# 篩型 篩型とは、以下のような型である。 ```erg {I: Int | I >= 0} {S: StrWithLen N | N >= 1} {T: (Ratio, Ratio) | T.0 >= 0; T.1 >= 0} ``` 1,2番目のようにレイアウトが自明な場合は以下のように省略できる。 ```erg {I: Int | I >= 0} StrWithLen N | N >= 1 ``` ErgではEnum, Interval, Refined dependent type型を篩型に変換してしまうことで、型判定を可能にしている。 ## 篩型への変換 [篩型]の項では、区間型および列挙型は、篩型の糖衣構文であると述べた。それぞれ、以下のように変換される。 * {0} -> {I: Int | I == 0} * {0, 1} -> {I: Int | I == 0 or I == 1} * 1.._ -> {I: Int | I >= 1} * 1<.._ -> {I: Int | I > 1} -> {I: Int | I >= 2} * {0} or 1.._ -> {I: Int | I == 0 or I >= 1} * {0} or {-3, -2} or 1.._ -> {I: Int | I == 0 or (I == -2 or I == -3) or I >= 1} * {0} and {-3, 0} -> {I: Int | I == 0 and (I == -3 or I == 0)} * {0} not {-3, 0} or 1.._ -> {I: Int | I == 0 and not (I == -3 or I == 0) or I >= 1} ## 型の型判定 篩型Aが別の篩型Bのサブタイプであるか判定するアルゴリズムを説明する。形式的には、サブタイプ判定は以下のように定義される。 ```console A < B <=> ∀a∈A; a ∈ B ``` 具体的には以下の推論規則を適用する。ブール式は簡約済みとする(よって、`(A or B or C)`などは現れない)。 * 区間化規則(型定義から自動で行われる) * `Nat` => `{I: Int | I >= 0}` * 切上規則 * `{I: Int | I < n}` => `{I: Int | I <= n-1}` * `{I: Int | I > n}` => `{I: Int | I >= n+1}` * `{R: Ratio | R < n}` => `{R: Ratio | R <= n-ε}` * `{R: Ratio | R > n}` => `{R: Ratio | R >= n+ε}` * 反転規則 * `{A not B}` => `{A and (not B)}` * ド・モルガンの法則 * `{not (A or B)}` => `{not A and not B}` * `{not (A and B)}` => `{not A or not B}` * 分配規則 * `{A and (B or C)} <: D` => `{(A and B) or (A and C)} <: D` => `({A and B} <: D) and ({A and C} <: D)` * `{(A or B) and C} <: D` => `{(C and A) or (C and B)} <: D` => `({C and A} <: D) and ({C and B} <: D)` * `D <: {A or (B and C)}` => `D <: {(A or B) and (A or C)}` => `(D <: {A or B}) and (D <: {A or C})` * `D <: {(A and B) or C}` => `D <: {(C or A) and (C or B)}` => `(D <: {C or A}) and (D <: {C or B})` * `{A or B} <: C` => `({A} <: C) and ({B} <: C)` * `A <: {B and C}` => `(A <: {B}) and (A <: {C})` * 終端規則 * {I: T | ...} <: T = True * {} <: _ = True * _ <: {...} = True * {...} <: _ = False * _ <: {} == False * {I >= a and I <= b} (a < b) <: {I >= c} = (a >= c) * {I >= a and I <= b} (a < b) <: {I <= d} = (b <= d) * {I >= a} <: {I >= c or I <= d} (c >= d) = (a >= c) * {I <= b} <: {I >= c or I <= d} (c >= d) = (b <= d) * {I >= a and I <= b} (a <= b) <: {I >= c or I <= d} (c > d) = ((a >= c) or (b <= d)) * 基本式 * {I >= l} <: {I >= r} = (l >= r) * {I <= l} <: {I <= r} = (l <= r) * {I >= l} <: {I <= r} = False * {I <= l} <: {I >= r} = False ブール式の簡約規則は以下の通り。min, maxは除去できない可能性がある。また、複数並んだor, andはネストしたmin, maxに変換される。 * 順序化規則 * `I == a` => `I >= a and I <= a` * `i != a` => `I >= a+1 or I <= a-1` * 恒真規則 * `I >= a or I <= b (a < b)` == `{...}` * 恒偽規則 * `I >= a and I <= b (a > b)` == `{}` * 入替規則 * 順序式は`I >= n`, `I <= n`の順に入れ替える。 * 延長規則 * `I == n or I >= n+1` => `I >= n` * `I == n or I <= n-1` => `I <= n` * 最大規則 * `I <= m or I <= n` => `I <= max(m, n)` * `I >= m and I >= n` => `I >= max(m, n)` * 最小規則 * `I >= m or I >= n` => `I >= min(m, n)` * `I <= m and I <= n` => `I <= min(m, n)` * 除去規則 * 左辺にある`I == n`は、右辺に`I >= a (n >= a)`か`I <= b (n <= b)`か`I == n`があるとき除去できる。 * 左辺の等式をすべて除去できなければFalse e.g. ```python 1.._ <: Nat => {I: Int | I >= 1} <: {I: Int | I >= 0} => {I >= 1} <: {I >= 0} => (I >= 0 => I >= 1) => 1 >= 0 => True # {I >= l} <: {I >= r} == (l >= r) # {I <= l} <: {I <= r} == (l <= r) ``` ```python {I: Int | I >= 0} <: {I: Int | I >= 1 or I <= -3} => {I >= 0} <: {I >= 1 or I <= -3} => {I >= 0} <: {I >= 1} or {I >= 0} <: {I <= -3} => False or False => False ``` ```python {I: Int | I >= 0} <: {I: Int | I >= -3 and I <= 1} => {I >= 0} <: {I >= -3 and I <= 1} => {I >= 0} <: {I >= -3} and {I >= 0} <: {I <= 1} => True and False => False ``` ```python {I: Int | I >= 2 or I == -2 or I <= -4} <: {I: Int | I >= 1 or I <= -1} => {I >= 2 or I <= -4 or I == -2} <: {I >= 1 or I <= -1} => {I >= 2 or I <= -4} <: {I >= 1 or I <= -1} and {I == -2} <: {I >= 1 or I <= -1} => {I >= 2} <: {I >= 1 or I <= -1} and {I <= -4} <: {I >= 1 or I <= -1} and {I == -2} <: {I >= 1} or {I == -2} <: {I <= -1} => {I >= 2} <: {I >= 1} or {I >= 2} <: {I <= -1} and {I <= -4} <: {I >= 1} or {I <= -4} <: {I <= -1} and False or True => True or False and False or True and True => True and True => True ```