/// Calculates the Levenshtein distance (edit distance). /// This shows how close the strings are to each other. pub fn levenshtein(lhs: &str, rhs: &str) -> usize { let lhs = lhs.chars().collect::>(); let rhs = rhs.chars().collect::>(); let l_len = lhs.len(); let r_len = rhs.len(); // l_len+1 × r_len+1 array let mut table = vec![vec![0; r_len + 1]; l_len + 1]; table .iter_mut() .take(l_len + 1) .enumerate() .for_each(|(i, row)| row[0] = i); table[0] .iter_mut() .take(r_len + 1) .enumerate() .for_each(|(i, elem)| *elem = i); for i1 in 0..l_len { #[allow(clippy::needless_range_loop)] for i2 in 0..r_len { let cost = if lhs[i1] == rhs[i2] { 0 } else { 1 }; table[i1 + 1][i2 + 1] = *[ table[i1][i2 + 1] + 1, // delete cost table[i1 + 1][i2] + 1, // insert cost table[i1][i2] + cost, // replace cost ] .iter() .min() .unwrap(); } } table[l_len][r_len] } pub fn get_similar_name<'a, I: Iterator>( candidates: I, name: &str, ) -> Option<&'a str> { if name.len() <= 1 { return None; } let most_similar_name = candidates.min_by_key(|v| levenshtein(v, name))?; let len = most_similar_name.len(); if levenshtein(most_similar_name, name) >= len / 2 { None } else { Some(most_similar_name) } }