Merge pull request #2926 from rtfeldman/matrix-correct-mutual-type-alias

Matrix correct mutual type alias
This commit is contained in:
Ayaz 2022-04-25 11:19:59 -04:00 committed by GitHub
commit 53c8dee4ed
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
6 changed files with 427 additions and 477 deletions

View file

@ -8,10 +8,10 @@ use crate::expr::{canonicalize_expr, Output, Recursive};
use crate::pattern::{bindings_from_patterns, canonicalize_def_header_pattern, Pattern};
use crate::procedure::References;
use crate::reference_matrix::ReferenceMatrix;
use crate::reference_matrix::TopologicalSort;
use crate::scope::create_alias;
use crate::scope::Scope;
use roc_collections::{ImEntry, ImMap, ImSet, MutMap, MutSet, SendMap};
use roc_collections::VecMap;
use roc_collections::{ImSet, MutMap, SendMap};
use roc_module::ident::Lowercase;
use roc_module::symbol::IdentId;
use roc_module::symbol::ModuleId;
@ -29,7 +29,6 @@ use roc_types::types::AliasKind;
use roc_types::types::LambdaSet;
use roc_types::types::{Alias, Type};
use std::fmt::Debug;
use ven_graph::topological_sort;
#[derive(Clone, Debug)]
pub struct Def {
@ -53,7 +52,7 @@ pub(crate) struct CanDefs {
defs: Vec<Option<Def>>,
def_ordering: DefOrdering,
aliases: SendMap<Symbol, Alias>,
aliases: VecMap<Symbol, Alias>,
}
/// A Def that has had patterns and type annnotations canonicalized,
@ -169,66 +168,34 @@ impl Declaration {
/// Returns a topologically sorted sequence of alias/opaque names
fn sort_type_defs_before_introduction(
mut referenced_symbols: MutMap<Symbol, Vec<Symbol>>,
referenced_symbols: VecMap<Symbol, Vec<Symbol>>,
) -> Vec<Symbol> {
let defined_symbols: Vec<Symbol> = referenced_symbols.keys().copied().collect();
let capacity = referenced_symbols.len();
let mut matrix = ReferenceMatrix::new(capacity);
// find the strongly connected components and their relations
let sccs = {
// only retain symbols from the current set of defined symbols; the rest come from other modules
for v in referenced_symbols.iter_mut() {
v.1.retain(|x| defined_symbols.iter().any(|s| s == x));
}
let (symbols, referenced) = referenced_symbols.unzip();
let all_successors_with_self = |symbol: &Symbol| referenced_symbols[symbol].iter().copied();
ven_graph::strongly_connected_components(&defined_symbols, all_successors_with_self)
};
// then sort the strongly connected components
let groups: Vec<_> = (0..sccs.len()).collect();
let mut group_symbols: Vec<Vec<Symbol>> = vec![Vec::new(); groups.len()];
let mut symbol_to_group_index = MutMap::default();
let mut group_to_groups = vec![Vec::new(); groups.len()];
for (index, group) in sccs.iter().enumerate() {
for s in group {
symbol_to_group_index.insert(*s, index);
}
}
for (index, group) in sccs.iter().enumerate() {
for s in group {
let reachable = &referenced_symbols[s];
for r in reachable {
let new_index = symbol_to_group_index[r];
if new_index != index {
group_to_groups[index].push(new_index);
}
for (index, references) in referenced.iter().enumerate() {
for referenced in references {
match symbols.iter().position(|k| k == referenced) {
None => { /* not defined in this scope */ }
Some(ref_index) => matrix.set_row_col(index, ref_index, true),
}
}
}
for v in group_symbols.iter_mut() {
v.sort();
v.dedup();
// find the strongly connected components and their relations
let nodes: Vec<_> = (0..capacity as u32).collect();
let mut output = Vec::with_capacity(capacity);
for group in matrix.strongly_connected_components(&nodes).groups() {
for index in group.iter_ones() {
output.push(symbols[index])
}
}
let all_successors_with_self = |group: &usize| group_to_groups[*group].iter().copied();
// split into self-recursive and mutually recursive
match topological_sort(&groups, all_successors_with_self) {
Ok(result) => result
.iter()
.rev()
.flat_map(|group_index| sccs[*group_index].iter())
.copied()
.collect(),
Err(_loop_detected) => unreachable!("the groups cannot recurse"),
}
output
}
#[inline(always)]
@ -298,7 +265,7 @@ pub(crate) fn canonicalize_defs<'a>(
let mut type_defs = MutMap::default();
let mut abilities_in_scope = Vec::new();
let mut referenced_type_symbols = MutMap::default();
let mut referenced_type_symbols = VecMap::default();
// Determine which idents we introduced in the course of this process.
let mut symbols_introduced = MutMap::default();
@ -351,7 +318,7 @@ pub(crate) fn canonicalize_defs<'a>(
}
let sorted = sort_type_defs_before_introduction(referenced_type_symbols);
let mut aliases = SendMap::default();
let mut aliases = VecMap::default();
let mut abilities = MutMap::default();
for type_name in sorted {
@ -453,7 +420,8 @@ pub(crate) fn canonicalize_defs<'a>(
can_ann.typ.clone(),
kind,
);
aliases.insert(symbol, alias.clone());
aliases.insert(symbol, alias);
}
TypeDef::Ability(name, members) => {
@ -467,6 +435,7 @@ pub(crate) fn canonicalize_defs<'a>(
// Now that we know the alias dependency graph, we can try to insert recursion variables
// where aliases are recursive tag unions, or detect illegal recursions.
let mut aliases = correct_mutual_recursive_type_alias(env, aliases, var_store);
for (symbol, alias) in aliases.iter() {
scope.add_alias(
*symbol,
@ -570,7 +539,7 @@ pub(crate) fn canonicalize_defs<'a>(
defs,
def_ordering,
// The result needs a thread-safe `SendMap`
aliases: aliases.into_iter().collect(),
aliases,
},
scope,
output,
@ -734,8 +703,6 @@ struct DefOrdering {
// references without looking into closure bodies.
// Used to spot definitely-wrong recursion
direct_references: ReferenceMatrix,
length: u32,
}
impl DefOrdering {
@ -752,7 +719,6 @@ impl DefOrdering {
symbol_to_id,
references: ReferenceMatrix::new(capacity),
direct_references: ReferenceMatrix::new(capacity),
length: capacity as u32,
}
}
@ -803,36 +769,15 @@ impl DefOrdering {
None
}
fn get_symbol(&self, id: u32) -> Option<Symbol> {
fn get_symbol(&self, id: usize) -> Option<Symbol> {
for (ident_id, def_id) in self.symbol_to_id.iter() {
if id == *def_id {
if id as u32 == *def_id {
return Some(Symbol::new(self.home, *ident_id));
}
}
None
}
fn is_self_recursive(&self, id: u32) -> bool {
debug_assert!(id < self.length);
// id'th row, id'th column
let index = (id * self.length) + id;
self.references.get(index as usize)
}
#[inline(always)]
fn successors(&self, id: u32) -> impl Iterator<Item = u32> + '_ {
self.references
.references_for(id as usize)
.map(|x| x as u32)
}
#[inline(always)]
fn successors_without_self(&self, id: u32) -> impl Iterator<Item = u32> + '_ {
self.successors(id).filter(move |x| *x != id)
}
}
#[inline(always)]
@ -851,253 +796,122 @@ pub(crate) fn sort_can_defs(
output.aliases.insert(symbol, alias);
}
// TODO also do the same `addDirects` check elm/compiler does, so we can
// report an error if a recursive definition can't possibly terminate!
match def_ordering.references.topological_sort_into_groups() {
TopologicalSort::Groups { groups } => {
let mut declarations = Vec::new();
// groups are in reversed order
for group in groups.into_iter().rev() {
group_to_declaration(&def_ordering, &group, &mut defs, &mut declarations);
}
(Ok(declarations), output)
}
TopologicalSort::HasCycles {
mut groups,
nodes_in_cycle,
} => {
let mut declarations = Vec::new();
let mut problems = Vec::new();
// nodes_in_cycle are symbols that form a syntactic cycle. That isn't always a problem,
// and in general it's impossible to decide whether it is. So we use a crude heuristic:
//
// Definitions where the cycle occurs behind a lambda are OK
//
// boom = \_ -> boom {}
//
// But otherwise we report an error, e.g.
//
// foo = if b then foo else bar
let sccs = def_ordering
.references
.strongly_connected_components(&nodes_in_cycle);
for cycle in sccs {
// check whether the cycle is faulty, which is when it has
// a direct successor in the current cycle. This catches things like:
//
// x = x
//
// or
//
// p = q
// q = p
let is_invalid_cycle = match cycle.get(0) {
Some(def_id) => def_ordering
.direct_references
.references_for(*def_id as usize)
.any(|key| cycle.contains(&(key as u32))),
None => false,
};
if is_invalid_cycle {
// We want to show the entire cycle in the error message, so expand it out.
let mut entries = Vec::new();
for def_id in &cycle {
let symbol = def_ordering.get_symbol(*def_id).unwrap();
let def = &defs[*def_id as usize];
let expr_region = defs[*def_id as usize].as_ref().unwrap().loc_expr.region;
let entry = CycleEntry {
symbol,
symbol_region: def.as_ref().unwrap().loc_pattern.region,
expr_region,
};
entries.push(entry);
}
// Sort them by line number to make the report more helpful.
entries.sort_by_key(|entry| entry.symbol_region);
problems.push(Problem::RuntimeError(RuntimeError::CircularDef(
entries.clone(),
)));
declarations.push(Declaration::InvalidCycle(entries));
}
// if it's an invalid cycle, other groups may depend on the
// symbols defined here, so also push this cycle onto the groups
//
// if it's not an invalid cycle, this is slightly inefficient,
// because we know this becomes exactly one DeclareRec already
groups.push(cycle);
}
// now we have a collection of groups whose dependencies are not cyclic.
// They are however not yet topologically sorted. Here we have to get a bit
// creative to get all the definitions in the correct sorted order.
let mut group_ids = Vec::with_capacity(groups.len());
let mut symbol_to_group_index = MutMap::default();
for (i, group) in groups.iter().enumerate() {
for symbol in group {
symbol_to_group_index.insert(*symbol, i);
}
group_ids.push(i);
}
let successors_of_group = |group_id: &usize| {
let mut result = MutSet::default();
// for each symbol in this group
for symbol in &groups[*group_id] {
// find its successors
for succ in def_ordering.successors_without_self(*symbol) {
// and add its group to the result
match symbol_to_group_index.get(&succ) {
Some(index) => {
result.insert(*index);
}
None => unreachable!("no index for symbol {:?}", succ),
}
}
}
// don't introduce any cycles to self
result.remove(group_id);
result
};
match ven_graph::topological_sort_into_groups(&group_ids, successors_of_group) {
Ok(sorted_group_ids) => {
for sorted_group in sorted_group_ids.iter().rev() {
for group_id in sorted_group.iter().rev() {
let group = &groups[*group_id];
group_to_declaration(
&def_ordering,
group,
&mut defs,
&mut declarations,
);
}
}
}
Err(_) => unreachable!("there should be no cycles now!"),
}
for problem in problems {
env.problem(problem);
}
(Ok(declarations), output)
}
}
}
fn group_to_declaration(
def_ordering: &DefOrdering,
group: &[u32],
defs: &mut [Option<Def>],
declarations: &mut Vec<Declaration>,
) {
use Declaration::*;
// Patterns like
//
// { x, y } = someDef
//
// Can bind multiple symbols. When not incorrectly recursive (which is guaranteed in this function),
// normally `someDef` would be inserted twice. We use the region of the pattern as a unique key
// for a definition, so every definition is only inserted (thus typechecked and emitted) once
let mut seen_pattern_regions: Vec<Region> = Vec::with_capacity(2);
let sccs = def_ordering.references.strongly_connected_components(group);
for cycle in sccs {
if cycle.len() == 1 {
let def_id = cycle[0];
match defs[def_id as usize].take() {
Some(mut new_def) => {
// there is only one definition in this cycle, so we only have
// to check whether it recurses with itself; there is nobody else
// to recurse with, or they would also be in this cycle.
let is_self_recursive = def_ordering.is_self_recursive(def_id);
if let Closure(ClosureData {
recursive: recursive @ Recursive::NotRecursive,
..
}) = &mut new_def.loc_expr.value
{
if is_self_recursive {
*recursive = Recursive::Recursive
}
}
if !seen_pattern_regions.contains(&new_def.loc_pattern.region) {
seen_pattern_regions.push(new_def.loc_pattern.region);
if is_self_recursive {
declarations.push(DeclareRec(vec![new_def]));
} else {
declarations.push(Declare(new_def));
}
}
}
macro_rules! take_def {
($index:expr) => {
match defs[$index].take() {
Some(def) => def,
None => {
// NOTE: a `_ = someDef` can mean we don't have a symbol here
let symbol = def_ordering.get_symbol(def_id);
let symbol = def_ordering.get_symbol($index);
roc_error_macros::internal_error!("def not available {:?}", symbol)
}
}
};
}
let nodes: Vec<_> = (0..defs.len() as u32).collect();
// We first perform SCC based on any reference, both variable usage and calls
// considering both value definitions and function bodies. This will spot any
// recursive relations between any 2 definitions.
let sccs = def_ordering
.references
.strongly_connected_components(&nodes);
let mut declarations = Vec::new();
for group in sccs.groups() {
if group.count_ones() == 1 {
// a group with a single Def, nice and simple
let index = group.iter_ones().next().unwrap();
let def = take_def!(index);
let declaration = if def_ordering.direct_references.get_row_col(index, index) {
// a definition like `x = x + 1`, which is invalid in roc
let symbol = def_ordering.get_symbol(index).unwrap();
let entries = vec![make_cycle_entry(symbol, &def)];
let problem = Problem::RuntimeError(RuntimeError::CircularDef(entries.clone()));
env.problem(problem);
Declaration::InvalidCycle(entries)
} else if def_ordering.references.get_row_col(index, index) {
// this function calls itself, and must be typechecked as a recursive def
Declaration::DeclareRec(vec![mark_def_recursive(def)])
} else {
Declaration::Declare(def)
};
declarations.push(declaration);
} else {
let mut can_defs = Vec::new();
// There is something recursive going on between the Defs of this group.
// Now we use the direct_references to see if it is clearly invalid recursion, e.g.
//
// x = y
// y = x
//
// We allow indirect recursion (behind a lambda), e.g.
//
// boom = \{} -> boom {}
//
// In general we cannot spot faulty recursion (halting problem) so this is our best attempt
let nodes: Vec<_> = group.iter_ones().map(|v| v as u32).collect();
let direct_sccs = def_ordering
.direct_references
.strongly_connected_components(&nodes);
// Topological sort gives us the reverse of the sorting we want!
for def_id in cycle.into_iter().rev() {
match defs[def_id as usize].take() {
Some(mut new_def) => {
// Determine recursivity of closures that are not tail-recursive
if let Closure(ClosureData {
recursive: recursive @ Recursive::NotRecursive,
..
}) = &mut new_def.loc_expr.value
{
if def_ordering.references.is_recursive(def_id as usize) {
*recursive = Recursive::Recursive
}
}
let declaration = if direct_sccs.groups().count() == 1 {
// all defs are part of the same direct cycle, that is invalid!
let mut entries = Vec::with_capacity(group.count_ones());
if !seen_pattern_regions.contains(&new_def.loc_pattern.region) {
seen_pattern_regions.push(new_def.loc_pattern.region);
for index in group.iter_ones() {
let def = take_def!(index);
let symbol = def_ordering.get_symbol(index).unwrap();
can_defs.push(new_def);
}
}
None => {
// NOTE: a `_ = someDef` can mean we don't have a symbol here
let symbol = def_ordering.get_symbol(def_id);
roc_error_macros::internal_error!("def not available {:?}", symbol)
}
entries.push(make_cycle_entry(symbol, &def))
}
}
declarations.push(DeclareRec(can_defs));
let problem = Problem::RuntimeError(RuntimeError::CircularDef(entries.clone()));
env.problem(problem);
Declaration::InvalidCycle(entries)
} else {
let rec_defs = group
.iter_ones()
.map(|index| mark_def_recursive(take_def!(index)))
.collect();
Declaration::DeclareRec(rec_defs)
};
declarations.push(declaration);
}
}
(Ok(declarations), output)
}
fn mark_def_recursive(mut def: Def) -> Def {
if let Closure(ClosureData {
recursive: recursive @ Recursive::NotRecursive,
..
}) = &mut def.loc_expr.value
{
*recursive = Recursive::Recursive
}
def
}
fn make_cycle_entry(symbol: Symbol, def: &Def) -> CycleEntry {
CycleEntry {
symbol,
symbol_region: def.loc_pattern.region,
expr_region: def.loc_expr.region,
}
}
fn pattern_to_vars_by_symbol(
@ -1178,16 +992,11 @@ fn single_can_def(
fn add_annotation_aliases(
type_annotation: &crate::annotation::Annotation,
aliases: &mut ImMap<Symbol, Alias>,
aliases: &mut VecMap<Symbol, Alias>,
) {
for (name, alias) in type_annotation.aliases.iter() {
match aliases.entry(*name) {
ImEntry::Occupied(_) => {
// do nothing
}
ImEntry::Vacant(vacant) => {
vacant.insert(alias.clone());
}
if !aliases.contains(name) {
aliases.insert(*name, alias.clone());
}
}
}
@ -1206,7 +1015,7 @@ enum DefReferences {
AnnotationWithoutBody,
}
struct TempOutput {
struct DefOutput {
output: Output,
def: Def,
references: DefReferences,
@ -1221,9 +1030,9 @@ fn canonicalize_pending_value_def<'a>(
mut output: Output,
scope: &mut Scope,
var_store: &mut VarStore,
aliases: &mut ImMap<Symbol, Alias>,
aliases: &mut VecMap<Symbol, Alias>,
abilities_in_scope: &[Symbol],
) -> TempOutput {
) -> DefOutput {
use PendingValueDef::*;
// Make types for the body expr, even if we won't end up having a body.
@ -1324,7 +1133,7 @@ fn canonicalize_pending_value_def<'a>(
vars_by_symbol.clone(),
);
TempOutput {
DefOutput {
output,
references: DefReferences::AnnotationWithoutBody,
def,
@ -1437,7 +1246,7 @@ fn canonicalize_pending_value_def<'a>(
output.union(can_output);
TempOutput {
DefOutput {
output,
references: DefReferences::Function(closure_references),
def,
@ -1456,7 +1265,7 @@ fn canonicalize_pending_value_def<'a>(
output.union(can_output);
TempOutput {
DefOutput {
output,
references: DefReferences::Value(refs),
def,
@ -1551,7 +1360,7 @@ fn canonicalize_pending_value_def<'a>(
output.union(can_output);
TempOutput {
DefOutput {
output,
references: DefReferences::Function(closure_references),
def,
@ -1570,7 +1379,7 @@ fn canonicalize_pending_value_def<'a>(
output.union(can_output);
TempOutput {
DefOutput {
output,
references: DefReferences::Value(refs),
def,
@ -1902,75 +1711,147 @@ fn to_pending_value_def<'a>(
/// Make aliases recursive
fn correct_mutual_recursive_type_alias<'a>(
env: &mut Env<'a>,
mut original_aliases: SendMap<Symbol, Alias>,
original_aliases: VecMap<Symbol, Alias>,
var_store: &mut VarStore,
) -> ImMap<Symbol, Alias> {
let symbols_introduced: Vec<Symbol> = original_aliases.keys().copied().collect();
) -> VecMap<Symbol, Alias> {
let capacity = original_aliases.len();
let mut matrix = ReferenceMatrix::new(capacity);
let all_successors_with_self = |symbol: &Symbol| -> Vec<Symbol> {
match original_aliases.get(symbol) {
Some(alias) => {
let mut loc_succ = alias.typ.symbols();
// remove anything that is not defined in the current block
loc_succ.retain(|key| symbols_introduced.contains(key));
let (symbols_introduced, mut aliases) = original_aliases.unzip();
loc_succ
for (index, alias) in aliases.iter().enumerate() {
for referenced in alias.typ.symbols() {
match symbols_introduced.iter().position(|k| referenced == *k) {
None => { /* ignore */ }
Some(ref_id) => matrix.set_row_col(index, ref_id, true),
}
None => vec![],
}
};
}
// TODO investigate should this be in a loop?
let defined_symbols: Vec<Symbol> = original_aliases.keys().copied().collect();
let mut solved_aliases = bitvec::vec::BitVec::<usize>::repeat(false, capacity);
let cycles =
ven_graph::strongly_connected_components(&defined_symbols, all_successors_with_self);
let mut solved_aliases = ImMap::default();
let group: Vec<_> = (0u32..capacity as u32).collect();
let sccs = matrix.strongly_connected_components(&group);
for cycle in cycles {
debug_assert!(!cycle.is_empty());
// scratchpad to store aliases that are modified in the current iteration.
// Only used when there is are more than one alias in a group. See below why
// this is needed.
let scratchpad_capacity = sccs
.groups()
.map(|r| r.count_ones())
.max()
.unwrap_or_default();
let mut scratchpad = Vec::with_capacity(scratchpad_capacity);
let mut pending_aliases: ImMap<_, _> = cycle
.iter()
.map(|&sym| (sym, original_aliases.remove(&sym).unwrap()))
.collect();
for cycle in sccs.groups() {
debug_assert!(cycle.count_ones() > 0);
// We need to instantiate the alias with any symbols in the currrent module it
// depends on.
//
// the `strongly_connected_components` returns SCCs in a topologically sorted order:
// SCC_0 has those aliases that don't rely on any other, SCC_1 has only those that rely on SCC_1, etc.
//
// Hence, we only need to worry about symbols in the current SCC or any prior one.
// It cannot be using any of the others, and we've already instantiated aliases coming from other modules.
let mut to_instantiate = solved_aliases | cycle;
// Make sure we report only one error for the cycle, not an error for every
// alias in the cycle.
let mut can_still_report_error = true;
// We need to instantiate the alias with any symbols in the currrent module it
// depends on.
// We only need to worry about symbols in this SCC or any prior one, since the SCCs
// were sorted topologically, and we've already instantiated aliases coming from other
// modules.
// NB: ImMap::clone is O(1): https://docs.rs/im/latest/src/im/hash/map.rs.html#1527-1544
let mut to_instantiate = solved_aliases.clone().union(pending_aliases.clone());
for index in cycle.iter_ones() {
// Don't try to instantiate the alias itself in its own definition.
to_instantiate.set(index, false);
for &rec in cycle.iter() {
let alias = pending_aliases.get_mut(&rec).unwrap();
// Don't try to instantiate the alias itself in its definition.
let original_alias_def = to_instantiate.remove(&rec).unwrap();
// Within a recursive group, we must instantiate all aliases like how they came to the
// loop. e.g. given
//
// A : [ ConsA B, NilA ]
// B : [ ConsB A, NilB ]
//
// Our goal is
//
// A : [ ConsA [ ConsB A, NilB ], NilA ]
// B : [ ConsB [ ConsA B, NilA ], NilB ]
//
// But if we would first instantiate B into A, then use the updated A to instantiate B,
// we get
//
// A : [ ConsA [ ConsB A, NilB ], NilA ]
// B : [ ConsB [ ConsA [ ConsB A, NilB ], NilA ], NilB ]
//
// Which is incorrect. We do need the instantiated version however.
// e.g. if in a next group we have:
//
// C : A
//
// Then we must use the instantiated version
//
// C : [ ConsA [ ConsB A, NilB ], NilA ]
//
// So, we cannot replace the original version of A with its instantiated version
// while we process A's group. We have to store the instantiated version until the
// current group is done, then move it to the `aliases` array. That is what the scratchpad is for.
let alias = if cycle.count_ones() == 1 {
// an optimization: we can modify the alias in the `aliases` list directly
// because it is the only alias in the group.
&mut aliases[index]
} else {
scratchpad.push((index, aliases[index].clone()));
&mut scratchpad.last_mut().unwrap().1
};
// Now, `alias` is possibly a mutable borrow from the `aliases` vector. But we also want
// to immutably borrow other elements from that vector to instantiate them into `alias`.
// The borrow checker disallows that.
//
// So we get creative: we swap out the element we want to modify with a dummy. We can
// then freely modify the type we moved out, and the `to_instantiate` mask
// makes sure that our dummy is not used.
let alias_region = alias.region;
let mut alias_type = Type::EmptyRec;
std::mem::swap(&mut alias_type, &mut alias.typ);
let can_instantiate_symbol = |s| match symbols_introduced.iter().position(|i| *i == s) {
Some(s_index) if to_instantiate[s_index] => aliases.get(s_index),
_ => None,
};
let mut new_lambda_sets = ImSet::default();
alias.typ.instantiate_aliases(
alias.region,
&to_instantiate,
alias_type.instantiate_aliases(
alias_region,
&can_instantiate_symbol,
var_store,
&mut new_lambda_sets,
);
for lambda_set_var in new_lambda_sets {
alias
.lambda_set_variables
.push(LambdaSet(Type::Variable(lambda_set_var)));
}
let alias = if cycle.count_ones() > 1 {
&mut scratchpad.last_mut().unwrap().1
} else {
&mut aliases[index]
};
to_instantiate.insert(rec, original_alias_def);
// swap the type back
std::mem::swap(&mut alias_type, &mut alias.typ);
// We can instantiate this alias in future iterations
to_instantiate.set(index, true);
// add any lambda sets that the instantiation created to the current alias
alias.lambda_set_variables.extend(
new_lambda_sets
.iter()
.map(|var| LambdaSet(Type::Variable(*var))),
);
// Now mark the alias recursive, if it needs to be.
let is_self_recursive = alias.typ.contains_symbol(rec);
let is_mutually_recursive = cycle.len() > 1;
let rec = symbols_introduced[index];
let is_self_recursive = cycle.count_ones() == 1 && matrix.get_row_col(index, index);
let is_mutually_recursive = cycle.count_ones() > 1;
if is_self_recursive || is_mutually_recursive {
let _made_recursive = make_tag_union_of_alias_recursive(
@ -1984,20 +1865,28 @@ fn correct_mutual_recursive_type_alias<'a>(
}
}
// the current group has instantiated. Now we can move the updated aliases to the `aliases` vector
for (index, alias) in scratchpad.drain(..) {
aliases[index] = alias;
}
// The cycle we just instantiated and marked recursive may still be an illegal cycle, if
// all the types in the cycle are narrow newtypes. We can't figure this out until now,
// because we need all the types to be deeply instantiated.
let all_are_narrow = cycle.iter().all(|sym| {
let typ = &pending_aliases.get(sym).unwrap().typ;
let all_are_narrow = cycle.iter_ones().all(|index| {
let typ = &aliases[index].typ;
matches!(typ, Type::RecursiveTagUnion(..)) && typ.is_narrow()
});
if all_are_narrow {
// This cycle is illegal!
let mut rest = cycle;
let alias_name = rest.pop().unwrap();
let mut indices = cycle.iter_ones();
let first_index = indices.next().unwrap();
let alias = pending_aliases.get_mut(&alias_name).unwrap();
let rest: Vec<Symbol> = indices.map(|i| symbols_introduced[i]).collect();
let alias_name = symbols_introduced[first_index];
let alias = aliases.get_mut(first_index).unwrap();
mark_cyclic_alias(
env,
@ -2009,11 +1898,12 @@ fn correct_mutual_recursive_type_alias<'a>(
)
}
// Now, promote all resolved aliases in this cycle as solved.
solved_aliases.extend(pending_aliases);
// We've instantiated all we could, so all instantiatable aliases are solved now
solved_aliases = to_instantiate;
}
solved_aliases
// Safety: both vectors are equal length and there are no duplicates
unsafe { VecMap::zip(symbols_introduced, aliases) }
}
fn make_tag_union_of_alias_recursive<'a>(
@ -2022,7 +1912,7 @@ fn make_tag_union_of_alias_recursive<'a>(
alias: &mut Alias,
others: Vec<Symbol>,
var_store: &mut VarStore,
can_report_error: &mut bool,
can_report_cyclic_error: &mut bool,
) -> Result<(), ()> {
let alias_args = alias
.type_variables
@ -2037,7 +1927,7 @@ fn make_tag_union_of_alias_recursive<'a>(
others,
&mut alias.typ,
var_store,
can_report_error,
can_report_cyclic_error,
);
match made_recursive {
@ -2086,22 +1976,25 @@ fn make_tag_union_recursive_help<'a>(
others: Vec<Symbol>,
typ: &mut Type,
var_store: &mut VarStore,
can_report_error: &mut bool,
can_report_cyclic_error: &mut bool,
) -> MakeTagUnionRecursive {
use MakeTagUnionRecursive::*;
let Loc {
value: (symbol, args),
region: alias_region,
} = recursive_alias;
let vars = args.iter().map(|(_, t)| t.clone()).collect::<Vec<_>>();
let (symbol, args) = recursive_alias.value;
let alias_region = recursive_alias.region;
match typ {
Type::TagUnion(tags, ext) => {
let recursion_variable = var_store.fresh();
let type_arguments = args.iter().map(|(_, t)| t.clone()).collect::<Vec<_>>();
let mut pending_typ =
Type::RecursiveTagUnion(recursion_variable, tags.to_vec(), ext.clone());
let substitution_result =
pending_typ.substitute_alias(symbol, &vars, &Type::Variable(recursion_variable));
let substitution_result = pending_typ.substitute_alias(
symbol,
&type_arguments,
&Type::Variable(recursion_variable),
);
match substitution_result {
Ok(()) => {
// We can substitute the alias presence for the variable exactly.
@ -2127,18 +2020,22 @@ fn make_tag_union_recursive_help<'a>(
actual,
type_arguments,
..
} => make_tag_union_recursive_help(
env,
Loc::at_zero((symbol, type_arguments)),
region,
others,
actual,
var_store,
can_report_error,
),
} => {
// try to make `actual` recursive
make_tag_union_recursive_help(
env,
Loc::at_zero((symbol, type_arguments)),
region,
others,
actual,
var_store,
can_report_cyclic_error,
)
}
_ => {
mark_cyclic_alias(env, typ, symbol, region, others, *can_report_error);
*can_report_error = false;
// take care to report a cyclic alias only once (not once for each alias in the cycle)
mark_cyclic_alias(env, typ, symbol, region, others, *can_report_cyclic_error);
*can_report_cyclic_error = false;
Cyclic
}

View file

@ -1,7 +1,8 @@
// see if we get better performance with different integer types
pub(crate) type Element = usize;
pub(crate) type BitVec = bitvec::vec::BitVec<Element>;
pub(crate) type BitSlice = bitvec::prelude::BitSlice<Element>;
type Order = bitvec::order::Lsb0;
type Element = usize;
type BitVec = bitvec::vec::BitVec<Element, Order>;
type BitSlice = bitvec::prelude::BitSlice<Element, Order>;
/// A square boolean matrix used to store relations
///
@ -36,33 +37,8 @@ impl ReferenceMatrix {
}
#[inline(always)]
pub fn get(&self, index: usize) -> bool {
self.bitvec[index]
}
pub fn is_recursive(&self, index: usize) -> bool {
let mut scheduled = self.row_slice(index).to_bitvec();
let mut visited = self.row_slice(index).to_bitvec();
// yes this is a bit inefficient because rows are visited repeatedly.
while scheduled.any() {
for one in scheduled.iter_ones() {
if one == index {
return true;
}
visited |= self.row_slice(one)
}
// i.e. visited did not change
if visited.count_ones() == scheduled.count_ones() {
break;
}
scheduled |= &visited;
}
false
pub fn get_row_col(&self, row: usize, col: usize) -> bool {
self.bitvec[row * self.length + col]
}
}
@ -75,6 +51,7 @@ impl ReferenceMatrix {
//
// Thank you, Samuel!
impl ReferenceMatrix {
#[allow(dead_code)]
pub fn topological_sort_into_groups(&self) -> TopologicalSort {
if self.length == 0 {
return TopologicalSort::Groups { groups: Vec::new() };
@ -153,7 +130,7 @@ impl ReferenceMatrix {
}
/// Get the strongly-connected components of the set of input nodes.
pub fn strongly_connected_components(&self, nodes: &[u32]) -> Vec<Vec<u32>> {
pub fn strongly_connected_components(&self, nodes: &[u32]) -> Sccs {
let mut params = Params::new(self.length, nodes);
'outer: loop {
@ -172,6 +149,7 @@ impl ReferenceMatrix {
}
}
#[allow(dead_code)]
pub(crate) enum TopologicalSort {
/// There were no cycles, all nodes have been partitioned into groups
Groups { groups: Vec<Vec<u32>> },
@ -197,7 +175,7 @@ struct Params {
c: usize,
p: Vec<u32>,
s: Vec<u32>,
scc: Vec<Vec<u32>>,
scc: Sccs,
scca: Vec<u32>,
}
@ -214,7 +192,10 @@ impl Params {
c: 0,
s: Vec::new(),
p: Vec::new(),
scc: Vec::new(),
scc: Sccs {
matrix: ReferenceMatrix::new(length),
components: 0,
},
scca: Vec::new(),
}
}
@ -255,15 +236,47 @@ fn recurse_onto(length: usize, bitvec: &BitVec, v: usize, params: &mut Params) {
if params.p.last() == Some(&(v as u32)) {
params.p.pop();
let mut component = Vec::new();
while let Some(node) = params.s.pop() {
component.push(node);
params
.scc
.matrix
.set_row_col(params.scc.components, node as usize, true);
params.scca.push(node);
params.preorders[node as usize] = Preorder::Removed;
if node as usize == v {
break;
}
}
params.scc.push(component);
params.scc.components += 1;
}
}
#[derive(Debug)]
pub(crate) struct Sccs {
components: usize,
matrix: ReferenceMatrix,
}
impl Sccs {
/// Iterate over the individual components. Each component is represented as a bit vector where
/// a one indicates that the node is part of the group and a zero that it is not.
///
/// A good way to get the actual nodes is the `.iter_ones()` method.
///
/// It is guaranteed that a group is non-empty, and that flattening the groups gives a valid
/// topological ordering.
pub fn groups(&self) -> std::iter::Take<bitvec::slice::Chunks<'_, Element, Order>> {
// work around a panic when requesting a chunk size of 0
let length = if self.matrix.length == 0 {
// the `.take(self.components)` ensures the resulting iterator will be empty
assert!(self.components == 0);
1
} else {
self.matrix.length
};
self.matrix.bitvec.chunks(length).take(self.components)
}
}