//! implements `ASTLowerer`. //! //! ASTLowerer(ASTからHIRへの変換器)を実装 use erg_common::config::{ErgConfig, Input}; use erg_common::error::{Location, MultiErrorDisplay}; use erg_common::traits::{Locational, Runnable, Stream}; use erg_common::vis::Visibility; use erg_common::{enum_unwrap, fmt_option, fn_name, get_hash, log, switch_lang, Str}; use erg_parser::ast; use erg_parser::ast::AST; use erg_parser::error::ParserRunnerErrors; use erg_parser::lex::Lexer; use erg_parser::token::{Token, TokenKind}; use erg_parser::Parser; use erg_type::constructors::{array, array_mut, free_var, func, mono, poly, proc, quant}; use erg_type::free::Constraint; use erg_type::typaram::TyParam; use erg_type::value::{TypeObj, ValueObj}; use erg_type::{HasType, ParamTy, Type}; use crate::context::{ClassDefType, Context, ContextKind, RegistrationMode}; use crate::error::{ CompileError, CompileErrors, LowerError, LowerErrors, LowerResult, LowerWarnings, }; use crate::hir; use crate::hir::HIR; use crate::link::Linker; use crate::varinfo::VarKind; use Visibility::*; /// HACK: Cannot be methodized this because a reference has been taken immediately before. macro_rules! check_inheritable { ($self: ident, $type_obj: expr, $sup_class: expr, $sub_sig: expr) => { match $type_obj.require_or_sup.as_ref() { TypeObj::Generated(gen) => { if let Some(impls) = gen.impls.as_ref() { if !impls.contains_intersec(&mono("InheritableType")) { $self.errs.push(LowerError::inheritance_error( line!() as usize, $sup_class.to_string(), $sup_class.loc(), $sub_sig.ident().inspect().clone(), )); } } else { $self.errs.push(LowerError::inheritance_error( line!() as usize, $sup_class.to_string(), $sup_class.loc(), $sub_sig.ident().inspect().clone(), )); } } _ => {} } }; } pub struct ASTLowererRunner { cfg: ErgConfig, lowerer: ASTLowerer, } impl Runnable for ASTLowererRunner { type Err = CompileError; type Errs = CompileErrors; const NAME: &'static str = "Erg lowerer"; fn new(cfg: ErgConfig) -> Self { Self { cfg, lowerer: ASTLowerer::new(), } } #[inline] fn input(&self) -> &Input { &self.cfg.input } #[inline] fn finish(&mut self) {} fn clear(&mut self) { self.lowerer.errs.clear(); self.lowerer.warns.clear(); } fn exec(&mut self) -> Result<(), Self::Errs> { let ts = Lexer::new(self.input().clone()) .lex() .map_err(|errs| ParserRunnerErrors::convert(self.input(), errs))?; let ast = Parser::new(ts) .parse(Str::ever(self.cfg.module)) .map_err(|errs| ParserRunnerErrors::convert(self.input(), errs))?; let linker = Linker::new(); let ast = linker.link(ast).map_err(|errs| self.convert(errs))?; let (hir, warns) = self .lowerer .lower(ast, "exec") .map_err(|errs| self.convert(errs))?; if self.cfg.verbose >= 2 { let warns = self.convert(warns); warns.fmt_all_stderr(); } println!("{hir}"); Ok(()) } fn eval(&mut self, src: Str) -> Result { let ts = Lexer::new(Input::Str(src)) .lex() .map_err(|errs| ParserRunnerErrors::convert(self.input(), errs))?; let ast = Parser::new(ts) .parse(Str::ever(self.cfg.module)) .map_err(|errs| ParserRunnerErrors::convert(self.input(), errs))?; let linker = Linker::new(); let ast = linker.link(ast).map_err(|errs| self.convert(errs))?; let (hir, _) = self .lowerer .lower(ast, "eval") .map_err(|errs| self.convert(errs))?; Ok(format!("{hir}")) } } impl ASTLowererRunner { fn convert(&self, errs: LowerErrors) -> CompileErrors { errs.into_iter() .map(|e| CompileError::new(e.core, self.input().clone(), e.caused_by)) .collect::>() .into() } } /// Singleton that checks types of an AST, and convert (lower) it into a HIR #[derive(Debug)] pub struct ASTLowerer { pub(crate) ctx: Context, errs: LowerErrors, warns: LowerWarnings, } impl Default for ASTLowerer { fn default() -> Self { Self::new() } } impl ASTLowerer { pub fn new() -> Self { Self { ctx: Context::new_main_module(), errs: LowerErrors::empty(), warns: LowerWarnings::empty(), } } fn return_t_check( &self, loc: Location, name: &Str, expect: &Type, found: &Type, ) -> LowerResult<()> { self.ctx .sub_unify(found, expect, None, Some(loc), Some(name)) .map_err(|_| { LowerError::type_mismatch_error( line!() as usize, loc, self.ctx.caused_by(), name, expect, found, self.ctx.get_type_mismatch_hint(expect, found), ) }) } fn use_check(&self, expr: &hir::Expr, mode: &str) -> LowerResult<()> { if mode != "eval" && !expr.ref_t().is_nonelike() { Err(LowerError::syntax_error( 0, expr.loc(), self.ctx.name.clone(), switch_lang!( "japanese" => format!("式の評価結果(: {})が使われていません", expr.ref_t()), "simplified_chinese" => format!("表达式评估结果(: {})未使用", expr.ref_t()), "traditional_chinese" => format!("表達式評估結果(: {})未使用", expr.ref_t()), "english" => format!("the evaluation result of the expression (: {}) is not used", expr.ref_t()), ), Some( switch_lang!( "japanese" => "値を使わない場合は、discard関数を使用してください", "simplified_chinese" => "如果您不想使用该值,请使用discard函数", "traditional_chinese" => "如果您不想使用該值,請使用discard函數", "english" => "if you don't use the value, use discard function", ) .into(), ), )) } else { Ok(()) } } fn pop_append_errs(&mut self) { if let Err(mut errs) = self.ctx.pop() { self.errs.append(&mut errs); } } fn lower_array(&mut self, array: ast::Array) -> LowerResult { log!(info "entered {}({array})", fn_name!()); match array { ast::Array::Normal(arr) => Ok(hir::Array::Normal(self.lower_normal_array(arr)?)), ast::Array::WithLength(arr) => { Ok(hir::Array::WithLength(self.lower_array_with_length(arr)?)) } other => todo!("{other}"), } } fn lower_normal_array(&mut self, array: ast::NormalArray) -> LowerResult { log!(info "entered {}({array})", fn_name!()); let mut new_array = vec![]; let (elems, _) = array.elems.into_iters(); let mut union = Type::Never; for elem in elems { let elem = self.lower_expr(elem.expr)?; union = self.ctx.union(&union, elem.ref_t()); if matches!(union, Type::Or(_, _)) { return Err(LowerError::syntax_error( line!() as usize, elem.loc(), self.ctx.name.clone(), switch_lang!( "japanese" => "配列の要素は全て同じ型である必要があります", "simplified_chinese" => "数组元素必须全部是相同类型", "traditional_chinese" => "數組元素必須全部是相同類型", "english" => "all elements of an array must be of the same type", ), Some( switch_lang!( "japanese" => "Int or Strなど明示的に型を指定してください", "simplified_chinese" => "明确指定类型,例如:Int or Str", "traditional_chinese" => "明確指定類型,例如:Int or Str", "english" => "please specify the type explicitly, e.g. Int or Str", ) .into(), ), )); } new_array.push(elem); } let elem_t = if union == Type::Never { free_var(self.ctx.level, Constraint::new_type_of(Type::Type)) } else { union }; Ok(hir::NormalArray::new( array.l_sqbr, array.r_sqbr, elem_t, hir::Args::from(new_array), )) } fn lower_array_with_length( &mut self, array: ast::ArrayWithLength, ) -> LowerResult { log!(info "entered {}({array})", fn_name!()); let elem = self.lower_expr(array.elem.expr)?; let array_t = self.gen_array_with_length_type(&elem, &array.len); let len = self.lower_expr(*array.len)?; let hir_array = hir::ArrayWithLength::new(array.l_sqbr, array.r_sqbr, array_t, elem, len); Ok(hir_array) } fn gen_array_with_length_type(&self, elem: &hir::Expr, len: &ast::Expr) -> Type { let maybe_len = self.ctx.eval_const_expr(len, None); match maybe_len { Ok(v @ ValueObj::Nat(_)) => { if elem.ref_t().is_mut() { poly( "ArrayWithMutType!", vec![TyParam::t(elem.t()), TyParam::Value(v)], ) } else { array(elem.t(), TyParam::Value(v)) } } Ok(v @ ValueObj::Mut(_)) if v.class() == mono("Nat!") => { if elem.ref_t().is_mut() { poly( "ArrayWithMutTypeAndLength!", vec![TyParam::t(elem.t()), TyParam::Value(v)], ) } else { array_mut(elem.t(), TyParam::Value(v)) } } Ok(other) => todo!("{other} is not a Nat object"), // REVIEW: is it ok to ignore the error? Err(_e) => { if elem.ref_t().is_mut() { poly( "ArrayWithMutType!", vec![TyParam::t(elem.t()), TyParam::erased(Type::Nat)], ) } else { array(elem.t(), TyParam::erased(Type::Nat)) } } } } fn lower_tuple(&mut self, tuple: ast::Tuple) -> LowerResult { log!(info "entered {}({tuple})", fn_name!()); match tuple { ast::Tuple::Normal(tup) => Ok(hir::Tuple::Normal(self.lower_normal_tuple(tup)?)), } } fn lower_normal_tuple(&mut self, tuple: ast::NormalTuple) -> LowerResult { log!(info "entered {}({tuple})", fn_name!()); let mut new_tuple = vec![]; let (elems, _) = tuple.elems.into_iters(); for elem in elems { let elem = self.lower_expr(elem.expr)?; new_tuple.push(elem); } Ok(hir::NormalTuple::new(hir::Args::from(new_tuple))) } fn lower_record(&mut self, record: ast::Record) -> LowerResult { log!(info "entered {}({record})", fn_name!()); match record { ast::Record::Normal(rec) => self.lower_normal_record(rec), ast::Record::Shortened(_rec) => unreachable!(), // should be desugared } } fn lower_normal_record(&mut self, record: ast::NormalRecord) -> LowerResult { log!(info "entered {}({record})", fn_name!()); let mut hir_record = hir::Record::new(record.l_brace, record.r_brace, hir::RecordAttrs::empty()); self.ctx.grow("", ContextKind::Dummy, Private)?; for attr in record.attrs.into_iter() { let attr = self.lower_def(attr).map_err(|e| { self.pop_append_errs(); e })?; hir_record.push(attr); } self.pop_append_errs(); Ok(hir_record) } fn lower_acc(&mut self, acc: ast::Accessor) -> LowerResult { log!(info "entered {}({acc})", fn_name!()); match acc { ast::Accessor::Ident(ident) => { let ident = self.lower_ident(ident)?; let acc = hir::Accessor::Ident(ident); Ok(acc) } ast::Accessor::Attr(attr) => { let obj = self.lower_expr(*attr.obj)?; let t = self.ctx.rec_get_attr_t(&obj, &attr.ident, &self.ctx.name)?; let ident = hir::Identifier::bare(attr.ident.dot, attr.ident.name); let acc = hir::Accessor::Attr(hir::Attribute::new(obj, ident, t)); Ok(acc) } ast::Accessor::TupleAttr(t_attr) => { let obj = self.lower_expr(*t_attr.obj)?; let index = hir::Literal::from(t_attr.index.token); let n = enum_unwrap!(index.value, ValueObj::Nat); let t = enum_unwrap!( obj.ref_t().typarams().get(n as usize).unwrap().clone(), TyParam::Type ); let acc = hir::Accessor::TupleAttr(hir::TupleAttribute::new(obj, index, *t)); Ok(acc) } ast::Accessor::Subscr(subscr) => { let obj = self.lower_expr(*subscr.obj)?; let index = self.lower_expr(*subscr.index)?; // FIXME: 配列とは限らない! let t = enum_unwrap!( obj.ref_t().typarams().get(0).unwrap().clone(), TyParam::Type ); let acc = hir::Accessor::Subscr(hir::Subscript::new(obj, index, *t)); Ok(acc) } } } fn lower_ident(&self, ident: ast::Identifier) -> LowerResult { // `match` is an untypable special form // `match`は型付け不可能な特殊形式 let (t, __name__) = if ident.vis().is_private() && &ident.inspect()[..] == "match" { (Type::Failure, None) } else { ( self.ctx.rec_get_var_t(&ident, &self.ctx.name)?, self.ctx.get_local_uniq_obj_name(ident.name.token()), ) }; let ident = hir::Identifier::new(ident.dot, ident.name, __name__, t); Ok(ident) } fn lower_bin(&mut self, bin: ast::BinOp) -> LowerResult { log!(info "entered {}({bin})", fn_name!()); let mut args = bin.args.into_iter(); let lhs = hir::PosArg::new(self.lower_expr(*args.next().unwrap())?); let rhs = hir::PosArg::new(self.lower_expr(*args.next().unwrap())?); let args = [lhs, rhs]; let t = self.ctx.get_binop_t(&bin.op, &args, &self.ctx.name)?; let mut args = args.into_iter(); let lhs = args.next().unwrap().expr; let rhs = args.next().unwrap().expr; Ok(hir::BinOp::new(bin.op, lhs, rhs, t)) } fn lower_unary(&mut self, unary: ast::UnaryOp) -> LowerResult { log!(info "entered {}({unary})", fn_name!()); let mut args = unary.args.into_iter(); let arg = hir::PosArg::new(self.lower_expr(*args.next().unwrap())?); let args = [arg]; let t = self.ctx.get_unaryop_t(&unary.op, &args, &self.ctx.name)?; let mut args = args.into_iter(); let expr = args.next().unwrap().expr; Ok(hir::UnaryOp::new(unary.op, expr, t)) } fn lower_call(&mut self, call: ast::Call) -> LowerResult { log!(info "entered {}({}{}(...))", fn_name!(), call.obj, fmt_option!(pre ".", call.method_name)); let (pos_args, kw_args, paren) = call.args.deconstruct(); let mut hir_args = hir::Args::new( Vec::with_capacity(pos_args.len()), None, Vec::with_capacity(kw_args.len()), paren, ); for arg in pos_args.into_iter() { hir_args.push_pos(hir::PosArg::new(self.lower_expr(arg.expr)?)); } for arg in kw_args.into_iter() { hir_args.push_kw(hir::KwArg::new(arg.keyword, self.lower_expr(arg.expr)?)); } let obj = self.lower_expr(*call.obj)?; let sig_t = self.ctx.get_call_t( &obj, &call.method_name, &hir_args.pos_args, &hir_args.kw_args, &self.ctx.name, )?; let method_name = if let Some(method_name) = call.method_name { Some(hir::Identifier::new( method_name.dot, method_name.name, None, Type::Uninited, )) } else { None }; Ok(hir::Call::new(obj, method_name, hir_args, sig_t)) } fn lower_pack(&mut self, pack: ast::DataPack) -> LowerResult { log!(info "entered {}({pack})", fn_name!()); let class = self.lower_expr(*pack.class)?; let args = self.lower_record(pack.args)?; let args = vec![hir::PosArg::new(hir::Expr::Record(args))]; let method_name = ast::Identifier::new( Some(Token::new( TokenKind::Dot, Str::ever("."), pack.connector.lineno, pack.connector.col_begin, )), ast::VarName::new(Token::new( TokenKind::Symbol, Str::ever("new"), pack.connector.lineno, pack.connector.col_begin, )), ); let sig_t = self.ctx.get_call_t( &class, &Some(method_name.clone()), &args, &[], &self.ctx.name, )?; let args = hir::Args::new(args, None, vec![], None); let method_name = hir::Identifier::bare(method_name.dot, method_name.name); Ok(hir::Call::new(class, Some(method_name), args, sig_t)) } /// TODO: varargs fn lower_lambda(&mut self, lambda: ast::Lambda) -> LowerResult { log!(info "entered {}({lambda})", fn_name!()); let is_procedural = lambda.is_procedural(); let id = get_hash(&lambda.sig); let name = format!(""); let kind = if is_procedural { ContextKind::Proc } else { ContextKind::Func }; self.ctx.grow(&name, kind, Private)?; self.ctx .assign_params(&lambda.sig.params, None) .map_err(|e| { self.pop_append_errs(); e })?; self.ctx.preregister(&lambda.body).map_err(|e| { self.pop_append_errs(); e })?; let body = self.lower_block(lambda.body).map_err(|e| { self.pop_append_errs(); e })?; let (non_default_params, default_params): (Vec<_>, Vec<_>) = self .ctx .params .iter() .partition(|(_, v)| !v.kind.has_default()); let non_default_params = non_default_params .into_iter() .map(|(name, vi)| { ParamTy::pos(name.as_ref().map(|n| n.inspect().clone()), vi.t.clone()) }) .collect(); let default_params = default_params .into_iter() .map(|(name, vi)| ParamTy::kw(name.as_ref().unwrap().inspect().clone(), vi.t.clone())) .collect(); let bounds = self .ctx .instantiate_ty_bounds(&lambda.sig.bounds, RegistrationMode::Normal) .map_err(|e| { self.pop_append_errs(); e })?; self.pop_append_errs(); let t = if is_procedural { proc(non_default_params, None, default_params, body.t()) } else { func(non_default_params, None, default_params, body.t()) }; let t = if bounds.is_empty() { t } else { quant(t, bounds) }; Ok(hir::Lambda::new(id, lambda.sig.params, lambda.op, body, t)) } fn lower_def(&mut self, def: ast::Def) -> LowerResult { log!(info "entered {}({})", fn_name!(), def.sig); if def.body.block.len() >= 1 { let name = if let Some(name) = def.sig.name_as_str() { name } else { "" }; if self.ctx.registered_info(name, def.sig.is_const()).is_some() { return Err(LowerError::reassign_error( line!() as usize, def.sig.loc(), self.ctx.caused_by(), name, )); } self.ctx.grow(name, ContextKind::Instant, def.sig.vis())?; let res = match def.sig { ast::Signature::Subr(sig) => self.lower_subr_def(sig, def.body), ast::Signature::Var(sig) => self.lower_var_def(sig, def.body), }; // TODO: Context上の関数に型境界情報を追加 self.pop_append_errs(); return res; } match def.sig { ast::Signature::Subr(sig) => self.lower_subr_def(sig, def.body), ast::Signature::Var(sig) => self.lower_var_def(sig, def.body), } } fn lower_var_def( &mut self, sig: ast::VarSignature, body: ast::DefBody, ) -> LowerResult { log!(info "entered {}({sig})", fn_name!()); self.ctx.preregister(&body.block)?; let block = self.lower_block(body.block)?; let found_body_t = block.ref_t(); let opt_expect_body_t = self .ctx .outer .as_ref() .unwrap() .get_current_scope_var(sig.inspect().unwrap()) .map(|vi| vi.t.clone()); let ident = match &sig.pat { ast::VarPattern::Ident(ident) => ident, _ => unreachable!(), }; if let Some(expect_body_t) = opt_expect_body_t { // TODO: expect_body_t is smaller for constants // TODO: 定数の場合、expect_body_tのほうが小さくなってしまう if !sig.is_const() { if let Err(e) = self.return_t_check(sig.loc(), ident.inspect(), &expect_body_t, found_body_t) { self.errs.push(e); } } } let id = body.id; // TODO: cover all VarPatterns self.ctx .outer .as_mut() .unwrap() .assign_var_sig(&sig, found_body_t, id)?; match block.first().unwrap() { hir::Expr::Call(call) => { if call.is_import_call() { self.ctx .outer .as_mut() .unwrap() .import_mod(&ident.name, &call.args.pos_args.first().unwrap().expr)?; } } _other => {} } let ident = hir::Identifier::bare(ident.dot.clone(), ident.name.clone()); let sig = hir::VarSignature::new(ident, found_body_t.clone()); let body = hir::DefBody::new(body.op, block, body.id); Ok(hir::Def::new(hir::Signature::Var(sig), body)) } // NOTE: 呼ばれている間はinner scopeなので注意 fn lower_subr_def( &mut self, sig: ast::SubrSignature, body: ast::DefBody, ) -> LowerResult { log!(info "entered {}({sig})", fn_name!()); let t = self .ctx .outer .as_ref() .unwrap() .get_current_scope_var(sig.ident.inspect()) .unwrap() .t .clone(); self.ctx.assign_params(&sig.params, None)?; self.ctx.preregister(&body.block)?; let block = self.lower_block(body.block)?; let found_body_t = block.ref_t(); let expect_body_t = t.return_t().unwrap(); if !sig.is_const() { if let Err(e) = self.return_t_check(sig.loc(), sig.ident.inspect(), expect_body_t, found_body_t) { self.errs.push(e); } } let id = body.id; self.ctx .outer .as_mut() .unwrap() .assign_subr(&sig, id, found_body_t)?; let ident = hir::Identifier::bare(sig.ident.dot, sig.ident.name); let sig = hir::SubrSignature::new(ident, sig.params, t); let body = hir::DefBody::new(body.op, block, body.id); Ok(hir::Def::new(hir::Signature::Subr(sig), body)) } fn lower_class_def(&mut self, class_def: ast::ClassDef) -> LowerResult { log!(info "entered {}({class_def})", fn_name!()); let mut hir_def = self.lower_def(class_def.def)?; let mut private_methods = hir::RecordAttrs::empty(); let mut public_methods = hir::RecordAttrs::empty(); for mut methods in class_def.methods_list.into_iter() { let class = self .ctx .instantiate_typespec(&methods.class, RegistrationMode::Normal)?; self.ctx .grow(&class.name(), ContextKind::MethodDefs, Private)?; for def in methods.defs.iter_mut() { if methods.vis.is(TokenKind::Dot) { def.sig.ident_mut().unwrap().dot = Some(Token::new( TokenKind::Dot, ".", def.sig.ln_begin().unwrap(), def.sig.col_begin().unwrap(), )); } self.ctx.preregister_def(def)?; } for def in methods.defs.into_iter() { if methods.vis.is(TokenKind::Dot) { let def = self.lower_def(def).map_err(|e| { self.pop_append_errs(); e })?; public_methods.push(def); } else { let def = self.lower_def(def).map_err(|e| { self.pop_append_errs(); e })?; private_methods.push(def); } } match self.ctx.pop() { Ok(methods) => { self.check_override(&class, &methods); if let Some((_, class_root)) = self.ctx.get_mut_nominal_type_ctx(&class) { for (newly_defined_name, _vi) in methods.locals.iter() { for (_, already_defined_methods) in class_root.methods_list.iter_mut() { // TODO: 特殊化なら同じ名前でもOK // TODO: 定義のメソッドもエラー表示 if let Some((_already_defined_name, already_defined_vi)) = already_defined_methods .get_local_kv(newly_defined_name.inspect()) { if already_defined_vi.kind != VarKind::Auto { self.errs.push(LowerError::duplicate_definition_error( line!() as usize, newly_defined_name.loc(), methods.name.clone(), newly_defined_name.inspect(), )); } else { already_defined_methods .locals .remove(&newly_defined_name.inspect()[..]); } } } } class_root .methods_list .push((ClassDefType::Simple(class), methods)); } else { todo!() } } Err(mut errs) => { self.errs.append(&mut errs); } } } let (_, ctx) = self .ctx .get_nominal_type_ctx(&mono(hir_def.sig.ident().inspect())) .unwrap(); let type_obj = enum_unwrap!(self.ctx.rec_get_const_obj(hir_def.sig.ident().inspect()).unwrap(), ValueObj::Type:(TypeObj::Generated:(_))); let sup_type = enum_unwrap!(&hir_def.body.block.first().unwrap(), hir::Expr::Call) .args .get_left_or_key("Super") .unwrap(); check_inheritable!(self, type_obj, sup_type, &hir_def.sig); // vi.t.non_default_params().unwrap()[0].typ().clone() let (__new__, need_to_gen_new) = if let (Some(dunder_new_vi), Some(new_vi)) = ( ctx.get_current_scope_var("__new__"), ctx.get_current_scope_var("new"), ) { (dunder_new_vi.t.clone(), new_vi.kind == VarKind::Auto) } else { todo!() }; let require_or_sup = self.get_require_or_sup(hir_def.body.block.remove(0)); Ok(hir::ClassDef::new( type_obj.kind, hir_def.sig, require_or_sup, need_to_gen_new, __new__, private_methods, public_methods, )) } fn check_override(&mut self, class: &Type, ctx: &Context) { if let Some(sups) = self.ctx.get_nominal_super_type_ctxs(class) { for (sup_t, sup) in sups.skip(1) { for (method_name, vi) in ctx.locals.iter() { if let Some(_sup_vi) = sup.get_current_scope_var(method_name.inspect()) { // must `@Override` if let Some(decos) = &vi.comptime_decos { if decos.contains("Override") { continue; } } self.errs.push(LowerError::override_error( line!() as usize, method_name.inspect(), method_name.loc(), sup_t, ctx.caused_by(), )); } } } } } fn get_require_or_sup(&self, expr: hir::Expr) -> hir::Expr { match expr { acc @ hir::Expr::Accessor(_) => acc, hir::Expr::Call(mut call) => match call.obj.show_acc().as_ref().map(|s| &s[..]) { Some("Class") => call.args.remove_left_or_key("Requirement").unwrap(), Some("Inherit") => call.args.remove_left_or_key("Super").unwrap(), Some("Inheritable") => { self.get_require_or_sup(call.args.remove_left_or_key("Class").unwrap()) } _ => todo!(), }, other => todo!("{other}"), } } // Call.obj == Accessor cannot be type inferred by itself (it can only be inferred with arguments) // so turn off type checking (check=false) fn lower_expr(&mut self, expr: ast::Expr) -> LowerResult { log!(info "entered {}", fn_name!()); match expr { ast::Expr::Lit(lit) => Ok(hir::Expr::Lit(hir::Literal::from(lit.token))), ast::Expr::Array(arr) => Ok(hir::Expr::Array(self.lower_array(arr)?)), ast::Expr::Tuple(tup) => Ok(hir::Expr::Tuple(self.lower_tuple(tup)?)), ast::Expr::Record(rec) => Ok(hir::Expr::Record(self.lower_record(rec)?)), ast::Expr::Accessor(acc) => Ok(hir::Expr::Accessor(self.lower_acc(acc)?)), ast::Expr::BinOp(bin) => Ok(hir::Expr::BinOp(self.lower_bin(bin)?)), ast::Expr::UnaryOp(unary) => Ok(hir::Expr::UnaryOp(self.lower_unary(unary)?)), ast::Expr::Call(call) => Ok(hir::Expr::Call(self.lower_call(call)?)), ast::Expr::DataPack(pack) => Ok(hir::Expr::Call(self.lower_pack(pack)?)), ast::Expr::Lambda(lambda) => Ok(hir::Expr::Lambda(self.lower_lambda(lambda)?)), ast::Expr::Def(def) => Ok(hir::Expr::Def(self.lower_def(def)?)), ast::Expr::ClassDef(defs) => Ok(hir::Expr::ClassDef(self.lower_class_def(defs)?)), other => todo!("{other}"), } } fn lower_block(&mut self, ast_block: ast::Block) -> LowerResult { log!(info "entered {}", fn_name!()); let mut hir_block = Vec::with_capacity(ast_block.len()); for chunk in ast_block.into_iter() { let chunk = self.lower_expr(chunk)?; hir_block.push(chunk); } Ok(hir::Block::new(hir_block)) } pub fn lower(&mut self, ast: AST, mode: &str) -> Result<(HIR, LowerWarnings), LowerErrors> { log!(info "the AST lowering process has started."); log!(info "the type-checking process has started."); let mut module = hir::Module::with_capacity(ast.module.len()); self.ctx.preregister(ast.module.block())?; for chunk in ast.module.into_iter() { match self.lower_expr(chunk) { Ok(chunk) => { module.push(chunk); } Err(e) => { self.errs.push(e); } } } let hir = HIR::new(ast.name, module); log!(info "HIR (not derefed):\n{hir}"); log!( c GREEN, "the type-checking process has completed, found errors: {}", self.errs.len() ); let hir = self.ctx.deref_toplevel(hir)?; // TODO: recursive check for chunk in hir.module.iter() { if let Err(e) = self.use_check(chunk, mode) { self.errs.push(e); } } if self.errs.is_empty() { log!(info "HIR:\n{hir}"); log!(info "the AST lowering process has completed."); Ok((hir, LowerWarnings::from(self.warns.take_all()))) } else { log!(err "the AST lowering process has failed."); Err(LowerErrors::from(self.errs.take_all())) } } }