use std::fmt; use std::mem; use std::option::Option; // conflicting to Type::Option use erg_common::astr::AtomicStr; use erg_common::dict::Dict; use erg_common::error::Location; use erg_common::set::Set; use erg_common::traits::{Locational, Stream}; use erg_common::Str; use erg_common::{assume_unreachable, enum_unwrap, set, try_map_mut}; use ast::{ ParamSignature, ParamTySpec, PreDeclTypeSpec, SimpleTypeSpec, TypeBoundSpec, TypeBoundSpecs, TypeSpec, }; use erg_parser::ast; use erg_parser::token::TokenKind; use erg_type::constructors::*; use erg_type::free::{Constraint, Cyclicity, FreeTyVar}; use erg_type::typaram::{IntervalOp, TyParam, TyParamOrdering}; use erg_type::value::ValueObj; use erg_type::{HasType, ParamTy, Predicate, SubrKind, TyBound, Type}; use TyParamOrdering::*; use Type::*; use crate::context::eval::eval_lit; use crate::context::{Context, RegistrationMode}; use crate::error::{SingleTyCheckResult, TyCheckError, TyCheckErrors, TyCheckResult}; use crate::hir; use RegistrationMode::*; /// Context for instantiating a quantified type /// 量化型をインスタンス化するための文脈 #[derive(Debug, Clone)] pub struct TyVarContext { level: usize, pub(crate) tyvar_instances: Dict, pub(crate) typaram_instances: Dict, } impl fmt::Display for TyVarContext { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!( f, "TyVarContext {{ tyvar_instances: {}, typaram_instances: {} }}", self.tyvar_instances, self.typaram_instances, ) } } impl TyVarContext { pub fn new(level: usize, bounds: Set, ctx: &Context) -> Self { let mut self_ = Self { level, tyvar_instances: Dict::new(), typaram_instances: Dict::new(), }; for bound in bounds.into_iter() { self_.instantiate_bound(bound, ctx); } self_ } pub fn concat(self, other: Self) -> Self { Self { level: self.level.min(other.level), // REVIEW tyvar_instances: self.tyvar_instances.concat(other.tyvar_instances), typaram_instances: self.typaram_instances.concat(other.typaram_instances), } } fn instantiate_const_template( &mut self, var_name: &str, _callee_name: &Str, ct: &ConstTemplate, ) -> TyParam { match ct { ConstTemplate::Obj(o) => match o { ValueObj::Type(t) if t.typ().is_mono_q() => { if &t.typ().name()[..] == "Self" { let constraint = Constraint::new_type_of(Type); let t = named_free_var(Str::rc(var_name), self.level, constraint); TyParam::t(t) } else { todo!() } } ValueObj::Type(t) => TyParam::t(t.typ().clone()), v => TyParam::Value(v.clone()), }, ConstTemplate::App { .. } => { todo!() } } } fn instantiate_poly( &mut self, tvar_name: Str, name: &Str, params: Vec, ctx: &Context, ) -> Type { if let Some(temp_defaults) = ctx.rec_get_const_param_defaults(name) { let (_, ctx) = ctx .get_nominal_type_ctx(&builtin_poly(name.clone(), params.clone())) .unwrap_or_else(|| panic!("{} not found", name)); let defined_params_len = ctx.params.len(); let given_params_len = params.len(); if defined_params_len < given_params_len { panic!() } let inst_non_defaults = self.instantiate_params(params); let mut inst_defaults = vec![]; for template in temp_defaults .iter() .take(defined_params_len - given_params_len) { let tp = self.instantiate_const_template(&tvar_name, name, template); self.push_or_init_typaram(&tp.tvar_name().unwrap(), &tp); inst_defaults.push(tp); } builtin_poly(name, [inst_non_defaults, inst_defaults].concat()) } else { builtin_poly(name, self.instantiate_params(params)) } } fn instantiate_params(&mut self, params: Vec) -> Vec { params .into_iter() .map(|p| { if let Some(name) = p.tvar_name() { let tp = self.instantiate_qtp(p); self.push_or_init_typaram(&name, &tp); tp } else { p } }) .collect() } fn instantiate_bound_type(&mut self, mid: &Type, sub_or_sup: Type, ctx: &Context) -> Type { match sub_or_sup { Type::Poly { .. } => todo!(), Type::BuiltinPoly { name, params } => { self.instantiate_poly(mid.name(), &name, params, ctx) } Type::MonoProj { lhs, rhs } => { let lhs = if lhs.has_qvar() { self.instantiate_qvar(*lhs) } else { *lhs }; mono_proj(lhs, rhs) } other => other, } } fn instantiate_bound(&mut self, bound: TyBound, ctx: &Context) { match bound { TyBound::Sandwiched { sub, mid, sup } => { let sub_instance = self.instantiate_bound_type(&mid, sub, ctx); let sup_instance = self.instantiate_bound_type(&mid, sup, ctx); let name = mid.name(); let constraint = Constraint::new_sandwiched(sub_instance, sup_instance, Cyclicity::Not); self.push_or_init_tyvar( &name, &named_free_var(name.clone(), self.level, constraint), ); } TyBound::Instance { name, t } => { let t = match t { Type::BuiltinPoly { name, params } => { self.instantiate_poly(name.clone(), &name, params, ctx) } Type::Poly { .. } => todo!(), t => t, }; let constraint = Constraint::new_type_of(t.clone()); // TODO: type-like types if t == Type { if let Some(tv) = self.tyvar_instances.get(&name) { tv.update_constraint(constraint); } else if let Some(tp) = self.typaram_instances.get(&name) { tp.update_constraint(constraint); } else { self.push_or_init_tyvar( &name, &named_free_var(name.clone(), self.level, constraint), ); } } else if let Some(tp) = self.typaram_instances.get(&name) { tp.update_constraint(constraint); } else { self.push_or_init_typaram( &name, &TyParam::named_free_var(name.clone(), self.level, t), ); } } } } fn _instantiate_pred(&self, _pred: Predicate) -> Predicate { todo!() } pub(crate) fn instantiate_qvar(&mut self, quantified: Type) -> Type { match quantified { Type::MonoQVar(n) => { if let Some(t) = self.get_tyvar(&n) { t.clone() } else if let Some(t) = self.get_typaram(&n) { if let TyParam::Type(t) = t { *t.clone() } else { todo!() } } else { let tv = named_free_var(n.clone(), self.level, Constraint::Uninited); self.push_or_init_tyvar(&n, &tv); tv } } other => todo!("{other}"), } } fn instantiate_qtp(&mut self, quantified: TyParam) -> TyParam { match quantified { TyParam::MonoQVar(n) => { if let Some(t) = self.get_typaram(&n) { t.clone() } else if let Some(t) = self.get_tyvar(&n) { TyParam::t(t.clone()) } else { let tp = TyParam::named_free_var(n.clone(), self.level, Type::Uninited); self.push_or_init_typaram(&n, &tp); tp } } TyParam::Type(t) => { if let Some(n) = t.as_ref().tvar_name() { if let Some(t) = self.get_typaram(&n) { t.clone() } else if let Some(t) = self.get_tyvar(&n) { TyParam::t(t.clone()) } else { let tv = named_free_var(n.clone(), self.level, Constraint::Uninited); self.push_or_init_tyvar(&n, &tv); TyParam::t(tv) } } else { unreachable!("{t}") } } TyParam::UnaryOp { op, val } => { let res = self.instantiate_qtp(*val); TyParam::unary(op, res) } TyParam::BinOp { op, lhs, rhs } => { let lhs = self.instantiate_qtp(*lhs); let rhs = self.instantiate_qtp(*rhs); TyParam::bin(op, lhs, rhs) } TyParam::App { .. } => todo!(), p @ TyParam::Value(_) => p, other => todo!("{other}"), } } pub(crate) fn push_or_init_tyvar(&mut self, name: &Str, tv: &Type) { if let Some(inst) = self.tyvar_instances.get(name) { // T <: Eq(T) // T is uninitialized // T.link(T); // T <: Eq(T <: Eq(T <: ...)) if let Type::FreeVar(fv_inst) = inst { self.check_cyclicity_and_link(name, fv_inst, tv); } else { todo!() } } else if let Some(inst) = self.typaram_instances.get(name) { if let TyParam::Type(inst) = inst { if let Type::FreeVar(fv_inst) = inst.as_ref() { self.check_cyclicity_and_link(name, fv_inst, tv); } else { todo!() } } else { todo!() } } self.tyvar_instances.insert(name.clone(), tv.clone()); } fn check_cyclicity_and_link(&self, name: &str, fv_inst: &FreeTyVar, tv: &Type) { let (sub, sup) = enum_unwrap!(tv, Type::FreeVar).get_bound_types().unwrap(); let new_cyclicity = match (sup.contains_tvar(name), sub.contains_tvar(name)) { (true, true) => Cyclicity::Both, // T <: Super (true, _) => Cyclicity::Super, // T :> Sub (false, true) => Cyclicity::Sub, _ => Cyclicity::Not, }; fv_inst.link(tv); tv.update_cyclicity(new_cyclicity); } pub(crate) fn push_or_init_typaram(&mut self, name: &Str, tp: &TyParam) { // FIXME: if self.tyvar_instances.get(name).is_some() || self.typaram_instances.get(name).is_some() { return; } self.typaram_instances.insert(name.clone(), tp.clone()); } pub(crate) fn get_tyvar(&self, name: &str) -> Option<&Type> { self.tyvar_instances.get(name).or_else(|| { self.typaram_instances.get(name).map(|t| { if let TyParam::Type(t) = t { t.as_ref() } else { todo!("{t}") } }) }) } pub(crate) fn get_typaram(&self, name: &str) -> Option<&TyParam> { self.typaram_instances.get(name) } } /// TODO: this struct will be removed when const functions are implemented. #[derive(Debug, Clone, PartialEq, Eq, Hash)] pub enum ConstTemplate { Obj(ValueObj), App { name: Str, non_default_args: Vec, default_args: Vec, }, } impl ConstTemplate { pub const fn app( name: &'static str, non_default_args: Vec, default_args: Vec, ) -> Self { ConstTemplate::App { name: Str::ever(name), non_default_args, default_args, } } } impl Context { pub(crate) fn instantiate_var_sig_t( &self, t_spec: Option<&TypeSpec>, opt_eval_t: Option, mode: RegistrationMode, ) -> TyCheckResult { let spec_t = if let Some(s) = t_spec { self.instantiate_typespec(s, None, &mut None, mode)? } else { free_var(self.level, Constraint::new_type_of(Type)) }; if let Some(eval_t) = opt_eval_t { self.sub_unify(&eval_t, &spec_t, None, t_spec.map(|s| s.loc()), None)?; } Ok(spec_t) } pub(crate) fn instantiate_sub_sig_t( &self, sig: &ast::SubrSignature, mode: RegistrationMode, ) -> TyCheckResult { let opt_decl_sig_t = self .rec_get_var_t(&sig.ident, &self.cfg.input, &self.name) .ok() .map(|t| enum_unwrap!(t, Type::Subr)); let bounds = self.instantiate_ty_bounds(&sig.bounds, PreRegister)?; let mut tv_ctx = TyVarContext::new(self.level, bounds, self); let mut non_defaults = vec![]; for (n, p) in sig.params.non_defaults.iter().enumerate() { let opt_decl_t = opt_decl_sig_t .as_ref() .and_then(|subr| subr.non_default_params.get(n)); non_defaults.push(ParamTy::pos( p.inspect().cloned(), self.instantiate_param_sig_t(p, opt_decl_t, &mut Some(&mut tv_ctx), mode)?, )); } let var_args = if let Some(var_args) = sig.params.var_args.as_ref() { let opt_decl_t = opt_decl_sig_t .as_ref() .and_then(|subr| subr.var_params.as_ref().map(|v| v.as_ref())); let va_t = self.instantiate_param_sig_t(var_args, opt_decl_t, &mut Some(&mut tv_ctx), mode)?; Some(ParamTy::pos(var_args.inspect().cloned(), va_t)) } else { None }; let mut defaults = vec![]; for (n, p) in sig.params.defaults.iter().enumerate() { let opt_decl_t = opt_decl_sig_t .as_ref() .and_then(|subr| subr.default_params.get(n)); defaults.push(ParamTy::kw( p.inspect().unwrap().clone(), self.instantiate_param_sig_t(p, opt_decl_t, &mut Some(&mut tv_ctx), mode)?, )); } let spec_return_t = if let Some(s) = sig.return_t_spec.as_ref() { let opt_decl_t = opt_decl_sig_t .as_ref() .map(|subr| ParamTy::anonymous(subr.return_t.as_ref().clone())); self.instantiate_typespec(s, opt_decl_t.as_ref(), &mut Some(&mut tv_ctx), mode)? } else { // preregisterならouter scopeで型宣言(see inference.md) let level = if mode == PreRegister { self.level } else { self.level + 1 }; free_var(level, Constraint::new_type_of(Type)) }; Ok(if sig.ident.is_procedural() { proc(non_defaults, var_args, defaults, spec_return_t) } else { func(non_defaults, var_args, defaults, spec_return_t) }) } /// spec_t == Noneかつリテラル推論が不可能なら型変数を発行する pub(crate) fn instantiate_param_sig_t( &self, sig: &ParamSignature, opt_decl_t: Option<&ParamTy>, tv_ctx: &mut Option<&mut TyVarContext>, mode: RegistrationMode, ) -> TyCheckResult { let spec_t = if let Some(spec_with_op) = &sig.t_spec { self.instantiate_typespec(&spec_with_op.t_spec, opt_decl_t, tv_ctx, mode)? } else { match &sig.pat { ast::ParamPattern::Lit(lit) => v_enum(set![eval_lit(lit)]), // TODO: Array _ => { let level = if mode == PreRegister { self.level } else { self.level + 1 }; free_var(level, Constraint::new_type_of(Type)) } } }; if let Some(decl_pt) = opt_decl_t { self.sub_unify( decl_pt.typ(), &spec_t, None, sig.t_spec.as_ref().map(|s| s.loc()), None, )?; } Ok(spec_t) } pub(crate) fn instantiate_predecl_t( &self, predecl: &PreDeclTypeSpec, opt_decl_t: Option<&ParamTy>, tv_ctx: &mut Option<&mut TyVarContext>, ) -> TyCheckResult { match predecl { ast::PreDeclTypeSpec::Simple(simple) => { self.instantiate_simple_t(simple, opt_decl_t, tv_ctx) } _ => todo!(), } } pub(crate) fn instantiate_simple_t( &self, simple: &SimpleTypeSpec, opt_decl_t: Option<&ParamTy>, tv_ctx: &mut Option<&mut TyVarContext>, ) -> TyCheckResult { match &simple.name.inspect()[..] { "Nat" => Ok(Type::Nat), "Int" => Ok(Type::Int), "Ratio" => Ok(Type::Ratio), "Float" => Ok(Type::Float), "Str" => Ok(Type::Str), "Bool" => Ok(Type::Bool), "NoneType" => Ok(Type::NoneType), "Ellipsis" => Ok(Type::Ellipsis), "NotImplemented" => Ok(Type::NotImplemented), "Inf" => Ok(Type::Inf), "NegInf" => Ok(Type::NegInf), "Obj" => Ok(Type::Obj), "Array" => { // TODO: kw let mut args = simple.args.pos_args(); if let Some(first) = args.next() { let t = self.instantiate_const_expr_as_type(&first.expr)?; let len = args.next().unwrap(); let len = self.instantiate_const_expr(&len.expr); Ok(array(t, len)) } else { Ok(builtin_mono("GenericArray")) } } other if simple.args.is_empty() => { if let Some(tv_ctx) = tv_ctx { self.instantiate_t(mono_q(Str::rc(other)), tv_ctx, simple.loc()) } else if let Some(decl_t) = opt_decl_t { Ok(decl_t.typ().clone()) } else { let typ = mono(self.path(), Str::rc(other)); if let Some((defined_t, _)) = self.get_nominal_type_ctx(&typ) { Ok(defined_t.clone()) } else { Err(TyCheckErrors::from(TyCheckError::no_var_error( self.cfg.input.clone(), line!() as usize, simple.loc(), self.caused_by(), other, self.get_similar_name(other), ))) } } } other => { // FIXME: kw args let params = simple.args.pos_args().map(|arg| match &arg.expr { ast::ConstExpr::Lit(lit) => TyParam::Value(eval_lit(lit)), _ => { todo!() } }); // FIXME: non-builtin Ok(builtin_poly(Str::rc(other), params.collect())) } } } pub(crate) fn instantiate_const_expr(&self, expr: &ast::ConstExpr) -> TyParam { match expr { ast::ConstExpr::Lit(lit) => TyParam::Value(eval_lit(lit)), ast::ConstExpr::Accessor(ast::ConstAccessor::Local(name)) => { TyParam::Mono(name.inspect().clone()) } _ => todo!(), } } pub(crate) fn instantiate_const_expr_as_type( &self, expr: &ast::ConstExpr, ) -> SingleTyCheckResult { match expr { ast::ConstExpr::Accessor(ast::ConstAccessor::Local(name)) => { Ok(mono(self.path(), name.inspect())) } _ => todo!(), } } fn instantiate_func_param_spec( &self, p: &ParamTySpec, opt_decl_t: Option<&ParamTy>, tv_ctx: &mut Option<&mut TyVarContext>, mode: RegistrationMode, ) -> TyCheckResult { let t = self.instantiate_typespec(&p.ty, opt_decl_t, tv_ctx, mode)?; Ok(ParamTy::pos( p.name.as_ref().map(|t| t.inspect().to_owned()), t, )) } pub(crate) fn instantiate_typespec( &self, spec: &TypeSpec, opt_decl_t: Option<&ParamTy>, tv_ctx: &mut Option<&mut TyVarContext>, mode: RegistrationMode, ) -> TyCheckResult { match spec { TypeSpec::PreDeclTy(predecl) => { Ok(self.instantiate_predecl_t(predecl, opt_decl_t, tv_ctx)?) } // TODO: Flatten TypeSpec::And(lhs, rhs) => Ok(and( self.instantiate_typespec(lhs, opt_decl_t, tv_ctx, mode)?, self.instantiate_typespec(rhs, opt_decl_t, tv_ctx, mode)?, )), TypeSpec::Not(lhs, rhs) => Ok(not( self.instantiate_typespec(lhs, opt_decl_t, tv_ctx, mode)?, self.instantiate_typespec(rhs, opt_decl_t, tv_ctx, mode)?, )), TypeSpec::Or(lhs, rhs) => Ok(or( self.instantiate_typespec(lhs, opt_decl_t, tv_ctx, mode)?, self.instantiate_typespec(rhs, opt_decl_t, tv_ctx, mode)?, )), TypeSpec::Array(arr) => { let elem_t = self.instantiate_typespec(&arr.ty, opt_decl_t, tv_ctx, mode)?; let len = self.instantiate_const_expr(&arr.len); Ok(array(elem_t, len)) } // FIXME: unwrap TypeSpec::Tuple(tys) => Ok(tuple( tys.iter() .map(|spec| { self.instantiate_typespec(spec, opt_decl_t, tv_ctx, mode) .unwrap() }) .collect(), )), // TODO: エラー処理(リテラルでない、ダブりがある)はパーサーにやらせる TypeSpec::Enum(set) => Ok(v_enum( set.pos_args() .map(|arg| { if let ast::ConstExpr::Lit(lit) = &arg.expr { eval_lit(lit) } else { todo!() } }) .collect::>(), )), TypeSpec::Interval { op, lhs, rhs } => { let op = match op.kind { TokenKind::Closed => IntervalOp::Closed, TokenKind::LeftOpen => IntervalOp::LeftOpen, TokenKind::RightOpen => IntervalOp::RightOpen, TokenKind::Open => IntervalOp::Open, _ => assume_unreachable!(), }; let l = self.instantiate_const_expr(lhs); let l = self.eval_tp(&l)?; let r = self.instantiate_const_expr(rhs); let r = self.eval_tp(&r)?; if let Some(Greater) = self.try_cmp(&l, &r) { panic!("{l}..{r} is not a valid interval type (should be lhs <= rhs)") } Ok(int_interval(op, l, r)) } TypeSpec::Subr(subr) => { let non_defaults = try_map_mut(subr.non_defaults.iter(), |p| { self.instantiate_func_param_spec(p, opt_decl_t, tv_ctx, mode) })?; let var_args = subr .var_args .as_ref() .map(|p| self.instantiate_func_param_spec(p, opt_decl_t, tv_ctx, mode)) .transpose()?; let defaults = try_map_mut(subr.defaults.iter(), |p| { self.instantiate_func_param_spec(p, opt_decl_t, tv_ctx, mode) })? .into_iter() .collect(); let return_t = self.instantiate_typespec(&subr.return_t, opt_decl_t, tv_ctx, mode)?; Ok(subr_t( SubrKind::from(subr.arrow.kind), non_defaults, var_args, defaults, return_t, )) } TypeSpec::TypeApp { spec, args } => { todo!("{spec}{args}") } } } pub(crate) fn instantiate_ty_bound( &self, bound: &TypeBoundSpec, mode: RegistrationMode, ) -> TyCheckResult { // REVIEW: 型境界の左辺に来れるのは型変数だけか? // TODO: 高階型変数 match bound { TypeBoundSpec::NonDefault { lhs, spec } => { let bound = match spec.op.kind { TokenKind::SubtypeOf => TyBound::subtype_of( mono_q(lhs.inspect().clone()), self.instantiate_typespec(&spec.t_spec, None, &mut None, mode)?, ), TokenKind::SupertypeOf => todo!(), TokenKind::Colon => TyBound::instance( lhs.inspect().clone(), self.instantiate_typespec(&spec.t_spec, None, &mut None, mode)?, ), _ => unreachable!(), }; Ok(bound) } TypeBoundSpec::WithDefault { .. } => todo!(), } } pub(crate) fn instantiate_ty_bounds( &self, bounds: &TypeBoundSpecs, mode: RegistrationMode, ) -> TyCheckResult> { let mut new_bounds = set! {}; for bound in bounds.iter() { new_bounds.insert(self.instantiate_ty_bound(bound, mode)?); } Ok(new_bounds) } fn instantiate_tp( &self, quantified: TyParam, tv_ctx: &mut TyVarContext, loc: Location, ) -> TyCheckResult { match quantified { TyParam::MonoQVar(n) => { if let Some(tp) = tv_ctx.get_typaram(&n) { Ok(tp.clone()) } else if let Some(t) = tv_ctx.get_tyvar(&n) { Ok(TyParam::t(t.clone())) } else { Err(TyCheckErrors::from(TyCheckError::tyvar_not_defined_error( self.cfg.input.clone(), line!() as usize, &n, loc, AtomicStr::ever("?"), ))) } } TyParam::UnaryOp { op, val } => { let res = self.instantiate_tp(*val, tv_ctx, loc)?; Ok(TyParam::unary(op, res)) } TyParam::BinOp { op, lhs, rhs } => { let lhs = self.instantiate_tp(*lhs, tv_ctx, loc)?; let rhs = self.instantiate_tp(*rhs, tv_ctx, loc)?; Ok(TyParam::bin(op, lhs, rhs)) } TyParam::Type(t) => { let t = self.instantiate_t(*t, tv_ctx, loc)?; Ok(TyParam::t(t)) } TyParam::FreeVar(fv) if fv.is_linked() => { self.instantiate_tp(fv.crack().clone(), tv_ctx, loc) } p @ (TyParam::Value(_) | TyParam::Mono(_) | TyParam::FreeVar(_)) => Ok(p), other => todo!("{other}"), } } /// 'T -> ?T (quantified to free) pub(crate) fn instantiate_t( &self, unbound: Type, tv_ctx: &mut TyVarContext, loc: Location, ) -> TyCheckResult { match unbound { MonoQVar(n) => { if let Some(t) = tv_ctx.get_tyvar(&n) { Ok(t.clone()) } else if let Some(tp) = tv_ctx.get_typaram(&n) { if let TyParam::Type(t) = tp { Ok(*t.clone()) } else { todo!( "typaram_insts: {}\ntyvar_insts:{}\n{tp}", tv_ctx.typaram_instances, tv_ctx.tyvar_instances, ) } } else { Err(TyCheckErrors::from(TyCheckError::tyvar_not_defined_error( self.cfg.input.clone(), line!() as usize, &n, loc, AtomicStr::ever("?"), ))) } } PolyQVar { name, mut params } => { for param in params.iter_mut() { *param = self.instantiate_tp(mem::take(param), tv_ctx, loc)?; } Ok(poly_q(name, params)) } Refinement(mut refine) => { let mut new_preds = set! {}; for mut pred in refine.preds.into_iter() { for tp in pred.typarams_mut() { *tp = self.instantiate_tp(mem::take(tp), tv_ctx, loc)?; } new_preds.insert(pred); } refine.preds = new_preds; Ok(Type::Refinement(refine)) } Subr(mut subr) => { for pt in subr.non_default_params.iter_mut() { *pt.typ_mut() = self.instantiate_t(mem::take(pt.typ_mut()), tv_ctx, loc)?; } if let Some(var_args) = subr.var_params.as_mut() { *var_args.typ_mut() = self.instantiate_t(mem::take(var_args.typ_mut()), tv_ctx, loc)?; } for pt in subr.default_params.iter_mut() { *pt.typ_mut() = self.instantiate_t(mem::take(pt.typ_mut()), tv_ctx, loc)?; } let return_t = self.instantiate_t(*subr.return_t, tv_ctx, loc)?; Ok(subr_t( subr.kind, subr.non_default_params, subr.var_params.map(|p| *p), subr.default_params, return_t, )) } Record(mut dict) => { for v in dict.values_mut() { *v = self.instantiate_t(mem::take(v), tv_ctx, loc)?; } Ok(Type::Record(dict)) } Ref(t) => { let t = self.instantiate_t(*t, tv_ctx, loc)?; Ok(ref_(t)) } RefMut { before, after } => { let before = self.instantiate_t(*before, tv_ctx, loc)?; let after = after .map(|aft| self.instantiate_t(*aft, tv_ctx, loc)) .transpose()?; Ok(ref_mut(before, after)) } MonoProj { lhs, rhs } => { let lhs = self.instantiate_t(*lhs, tv_ctx, loc)?; Ok(mono_proj(lhs, rhs)) } BuiltinPoly { name, mut params } => { for param in params.iter_mut() { *param = self.instantiate_tp(mem::take(param), tv_ctx, loc)?; } Ok(builtin_poly(name, params)) } Poly { path, name, mut params, } => { for param in params.iter_mut() { *param = self.instantiate_tp(mem::take(param), tv_ctx, loc)?; } Ok(poly(path, name, params)) } Quantified(_) => { panic!("a quantified type should not be instantiated, instantiate the inner type") } FreeVar(fv) if fv.is_linked() => self.instantiate_t(fv.crack().clone(), tv_ctx, loc), FreeVar(fv) => { let (sub, sup) = fv.get_bound_types().unwrap(); let sub = self.instantiate_t(sub, tv_ctx, loc)?; let sup = self.instantiate_t(sup, tv_ctx, loc)?; let new_constraint = Constraint::new_sandwiched(sub, sup, fv.cyclicity()); fv.update_constraint(new_constraint); Ok(FreeVar(fv)) } other if other.is_monomorphic() => Ok(other), other => todo!("{other}"), } } pub(crate) fn instantiate(&self, quantified: Type, callee: &hir::Expr) -> TyCheckResult { match quantified { Quantified(quant) => { let mut tv_ctx = TyVarContext::new(self.level, quant.bounds, self); let t = self.instantiate_t(*quant.unbound_callable, &mut tv_ctx, callee.loc())?; match &t { Type::Subr(subr) => { if let Some(self_t) = subr.self_t() { self.sub_unify( callee.ref_t(), self_t, None, Some(callee.loc()), Some(&Str::ever("self")), )?; } } _ => unreachable!(), } Ok(t) } // rank-1制限により、通常の型(rank-0型)の内側に量化型は存在しない other => Ok(other), } } }