } Type::Or(l, r) => { let l_impls = self.get_trait_impls(l); let r_impls = self.get_trait_impls(r); // FIXME: l_impls.union(&r_impls) } _ => self.get_simple_trait_impls(t), } } pub(crate) fn get_simple_trait_impls(&self, t: &Type) -> Set { let current = if let Some(impls) = self.trait_impls.get(&t.qual_name()) { impls.clone() } else { set! {} }; if let Some(outer) = self.get_outer().or_else(|| self.get_builtins()) { current.union(&outer.get_simple_trait_impls(t)) } else { current } } pub(crate) fn _rec_get_patch(&self, name: &VarName) -> Option<&Context> { if let Some(patch) = self.patches.get(name) { Some(patch) } else if let Some(outer) = self.get_outer().or_else(|| self.get_builtins()) { outer._rec_get_patch(name) } else { None } } // FIXME: 現在の実装だとimportしたモジュールはどこからでも見れる pub(crate) fn get_mod(&self, name: &str) -> Option<&Context> { let t = self.get_var_info(name).map(|(_, vi)| vi.t.clone()).ok()?; match t { Type::Poly { name, mut params } if &name[..] == "Module" => { let path = option_enum_unwrap!(params.remove(0), TyParam::Value:(ValueObj::Str:(_)))?; let path = Path::new(&path[..]); let path = if let Ok(path) = self.cfg.input.resolve(path) { path } else { PathBuf::from(format!(".{}", path.display())) }; self.mod_cache .as_ref() .and_then(|cache| cache.ref_ctx(&path)) .or_else(|| { self.py_mod_cache .as_ref() .and_then(|cache| cache.ref_ctx(&path)) }) } _ => None, } } // rec_get_const_localとは違い、位置情報を持たないしエラーとならない pub(crate) fn rec_get_const_obj(&self, name: &str) -> Option<&ValueObj> { if let Some(val) = self.consts.get(name) { return Some(val); } for (_, ctx) in self.methods_list.iter() { if let Some(val) = ctx.consts.get(name) { return Some(val); } } if let Some(outer) = self.get_outer().or_else(|| self.get_builtins()) { outer.rec_get_const_obj(name) } else { None } } pub(crate) fn rec_get_const_param_defaults(&self, name: &str) -> Option<&Vec> { if let Some(impls) = self.const_param_defaults.get(name) { Some(impls) } else if let Some(outer) = self.get_outer().or_else(|| self.get_builtins()) { outer.rec_get_const_param_defaults(name) } else { None } } /// FIXME: if trait, returns a freevar pub(crate) fn rec_get_self_t(&self) -> Option { if self.kind.is_method_def() || self.kind.is_type() { // TODO: poly type let name = self.name.split(&[':', '.']).last().unwrap(); // let mono_t = mono(self.path(), Str::rc(name)); if let Some((t, _)) = self.rec_get_type(name) { Some(t.clone()) } else { None } } else if let Some(outer) = self.get_outer().or_else(|| self.get_builtins()) { outer.rec_get_self_t() } else { None } } pub(crate) fn rec_get_mono_type(&self, name: &str) -> Option<(&Type, &Context)> { if let Some((t, ctx)) = self.mono_types.get(name) { Some((t, ctx)) } else if let Some(outer) = self.get_outer().or_else(|| self.get_builtins()) { outer.rec_get_mono_type(name) } else { None } } pub(crate) fn rec_get_poly_type(&self, name: &str) -> Option<(&Type, &Context)> { if let Some((t, ctx)) = self.poly_types.get(name) { Some((t, ctx)) } else if let Some(outer) = self.get_outer().or_else(|| self.get_builtins()) { outer.rec_get_poly_type(name) } else { None } } fn rec_get_mut_mono_type(&mut self, name: &str) -> Option<(&mut Type, &mut Context)> { if let Some((t, ctx)) = self.mono_types.get_mut(name) { Some((t, ctx)) } else if let Some(outer) = self.outer.as_mut() { // builtins cannot be got as mutable outer.rec_get_mut_mono_type(name) } else { None } } fn rec_get_mut_poly_type(&mut self, name: &str) -> Option<(&mut Type, &mut Context)> { if let Some((t, ctx)) = self.poly_types.get_mut(name) { Some((t, ctx)) } else if let Some(outer) = self.outer.as_mut() { outer.rec_get_mut_poly_type(name) } else { None } } pub(crate) fn rec_get_type(&self, name: &str) -> Option<(&Type, &Context)> { if let Some((t, ctx)) = self.mono_types.get(name) { Some((t, ctx)) } else if let Some((t, ctx)) = self.poly_types.get(name) { Some((t, ctx)) } else if let Some(outer) = self.get_outer().or_else(|| self.get_builtins()) { outer.rec_get_type(name) } else { None } } fn get_mut_type(&mut self, name: &str) -> Option<(&Type, &mut Context)> { if let Some((t, ctx)) = self.mono_types.get_mut(name) { Some((t, ctx)) } else if let Some((t, ctx)) = self.poly_types.get_mut(name) { Some((t, ctx)) } else { None } } fn get_method_type_by_name(&self, name: &Identifier) -> SingleTyCheckResult<&MethodType> { // TODO: min_by if let Some(candidates) = self.method_to_traits.get(name.inspect()) { let first_method_type = &candidates.first().unwrap().method_type; if candidates .iter() .skip(1) .all(|t| &t.method_type == first_method_type) { return Ok(&candidates[0]); } else { return Err(TyCheckError::ambiguous_type_error( self.cfg.input.clone(), line!() as usize, name, &candidates .iter() .map(|t| t.definition_type.clone()) .collect::>(), self.caused_by(), )); } } if let Some(candidates) = self.method_to_classes.get(name.inspect()) { let first_method_type = &candidates.first().unwrap().method_type; if candidates .iter() .skip(1) .all(|t| &t.method_type == first_method_type) { return Ok(&candidates[0]); } else { return Err(TyCheckError::ambiguous_type_error( self.cfg.input.clone(), line!() as usize, name, &candidates .iter() .map(|t| t.definition_type.clone()) .collect::>(), self.caused_by(), )); } } if let Some(outer) = self.get_outer().or_else(|| self.get_builtins()) { outer.get_method_type_by_name(name) } else { Err(TyCheckError::no_attr_error( self.cfg.input.clone(), line!() as usize, name.loc(), self.caused_by(), &Type::Failure, name.inspect(), None, )) } } fn get_gen_t_require_attr_t<'a>(&'a self, gen: &'a GenTypeObj, attr: &str) -> Option<&'a Type> { match gen.require_or_sup.typ() { Type::Record(rec) => { if let Some(t) = rec.get(attr) { return Some(t); } } other => { let obj = self.rec_get_const_obj(&other.local_name()); let obj = enum_unwrap!(obj, Some:(ValueObj::Type:(TypeObj::Generated:(_)))); if let Some(t) = self.get_gen_t_require_attr_t(obj, attr) { return Some(t); } } } if let Some(additional) = &gen.additional { if let Type::Record(gen) = additional.typ() { if let Some(t) = gen.get(attr) { return Some(t); } } } None } // TODO: params, polymorphic types pub(crate) fn get_candidates(&self, t: &Type) -> Option> { match t { Type::Proj { lhs, rhs } => Some(self.get_proj_candidates(lhs, rhs)), Type::Subr(subr) => { let candidates = self.get_candidates(&subr.return_t)?; Some( candidates .into_iter() .map(|ret_t| { let subr = SubrType::new( subr.kind, subr.non_default_params.clone(), subr.var_params.as_ref().map(|p| *p.clone()), subr.default_params.clone(), ret_t, ); Type::Subr(subr) }) .collect(), ) } _ => None, } } fn get_proj_candidates(&self, lhs: &Type, rhs: &Str) -> Set { #[allow(clippy::single_match)] match lhs { Type::FreeVar(fv) => { if let Some(sup) = fv.get_sup() { let insts = self.get_trait_impls(&sup); let candidates = insts.into_iter().filter_map(move |inst| { if self.supertype_of(&inst.sup_trait, &sup) { self.eval_t_params( proj(inst.sub_type, rhs), self.level, Location::Unknown, ) .ok() } else { None } }); return candidates.collect(); } } _ => {} } set! {} } pub(crate) fn is_class(&self, typ: &Type) -> bool { match typ { Type::And(_l, _r) => false, Type::Never => true, Type::FreeVar(fv) if fv.is_linked() => self.is_class(&fv.crack()), Type::FreeVar(_) => false, Type::Or(l, r) => self.is_class(l) && self.is_class(r), Type::Proj { lhs, rhs } => self .get_proj_candidates(lhs, rhs) .iter() .all(|t| self.is_class(t)), Type::Refinement(refine) => self.is_class(&refine.t), Type::Ref(t) | Type::RefMut { before: t, .. } => self.is_class(t), _ => { if let Some(ctx) = self.get_nominal_type_ctx(typ) { ctx.kind.is_class() } else { // TODO: unknown types false } } } } pub(crate) fn is_trait(&self, typ: &Type) -> bool { match typ { Type::Never => false, Type::FreeVar(fv) if fv.is_linked() => self.is_class(&fv.crack()), Type::FreeVar(_) => false, Type::And(l, r) | Type::Or(l, r) => self.is_trait(l) && self.is_trait(r), Type::Proj { lhs, rhs } => self .get_proj_candidates(lhs, rhs) .iter() .all(|t| self.is_trait(t)), Type::Refinement(refine) => self.is_trait(&refine.t), Type::Ref(t) | Type::RefMut { before: t, .. } => self.is_trait(t), _ => { if let Some(ctx) = self.get_nominal_type_ctx(typ) { ctx.kind.is_trait() } else { false } } } } }