erg/crates/erg_compiler/context/unify.rs
2023-03-03 13:44:05 +09:00

1018 lines
44 KiB
Rust

//! provides type variable related operations
use std::mem;
use std::option::Option;
use erg_common::fn_name;
use erg_common::traits::Locational;
use erg_common::Str;
#[allow(unused_imports)]
use erg_common::{fmt_vec, log};
use crate::context::instantiate::TyVarCache;
use crate::ty::constructors::*;
use crate::ty::free::{Constraint, FreeKind, HasLevel};
use crate::ty::typaram::TyParam;
use crate::ty::value::ValueObj;
use crate::ty::{Predicate, SubrType, Type};
use crate::context::{Context, Variance};
use crate::error::{SingleTyCheckResult, TyCheckError, TyCheckErrors, TyCheckResult};
use crate::{feature_error, type_feature_error};
use Predicate as Pred;
use Type::*;
use ValueObj::{Inf, NegInf};
impl Context {
/// occur(X -> ?T, ?T) ==> Error
/// occur(?T, ?T -> X) ==> Error
/// occur(?T, Option(?T)) ==> Error
/// occur(?T, ?T.Output) ==> Error
pub(crate) fn occur(
&self,
maybe_sub: &Type,
maybe_sup: &Type,
loc: &impl Locational,
) -> TyCheckResult<()> {
match (maybe_sub, maybe_sup) {
(Type::FreeVar(fv), _) if fv.is_linked() => self.occur(&fv.crack(), maybe_sup, loc),
(_, Type::FreeVar(fv)) if fv.is_linked() => self.occur(maybe_sub, &fv.crack(), loc),
(Type::FreeVar(sub), Type::FreeVar(sup)) => {
if sub.is_unbound() && sup.is_unbound() && sub == sup {
Err(TyCheckErrors::from(TyCheckError::subtyping_error(
self.cfg.input.clone(),
line!() as usize,
maybe_sub,
maybe_sup,
loc.loc(),
self.caused_by(),
)))
} else {
Ok(())
}
}
(Type::Subr(subr), Type::FreeVar(fv)) if fv.is_unbound() => {
for default_t in subr.default_params.iter().map(|pt| pt.typ()) {
self.occur(default_t, maybe_sup, loc)?;
}
if let Some(var_params) = subr.var_params.as_ref() {
self.occur(var_params.typ(), maybe_sup, loc)?;
}
for non_default_t in subr.non_default_params.iter().map(|pt| pt.typ()) {
self.occur(non_default_t, maybe_sup, loc)?;
}
self.occur(&subr.return_t, maybe_sup, loc)?;
Ok(())
}
(Type::FreeVar(fv), Type::Subr(subr)) if fv.is_unbound() => {
for default_t in subr.default_params.iter().map(|pt| pt.typ()) {
self.occur(maybe_sub, default_t, loc)?;
}
if let Some(var_params) = subr.var_params.as_ref() {
self.occur(maybe_sub, var_params.typ(), loc)?;
}
for non_default_t in subr.non_default_params.iter().map(|pt| pt.typ()) {
self.occur(maybe_sub, non_default_t, loc)?;
}
self.occur(maybe_sub, &subr.return_t, loc)?;
Ok(())
}
(Type::Poly { params, .. }, Type::FreeVar(fv)) if fv.is_unbound() => {
for param in params.iter().filter_map(|tp| {
if let TyParam::Type(t) = tp {
Some(t)
} else {
None
}
}) {
self.occur(param, maybe_sup, loc)?;
}
Ok(())
}
(Type::FreeVar(fv), Type::Poly { params, .. }) if fv.is_unbound() => {
for param in params.iter().filter_map(|tp| {
if let TyParam::Type(t) = tp {
Some(t)
} else {
None
}
}) {
self.occur(maybe_sub, param, loc)?;
}
Ok(())
}
(Type::Proj { lhs, .. }, rhs) => self.occur(lhs, rhs, loc),
(Type::ProjCall { lhs, args, .. }, rhs) => {
if let TyParam::Type(t) = lhs.as_ref() {
self.occur(t, rhs, loc)?;
}
for arg in args.iter() {
if let TyParam::Type(t) = arg {
self.occur(t, rhs, loc)?;
}
}
Ok(())
}
(lhs, Type::Proj { lhs: rhs, .. }) => self.occur(lhs, rhs, loc),
(lhs, Type::ProjCall { lhs: rhs, args, .. }) => {
if let TyParam::Type(t) = rhs.as_ref() {
self.occur(lhs, t, loc)?;
}
for arg in args.iter() {
if let TyParam::Type(t) = arg {
self.occur(lhs, t, loc)?;
}
}
Ok(())
}
_ => Ok(()),
}
}
/// allow_divergence = trueにすると、Num型変数と±Infの単一化を許す
pub(crate) fn sub_unify_tp(
&self,
maybe_sub: &TyParam,
maybe_sup: &TyParam,
_variance: Option<Variance>,
loc: &impl Locational,
allow_divergence: bool,
) -> TyCheckResult<()> {
if maybe_sub.has_no_unbound_var()
&& maybe_sup.has_no_unbound_var()
&& maybe_sub == maybe_sup
{
return Ok(());
}
match (maybe_sub, maybe_sup) {
(TyParam::Type(maybe_sub), TyParam::Type(maybe_sup)) => {
self.sub_unify(maybe_sub, maybe_sup, loc, None)
}
(TyParam::FreeVar(lfv), TyParam::FreeVar(rfv))
if lfv.is_unbound() && rfv.is_unbound() =>
{
if lfv.level().unwrap() > rfv.level().unwrap() {
if !lfv.is_generalized() {
lfv.link(maybe_sup);
}
} else if !rfv.is_generalized() {
rfv.link(maybe_sub);
}
Ok(())
}
(TyParam::FreeVar(lfv), tp) => {
match &*lfv.borrow() {
FreeKind::Linked(l) | FreeKind::UndoableLinked { t: l, .. } => {
return self.sub_unify_tp(l, tp, _variance, loc, allow_divergence);
}
FreeKind::Unbound { .. } | FreeKind::NamedUnbound { .. } => {}
} // &fv is dropped
let fv_t = lfv.constraint().unwrap().get_type().unwrap().clone(); // lfvを参照しないよいにcloneする(あとでborrow_mutするため)
let tp_t = self.get_tp_t(tp)?;
if self.supertype_of(&fv_t, &tp_t) {
// 外部未連携型変数の場合、linkしないで制約を弱めるだけにする(see compiler/inference.md)
if lfv.level() < Some(self.level) {
let new_constraint = Constraint::new_subtype_of(tp_t);
if self.is_sub_constraint_of(&lfv.constraint().unwrap(), &new_constraint)
|| lfv.constraint().unwrap().get_type() == Some(&Type)
{
lfv.update_constraint(new_constraint, false);
}
} else {
lfv.link(tp);
}
Ok(())
} else if allow_divergence
&& (self.eq_tp(tp, &TyParam::value(Inf))
|| self.eq_tp(tp, &TyParam::value(NegInf)))
&& self.subtype_of(&fv_t, &mono("Num"))
{
lfv.link(tp);
Ok(())
} else {
Err(TyCheckErrors::from(TyCheckError::unreachable(
self.cfg.input.clone(),
fn_name!(),
line!(),
)))
}
}
(tp, TyParam::FreeVar(rfv)) => {
match &*rfv.borrow() {
FreeKind::Linked(l) | FreeKind::UndoableLinked { t: l, .. } => {
return self.sub_unify_tp(l, tp, _variance, loc, allow_divergence);
}
FreeKind::Unbound { .. } | FreeKind::NamedUnbound { .. } => {}
} // &fv is dropped
let fv_t = rfv.constraint().unwrap().get_type().unwrap().clone(); // fvを参照しないよいにcloneする(あとでborrow_mutするため)
let tp_t = self.get_tp_t(tp)?;
if self.supertype_of(&fv_t, &tp_t) {
// 外部未連携型変数の場合、linkしないで制約を弱めるだけにする(see compiler/inference.md)
if rfv.level() < Some(self.level) {
let new_constraint = Constraint::new_subtype_of(tp_t);
if self.is_sub_constraint_of(&rfv.constraint().unwrap(), &new_constraint)
|| rfv.constraint().unwrap().get_type() == Some(&Type)
{
rfv.update_constraint(new_constraint, false);
}
} else {
rfv.link(tp);
}
Ok(())
} else if allow_divergence
&& (self.eq_tp(tp, &TyParam::value(Inf))
|| self.eq_tp(tp, &TyParam::value(NegInf)))
&& self.subtype_of(&fv_t, &mono("Num"))
{
rfv.link(tp);
Ok(())
} else {
Err(TyCheckErrors::from(TyCheckError::unreachable(
self.cfg.input.clone(),
fn_name!(),
line!(),
)))
}
}
(TyParam::UnaryOp { op: lop, val: lval }, TyParam::UnaryOp { op: rop, val: rval })
if lop == rop =>
{
self.sub_unify_tp(lval, rval, _variance, loc, allow_divergence)
}
(
TyParam::BinOp { op: lop, lhs, rhs },
TyParam::BinOp {
op: rop,
lhs: lhs2,
rhs: rhs2,
},
) if lop == rop => {
self.sub_unify_tp(lhs, lhs2, _variance, loc, allow_divergence)?;
self.sub_unify_tp(rhs, rhs2, _variance, loc, allow_divergence)
}
(TyParam::Lambda(_l), TyParam::Lambda(_r)) => {
todo!("{_l}/{_r}")
}
(l, TyParam::Erased(t)) => {
let sub_t = self.get_tp_t(l)?;
if self.subtype_of(&sub_t, t) {
Ok(())
} else {
Err(TyCheckErrors::from(TyCheckError::subtyping_error(
self.cfg.input.clone(),
line!() as usize,
&sub_t,
t,
loc.loc(),
self.caused_by(),
)))
}
}
(l, TyParam::Type(r)) => {
let l = self
.convert_tp_into_ty(l.clone())
.unwrap_or_else(|_| todo!("{l} cannot be a type"));
self.sub_unify(&l, r, loc, None)?;
Ok(())
}
(TyParam::Type(l), r) => {
let r = self
.convert_tp_into_ty(r.clone())
.unwrap_or_else(|_| todo!("{r} cannot be a type"));
self.sub_unify(l, &r, loc, None)?;
Ok(())
}
(TyParam::Array(ls), TyParam::Array(rs)) | (TyParam::Tuple(ls), TyParam::Tuple(rs)) => {
for (l, r) in ls.iter().zip(rs.iter()) {
self.sub_unify_tp(l, r, _variance, loc, allow_divergence)?;
}
Ok(())
}
(TyParam::Dict(ls), TyParam::Dict(rs)) => {
for (lk, lv) in ls.iter() {
if let Some(rv) = rs.get(lk) {
self.sub_unify_tp(lv, rv, _variance, loc, allow_divergence)?;
} else {
// TODO:
return Err(TyCheckErrors::from(TyCheckError::unreachable(
self.cfg.input.clone(),
fn_name!(),
line!(),
)));
}
}
Ok(())
}
(l, r) => panic!("type-parameter unification failed:\nl:{l}\nr: {r}"),
}
}
fn reunify_tp(
&self,
before: &TyParam,
after: &TyParam,
loc: &impl Locational,
) -> SingleTyCheckResult<()> {
match (before, after) {
(TyParam::Value(ValueObj::Mut(l)), TyParam::Value(ValueObj::Mut(r))) => {
*l.borrow_mut() = r.borrow().clone();
Ok(())
}
(TyParam::Value(ValueObj::Mut(l)), TyParam::Value(r)) => {
*l.borrow_mut() = r.clone();
Ok(())
}
(TyParam::Type(l), TyParam::Type(r)) => self.reunify(l, r, loc),
(TyParam::UnaryOp { op: lop, val: lval }, TyParam::UnaryOp { op: rop, val: rval })
if lop == rop =>
{
self.reunify_tp(lval, rval, loc)
}
(
TyParam::BinOp { op: lop, lhs, rhs },
TyParam::BinOp {
op: rop,
lhs: lhs2,
rhs: rhs2,
},
) if lop == rop => {
self.reunify_tp(lhs, lhs2, loc)?;
self.reunify_tp(rhs, rhs2, loc)
}
(TyParam::Lambda(_l), TyParam::Lambda(_r)) => {
todo!("{_l}/{_r}")
}
(l, r) if self.eq_tp(l, r) => Ok(()),
(l, r) => panic!("type-parameter re-unification failed:\nl: {l}\nr: {r}"),
}
}
/// predは正規化されているとする
fn sub_unify_pred(
&self,
l_pred: &Predicate,
r_pred: &Predicate,
loc: &impl Locational,
) -> TyCheckResult<()> {
match (l_pred, r_pred) {
(Pred::Value(_), Pred::Value(_)) | (Pred::Const(_), Pred::Const(_)) => Ok(()),
(Pred::Equal { rhs, .. }, Pred::Equal { rhs: rhs2, .. })
| (Pred::GreaterEqual { rhs, .. }, Pred::GreaterEqual { rhs: rhs2, .. })
| (Pred::LessEqual { rhs, .. }, Pred::LessEqual { rhs: rhs2, .. })
| (Pred::NotEqual { rhs, .. }, Pred::NotEqual { rhs: rhs2, .. }) => {
self.sub_unify_tp(rhs, rhs2, None, loc, false)
}
(Pred::And(l1, r1), Pred::And(l2, r2)) | (Pred::Or(l1, r1), Pred::Or(l2, r2)) => {
match (
self.sub_unify_pred(l1, l2, loc),
self.sub_unify_pred(r1, r2, loc),
) {
(Ok(()), Ok(())) => Ok(()),
(Ok(()), Err(e)) | (Err(e), Ok(())) | (Err(e), Err(_)) => Err(e),
}
}
(Pred::Not(l), Pred::Not(r)) => self.sub_unify_pred(r, l, loc),
// unify({I >= 0}, {I >= ?M and I <= ?N}): ?M => 0, ?N => Inf
(Pred::GreaterEqual { rhs, .. }, Pred::And(l, r))
| (Predicate::And(l, r), Pred::GreaterEqual { rhs, .. }) => {
match (l.as_ref(), r.as_ref()) {
(
Pred::GreaterEqual { rhs: ge_rhs, .. },
Pred::LessEqual { rhs: le_rhs, .. },
)
| (
Pred::LessEqual { rhs: le_rhs, .. },
Pred::GreaterEqual { rhs: ge_rhs, .. },
) => {
self.sub_unify_tp(rhs, ge_rhs, None, loc, false)?;
self.sub_unify_tp(le_rhs, &TyParam::value(Inf), None, loc, true)
}
_ => Err(TyCheckErrors::from(TyCheckError::pred_unification_error(
self.cfg.input.clone(),
line!() as usize,
l_pred,
r_pred,
self.caused_by(),
))),
}
}
(Pred::LessEqual { rhs, .. }, Pred::And(l, r))
| (Pred::And(l, r), Pred::LessEqual { rhs, .. }) => match (l.as_ref(), r.as_ref()) {
(Pred::GreaterEqual { rhs: ge_rhs, .. }, Pred::LessEqual { rhs: le_rhs, .. })
| (Pred::LessEqual { rhs: le_rhs, .. }, Pred::GreaterEqual { rhs: ge_rhs, .. }) => {
self.sub_unify_tp(rhs, le_rhs, None, loc, false)?;
self.sub_unify_tp(ge_rhs, &TyParam::value(NegInf), None, loc, true)
}
_ => Err(TyCheckErrors::from(TyCheckError::pred_unification_error(
self.cfg.input.clone(),
line!() as usize,
l_pred,
r_pred,
self.caused_by(),
))),
},
(Pred::Equal { rhs, .. }, Pred::And(l, r))
| (Pred::And(l, r), Pred::Equal { rhs, .. }) => match (l.as_ref(), r.as_ref()) {
(Pred::GreaterEqual { rhs: ge_rhs, .. }, Pred::LessEqual { rhs: le_rhs, .. })
| (Pred::LessEqual { rhs: le_rhs, .. }, Pred::GreaterEqual { rhs: ge_rhs, .. }) => {
self.sub_unify_tp(rhs, le_rhs, None, loc, false)?;
self.sub_unify_tp(rhs, ge_rhs, None, loc, false)
}
_ => Err(TyCheckErrors::from(TyCheckError::pred_unification_error(
self.cfg.input.clone(),
line!() as usize,
l_pred,
r_pred,
self.caused_by(),
))),
},
_ => Err(TyCheckErrors::from(TyCheckError::pred_unification_error(
self.cfg.input.clone(),
line!() as usize,
l_pred,
r_pred,
self.caused_by(),
))),
}
}
/// T: Array(Int, !0), U: Array(Int, !1)
/// reunify(T, U):
/// T: Array(Int, !1), U: Array(Int, !1)
pub(crate) fn reunify(
&self,
before_t: &Type,
after_t: &Type,
loc: &impl Locational,
) -> SingleTyCheckResult<()> {
match (before_t, after_t) {
(Type::FreeVar(fv), r) if fv.is_linked() => self.reunify(&fv.crack(), r, loc),
(l, Type::FreeVar(fv)) if fv.is_linked() => self.reunify(l, &fv.crack(), loc),
(Type::Ref(l), Type::Ref(r)) => self.reunify(l, r, loc),
(
Type::RefMut {
before: lbefore,
after: lafter,
},
Type::RefMut {
before: rbefore,
after: rafter,
},
) => {
self.reunify(lbefore, rbefore, loc)?;
match (lafter, rafter) {
(Some(lafter), Some(rafter)) => {
self.reunify(lafter, rafter, loc)?;
}
(None, None) => {}
_ => todo!(),
}
Ok(())
}
(Type::Ref(l), r) => self.reunify(l, r, loc),
// REVIEW:
(Type::RefMut { before, .. }, r) => self.reunify(before, r, loc),
(l, Type::Ref(r)) => self.reunify(l, r, loc),
(l, Type::RefMut { before, .. }) => self.reunify(l, before, loc),
(
Type::Poly {
name: ln,
params: lps,
},
Type::Poly {
name: rn,
params: rps,
},
) => {
if ln != rn {
let before_t = poly(ln.clone(), lps.clone());
return Err(TyCheckError::re_unification_error(
self.cfg.input.clone(),
line!() as usize,
&before_t,
after_t,
loc.loc(),
self.caused_by(),
));
}
for (l, r) in lps.iter().zip(rps.iter()) {
self.reunify_tp(l, r, loc)?;
}
Ok(())
}
(l, r) if self.same_type_of(l, r) => Ok(()),
(l, r) => Err(TyCheckError::re_unification_error(
self.cfg.input.clone(),
line!() as usize,
l,
r,
loc.loc(),
self.caused_by(),
)),
}
}
/// Assuming that `sub` is a subtype of `sup`, fill in the type variable to satisfy the assumption
///
/// When comparing arguments and parameter, the left side (`sub`) is the argument (found) and the right side (`sup`) is the parameter (expected)
///
/// The parameter type must be a supertype of the argument type
/// ```python
/// sub_unify({I: Int | I == 0}, ?T(<: Ord)): (/* OK */)
/// sub_unify(Int, ?T(:> Nat)): (?T :> Int)
/// sub_unify(Nat, ?T(:> Int)): (/* OK */)
/// sub_unify(Nat, Add(?R)): (?R => Nat, Nat.Output => Nat)
/// sub_unify([?T; 0], Mutate): (/* OK */)
/// ```
pub(crate) fn sub_unify(
&self,
maybe_sub: &Type,
maybe_sup: &Type,
loc: &impl Locational,
param_name: Option<&Str>,
) -> TyCheckResult<()> {
log!(info "trying sub_unify:\nmaybe_sub: {maybe_sub}\nmaybe_sup: {maybe_sup}");
// In this case, there is no new information to be gained
// この場合、特に新しく得られる情報はない
if maybe_sub == &Type::Never || maybe_sup == &Type::Obj || maybe_sup == maybe_sub {
return Ok(());
}
// API definition was failed and inspection is useless after this
if maybe_sub == &Type::Failure || maybe_sup == &Type::Failure {
return Ok(());
}
self.occur(maybe_sub, maybe_sup, loc)?;
let maybe_sub_is_sub = self.subtype_of(maybe_sub, maybe_sup);
if !maybe_sub_is_sub {
log!(err "{maybe_sub} !<: {maybe_sup}");
return Err(TyCheckErrors::from(TyCheckError::type_mismatch_error(
self.cfg.input.clone(),
line!() as usize,
loc.loc(),
self.caused_by(),
param_name.unwrap_or(&Str::ever("_")),
None,
maybe_sup,
maybe_sub,
self.get_candidates(maybe_sub),
self.get_simple_type_mismatch_hint(maybe_sup, maybe_sub),
)));
} else if maybe_sub.has_no_unbound_var() && maybe_sup.has_no_unbound_var() {
return Ok(());
}
match (maybe_sub, maybe_sup) {
(Type::FreeVar(lfv), _) if lfv.is_linked() => {
self.sub_unify(&lfv.crack(), maybe_sup, loc, param_name)
}
(_, Type::FreeVar(rfv)) if rfv.is_linked() => {
self.sub_unify(maybe_sub, &rfv.crack(), loc, param_name)
}
// lfv's sup can be shrunk (take min), rfv's sub can be expanded (take union)
// lfvのsupは縮小可能(minを取る)、rfvのsubは拡大可能(unionを取る)
// sub_unify(?T[0](:> Never, <: Int), ?U[1](:> Never, <: Nat)): (/* ?U[1] --> ?T[0](:> Never, <: Nat))
// sub_unify(?T[1](:> Never, <: Nat), ?U[0](:> Never, <: Int)): (/* ?T[1] --> ?U[0](:> Never, <: Nat))
// sub_unify(?T[0](:> Never, <: Str), ?U[1](:> Never, <: Int)): (?T[0](:> Never, <: Str and Int) --> Error!)
// sub_unify(?T[0](:> Int, <: Add()), ?U[1](:> Never, <: Mul())): (?T[0](:> Int, <: Add() and Mul()))
// sub_unify(?T[0](:> Str, <: Obj), ?U[1](:> Int, <: Obj)): (/* ?U[1] --> ?T[0](:> Str or Int) */)
(Type::FreeVar(lfv), Type::FreeVar(rfv))
if lfv.constraint_is_sandwiched() && rfv.constraint_is_sandwiched() =>
{
if lfv.is_generalized() || rfv.is_generalized() {
return Ok(());
}
let (lsub, lsup) = lfv.get_subsup().unwrap();
let (rsub, rsup) = rfv.get_subsup().unwrap();
// ?T(<: Add(?T))
// ?U(:> {1, 2}, <: Add(?U)) ==> {1, 2}
rfv.forced_undoable_link(&rsub);
for (lps, rps) in lsub.typarams().iter().zip(rsub.typarams().iter()) {
self.sub_unify_tp(lps, rps, None, loc, false)
.map_err(|errs| {
rfv.undo();
errs
})?;
}
// lsup: Add(?X(:> Int)), rsup: Add(?Y(:> Nat))
// => lsup: Add(?X(:> Int)), rsup: Add((?X(:> Int)))
for (lps, rps) in lsup.typarams().iter().zip(rsup.typarams().iter()) {
self.sub_unify_tp(lps, rps, None, loc, false)
.map_err(|errs| {
rfv.undo();
errs
})?;
}
rfv.undo();
let intersec = self.intersection(&lsup, &rsup);
let new_constraint = if intersec != Type::Never {
Constraint::new_sandwiched(self.union(&lsub, &rsub), intersec)
} else {
return Err(TyCheckErrors::from(TyCheckError::subtyping_error(
self.cfg.input.clone(),
line!() as usize,
maybe_sub,
maybe_sup,
loc.loc(),
self.caused_by(),
)));
};
if lfv.level().unwrap() <= rfv.level().unwrap() {
lfv.update_constraint(new_constraint, false);
rfv.link(maybe_sub);
} else {
rfv.update_constraint(new_constraint, false);
lfv.link(maybe_sup);
}
Ok(())
}
// e.g. Structural({ .method = (self: T) -> Int })/T
(Type::Structural(sub), Type::FreeVar(fv))
if fv.is_unbound() && sub.contains_tvar(fv) =>
{
Ok(())
}
(_, Type::FreeVar(rfv)) if rfv.is_unbound() => {
// NOTE: cannot `borrow_mut` because of cycle reference
let rfv_ref = unsafe { rfv.as_ptr().as_mut().unwrap() };
match rfv_ref {
FreeKind::NamedUnbound { constraint, .. }
| FreeKind::Unbound { constraint, .. } => match constraint {
// * sub_unify(Nat, ?E(<: Eq(?E)))
// sub !<: l => OK (sub will widen)
// sup !:> l => Error
// * sub_unify(Str, ?T(:> _, <: Int)): (/* Error */)
// * sub_unify(Ratio, ?T(:> _, <: Int)): (/* Error */)
// sub = max(l, sub) if max exists
// * sub_unify(Nat, ?T(:> Int, <: _)): (/* OK */)
// * sub_unify(Int, ?T(:> Nat, <: Obj)): (?T(:> Int, <: Obj))
// * sub_unify(Nat, ?T(:> Never, <: Add(?R))): (?T(:> Nat, <: Add(?R))
// sub = union(l, sub) if max does not exist
// * sub_unify(Str, ?T(:> Int, <: Obj)): (?T(:> Str or Int, <: Obj))
// * sub_unify({0}, ?T(:> {1}, <: Nat)): (?T(:> {0, 1}, <: Nat))
// * sub_unify(Bool, ?T(<: Bool or Y)): (?T == Bool)
Constraint::Sandwiched { sub, sup } => {
let new_sub = self.union(maybe_sub, sub);
if sup.contains_union(&new_sub) {
rfv.link(&new_sub); // Bool <: ?T <: Bool or Y ==> ?T == Bool
} else {
*constraint = Constraint::new_sandwiched(new_sub, mem::take(sup));
}
}
// sub_unify(Nat, ?T(: Type)): (/* ?T(:> Nat) */)
Constraint::TypeOf(ty) => {
if self.supertype_of(&Type, ty) {
*constraint = Constraint::new_supertype_of(maybe_sub.clone());
} else {
todo!()
}
}
Constraint::Uninited => unreachable!(),
},
_ => {}
}
Ok(())
}
(Type::FreeVar(fv), Type::Structural(sup)) if fv.is_unbound() => {
let sub_fields = self.fields(maybe_sub);
for (sup_field, sup_ty) in self.fields(sup) {
if let Some((_, sub_ty)) = sub_fields.get_key_value(&sup_field) {
self.sub_unify(sub_ty, &sup_ty, loc, param_name)?;
} else if !self.subtype_of(&fv.get_sub().unwrap(), &Never) {
maybe_sub.coerce();
return self.sub_unify(maybe_sub, maybe_sup, loc, param_name);
} else {
// e.g. ?T / Structural({ .method = (self: ?T) -> Int })
fv.link(maybe_sup);
}
}
Ok(())
}
(Type::FreeVar(lfv), _) if lfv.is_unbound() => {
let lfv_ref = unsafe { lfv.as_ptr().as_mut().unwrap() };
match lfv_ref {
FreeKind::NamedUnbound { constraint, .. }
| FreeKind::Unbound { constraint, .. } => match constraint {
// sub !<: r => Error
// * sub_unify(?T(:> Int, <: _), Nat): (/* Error */)
// * sub_unify(?T(:> Nat, <: _), Str): (/* Error */)
// sup !:> r => Error
// * sub_unify(?T(:> _, <: Str), Int): (/* Error */)
// * sub_unify(?T(:> _, <: Int), Nat): (/* Error */)
// sub <: r, sup :> r => sup = min(sup, r) if min exists
// * sub_unify(?T(:> Never, <: Nat), Int): (/* OK */)
// * sub_unify(?T(:> Nat, <: Obj), Int): (?T(:> Nat, <: Int))
// sup = union(sup, r) if min does not exist
// * sub_unify(?T(:> Never, <: {1}), {0}): (?T(:> Never, <: {0, 1}))
Constraint::Sandwiched { sub, sup } => {
// REVIEW: correct?
if let Some(new_sup) = self.min(sup, maybe_sup) {
*constraint =
Constraint::new_sandwiched(mem::take(sub), new_sup.clone());
} else {
let new_sup = self.union(sup, maybe_sup);
*constraint = Constraint::new_sandwiched(mem::take(sub), new_sup);
}
}
// sub_unify(?T(: Type), Int): (?T(<: Int))
Constraint::TypeOf(ty) => {
if self.supertype_of(&Type, ty) {
*constraint = Constraint::new_subtype_of(maybe_sup.clone());
} else {
todo!()
}
}
Constraint::Uninited => unreachable!(),
},
_ => {}
}
Ok(())
}
(Type::FreeVar(_fv), _r) => todo!(),
(Type::Record(lrec), Type::Record(rrec)) => {
for (k, l) in lrec.iter() {
if let Some(r) = rrec.get(k) {
self.sub_unify(l, r, loc, param_name)?;
} else {
return Err(TyCheckErrors::from(TyCheckError::subtyping_error(
self.cfg.input.clone(),
line!() as usize,
maybe_sub,
maybe_sup,
loc.loc(),
self.caused_by(),
)));
}
}
Ok(())
}
(Type::Subr(lsub), Type::Subr(rsub)) => {
lsub.non_default_params
.iter()
.zip(rsub.non_default_params.iter())
.try_for_each(|(l, r)| {
// contravariant
self.sub_unify(r.typ(), l.typ(), loc, param_name)
})?;
lsub.var_params
.iter()
.zip(rsub.var_params.iter())
.try_for_each(|(l, r)| {
// contravariant
self.sub_unify(r.typ(), l.typ(), loc, param_name)
})?;
for lpt in lsub.default_params.iter() {
if let Some(rpt) = rsub
.default_params
.iter()
.find(|rpt| rpt.name() == lpt.name())
{
// contravariant
self.sub_unify(rpt.typ(), lpt.typ(), loc, param_name)?;
} else {
let param_name = lpt.name().map_or("_", |s| &s[..]);
let similar_param = erg_common::levenshtein::get_similar_name(
rsub.default_params
.iter()
.map(|pt| pt.name().map_or("_", |s| &s[..])),
param_name,
);
return Err(TyCheckErrors::from(
TyCheckError::default_param_not_found_error(
self.cfg.input.clone(),
line!() as usize,
loc.loc(),
self.caused_by(),
param_name,
similar_param,
),
));
}
}
// covariant
self.sub_unify(&lsub.return_t, &rsub.return_t, loc, param_name)?;
Ok(())
}
(Type::Quantified(lsub), Type::Subr(rsub)) => {
let Ok(lsub) = <&SubrType>::try_from(lsub.as_ref()) else { unreachable!() };
for lpt in lsub.default_params.iter() {
if let Some(rpt) = rsub
.default_params
.iter()
.find(|rpt| rpt.name() == lpt.name())
{
if lpt.typ().is_generalized() {
continue;
}
// contravariant
self.sub_unify(rpt.typ(), lpt.typ(), loc, param_name)?;
} else {
todo!()
}
}
lsub.non_default_params
.iter()
.zip(rsub.non_default_params.iter())
.try_for_each(|(l, r)| {
if l.typ().is_generalized() {
Ok(())
}
// contravariant
else {
self.sub_unify(r.typ(), l.typ(), loc, param_name)
}
})?;
// covariant
self.sub_unify(&lsub.return_t, &rsub.return_t, loc, param_name)?;
Ok(())
}
(Type::Subr(lsub), Type::Quantified(rsub)) => {
let Ok(rsub) = <&SubrType>::try_from(rsub.as_ref()) else { unreachable!() };
for lpt in lsub.default_params.iter() {
if let Some(rpt) = rsub
.default_params
.iter()
.find(|rpt| rpt.name() == lpt.name())
{
// contravariant
if rpt.typ().is_generalized() {
continue;
}
self.sub_unify(rpt.typ(), lpt.typ(), loc, param_name)?;
} else {
todo!()
}
}
lsub.non_default_params
.iter()
.zip(rsub.non_default_params.iter())
.try_for_each(|(l, r)| {
// contravariant
if r.typ().is_generalized() {
Ok(())
} else {
self.sub_unify(r.typ(), l.typ(), loc, param_name)
}
})?;
// covariant
self.sub_unify(&lsub.return_t, &rsub.return_t, loc, param_name)?;
Ok(())
}
(
Type::Poly {
name: ln,
params: lps,
},
Type::Poly {
name: rn,
params: rps,
},
) => {
// e.g. Set(?T) <: Eq(Set(?T))
// Array(Str) <: Iterable(Str)
// Zip(T, U) <: Iterable(Tuple([T, U]))
if ln != rn {
self.nominal_sub_unify(maybe_sub, maybe_sup, rps, loc)
} else {
for (l_maybe_sub, r_maybe_sup) in lps.iter().zip(rps.iter()) {
self.sub_unify_tp(l_maybe_sub, r_maybe_sup, None, loc, false)?;
}
Ok(())
}
}
(Type::Structural(l), Type::Structural(r)) => self.sub_unify(l, r, loc, param_name),
(sub, Type::Structural(sup)) => {
let sub_fields = self.fields(sub);
for (sup_field, sup_ty) in self.fields(sup) {
if let Some((_, sub_ty)) = sub_fields.get_key_value(&sup_field) {
self.sub_unify(sub_ty, &sup_ty, loc, param_name)?;
} else {
return Err(TyCheckErrors::from(TyCheckError::no_attr_error(
self.cfg.input.clone(),
line!() as usize,
loc.loc(),
self.caused_by(),
sub,
&sup_field.symbol,
self.get_similar_attr(sub, &sup_field.symbol),
)));
}
}
Ok(())
}
(
_,
Type::Poly {
params: sup_params, ..
},
) => self.nominal_sub_unify(maybe_sub, maybe_sup, sup_params, loc),
// (X or Y) <: Z is valid when X <: Z and Y <: Z
(Type::Or(l, r), _) => {
self.sub_unify(l, maybe_sup, loc, param_name)?;
self.sub_unify(r, maybe_sup, loc, param_name)
}
// X <: (Y and Z) is valid when X <: Y and X <: Z
(_, Type::And(l, r)) => {
self.sub_unify(maybe_sub, l, loc, param_name)?;
self.sub_unify(maybe_sub, r, loc, param_name)
}
// (X and Y) <: Z is valid when X <: Z or Y <: Z
(Type::And(l, r), _) => self
.sub_unify(l, maybe_sup, loc, param_name)
.or_else(|_e| self.sub_unify(r, maybe_sup, loc, param_name)),
// X <: (Y or Z) is valid when X <: Y or X <: Z
(_, Type::Or(l, r)) => self
.sub_unify(maybe_sub, l, loc, param_name)
.or_else(|_e| self.sub_unify(maybe_sub, r, loc, param_name)),
(Type::Ref(l), Type::Ref(r)) => self.sub_unify(l, r, loc, param_name),
(_, Type::Ref(t)) => self.sub_unify(maybe_sub, t, loc, param_name),
(Type::RefMut { before: l, .. }, Type::RefMut { before: r, .. }) => {
self.sub_unify(l, r, loc, param_name)
}
(_, Type::RefMut { before, .. }) => self.sub_unify(maybe_sub, before, loc, param_name),
(Type::Proj { .. }, _) => todo!(),
(_, Type::Proj { .. }) => todo!(),
// TODO: Judgment for any number of preds
(Refinement(sub), Refinement(sup)) => {
// {I: Int or Str | I == 0} <: {I: Int}
if self.subtype_of(&sub.t, &sup.t) {
self.sub_unify(&sub.t, &sup.t, loc, param_name)?;
}
if sup.pred.as_ref() == &Predicate::TRUE {
self.sub_unify(&sub.t, &sup.t, loc, param_name)?;
return Ok(());
}
self.sub_unify_pred(&sub.pred, &sup.pred, loc)
}
// {I: Int | I >= 1} <: Nat == {I: Int | I >= 0}
(Type::Refinement(_), sup) => {
let sup = sup.clone().into_refinement();
self.sub_unify(maybe_sub, &Type::Refinement(sup), loc, param_name)
}
(sub, Type::Refinement(_)) => {
let sub = sub.clone().into_refinement();
self.sub_unify(&Type::Refinement(sub), maybe_sup, loc, param_name)
}
(Type::Subr(_) | Type::Record(_), Type) => Ok(()),
// REVIEW: correct?
(Type::Poly { name, .. }, Type) if &name[..] == "Array" || &name[..] == "Tuple" => {
Ok(())
}
(Type::Poly { .. }, _) => self.nominal_sub_unify(maybe_sub, maybe_sup, &[], loc),
(Type::Subr(_), Mono(name)) if &name[..] == "GenericCallable" => Ok(()),
_ => type_feature_error!(
self,
loc.loc(),
&format!("{maybe_sub} can be a subtype of {maybe_sup}, but failed to semi-unify")
),
}
}
// TODO: Current implementation is inefficient because coercion is performed twice with `subtype_of` in `sub_unify`
fn nominal_sub_unify(
&self,
maybe_sub: &Type,
maybe_sup: &Type,
sup_params: &[TyParam],
loc: &impl Locational,
) -> TyCheckResult<()> {
if let Some((sub_def_t, sub_ctx)) = self.get_nominal_type_ctx(maybe_sub) {
let mut tv_cache = TyVarCache::new(self.level, self);
let _sub_def_instance =
self.instantiate_t_inner(sub_def_t.clone(), &mut tv_cache, loc)?;
// e.g.
// maybe_sub: Zip(Int, Str)
// sub_def_t: Zip(T, U) ==> Zip(Int, Str)
// super_traits: [Iterable((T, U)), ...] ==> [Iterable((Int, Str)), ...]
self.substitute_typarams(sub_def_t, maybe_sub)
.map_err(|errs| {
Self::undo_substitute_typarams(sub_def_t);
errs
})?;
for sup_trait in sub_ctx.super_traits.iter() {
let sub_trait_instance =
self.instantiate_t_inner(sup_trait.clone(), &mut tv_cache, loc)?;
if self.supertype_of(maybe_sup, sup_trait) {
for (l_maybe_sub, r_maybe_sup) in
sub_trait_instance.typarams().iter().zip(sup_params.iter())
{
self.sub_unify_tp(l_maybe_sub, r_maybe_sup, None, loc, false)
.map_err(|errs| {
Self::undo_substitute_typarams(sub_def_t);
errs
})?;
}
Self::undo_substitute_typarams(sub_def_t);
return Ok(());
}
}
Self::undo_substitute_typarams(sub_def_t);
}
Err(TyCheckErrors::from(TyCheckError::unification_error(
self.cfg.input.clone(),
line!() as usize,
maybe_sub,
maybe_sup,
loc.loc(),
self.caused_by(),
)))
}
}