move over constraint

This commit is contained in:
Folkert 2022-03-02 21:19:25 +01:00
parent 8d2e0a738c
commit 0eb98a4c59
No known key found for this signature in database
GPG key ID: 1F17F6FFD112B97C
11 changed files with 429 additions and 1417 deletions

View file

@ -1,175 +1,398 @@
use crate::expected::{Expected, PExpected};
use roc_collections::all::{MutSet, SendMap};
use roc_module::{ident::TagName, symbol::Symbol};
use roc_collections::soa::{Index, Slice};
use roc_module::ident::TagName;
use roc_module::symbol::Symbol;
use roc_region::all::{Loc, Region};
use roc_types::subs::Variable;
use roc_types::types::{Category, PatternCategory, Type};
use roc_types::{subs::Variable, types::VariableDetail};
/// A presence constraint is an additive constraint that defines the lower bound
/// of a type. For example, `Present(t1, IncludesTag(A, []))` means that the
/// type `t1` must contain at least the tag `A`. The additive nature of these
/// constraints makes them behaviorally different from unification-based constraints.
#[derive(Debug, Clone, PartialEq)]
pub enum PresenceConstraint {
IncludesTag(TagName, Vec<Type>, Region, PatternCategory),
IsOpen,
Pattern(Region, PatternCategory, PExpected<Type>),
#[derive(Debug)]
pub struct Constraints {
pub constraints: Vec<Constraint>,
pub types: Vec<Type>,
pub variables: Vec<Variable>,
pub def_types: Vec<(Symbol, Loc<Index<Type>>)>,
pub let_constraints: Vec<LetConstraint>,
pub categories: Vec<Category>,
pub pattern_categories: Vec<PatternCategory>,
pub expectations: Vec<Expected<Type>>,
pub pattern_expectations: Vec<PExpected<Type>>,
pub includes_tags: Vec<IncludesTag>,
}
impl Default for Constraints {
fn default() -> Self {
Self::new()
}
}
impl Constraints {
pub fn new() -> Self {
let constraints = Vec::new();
let mut types = Vec::new();
let variables = Vec::new();
let def_types = Vec::new();
let let_constraints = Vec::new();
let mut categories = Vec::new();
let pattern_categories = Vec::new();
let expectations = Vec::new();
let pattern_expectations = Vec::new();
let includes_tags = Vec::new();
types.push(Type::EmptyRec);
types.push(Type::EmptyTagUnion);
categories.push(Category::Record);
Self {
constraints,
types,
variables,
def_types,
let_constraints,
categories,
pattern_categories,
expectations,
pattern_expectations,
includes_tags,
}
}
pub const EMPTY_RECORD: Index<Type> = Index::new(0);
pub const EMPTY_TAG_UNION: Index<Type> = Index::new(1);
pub const CATEGORY_RECORD: Index<Category> = Index::new(0);
#[inline(always)]
pub fn push_type(&mut self, typ: Type) -> Index<Type> {
match typ {
Type::EmptyRec => Self::EMPTY_RECORD,
Type::EmptyTagUnion => Self::EMPTY_TAG_UNION,
other => Index::push_new(&mut self.types, other),
}
}
#[inline(always)]
pub fn push_expected_type(&mut self, expected: Expected<Type>) -> Index<Expected<Type>> {
Index::push_new(&mut self.expectations, expected)
}
#[inline(always)]
pub fn push_category(&mut self, category: Category) -> Index<Category> {
match category {
Category::Record => Self::CATEGORY_RECORD,
other => Index::push_new(&mut self.categories, other),
}
}
pub fn equal_types(
&mut self,
typ: Type,
expected: Expected<Type>,
category: Category,
region: Region,
) -> Constraint {
let type_index = Index::push_new(&mut self.types, typ);
let expected_index = Index::push_new(&mut self.expectations, expected);
let category_index = Index::push_new(&mut self.categories, category);
Constraint::Eq(type_index, expected_index, category_index, region)
}
pub fn equal_pattern_types(
&mut self,
typ: Type,
expected: PExpected<Type>,
category: PatternCategory,
region: Region,
) -> Constraint {
let type_index = Index::push_new(&mut self.types, typ);
let expected_index = Index::push_new(&mut self.pattern_expectations, expected);
let category_index = Index::push_new(&mut self.pattern_categories, category);
Constraint::Pattern(type_index, expected_index, category_index, region)
}
pub fn pattern_presence(
&mut self,
typ: Type,
expected: PExpected<Type>,
category: PatternCategory,
region: Region,
) -> Constraint {
let type_index = Index::push_new(&mut self.types, typ);
let expected_index = Index::push_new(&mut self.pattern_expectations, expected);
let category_index = Index::push_new(&mut self.pattern_categories, category);
Constraint::PatternPresence(type_index, expected_index, category_index, region)
}
pub fn is_open_type(&mut self, typ: Type) -> Constraint {
let type_index = Index::push_new(&mut self.types, typ);
Constraint::IsOpenType(type_index)
}
pub fn includes_tag<I>(
&mut self,
typ: Type,
tag_name: TagName,
types: I,
category: PatternCategory,
region: Region,
) -> Constraint
where
I: IntoIterator<Item = Type>,
{
let type_index = Index::push_new(&mut self.types, typ);
let category_index = Index::push_new(&mut self.pattern_categories, category);
let types_slice = Slice::extend_new(&mut self.types, types);
let includes_tag = IncludesTag {
type_index,
tag_name,
types: types_slice,
pattern_category: category_index,
region,
};
let includes_tag_index = Index::push_new(&mut self.includes_tags, includes_tag);
Constraint::IncludesTag(includes_tag_index)
}
fn variable_slice<I>(&mut self, it: I) -> Slice<Variable>
where
I: IntoIterator<Item = Variable>,
{
let start = self.variables.len();
self.variables.extend(it);
let length = self.variables.len() - start;
Slice::new(start as _, length as _)
}
fn def_types_slice<I>(&mut self, it: I) -> Slice<(Symbol, Loc<Type>)>
where
I: IntoIterator<Item = (Symbol, Loc<Type>)>,
{
let start = self.def_types.len();
for (symbol, loc_type) in it {
let type_index = Index::new(self.types.len() as _);
let Loc { region, value } = loc_type;
self.types.push(value);
self.def_types.push((symbol, Loc::at(region, type_index)));
}
let length = self.def_types.len() - start;
Slice::new(start as _, length as _)
}
pub fn exists<I>(&mut self, flex_vars: I, defs_constraint: Constraint) -> Constraint
where
I: IntoIterator<Item = Variable>,
{
let defs_and_ret_constraint = Index::new(self.constraints.len() as _);
self.constraints.push(defs_constraint);
self.constraints.push(Constraint::True);
let let_contraint = LetConstraint {
rigid_vars: Slice::default(),
flex_vars: self.variable_slice(flex_vars),
def_types: Slice::default(),
defs_and_ret_constraint,
};
let let_index = Index::new(self.let_constraints.len() as _);
self.let_constraints.push(let_contraint);
Constraint::Let(let_index)
}
pub fn exists_many<I, C>(&mut self, flex_vars: I, defs_constraint: C) -> Constraint
where
I: IntoIterator<Item = Variable>,
C: IntoIterator<Item = Constraint>,
C::IntoIter: ExactSizeIterator,
{
let defs_constraint = self.and_constraint(defs_constraint);
let defs_and_ret_constraint = Index::new(self.constraints.len() as _);
self.constraints.push(defs_constraint);
self.constraints.push(Constraint::True);
let let_contraint = LetConstraint {
rigid_vars: Slice::default(),
flex_vars: self.variable_slice(flex_vars),
def_types: Slice::default(),
defs_and_ret_constraint,
};
let let_index = Index::new(self.let_constraints.len() as _);
self.let_constraints.push(let_contraint);
Constraint::Let(let_index)
}
pub fn let_constraint<I1, I2, I3>(
&mut self,
rigid_vars: I1,
flex_vars: I2,
def_types: I3,
defs_constraint: Constraint,
ret_constraint: Constraint,
) -> Constraint
where
I1: IntoIterator<Item = Variable>,
I2: IntoIterator<Item = Variable>,
I3: IntoIterator<Item = (Symbol, Loc<Type>)>,
{
let defs_and_ret_constraint = Index::new(self.constraints.len() as _);
self.constraints.push(defs_constraint);
self.constraints.push(ret_constraint);
let let_contraint = LetConstraint {
rigid_vars: self.variable_slice(rigid_vars),
flex_vars: self.variable_slice(flex_vars),
def_types: self.def_types_slice(def_types),
defs_and_ret_constraint,
};
let let_index = Index::new(self.let_constraints.len() as _);
self.let_constraints.push(let_contraint);
Constraint::Let(let_index)
}
pub fn and_constraint<I>(&mut self, constraints: I) -> Constraint
where
I: IntoIterator<Item = Constraint>,
I::IntoIter: ExactSizeIterator,
{
let mut it = constraints.into_iter();
match it.len() {
0 => Constraint::True,
1 => it.next().unwrap(),
_ => {
let start = self.constraints.len() as u32;
self.constraints.extend(it);
let end = self.constraints.len() as u32;
let slice = Slice::new(start, (end - start) as u16);
Constraint::And(slice)
}
}
}
pub fn lookup(
&mut self,
symbol: Symbol,
expected: Expected<Type>,
region: Region,
) -> Constraint {
Constraint::Lookup(
symbol,
Index::push_new(&mut self.expectations, expected),
region,
)
}
pub fn contains_save_the_environment(&self, constraint: &Constraint) -> bool {
match constraint {
Constraint::Eq(..) => false,
Constraint::Store(..) => false,
Constraint::Lookup(..) => false,
Constraint::Pattern(..) => false,
Constraint::True => false,
Constraint::SaveTheEnvironment => true,
Constraint::Let(index) => {
let let_constraint = &self.let_constraints[index.index()];
let offset = let_constraint.defs_and_ret_constraint.index();
let defs_constraint = &self.constraints[offset];
let ret_constraint = &self.constraints[offset + 1];
self.contains_save_the_environment(defs_constraint)
|| self.contains_save_the_environment(ret_constraint)
}
Constraint::And(slice) => {
let constraints = &self.constraints[slice.indices()];
constraints
.iter()
.any(|c| self.contains_save_the_environment(c))
}
Constraint::IsOpenType(_) => false,
Constraint::IncludesTag(_) => false,
Constraint::PatternPresence(_, _, _, _) => false,
}
}
pub fn store(
&mut self,
typ: Type,
variable: Variable,
filename: &'static str,
line_number: u32,
) -> Constraint {
let type_index = Index::new(self.types.len() as _);
self.types.push(typ);
Constraint::Store(type_index, variable, filename, line_number)
}
}
static_assertions::assert_eq_size!([u8; 4 * 8], Constraint);
static_assertions::assert_eq_size!([u8; 3 * 8 + 4], LetConstraint);
#[derive(Debug, Clone, PartialEq)]
pub enum Constraint {
Eq(Type, Expected<Type>, Category, Region),
Store(Type, Variable, &'static str, u32),
Lookup(Symbol, Expected<Type>, Region),
Pattern(Region, PatternCategory, Type, PExpected<Type>),
Eq(Index<Type>, Index<Expected<Type>>, Index<Category>, Region),
Store(Index<Type>, Variable, &'static str, u32),
Lookup(Symbol, Index<Expected<Type>>, Region),
Pattern(
Index<Type>,
Index<PExpected<Type>>,
Index<PatternCategory>,
Region,
),
True, // Used for things that always unify, e.g. blanks and runtime errors
SaveTheEnvironment,
Let(Box<LetConstraint>),
And(Vec<Constraint>),
Present(Type, PresenceConstraint),
Let(Index<LetConstraint>),
And(Slice<Constraint>),
/// Presence constraints
IsOpenType(Index<Type>), // Theory; always applied to a variable? if yes the use that
IncludesTag(Index<IncludesTag>),
PatternPresence(
Index<Type>,
Index<PExpected<Type>>,
Index<PatternCategory>,
Region,
),
}
#[derive(Debug, Clone, PartialEq)]
pub struct LetConstraint {
pub rigid_vars: Vec<Variable>,
pub flex_vars: Vec<Variable>,
pub def_types: SendMap<Symbol, Loc<Type>>,
pub defs_constraint: Constraint,
pub ret_constraint: Constraint,
pub rigid_vars: Slice<Variable>,
pub flex_vars: Slice<Variable>,
pub def_types: Slice<(Symbol, Loc<Type>)>,
pub defs_and_ret_constraint: Index<(Constraint, Constraint)>,
}
// VALIDATE
#[derive(Default, Clone)]
struct Declared {
pub rigid_vars: MutSet<Variable>,
pub flex_vars: MutSet<Variable>,
}
impl Constraint {
pub fn validate(&self) -> bool {
let mut unbound = Default::default();
validate_help(self, &Declared::default(), &mut unbound);
if !unbound.type_variables.is_empty() {
panic!("found unbound type variables {:?}", &unbound.type_variables);
}
if !unbound.lambda_set_variables.is_empty() {
panic!(
"found unbound lambda set variables {:?}",
&unbound.lambda_set_variables
);
}
if !unbound.recursion_variables.is_empty() {
panic!(
"found unbound recursion variables {:?}",
&unbound.recursion_variables
);
}
true
}
pub fn contains_save_the_environment(&self) -> bool {
match self {
Constraint::Eq(_, _, _, _) => false,
Constraint::Store(_, _, _, _) => false,
Constraint::Lookup(_, _, _) => false,
Constraint::Pattern(_, _, _, _) => false,
Constraint::True => false,
Constraint::SaveTheEnvironment => true,
Constraint::Let(boxed) => {
boxed.ret_constraint.contains_save_the_environment()
|| boxed.defs_constraint.contains_save_the_environment()
}
Constraint::And(cs) => cs.iter().any(|c| c.contains_save_the_environment()),
Constraint::Present(_, _) => false,
}
}
}
fn subtract(declared: &Declared, detail: &VariableDetail, accum: &mut VariableDetail) {
for var in &detail.type_variables {
if !(declared.rigid_vars.contains(var) || declared.flex_vars.contains(var)) {
accum.type_variables.insert(*var);
}
}
// lambda set variables are always flex
for var in &detail.lambda_set_variables {
if declared.rigid_vars.contains(var) {
panic!("lambda set variable {:?} is declared as rigid", var);
}
if !declared.flex_vars.contains(var) {
accum.lambda_set_variables.push(*var);
}
}
// recursion vars should be always rigid
for var in &detail.recursion_variables {
if declared.flex_vars.contains(var) {
panic!("recursion variable {:?} is declared as flex", var);
}
if !declared.rigid_vars.contains(var) {
accum.recursion_variables.insert(*var);
}
}
}
fn validate_help(constraint: &Constraint, declared: &Declared, accum: &mut VariableDetail) {
use Constraint::*;
match constraint {
True | SaveTheEnvironment | Lookup(_, _, _) => { /* nothing */ }
Store(typ, var, _, _) => {
subtract(declared, &typ.variables_detail(), accum);
if !declared.flex_vars.contains(var) {
accum.type_variables.insert(*var);
}
}
Constraint::Eq(typ, expected, _, _) => {
subtract(declared, &typ.variables_detail(), accum);
subtract(declared, &expected.get_type_ref().variables_detail(), accum);
}
Constraint::Pattern(_, _, typ, expected) => {
subtract(declared, &typ.variables_detail(), accum);
subtract(declared, &expected.get_type_ref().variables_detail(), accum);
}
Constraint::Let(letcon) => {
let mut declared = declared.clone();
declared
.rigid_vars
.extend(letcon.rigid_vars.iter().copied());
declared.flex_vars.extend(letcon.flex_vars.iter().copied());
validate_help(&letcon.defs_constraint, &declared, accum);
validate_help(&letcon.ret_constraint, &declared, accum);
}
Constraint::And(inner) => {
for c in inner {
validate_help(c, declared, accum);
}
}
Constraint::Present(typ, constr) => {
subtract(declared, &typ.variables_detail(), accum);
match constr {
PresenceConstraint::IncludesTag(_, tys, _, _) => {
for ty in tys {
subtract(declared, &ty.variables_detail(), accum);
}
}
PresenceConstraint::IsOpen => {}
PresenceConstraint::Pattern(_, _, expected) => {
subtract(declared, &typ.variables_detail(), accum);
subtract(declared, &expected.get_type_ref().variables_detail(), accum);
}
}
}
}
#[derive(Debug, Clone, PartialEq)]
pub struct IncludesTag {
pub type_index: Index<Type>,
pub tag_name: TagName,
pub types: Slice<Type>,
pub pattern_category: Index<PatternCategory>,
pub region: Region,
}