Load main in the CLI and use it for gen

This commit is contained in:
Richard Feldman 2020-04-12 15:25:07 -04:00
parent 9ca754b8fd
commit 1517581ced
6 changed files with 84 additions and 424 deletions

View file

@ -1,396 +0,0 @@
use bumpalo::Bump;
use roc_builtins::unique::uniq_stdlib;
use roc_can::constraint::Constraint;
use roc_can::env::Env;
use roc_can::expected::Expected;
use roc_can::expr::{canonicalize_expr, Expr, Output};
use roc_can::operator;
use roc_can::scope::Scope;
use roc_collections::all::{ImMap, ImSet, MutMap, SendMap, SendSet};
use roc_constrain::expr::constrain_expr;
use roc_constrain::module::{constrain_imported_values, load_builtin_aliases, Import};
use roc_module::ident::Ident;
use roc_module::symbol::{IdentIds, Interns, ModuleId, ModuleIds, Symbol};
use roc_parse::ast::{self, Attempting};
use roc_parse::blankspace::space0_before;
use roc_parse::parser::{loc, Fail, Parser, State};
use roc_problem::can::Problem;
use roc_region::all::{Located, Region};
use roc_solve::solve;
use roc_types::subs::{Content, Subs, VarStore, Variable};
use roc_types::types::Type;
use std::hash::Hash;
pub fn test_home() -> ModuleId {
ModuleIds::default().get_or_insert(&"Test".into())
}
pub fn infer_expr(
subs: Subs,
problems: &mut Vec<solve::TypeError>,
constraint: &Constraint,
expr_var: Variable,
) -> (Content, Subs) {
let env = solve::Env {
aliases: MutMap::default(),
vars_by_symbol: SendMap::default(),
};
let (solved, _) = solve::run(&env, problems, subs, constraint);
let content = solved.inner().get_without_compacting(expr_var).content;
(content, solved.into_inner())
}
pub fn parse_with<'a>(arena: &'a Bump, input: &'a str) -> Result<ast::Expr<'a>, Fail> {
parse_loc_with(arena, input).map(|loc_expr| loc_expr.value)
}
pub fn parse_loc_with<'a>(arena: &'a Bump, input: &'a str) -> Result<Located<ast::Expr<'a>>, Fail> {
let state = State::new(&input, Attempting::Module);
let parser = space0_before(loc(roc_parse::expr::expr(0)), 0);
let answer = parser.parse(&arena, state);
answer
.map(|(loc_expr, _)| loc_expr)
.map_err(|(fail, _)| fail)
}
pub fn can_expr(expr_str: &str) -> CanExprOut {
can_expr_with(&Bump::new(), test_home(), expr_str)
}
pub fn uniq_expr(
expr_str: &str,
) -> (
Located<Expr>,
Output,
Vec<Problem>,
Subs,
Variable,
Constraint,
ModuleId,
Interns,
) {
let declared_idents: &ImMap<Ident, (Symbol, Region)> = &ImMap::default();
uniq_expr_with(&Bump::new(), expr_str, declared_idents)
}
pub fn uniq_expr_with(
arena: &Bump,
expr_str: &str,
declared_idents: &ImMap<Ident, (Symbol, Region)>,
) -> (
Located<Expr>,
Output,
Vec<Problem>,
Subs,
Variable,
Constraint,
ModuleId,
Interns,
) {
let home = test_home();
let CanExprOut {
loc_expr,
output,
problems,
var_store: old_var_store,
var,
interns,
..
} = can_expr_with(arena, home, expr_str);
// double check
let var_store = VarStore::new(old_var_store.fresh());
let expected2 = Expected::NoExpectation(Type::Variable(var));
let constraint = roc_constrain::uniq::constrain_declaration(
home,
&var_store,
Region::zero(),
&loc_expr,
declared_idents,
expected2,
);
let stdlib = uniq_stdlib();
let types = stdlib.types;
let imports: Vec<_> = types
.iter()
.map(|(symbol, (solved_type, region))| Import {
loc_symbol: Located::at(*region, *symbol),
solved_type,
})
.collect();
// load builtin values
// TODO what to do with those rigids?
let (_introduced_rigids, constraint) =
constrain_imported_values(imports, constraint, &var_store);
// load builtin types
let mut constraint = load_builtin_aliases(&stdlib.aliases, constraint, &var_store);
constraint.instantiate_aliases(&var_store);
let subs2 = Subs::new(var_store.into());
(
loc_expr, output, problems, subs2, var, constraint, home, interns,
)
}
pub struct CanExprOut {
pub loc_expr: Located<Expr>,
pub output: Output,
pub problems: Vec<Problem>,
pub home: ModuleId,
pub interns: Interns,
pub var_store: VarStore,
pub var: Variable,
pub constraint: Constraint,
}
pub fn can_expr_with(arena: &Bump, home: ModuleId, expr_str: &str) -> CanExprOut {
let loc_expr = parse_loc_with(&arena, expr_str).unwrap_or_else(|e| {
panic!(
"can_expr_with() got a parse error when attempting to canonicalize:\n\n{:?} {:?}",
expr_str, e
)
});
let var_store = VarStore::default();
let var = var_store.fresh();
let expected = Expected::NoExpectation(Type::Variable(var));
let module_ids = ModuleIds::default();
// Desugar operators (convert them to Apply calls, taking into account
// operator precedence and associativity rules), before doing other canonicalization.
//
// If we did this *during* canonicalization, then each time we
// visited a BinOp node we'd recursively try to apply this to each of its nested
// operators, and then again on *their* nested operators, ultimately applying the
// rules multiple times unnecessarily.
let loc_expr = operator::desugar_expr(arena, &loc_expr);
let mut scope = Scope::new(home);
let dep_idents = IdentIds::exposed_builtins(0);
let mut env = Env::new(home, dep_idents, &module_ids, IdentIds::default());
let (loc_expr, output) = canonicalize_expr(
&mut env,
&var_store,
&mut scope,
Region::zero(),
&loc_expr.value,
);
let constraint = constrain_expr(
&roc_constrain::expr::Env {
rigids: ImMap::default(),
home,
},
loc_expr.region,
&loc_expr.value,
expected,
);
let types = roc_builtins::std::types();
let imports: Vec<_> = types
.iter()
.map(|(symbol, (solved_type, region))| Import {
loc_symbol: Located::at(*region, *symbol),
solved_type,
})
.collect();
//load builtin values
let (_introduced_rigids, constraint) =
constrain_imported_values(imports, constraint, &var_store);
// TODO determine what to do with those rigids
// for var in introduced_rigids {
// output.ftv.insert(var, format!("internal_{:?}", var).into());
// }
//load builtin types
let mut constraint =
load_builtin_aliases(&roc_builtins::std::aliases(), constraint, &var_store);
constraint.instantiate_aliases(&var_store);
let mut all_ident_ids = MutMap::default();
// When pretty printing types, we may need the exposed builtins,
// so include them in the Interns we'll ultimately return.
for (module_id, ident_ids) in IdentIds::exposed_builtins(0) {
all_ident_ids.insert(module_id, ident_ids);
}
all_ident_ids.insert(home, env.ident_ids);
let interns = Interns {
module_ids: env.module_ids.clone(),
all_ident_ids,
};
CanExprOut {
loc_expr,
output,
problems: env.problems,
home: env.home,
var_store,
interns,
var,
constraint,
}
}
pub fn mut_map_from_pairs<K, V, I>(pairs: I) -> MutMap<K, V>
where
I: IntoIterator<Item = (K, V)>,
K: Hash + Eq,
{
let mut answer = MutMap::default();
for (key, value) in pairs {
answer.insert(key, value);
}
answer
}
pub fn im_map_from_pairs<K, V, I>(pairs: I) -> ImMap<K, V>
where
I: IntoIterator<Item = (K, V)>,
K: Hash + Eq + Clone,
V: Clone,
{
let mut answer = ImMap::default();
for (key, value) in pairs {
answer.insert(key, value);
}
answer
}
pub fn send_set_from<V, I>(elems: I) -> SendSet<V>
where
I: IntoIterator<Item = V>,
V: Hash + Eq + Clone,
{
let mut answer = SendSet::default();
for elem in elems {
answer.insert(elem);
}
answer
}
// Check constraints
//
// Keep track of the used (in types or expectations) variables, and the declared variables (in
// flex_vars or rigid_vars fields of LetConstraint. These roc_collections should match: no duplicates
// and no variables that are used but not declared are allowed.
//
// There is one exception: the initial variable (that stores the type of the whole expression) is
// never declared, but is used.
pub fn assert_correct_variable_usage(constraint: &Constraint) {
// variables declared in constraint (flex_vars or rigid_vars)
// and variables actually used in constraints
let (declared, used) = variable_usage(constraint);
let used: ImSet<Variable> = used.into();
let mut decl: ImSet<Variable> = declared.rigid_vars.clone().into();
for var in declared.flex_vars.clone() {
decl.insert(var);
}
let diff = used.clone().relative_complement(decl);
// NOTE: this checks whether we're using variables that are not declared. For recursive type
// definitions, their rigid types are declared twice, which is correct!
if !diff.is_empty() {
println!("VARIABLE USAGE PROBLEM");
println!("used: {:?}", &used);
println!("rigids: {:?}", &declared.rigid_vars);
println!("flexs: {:?}", &declared.flex_vars);
println!("difference: {:?}", &diff);
panic!("variable usage problem (see stdout for details)");
}
}
#[derive(Default)]
pub struct SeenVariables {
pub rigid_vars: Vec<Variable>,
pub flex_vars: Vec<Variable>,
}
pub fn variable_usage(con: &Constraint) -> (SeenVariables, Vec<Variable>) {
let mut declared = SeenVariables::default();
let mut used = ImSet::default();
variable_usage_help(con, &mut declared, &mut used);
used.remove(unsafe { &Variable::unsafe_test_debug_variable(1) });
let mut used_vec: Vec<Variable> = used.into_iter().collect();
used_vec.sort();
declared.rigid_vars.sort();
declared.flex_vars.sort();
(declared, used_vec)
}
fn variable_usage_help(con: &Constraint, declared: &mut SeenVariables, used: &mut ImSet<Variable>) {
use Constraint::*;
match con {
True | SaveTheEnvironment => (),
Eq(tipe, expectation, _, _) => {
for v in tipe.variables() {
used.insert(v);
}
for v in expectation.get_type_ref().variables() {
used.insert(v);
}
}
Lookup(_, expectation, _) => {
for v in expectation.get_type_ref().variables() {
used.insert(v);
}
}
Pattern(_, _, tipe, pexpectation) => {
for v in tipe.variables() {
used.insert(v);
}
for v in pexpectation.get_type_ref().variables() {
used.insert(v);
}
}
Let(letcon) => {
declared.rigid_vars.extend(letcon.rigid_vars.clone());
declared.flex_vars.extend(letcon.flex_vars.clone());
variable_usage_help(&letcon.defs_constraint, declared, used);
variable_usage_help(&letcon.ret_constraint, declared, used);
}
And(constraints) => {
for sub in constraints {
variable_usage_help(sub, declared, used);
}
}
}
}

View file

@ -1,7 +1,6 @@
extern crate roc_gen;
extern crate roc_reporting;
use crate::helpers::{infer_expr, uniq_expr_with};
use bumpalo::Bump;
use inkwell::context::Context;
use inkwell::module::Linkage;
@ -15,6 +14,7 @@ use roc_gen::llvm::build::{
};
use roc_gen::llvm::convert::basic_type_from_layout;
use roc_load::file::{load, LoadedModule, LoadingProblem};
use roc_module::symbol::Symbol;
use roc_mono::expr::{Expr, Procs};
use roc_mono::layout::Layout;
use std::time::SystemTime;
@ -29,8 +29,6 @@ use std::process::Command;
use target_lexicon::{Architecture, OperatingSystem, Triple, Vendor};
use tokio::runtime::Builder;
pub mod helpers;
fn main() -> io::Result<()> {
let argv = std::env::args().collect::<Vec<String>>();
@ -67,6 +65,7 @@ fn main() -> io::Result<()> {
async fn load_file(src_dir: PathBuf, filename: PathBuf) -> Result<(), LoadingProblem> {
let compilation_start = SystemTime::now();
let arena = Bump::new();
// Step 1: compile the app and generate the .o file
let subs_by_module = MutMap::default();
@ -80,7 +79,7 @@ async fn load_file(src_dir: PathBuf, filename: PathBuf) -> Result<(), LoadingPro
let dest_filename = filename.with_extension("o");
gen(loaded, filename, Triple::host(), &dest_filename);
gen(&arena, loaded, filename, Triple::host(), &dest_filename);
let compilation_end = compilation_start.elapsed().unwrap();
@ -103,14 +102,16 @@ async fn load_file(src_dir: PathBuf, filename: PathBuf) -> Result<(), LoadingPro
.expect("`ar` failed to run");
// Step 3: have rustc compile the host and link in the .a file
let binary_path = cwd.join("app");
Command::new("rustc")
.args(&["-L", ".", "host.rs", "-o", "app"])
.args(&["-L", ".", "--crate-type", "bin", "host.rs", "-o", binary_path.as_path().to_str().unwrap()])
.current_dir(cwd)
.spawn()
.expect("rustc failed to run");
// Step 4: Run the compiled app
Command::new(cwd.join("app")).spawn().unwrap_or_else(|err| {
Command::new(binary_path).spawn().unwrap_or_else(|err| {
panic!(
"{} failed to run: {:?}",
cwd.join("app").to_str().unwrap(),
@ -121,27 +122,19 @@ async fn load_file(src_dir: PathBuf, filename: PathBuf) -> Result<(), LoadingPro
Ok(())
}
fn gen(loaded: LoadedModule, filename: PathBuf, target: Triple, dest_filename: &Path) {
fn gen(arena: &Bump, loaded: LoadedModule, filename: PathBuf, target: Triple, dest_filename: &Path) {
use roc_reporting::report::{can_problem, RocDocAllocator, DEFAULT_PALETTE};
use roc_reporting::type_error::type_problem;
// Build the expr
let arena = Bump::new();
let src = loaded.src;
let (loc_expr, _output, can_problems, subs, var, constraint, home, interns) =
uniq_expr_with(&arena, &src, &ImMap::default());
let mut type_problems = Vec::new();
let (content, mut subs) = infer_expr(subs, &mut type_problems, &constraint, var);
let home = loaded.module_id;
let src_lines: Vec<&str> = src.split('\n').collect();
let palette = DEFAULT_PALETTE;
// Report parsing and canonicalization problems
let alloc = RocDocAllocator::new(&src_lines, home, &interns);
let alloc = RocDocAllocator::new(&src_lines, home, &loaded.interns);
for problem in can_problems.into_iter() {
for problem in loaded.can_problems.into_iter() {
let report = can_problem(&alloc, filename.clone(), problem);
let mut buf = String::new();
@ -150,7 +143,7 @@ fn gen(loaded: LoadedModule, filename: PathBuf, target: Triple, dest_filename: &
println!("\n{}\n", buf);
}
for problem in type_problems.into_iter() {
for problem in loaded.type_problems.into_iter() {
let report = type_problem(&alloc, filename.clone(), problem);
let mut buf = String::new();
@ -159,6 +152,63 @@ fn gen(loaded: LoadedModule, filename: PathBuf, target: Triple, dest_filename: &
println!("\n{}\n", buf);
}
// Look up the types and expressions of the `provided` values
// TODO instead of hardcoding this to `main`, use the `provided` list and gen all of them.
let ident_ids = loaded.interns.all_ident_ids.get(&home).unwrap();
let main_ident_id = *ident_ids.get_id(&"main".into()).unwrap_or_else(|| {
todo!("TODO gracefully handle the case where `main` wasn't declared in the app")
});
let main_symbol = Symbol::new(home, main_ident_id);
let mut main_var = None;
let mut main_expr = None;
for (symbol, var) in loaded.exposed_vars_by_symbol {
if symbol == main_symbol {
main_var = Some(var);
break;
}
}
// We use a loop label here so we can break all the way out of a nested
// loop inside DeclareRec if we find the expr there.
//
// https://doc.rust-lang.org/1.30.0/book/first-edition/loops.html#loop-labels
'find_expr: for decl in loaded.declarations {
use roc_can::def::Declaration::*;
match decl {
Declare(def) => {
if def.pattern_vars.contains_key(&main_symbol) {
main_expr = Some(def.loc_expr);
break 'find_expr;
}
}
DeclareRec(defs) => {
for def in defs {
if def.pattern_vars.contains_key(&main_symbol) {
main_expr = Some(def.loc_expr);
break 'find_expr;
}
}
}
InvalidCycle( _, _) => {}
}
}
let loc_expr = main_expr.unwrap_or_else(|| panic!
("TODO gracefully handle the case where `main` was declared but not exposed")
);
let mut subs = loaded.solved.into_inner();
let content = match main_var {
Some(var) => subs.get_without_compacting(var).content,
None => todo!("TODO gracefully handle the case where `main` was declared but not exposed"),
};
// Generate the binary
let context = Context::create();
@ -181,14 +231,14 @@ fn gen(loaded: LoadedModule, filename: PathBuf, target: Triple, dest_filename: &
let main_fn_type =
basic_type_from_layout(&arena, &context, &layout, ptr_bytes).fn_type(&[], false);
let main_fn_name = "$Test.main";
let main_fn_name = "$main";
// Compile and add all the Procs before adding main
let mut env = roc_gen::llvm::build::Env {
arena: &arena,
builder: &builder,
context: &context,
interns,
interns: loaded.interns,
module: arena.alloc(module),
ptr_bytes,
};

View file

@ -55,6 +55,7 @@ pub struct LoadedModule {
pub can_problems: Vec<roc_problem::can::Problem>,
pub type_problems: Vec<solve::TypeError>,
pub declarations: Vec<Declaration>,
pub exposed_vars_by_symbol: Vec<(Symbol, Variable)>,
pub src: Box<str>,
}
@ -96,6 +97,7 @@ enum Msg {
solved_types: MutMap<Symbol, SolvedType>,
aliases: MutMap<Symbol, Alias>,
subs: Arc<Solved<Subs>>,
exposed_vars_by_symbol: Vec<(Symbol, Variable)>,
problems: Vec<solve::TypeError>,
},
}
@ -395,6 +397,7 @@ pub async fn load<'a>(
solved_types,
subs,
problems,
exposed_vars_by_symbol,
aliases,
src,
} => {
@ -431,6 +434,7 @@ pub async fn load<'a>(
can_problems,
type_problems,
declarations,
exposed_vars_by_symbol,
src,
});
} else {
@ -928,10 +932,10 @@ fn solve_module(
// annotations which are decoupled from our Subs, because that's how
// other modules will generate constraints for imported values
// within the context of their own Subs.
for (symbol, var) in exposed_vars_by_symbol {
let solved_type = SolvedType::new(&solved_subs, var);
for (symbol, var) in exposed_vars_by_symbol.iter() {
let solved_type = SolvedType::new(&solved_subs, *var);
solved_types.insert(symbol, solved_type);
solved_types.insert(*symbol, solved_type);
}
tokio::spawn(async move {
@ -942,6 +946,7 @@ fn solve_module(
src,
module_id: home,
subs: Arc::new(solved_subs),
exposed_vars_by_symbol,
solved_types,
problems,
aliases: env.aliases,

View file

@ -1,3 +1,3 @@
app Hello provides [ text ] imports []
app Hello provides [ main ] imports []
text = "Hello, World!"
main = "Hello, World!"

View file

@ -3,7 +3,7 @@ use std::os::raw::c_char;
#[link(name = "roc_app", kind = "static")]
extern "C" {
#[link_name = "$Test.main"]
#[link_name = "$main"]
fn str_from_roc() -> *const c_char;
}

View file

@ -1,5 +1,6 @@
app Quicksort provides [ quicksort ] imports []
app Quicksort provides [ main ] imports []
main = quicksort [ 7, 19, 4, 21 ]
quicksort : List (Num a) -> List (Num a)
quicksort = \list ->