erg/crates/erg_compiler/context/generalize.rs
2023-02-20 21:44:01 +09:00

1082 lines
41 KiB
Rust

use std::mem;
use erg_common::set::Set;
use erg_common::traits::{Locational, Stream};
use erg_common::Str;
use erg_common::{assume_unreachable, dict, fn_name, set};
#[allow(unused_imports)]
use erg_common::{fmt_vec, log};
use crate::ty::constructors::*;
use crate::ty::free::{Constraint, FreeKind, HasLevel};
use crate::ty::typaram::TyParam;
use crate::ty::value::ValueObj;
use crate::ty::{HasType, Predicate, Type};
use crate::context::{Context, Variance};
use crate::error::{TyCheckError, TyCheckErrors, TyCheckResult};
use crate::{feature_error, hir};
use Type::*;
use Variance::*;
impl Context {
pub const TOP_LEVEL: usize = 1;
fn generalize_tp(&self, free: TyParam, variance: Variance, uninit: bool) -> TyParam {
match free {
TyParam::Type(t) => TyParam::t(self.generalize_t_inner(*t, variance, uninit)),
TyParam::FreeVar(fv) if fv.is_generalized() => TyParam::FreeVar(fv),
TyParam::FreeVar(fv) if fv.is_linked() => {
let fv_mut = unsafe { fv.as_ptr().as_mut().unwrap() };
if let FreeKind::Linked(tp) = fv_mut {
*tp = self.generalize_tp(tp.clone(), variance, uninit);
} else {
assume_unreachable!()
}
TyParam::FreeVar(fv)
}
// TODO: Polymorphic generalization
TyParam::FreeVar(fv) if fv.level() > Some(self.level) => {
let constr = self.generalize_constraint(&fv.crack_constraint(), variance);
fv.update_constraint(constr, true);
fv.generalize();
TyParam::FreeVar(fv)
}
TyParam::Array(tps) => TyParam::Array(
tps.into_iter()
.map(|tp| self.generalize_tp(tp, variance, uninit))
.collect(),
),
TyParam::Tuple(tps) => TyParam::Tuple(
tps.into_iter()
.map(|tp| self.generalize_tp(tp, variance, uninit))
.collect(),
),
TyParam::Dict(tps) => TyParam::Dict(
tps.into_iter()
.map(|(k, v)| {
(
self.generalize_tp(k, variance, uninit),
self.generalize_tp(v, variance, uninit),
)
})
.collect(),
),
TyParam::FreeVar(_) => free,
other if other.has_no_unbound_var() => other,
other => todo!("{other}"),
}
}
pub(crate) fn generalize_t(&self, free_type: Type) -> Type {
if cfg!(feature = "debug") && free_type.has_qvar() {
panic!("{free_type} has qvars")
}
let maybe_unbound_t = self.generalize_t_inner(free_type, Covariant, false);
if maybe_unbound_t.has_qvar() {
// NOTE: `?T(<: TraitX) -> Int` should be `TraitX -> Int`
// However, the current Erg cannot handle existential types, so it quantifies anyway
maybe_unbound_t.quantify()
} else {
maybe_unbound_t
}
}
/// see doc/LANG/compiler/inference.md#一般化 for details
/// ```python
/// generalize_t(?T) == 'T: Type
/// generalize_t(?T(<: Nat) -> ?T) == |'T <: Nat| 'T -> 'T
/// generalize_t(?T(<: Add(?T(<: Eq(?T(<: ...)))) -> ?T) == |'T <: Add('T)| 'T -> 'T
/// generalize_t(?T(<: TraitX) -> Int) == TraitX -> Int // 戻り値に現れないなら量化しない
/// ```
fn generalize_t_inner(&self, free_type: Type, variance: Variance, uninit: bool) -> Type {
match free_type {
FreeVar(fv) if fv.is_linked() => {
self.generalize_t_inner(fv.crack().clone(), variance, uninit)
/*let fv_mut = unsafe { fv.as_ptr().as_mut().unwrap() };
if let FreeKind::Linked(t) = fv_mut {
*t = self.generalize_t_inner(t.clone(), variance, uninit);
} else {
assume_unreachable!()
}
Type::FreeVar(fv)*/
}
FreeVar(fv) if fv.is_generalized() => Type::FreeVar(fv),
// TODO: Polymorphic generalization
FreeVar(fv) if fv.level().unwrap() > self.level => {
if uninit {
// use crate::ty::free::GENERIC_LEVEL;
// return named_free_var(fv.unbound_name().unwrap(), GENERIC_LEVEL, Constraint::Uninited);
fv.generalize();
return Type::FreeVar(fv);
}
let constr = fv.constraint().unwrap();
if let Some((l, r)) = constr.get_sub_sup() {
// |Int <: T <: Int| T -> T ==> Int -> Int
if l == r {
fv.forced_link(l);
FreeVar(fv)
} else if r != &Obj && self.is_class(r) && variance == Contravariant {
// |T <: Bool| T -> Int ==> Bool -> Int
r.clone()
} else if l != &Never && self.is_class(l) && variance == Covariant {
// |T :> Int| X -> T ==> X -> Int
l.clone()
} else {
fv.update_constraint(
self.generalize_constraint(&fv.crack_constraint(), variance),
true,
);
fv.generalize();
Type::FreeVar(fv)
}
} else {
// ?S(: Str) => 'S
fv.update_constraint(
self.generalize_constraint(&fv.crack_constraint(), variance),
true,
);
fv.generalize();
Type::FreeVar(fv)
}
}
Subr(mut subr) => {
subr.non_default_params.iter_mut().for_each(|nd_param| {
*nd_param.typ_mut() = self.generalize_t_inner(
mem::take(nd_param.typ_mut()),
Contravariant,
uninit,
);
});
if let Some(var_args) = &mut subr.var_params {
*var_args.typ_mut() = self.generalize_t_inner(
mem::take(var_args.typ_mut()),
Contravariant,
uninit,
);
}
subr.default_params.iter_mut().for_each(|d_param| {
*d_param.typ_mut() = self.generalize_t_inner(
mem::take(d_param.typ_mut()),
Contravariant,
uninit,
);
});
let return_t = self.generalize_t_inner(*subr.return_t, Covariant, uninit);
subr_t(
subr.kind,
subr.non_default_params,
subr.var_params.map(|x| *x),
subr.default_params,
return_t,
)
}
Callable { .. } => todo!(),
Ref(t) => ref_(self.generalize_t_inner(*t, variance, uninit)),
RefMut { before, after } => {
let after = after.map(|aft| self.generalize_t_inner(*aft, variance, uninit));
ref_mut(self.generalize_t_inner(*before, variance, uninit), after)
}
Refinement(refine) => {
let t = self.generalize_t_inner(*refine.t, variance, uninit);
let preds = refine
.preds
.into_iter()
.map(|pred| self.generalize_pred(pred, variance, uninit))
.collect();
refinement(refine.var, t, preds)
}
Poly { name, mut params } => {
let params = params
.iter_mut()
.map(|p| self.generalize_tp(mem::take(p), variance, uninit))
.collect::<Vec<_>>();
poly(name, params)
}
Proj { lhs, rhs } => {
let lhs = self.generalize_t_inner(*lhs, variance, uninit);
proj(lhs, rhs)
}
ProjCall {
lhs,
attr_name,
mut args,
} => {
let lhs = self.generalize_tp(*lhs, variance, uninit);
for arg in args.iter_mut() {
*arg = self.generalize_tp(mem::take(arg), variance, uninit);
}
proj_call(lhs, attr_name, args)
}
And(l, r) => {
let l = self.generalize_t_inner(*l, variance, uninit);
let r = self.generalize_t_inner(*r, variance, uninit);
// not `self.intersection` because types are generalized
and(l, r)
}
Or(l, r) => {
let l = self.generalize_t_inner(*l, variance, uninit);
let r = self.generalize_t_inner(*r, variance, uninit);
// not `self.union` because types are generalized
or(l, r)
}
Not(l) => not(self.generalize_t_inner(*l, variance, uninit)),
// REVIEW: その他何でもそのまま通していいのか?
other => other,
}
}
fn generalize_constraint(&self, constraint: &Constraint, variance: Variance) -> Constraint {
match constraint {
Constraint::Sandwiched { sub, sup, .. } => {
let sub = self.generalize_t_inner(sub.clone(), variance, true);
let sup = self.generalize_t_inner(sup.clone(), variance, true);
Constraint::new_sandwiched(sub, sup)
}
Constraint::TypeOf(t) => {
let t = self.generalize_t_inner(t.clone(), variance, true);
Constraint::new_type_of(t)
}
Constraint::Uninited => unreachable!(),
}
}
fn generalize_pred(&self, pred: Predicate, variance: Variance, uninit: bool) -> Predicate {
match pred {
Predicate::Const(_) => pred,
Predicate::Value(ValueObj::Type(mut typ)) => {
*typ.typ_mut() =
self.generalize_t_inner(mem::take(typ.typ_mut()), variance, uninit);
Predicate::Value(ValueObj::Type(typ))
}
Predicate::Value(_) => pred,
Predicate::Equal { lhs, rhs } => {
let rhs = self.generalize_tp(rhs, variance, uninit);
Predicate::eq(lhs, rhs)
}
Predicate::GreaterEqual { lhs, rhs } => {
let rhs = self.generalize_tp(rhs, variance, uninit);
Predicate::ge(lhs, rhs)
}
Predicate::LessEqual { lhs, rhs } => {
let rhs = self.generalize_tp(rhs, variance, uninit);
Predicate::le(lhs, rhs)
}
Predicate::NotEqual { lhs, rhs } => {
let rhs = self.generalize_tp(rhs, variance, uninit);
Predicate::ne(lhs, rhs)
}
Predicate::And(lhs, rhs) => {
let lhs = self.generalize_pred(*lhs, variance, uninit);
let rhs = self.generalize_pred(*rhs, variance, uninit);
Predicate::and(lhs, rhs)
}
Predicate::Or(lhs, rhs) => {
let lhs = self.generalize_pred(*lhs, variance, uninit);
let rhs = self.generalize_pred(*rhs, variance, uninit);
Predicate::or(lhs, rhs)
}
Predicate::Not(pred) => {
let pred = self.generalize_pred(*pred, variance, uninit);
Predicate::not(pred)
}
}
}
pub(crate) fn deref_tp(
&self,
tp: TyParam,
variance: Variance,
qnames: &Set<Str>,
loc: &impl Locational,
) -> TyCheckResult<TyParam> {
match tp {
TyParam::FreeVar(fv) if fv.is_linked() => {
let inner = fv.unwrap_linked();
self.deref_tp(inner, variance, &set! {}, loc)
}
TyParam::FreeVar(_fv) if self.level == 0 => Err(TyCheckErrors::from(
TyCheckError::dummy_infer_error(self.cfg.input.clone(), fn_name!(), line!()),
)),
TyParam::Type(t) => Ok(TyParam::t(self.deref_tyvar(*t, variance, qnames, loc)?)),
TyParam::App { name, mut args } => {
for param in args.iter_mut() {
*param = self.deref_tp(mem::take(param), variance, qnames, loc)?;
}
Ok(TyParam::App { name, args })
}
TyParam::BinOp { op, lhs, rhs } => {
let lhs = self.deref_tp(*lhs, variance, qnames, loc)?;
let rhs = self.deref_tp(*rhs, variance, qnames, loc)?;
Ok(TyParam::BinOp {
op,
lhs: Box::new(lhs),
rhs: Box::new(rhs),
})
}
TyParam::UnaryOp { op, val } => {
let val = self.deref_tp(*val, variance, qnames, loc)?;
Ok(TyParam::UnaryOp {
op,
val: Box::new(val),
})
}
TyParam::Array(tps) => {
let mut new_tps = vec![];
for tp in tps {
new_tps.push(self.deref_tp(tp, variance, qnames, loc)?);
}
Ok(TyParam::Array(new_tps))
}
TyParam::Tuple(tps) => {
let mut new_tps = vec![];
for tp in tps {
new_tps.push(self.deref_tp(tp, variance, qnames, loc)?);
}
Ok(TyParam::Tuple(new_tps))
}
TyParam::Dict(dic) => {
let mut new_dic = dict! {};
for (k, v) in dic.into_iter() {
new_dic.insert(
self.deref_tp(k, variance, qnames, loc)?,
self.deref_tp(v, variance, qnames, loc)?,
);
}
Ok(TyParam::Dict(new_dic))
}
TyParam::Set(set) => {
let mut new_set = set! {};
for v in set.into_iter() {
new_set.insert(self.deref_tp(v, variance, qnames, loc)?);
}
Ok(TyParam::Set(new_set))
}
TyParam::Proj { .. } | TyParam::Failure if self.level == 0 => Err(TyCheckErrors::from(
TyCheckError::dummy_infer_error(self.cfg.input.clone(), fn_name!(), line!()),
)),
t => Ok(t),
}
}
fn deref_constraint(
&self,
constraint: Constraint,
variance: Variance,
qnames: &Set<Str>,
loc: &impl Locational,
) -> TyCheckResult<Constraint> {
match constraint {
Constraint::Sandwiched { sub, sup } => Ok(Constraint::new_sandwiched(
self.deref_tyvar(sub, variance, qnames, loc)?,
self.deref_tyvar(sup, variance, qnames, loc)?,
)),
Constraint::TypeOf(t) => Ok(Constraint::new_type_of(
self.deref_tyvar(t, variance, qnames, loc)?,
)),
_ => unreachable!(),
}
}
fn validate_subsup(
&self,
sub_t: Type,
super_t: Type,
variance: Variance,
qnames: &Set<Str>,
loc: &impl Locational,
) -> TyCheckResult<Type> {
// TODO: Subr, ...
match (sub_t, super_t) {
// See tests\should_err\subtyping.er:8~13
(
Type::Poly {
name: ln,
params: lps,
},
Type::Poly {
name: rn,
params: rps,
},
) if ln == rn => {
let typ = poly(ln, lps.clone());
let (_, ctx) = self.get_nominal_type_ctx(&typ).ok_or_else(|| {
TyCheckError::type_not_found(
self.cfg.input.clone(),
line!() as usize,
loc.loc(),
self.caused_by(),
&typ,
)
})?;
let variances = ctx.type_params_variance();
let mut tps = vec![];
for ((lp, rp), variance) in lps
.into_iter()
.zip(rps.into_iter())
.zip(variances.into_iter())
{
self.sub_unify_tp(&lp, &rp, Some(variance), loc, false)?;
let param = if variance == Covariant { lp } else { rp };
tps.push(param);
}
Ok(poly(rn, tps))
}
(sub_t, super_t) => self.validate_simple_subsup(sub_t, super_t, variance, qnames, loc),
}
}
fn validate_simple_subsup(
&self,
sub_t: Type,
super_t: Type,
variance: Variance,
qnames: &Set<Str>,
loc: &impl Locational,
) -> TyCheckResult<Type> {
if self.is_trait(&super_t) {
self.check_trait_impl(&sub_t, &super_t, &set! {}, loc)?;
}
// REVIEW: Even if type constraints can be satisfied, implementation may not exist
if self.subtype_of(&sub_t, &super_t) {
let sub_t = if cfg!(feature = "debug") {
sub_t
} else {
self.deref_tyvar(sub_t, variance, qnames, loc)?
};
let super_t = if cfg!(feature = "debug") {
super_t
} else {
self.deref_tyvar(super_t, variance, qnames, loc)?
};
match variance {
Variance::Covariant => Ok(sub_t),
Variance::Contravariant => Ok(super_t),
Variance::Invariant => {
// need to check if sub_t == super_t
if self.supertype_of(&sub_t, &super_t) {
Ok(sub_t)
} else {
Err(TyCheckErrors::from(TyCheckError::subtyping_error(
self.cfg.input.clone(),
line!() as usize,
&sub_t,
&super_t,
loc.loc(),
self.caused_by(),
)))
}
}
}
} else {
let sub_t = if cfg!(feature = "debug") {
sub_t
} else {
self.deref_tyvar(sub_t, variance, qnames, loc)?
};
let super_t = if cfg!(feature = "debug") {
super_t
} else {
self.deref_tyvar(super_t, variance, qnames, loc)?
};
Err(TyCheckErrors::from(TyCheckError::subtyping_error(
self.cfg.input.clone(),
line!() as usize,
&sub_t,
&super_t,
loc.loc(),
self.caused_by(),
)))
}
}
/// e.g.
/// ```python
// ?T(:> Nat, <: Int)[n] ==> Nat (self.level <= n)
// ?T(:> Nat, <: Sub(?U(:> {1}))) ==> Nat
// ?T(:> Nat, <: Sub(?U(:> {1}))) -> ?U ==> |U: Type, T <: Sub(U)| T -> U
// ?T(:> Nat, <: Sub(Str)) ==> Error!
// ?T(:> {1, "a"}, <: Eq(?T(:> {1, "a"}, ...)) ==> Error!
// ```
pub(crate) fn deref_tyvar(
&self,
t: Type,
variance: Variance,
qnames: &Set<Str>,
loc: &impl Locational,
) -> TyCheckResult<Type> {
match t {
Type::FreeVar(fv) if fv.is_linked() => {
let t = fv.unwrap_linked();
self.deref_tyvar(t, variance, qnames, loc)
}
Type::FreeVar(fv)
if fv.is_generalized() && qnames.contains(&fv.unbound_name().unwrap()) =>
{
Ok(Type::FreeVar(fv))
}
// ?T(:> Nat, <: Int)[n] ==> Nat (self.level <= n)
// ?T(:> Nat, <: Sub ?U(:> {1}))[n] ==> Nat
// ?T(<: Int, :> Add(?T)) ==> Int
// ?T(:> Nat, <: Sub(Str)) ==> Error!
// ?T(:> {1, "a"}, <: Eq(?T(:> {1, "a"}, ...)) ==> Error!
Type::FreeVar(fv) if fv.constraint_is_sandwiched() => {
let (sub_t, super_t) = fv.get_subsup().unwrap();
if self.level <= fv.level().unwrap() {
// if fv == ?T(<: Int, :> Add(?T)), deref_tyvar(super_t) will cause infinite loop
// so we need to force linking
fv.forced_undoable_link(&sub_t);
let res = self.validate_subsup(sub_t, super_t, variance, qnames, loc);
fv.undo();
res
} else {
// no dereference at this point
// drop(constraint);
Ok(Type::FreeVar(fv))
}
}
Type::FreeVar(fv) if fv.is_unbound() => {
if self.level == 0 {
#[allow(clippy::single_match)]
match &*fv.crack_constraint() {
Constraint::TypeOf(_) => {
return Err(TyCheckErrors::from(TyCheckError::dummy_infer_error(
self.cfg.input.clone(),
fn_name!(),
line!(),
)));
}
_ => {}
}
Ok(Type::FreeVar(fv))
} else {
let new_constraint = fv.crack_constraint().clone();
let new_constraint =
self.deref_constraint(new_constraint, variance, qnames, loc)?;
fv.update_constraint(new_constraint, true);
Ok(Type::FreeVar(fv))
}
}
Type::Poly { name, mut params } => {
let typ = poly(&name, params.clone());
let (_, ctx) = self.get_nominal_type_ctx(&typ).ok_or_else(|| {
TyCheckError::type_not_found(
self.cfg.input.clone(),
line!() as usize,
loc.loc(),
self.caused_by(),
&typ,
)
})?;
let variances = ctx.type_params_variance();
for (param, variance) in params.iter_mut().zip(variances.into_iter()) {
*param = self.deref_tp(mem::take(param), variance, qnames, loc)?;
}
Ok(Type::Poly { name, params })
}
Type::Subr(mut subr) => {
for param in subr.non_default_params.iter_mut() {
*param.typ_mut() = self.deref_tyvar(
mem::take(param.typ_mut()),
variance * Contravariant,
qnames,
loc,
)?;
}
if let Some(var_args) = &mut subr.var_params {
*var_args.typ_mut() = self.deref_tyvar(
mem::take(var_args.typ_mut()),
variance * Contravariant,
qnames,
loc,
)?;
}
for d_param in subr.default_params.iter_mut() {
*d_param.typ_mut() = self.deref_tyvar(
mem::take(d_param.typ_mut()),
variance * Contravariant,
qnames,
loc,
)?;
}
subr.return_t = Box::new(self.deref_tyvar(
mem::take(&mut subr.return_t),
variance * Covariant,
qnames,
loc,
)?);
Ok(Type::Subr(subr))
}
Type::Quantified(subr) => self.eliminate_needless_quant(*subr, variance, loc),
Type::Ref(t) => {
let t = self.deref_tyvar(*t, variance, qnames, loc)?;
Ok(ref_(t))
}
Type::RefMut { before, after } => {
let before = self.deref_tyvar(*before, variance, qnames, loc)?;
let after = if let Some(after) = after {
Some(self.deref_tyvar(*after, variance, qnames, loc)?)
} else {
None
};
Ok(ref_mut(before, after))
}
// Type::Callable { .. } => todo!(),
Type::Record(mut rec) => {
for (_, field) in rec.iter_mut() {
*field = self.deref_tyvar(mem::take(field), variance, qnames, loc)?;
}
Ok(Type::Record(rec))
}
Type::Refinement(refine) => {
let t = self.deref_tyvar(*refine.t, variance, qnames, loc)?;
// TODO: deref_predicate
Ok(refinement(refine.var, t, refine.preds))
}
Type::And(l, r) => {
let l = self.deref_tyvar(*l, variance, qnames, loc)?;
let r = self.deref_tyvar(*r, variance, qnames, loc)?;
Ok(self.intersection(&l, &r))
}
Type::Or(l, r) => {
let l = self.deref_tyvar(*l, variance, qnames, loc)?;
let r = self.deref_tyvar(*r, variance, qnames, loc)?;
Ok(self.union(&l, &r))
}
Type::Not(ty) => {
let ty = self.deref_tyvar(*ty, variance, qnames, loc)?;
Ok(self.complement(&ty))
}
Type::Proj { lhs, rhs } => {
let lhs = self.deref_tyvar(*lhs, variance, qnames, loc)?;
self.eval_proj(lhs, rhs, self.level, loc)
}
Type::ProjCall {
lhs,
attr_name,
args,
} => {
let lhs = self.deref_tp(*lhs, variance, qnames, loc)?;
let mut new_args = vec![];
for arg in args.into_iter() {
new_args.push(self.deref_tp(arg, variance, qnames, loc)?);
}
self.eval_proj_call(lhs, attr_name, new_args, self.level, loc)
}
t => Ok(t),
}
}
// here ?T can be eliminated
// ?T -> Int
// ?T, ?U -> K(?U)
// Int -> ?T
// here ?T cannot be eliminated
// ?T -> ?T
// ?T -> K(?T)
// ?T -> ?U(:> ?T)
fn eliminate_needless_quant(
&self,
subr: Type,
variance: Variance,
loc: &impl Locational,
) -> TyCheckResult<Type> {
let Type::Subr(mut subr) = subr else { unreachable!() };
let essential_qnames = subr.essential_qnames();
for param in subr.non_default_params.iter_mut() {
*param.typ_mut() = self.deref_tyvar(
mem::take(param.typ_mut()),
variance * Contravariant,
&essential_qnames,
loc,
)?;
}
if let Some(var_args) = &mut subr.var_params {
*var_args.typ_mut() = self.deref_tyvar(
mem::take(var_args.typ_mut()),
variance * Contravariant,
&essential_qnames,
loc,
)?;
}
for d_param in subr.default_params.iter_mut() {
*d_param.typ_mut() = self.deref_tyvar(
mem::take(d_param.typ_mut()),
variance * Contravariant,
&essential_qnames,
loc,
)?;
}
subr.return_t = Box::new(self.deref_tyvar(
mem::take(&mut subr.return_t),
variance * Covariant,
&essential_qnames,
loc,
)?);
let subr = Type::Subr(subr);
if subr.has_qvar() {
Ok(subr.quantify())
} else {
Ok(subr)
}
}
pub fn readable_type(&self, t: Type, is_parameter: bool) -> Type {
let variance = if is_parameter {
Contravariant
} else {
Covariant
};
self.deref_tyvar(t.clone(), variance, &set! {}, &())
.unwrap_or(t)
}
pub(crate) fn trait_impl_exists(&self, class: &Type, trait_: &Type) -> bool {
// `Never` implements any trait
if self.subtype_of(class, &Type::Never) {
return true;
}
if class.is_monomorphic() {
self.mono_class_trait_impl_exist(class, trait_)
} else {
self.poly_class_trait_impl_exists(class, trait_)
}
}
fn mono_class_trait_impl_exist(&self, class: &Type, trait_: &Type) -> bool {
let mut super_exists = false;
for inst in self.get_trait_impls(trait_).into_iter() {
if self.supertype_of(&inst.sub_type, class)
&& self.supertype_of(&inst.sup_trait, trait_)
{
super_exists = true;
break;
}
}
super_exists
}
fn poly_class_trait_impl_exists(&self, class: &Type, trait_: &Type) -> bool {
let mut super_exists = false;
for inst in self.get_trait_impls(trait_).into_iter() {
if self.supertype_of(&inst.sub_type, class)
&& self.supertype_of(&inst.sup_trait, trait_)
{
super_exists = true;
break;
}
}
super_exists
}
fn check_trait_impl(
&self,
class: &Type,
trait_: &Type,
qnames: &Set<Str>,
loc: &impl Locational,
) -> TyCheckResult<()> {
if !self.trait_impl_exists(class, trait_) {
let class = if cfg!(feature = "debug") {
class.clone()
} else {
self.deref_tyvar(class.clone(), Variance::Covariant, qnames, loc)?
};
let trait_ = if cfg!(feature = "debug") {
trait_.clone()
} else {
self.deref_tyvar(trait_.clone(), Variance::Covariant, qnames, loc)?
};
Err(TyCheckErrors::from(TyCheckError::no_trait_impl_error(
self.cfg.input.clone(),
line!() as usize,
&class,
&trait_,
loc.loc(),
self.caused_by(),
self.get_simple_type_mismatch_hint(&trait_, &class),
)))
} else {
Ok(())
}
}
/// Check if all types are resolvable (if traits, check if an implementation exists)
/// And replace them if resolvable
pub(crate) fn resolve(
&mut self,
mut hir: hir::HIR,
) -> Result<hir::HIR, (hir::HIR, TyCheckErrors)> {
self.level = 0;
let mut errs = TyCheckErrors::empty();
for chunk in hir.module.iter_mut() {
if let Err(es) = self.resolve_expr_t(chunk) {
errs.extend(es);
}
}
self.resolve_ctx_vars();
if errs.is_empty() {
Ok(hir)
} else {
Err((hir, errs))
}
}
fn resolve_ctx_vars(&mut self) {
let mut locals = mem::take(&mut self.locals);
let mut params = mem::take(&mut self.params);
let mut methods_list = mem::take(&mut self.methods_list);
for (name, vi) in locals.iter_mut() {
if let Ok(t) = self.deref_tyvar(mem::take(&mut vi.t), Covariant, &set! {}, name) {
vi.t = t;
}
}
for (name, vi) in params.iter_mut() {
if let Ok(t) = self.deref_tyvar(mem::take(&mut vi.t), Covariant, &set! {}, name) {
vi.t = t;
}
}
for (_, methods) in methods_list.iter_mut() {
methods.resolve_ctx_vars();
}
self.locals = locals;
self.params = params;
self.methods_list = methods_list;
}
fn resolve_params_t(&self, params: &mut hir::Params, qnames: &Set<Str>) -> TyCheckResult<()> {
for param in params.non_defaults.iter_mut() {
param.vi.t =
self.deref_tyvar(mem::take(&mut param.vi.t), Contravariant, qnames, param)?;
}
if let Some(var_params) = &mut params.var_params {
var_params.vi.t = self.deref_tyvar(
mem::take(&mut var_params.vi.t),
Contravariant,
&set! {},
var_params.as_ref(),
)?;
}
for param in params.defaults.iter_mut() {
param.sig.vi.t =
self.deref_tyvar(mem::take(&mut param.sig.vi.t), Contravariant, qnames, param)?;
self.resolve_expr_t(&mut param.default_val)?;
}
Ok(())
}
fn resolve_expr_t(&self, expr: &mut hir::Expr) -> TyCheckResult<()> {
match expr {
hir::Expr::Lit(_) => Ok(()),
hir::Expr::Accessor(acc) => {
if !acc.ref_t().is_qvar() {
let variance = if acc.var_info().kind.is_parameter() {
Contravariant
} else {
Covariant
};
let t = mem::take(acc.ref_mut_t());
*acc.ref_mut_t() = self.deref_tyvar(t, variance, &set! {}, acc)?;
}
if let hir::Accessor::Attr(attr) = acc {
self.resolve_expr_t(&mut attr.obj)?;
}
Ok(())
}
hir::Expr::Array(array) => match array {
hir::Array::Normal(arr) => {
arr.t = self.deref_tyvar(mem::take(&mut arr.t), Covariant, &set! {}, arr)?;
for elem in arr.elems.pos_args.iter_mut() {
self.resolve_expr_t(&mut elem.expr)?;
}
Ok(())
}
hir::Array::WithLength(arr) => {
arr.t = self.deref_tyvar(mem::take(&mut arr.t), Covariant, &set! {}, arr)?;
self.resolve_expr_t(&mut arr.elem)?;
self.resolve_expr_t(&mut arr.len)?;
Ok(())
}
other => feature_error!(
TyCheckErrors,
TyCheckError,
self,
other.loc(),
"resolve types of array comprehension"
),
},
hir::Expr::Tuple(tuple) => match tuple {
hir::Tuple::Normal(tup) => {
tup.t = self.deref_tyvar(mem::take(&mut tup.t), Covariant, &set! {}, tup)?;
for elem in tup.elems.pos_args.iter_mut() {
self.resolve_expr_t(&mut elem.expr)?;
}
Ok(())
}
},
hir::Expr::Set(set) => match set {
hir::Set::Normal(st) => {
st.t = self.deref_tyvar(mem::take(&mut st.t), Covariant, &set! {}, st)?;
for elem in st.elems.pos_args.iter_mut() {
self.resolve_expr_t(&mut elem.expr)?;
}
Ok(())
}
hir::Set::WithLength(st) => {
st.t = self.deref_tyvar(mem::take(&mut st.t), Covariant, &set! {}, st)?;
self.resolve_expr_t(&mut st.elem)?;
self.resolve_expr_t(&mut st.len)?;
Ok(())
}
},
hir::Expr::Dict(dict) => match dict {
hir::Dict::Normal(dic) => {
dic.t = self.deref_tyvar(mem::take(&mut dic.t), Covariant, &set! {}, dic)?;
for kv in dic.kvs.iter_mut() {
self.resolve_expr_t(&mut kv.key)?;
self.resolve_expr_t(&mut kv.value)?;
}
Ok(())
}
other => feature_error!(
TyCheckErrors,
TyCheckError,
self,
other.loc(),
"resolve types of dict comprehension"
),
},
hir::Expr::Record(record) => {
record.t =
self.deref_tyvar(mem::take(&mut record.t), Covariant, &set! {}, record)?;
for attr in record.attrs.iter_mut() {
match &mut attr.sig {
hir::Signature::Var(var) => {
*var.ref_mut_t() = self.deref_tyvar(
mem::take(var.ref_mut_t()),
Covariant,
&set! {},
var,
)?;
}
hir::Signature::Subr(subr) => {
*subr.ref_mut_t() = self.deref_tyvar(
mem::take(subr.ref_mut_t()),
Covariant,
&set! {},
subr,
)?;
}
}
for chunk in attr.body.block.iter_mut() {
self.resolve_expr_t(chunk)?;
}
}
Ok(())
}
hir::Expr::BinOp(binop) => {
let t = mem::take(binop.signature_mut_t().unwrap());
*binop.signature_mut_t().unwrap() =
self.deref_tyvar(t, Covariant, &set! {}, binop)?;
self.resolve_expr_t(&mut binop.lhs)?;
self.resolve_expr_t(&mut binop.rhs)?;
Ok(())
}
hir::Expr::UnaryOp(unaryop) => {
let t = mem::take(unaryop.signature_mut_t().unwrap());
*unaryop.signature_mut_t().unwrap() =
self.deref_tyvar(t, Covariant, &set! {}, unaryop)?;
self.resolve_expr_t(&mut unaryop.expr)?;
Ok(())
}
hir::Expr::Call(call) => {
if let Some(t) = call.signature_mut_t() {
let t = mem::take(t);
*call.signature_mut_t().unwrap() =
self.deref_tyvar(t, Covariant, &set! {}, call)?;
}
self.resolve_expr_t(&mut call.obj)?;
for arg in call.args.pos_args.iter_mut() {
self.resolve_expr_t(&mut arg.expr)?;
}
if let Some(var_args) = &mut call.args.var_args {
self.resolve_expr_t(&mut var_args.expr)?;
}
for arg in call.args.kw_args.iter_mut() {
self.resolve_expr_t(&mut arg.expr)?;
}
Ok(())
}
hir::Expr::Def(def) => {
*def.sig.ref_mut_t() = self.deref_tyvar(
mem::take(def.sig.ref_mut_t()),
Covariant,
&set! {},
&def.sig,
)?;
let qnames = if let Type::Quantified(quant) = def.sig.ref_t() {
let Type::Subr(subr) = quant.as_ref() else { unreachable!() };
subr.essential_qnames()
} else {
set! {}
};
if let Some(params) = def.sig.params_mut() {
self.resolve_params_t(params, &qnames)?;
}
for chunk in def.body.block.iter_mut() {
self.resolve_expr_t(chunk)?;
}
Ok(())
}
hir::Expr::Lambda(lambda) => {
lambda.t =
self.deref_tyvar(mem::take(&mut lambda.t), Covariant, &set! {}, lambda)?;
let qnames = if let Type::Quantified(quant) = lambda.ref_t() {
let Type::Subr(subr) = quant.as_ref() else { unreachable!() };
subr.essential_qnames()
} else {
set! {}
};
self.resolve_params_t(&mut lambda.params, &qnames)?;
for chunk in lambda.body.iter_mut() {
self.resolve_expr_t(chunk)?;
}
Ok(())
}
hir::Expr::ClassDef(class_def) => {
for def in class_def.methods.iter_mut() {
self.resolve_expr_t(def)?;
}
Ok(())
}
hir::Expr::PatchDef(patch_def) => {
for def in patch_def.methods.iter_mut() {
self.resolve_expr_t(def)?;
}
Ok(())
}
hir::Expr::ReDef(redef) => {
// REVIEW: redef.attr is not dereferenced
for chunk in redef.block.iter_mut() {
self.resolve_expr_t(chunk)?;
}
Ok(())
}
hir::Expr::TypeAsc(tasc) => self.resolve_expr_t(&mut tasc.expr),
hir::Expr::Code(chunks) | hir::Expr::Compound(chunks) => {
for chunk in chunks.iter_mut() {
self.resolve_expr_t(chunk)?;
}
Ok(())
}
hir::Expr::Dummy(chunks) => {
for chunk in chunks.iter_mut() {
self.resolve_expr_t(chunk)?;
}
Ok(())
}
hir::Expr::Import(_) => unreachable!(),
}
}
}