Merge pull request #666 from rtfeldman/return-function

Return function pointers and closures
This commit is contained in:
Richard Feldman 2020-11-08 22:21:01 -05:00 committed by GitHub
commit 54de538952
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
9 changed files with 397 additions and 461 deletions

View file

@ -362,289 +362,24 @@ pub fn construct_optimization_passes<'a>(
(mpm, fpm) (mpm, fpm)
} }
/// For communication with C (tests and platforms) we need to abide by the C calling convention
///
/// While small values are just returned like with the fast CC, larger structures need to
/// be written into a pointer (into the callers stack)
enum PassVia {
Register,
Memory,
}
impl PassVia {
fn from_layout(ptr_bytes: u32, layout: &Layout<'_>) -> Self {
let stack_size = layout.stack_size(ptr_bytes);
let eightbyte = 8;
if stack_size > 2 * eightbyte {
PassVia::Memory
} else {
PassVia::Register
}
}
}
/// entry point to roc code; uses the fastcc calling convention
pub fn build_roc_main<'a, 'ctx, 'env>(
env: &Env<'a, 'ctx, 'env>,
layout_ids: &mut LayoutIds<'a>,
layout: &Layout<'a>,
main_body: &roc_mono::ir::Stmt<'a>,
) -> &'a FunctionValue<'ctx> {
use inkwell::types::BasicType;
let context = env.context;
let builder = env.builder;
let arena = env.arena;
let ptr_bytes = env.ptr_bytes;
let return_type = basic_type_from_layout(&arena, context, &layout, ptr_bytes);
let roc_main_fn_name = "$Test.roc_main";
// make the roc main function
let roc_main_fn_type = return_type.fn_type(&[], false);
// Add main to the module.
let roc_main_fn = env
.module
.add_function(roc_main_fn_name, roc_main_fn_type, None);
// internal function, use fast calling convention
roc_main_fn.set_call_conventions(FAST_CALL_CONV);
// Add main's body
let basic_block = context.append_basic_block(roc_main_fn, "entry");
builder.position_at_end(basic_block);
// builds the function body (return statement included)
build_exp_stmt(
env,
layout_ids,
&mut Scope::default(),
roc_main_fn,
main_body,
);
env.arena.alloc(roc_main_fn)
}
pub fn promote_to_main_function<'a, 'ctx, 'env>( pub fn promote_to_main_function<'a, 'ctx, 'env>(
env: &Env<'a, 'ctx, 'env>, env: &Env<'a, 'ctx, 'env>,
layout_ids: &mut LayoutIds<'a>, layout_ids: &mut LayoutIds<'a>,
symbol: Symbol, symbol: Symbol,
layout: &Layout<'a>, layout: &Layout<'a>,
) -> (&'static str, &'a FunctionValue<'ctx>) { ) -> (&'static str, FunctionValue<'ctx>) {
let fn_name = layout_ids let fn_name = layout_ids
.get(symbol, layout) .get(symbol, layout)
.to_symbol_string(symbol, &env.interns); .to_symbol_string(symbol, &env.interns);
let wrapped = env.module.get_function(&fn_name).unwrap(); let roc_main_fn = env.module.get_function(&fn_name).unwrap();
make_main_function_help(env, layout, wrapped)
}
pub fn make_main_function<'a, 'ctx, 'env>(
env: &Env<'a, 'ctx, 'env>,
layout_ids: &mut LayoutIds<'a>,
layout: &Layout<'a>,
main_body: &roc_mono::ir::Stmt<'a>,
) -> (&'static str, &'a FunctionValue<'ctx>) {
// internal main function
let roc_main_fn = *build_roc_main(env, layout_ids, layout, main_body);
make_main_function_help(env, layout, roc_main_fn)
}
fn make_main_function_help<'a, 'ctx, 'env>(
env: &Env<'a, 'ctx, 'env>,
layout: &Layout<'a>,
roc_main_fn: FunctionValue<'ctx>,
) -> (&'static str, &'a FunctionValue<'ctx>) {
// build the C calling convention wrapper
use inkwell::types::BasicType;
use PassVia::*;
let context = env.context;
let builder = env.builder;
let main_fn_name = "$Test.main"; let main_fn_name = "$Test.main";
let u8_ptr = env.context.i8_type().ptr_type(AddressSpace::Generic);
let fields = [Layout::Builtin(Builtin::Int64), layout.clone()];
let main_return_layout = Layout::Struct(&fields);
let main_return_type = block_of_memory(context, &main_return_layout, env.ptr_bytes);
let register_or_memory = PassVia::from_layout(env.ptr_bytes, &main_return_layout);
let main_fn_type = match register_or_memory {
Memory => {
let return_value_ptr = context.i64_type().ptr_type(AddressSpace::Generic).into();
context.void_type().fn_type(&[return_value_ptr], false)
}
Register => main_return_type.fn_type(&[], false),
};
// Add main to the module. // Add main to the module.
let main_fn = env.module.add_function(main_fn_name, main_fn_type, None); let main_fn = expose_function_to_host_help(env, roc_main_fn, main_fn_name);
// our exposed main function adheres to the C calling convention (main_fn_name, main_fn)
main_fn.set_call_conventions(C_CALL_CONV);
// Add main's body
let basic_block = context.append_basic_block(main_fn, "entry");
let then_block = context.append_basic_block(main_fn, "then_block");
let catch_block = context.append_basic_block(main_fn, "catch_block");
let cont_block = context.append_basic_block(main_fn, "cont_block");
builder.position_at_end(basic_block);
let result_alloca = builder.build_alloca(main_return_type, "result");
// invoke instead of call, so that we can catch any exeptions thrown in Roc code
let call_result = {
let call = builder.build_invoke(roc_main_fn, &[], then_block, catch_block, "call_roc_main");
call.set_call_convention(FAST_CALL_CONV);
call.try_as_basic_value().left().unwrap()
};
// exception handling
{
builder.position_at_end(catch_block);
let landing_pad_type = {
let exception_ptr = context.i8_type().ptr_type(AddressSpace::Generic).into();
let selector_value = context.i32_type().into();
context.struct_type(&[exception_ptr, selector_value], false)
};
let info = builder
.build_catch_all_landing_pad(
&landing_pad_type,
&BasicValueEnum::IntValue(context.i8_type().const_zero()),
context.i8_type().ptr_type(AddressSpace::Generic),
"main_landing_pad",
)
.into_struct_value();
let exception_ptr = builder
.build_extract_value(info, 0, "exception_ptr")
.unwrap();
let thrown = cxa_begin_catch(env, exception_ptr);
let error_msg = {
let exception_type = u8_ptr;
let ptr = builder.build_bitcast(
thrown,
exception_type.ptr_type(AddressSpace::Generic),
"cast",
);
builder.build_load(ptr.into_pointer_value(), "error_msg")
};
let return_type = context.struct_type(&[context.i64_type().into(), u8_ptr.into()], false);
let return_value = {
let v1 = return_type.const_zero();
// flag is non-zero, indicating failure
let flag = context.i64_type().const_int(1, false);
let v2 = builder
.build_insert_value(v1, flag, 0, "set_error")
.unwrap();
let v3 = builder
.build_insert_value(v2, error_msg, 1, "set_exception")
.unwrap();
v3
};
// bitcast result alloca so we can store our concrete type { flag, error_msg } in there
let result_alloca_bitcast = builder
.build_bitcast(
result_alloca,
return_type.ptr_type(AddressSpace::Generic),
"result_alloca_bitcast",
)
.into_pointer_value();
// store our return value
builder.build_store(result_alloca_bitcast, return_value);
cxa_end_catch(env);
builder.build_unconditional_branch(cont_block);
}
{
builder.position_at_end(then_block);
let actual_return_type =
basic_type_from_layout(env.arena, env.context, layout, env.ptr_bytes);
let return_type =
context.struct_type(&[context.i64_type().into(), actual_return_type], false);
let return_value = {
let v1 = return_type.const_zero();
let v2 = builder
.build_insert_value(v1, context.i64_type().const_zero(), 0, "set_no_error")
.unwrap();
let v3 = builder
.build_insert_value(v2, call_result, 1, "set_call_result")
.unwrap();
v3
};
let ptr = builder.build_bitcast(
result_alloca,
return_type.ptr_type(AddressSpace::Generic),
"name",
);
builder.build_store(ptr.into_pointer_value(), return_value);
builder.build_unconditional_branch(cont_block);
}
{
builder.position_at_end(cont_block);
let result = builder.build_load(result_alloca, "result");
match register_or_memory {
Memory => {
// write the result into the supplied pointer
let ptr_return_type = main_return_type.ptr_type(AddressSpace::Generic);
let ptr_as_int = main_fn.get_first_param().unwrap();
let ptr = builder.build_bitcast(ptr_as_int, ptr_return_type, "caller_ptr");
builder.build_store(ptr.into_pointer_value(), result);
// this is a void function, therefore return None
builder.build_return(None);
}
Register => {
// construct a normal return
// values are passed to the caller via registers
builder.build_return(Some(&result));
}
}
}
// MUST set the personality at the very end;
// doing it earlier can cause the personality to be ignored
let personality_func = get_gxx_personality_v0(env);
main_fn.set_personality_function(personality_func);
(main_fn_name, env.arena.alloc(main_fn))
} }
fn get_inplace_from_layout(layout: &Layout<'_>) -> InPlace { fn get_inplace_from_layout(layout: &Layout<'_>) -> InPlace {
@ -1875,9 +1610,19 @@ fn expose_function_to_host<'a, 'ctx, 'env>(
env: &Env<'a, 'ctx, 'env>, env: &Env<'a, 'ctx, 'env>,
roc_function: FunctionValue<'ctx>, roc_function: FunctionValue<'ctx>,
) { ) {
let c_function_name: String = format!("{}_exposed", roc_function.get_name().to_str().unwrap());
expose_function_to_host_help(env, roc_function, &c_function_name);
}
fn expose_function_to_host_help<'a, 'ctx, 'env>(
env: &Env<'a, 'ctx, 'env>,
roc_function: FunctionValue<'ctx>,
c_function_name: &str,
) -> FunctionValue<'ctx> {
use inkwell::types::BasicType; use inkwell::types::BasicType;
let roc_wrapper_function = make_exception_catching_wrapper(env, roc_function); let roc_wrapper_function = make_exception_catcher(env, roc_function);
let roc_function_type = roc_wrapper_function.get_type(); let roc_function_type = roc_wrapper_function.get_type();
@ -1888,13 +1633,10 @@ fn expose_function_to_host<'a, 'ctx, 'env>(
argument_types.push(output_type.into()); argument_types.push(output_type.into());
let c_function_type = env.context.void_type().fn_type(&argument_types, false); let c_function_type = env.context.void_type().fn_type(&argument_types, false);
let c_function_name: String = format!("{}_exposed", roc_function.get_name().to_str().unwrap());
let c_function = env.module.add_function( let c_function =
c_function_name.as_str(), env.module
c_function_type, .add_function(c_function_name, c_function_type, Some(Linkage::External));
Some(Linkage::External),
);
// STEP 2: build the exposed function's body // STEP 2: build the exposed function's body
let builder = env.builder; let builder = env.builder;
@ -1942,6 +1684,8 @@ fn expose_function_to_host<'a, 'ctx, 'env>(
let size: BasicValueEnum = return_type.size_of().unwrap().into(); let size: BasicValueEnum = return_type.size_of().unwrap().into();
builder.build_return(Some(&size)); builder.build_return(Some(&size));
c_function
} }
fn invoke_and_catch<'a, 'ctx, 'env, F, T>( fn invoke_and_catch<'a, 'ctx, 'env, F, T>(
@ -2095,9 +1839,19 @@ where
result result
} }
fn make_exception_catcher<'a, 'ctx, 'env>(
env: &Env<'a, 'ctx, 'env>,
roc_function: FunctionValue<'ctx>,
) -> FunctionValue<'ctx> {
let wrapper_function_name = format!("{}_catcher", roc_function.get_name().to_str().unwrap());
make_exception_catching_wrapper(env, roc_function, &wrapper_function_name)
}
fn make_exception_catching_wrapper<'a, 'ctx, 'env>( fn make_exception_catching_wrapper<'a, 'ctx, 'env>(
env: &Env<'a, 'ctx, 'env>, env: &Env<'a, 'ctx, 'env>,
roc_function: FunctionValue<'ctx>, roc_function: FunctionValue<'ctx>,
wrapper_function_name: &str,
) -> FunctionValue<'ctx> { ) -> FunctionValue<'ctx> {
// build the C calling convention wrapper // build the C calling convention wrapper
@ -2107,8 +1861,6 @@ fn make_exception_catching_wrapper<'a, 'ctx, 'env>(
let roc_function_type = roc_function.get_type(); let roc_function_type = roc_function.get_type();
let argument_types = roc_function_type.get_param_types(); let argument_types = roc_function_type.get_param_types();
let wrapper_function_name = format!("{}_catcher", roc_function.get_name().to_str().unwrap());
let wrapper_return_type = context.struct_type( let wrapper_return_type = context.struct_type(
&[ &[
context.i64_type().into(), context.i64_type().into(),
@ -2328,70 +2080,6 @@ pub fn build_closure_caller<'a, 'ctx, 'env>(
builder.build_return(Some(&size)); builder.build_return(Some(&size));
} }
#[allow(dead_code)]
pub fn build_closure_caller_old<'a, 'ctx, 'env>(
env: &'a Env<'a, 'ctx, 'env>,
closure_function: FunctionValue<'ctx>,
) {
let context = env.context;
let builder = env.builder;
// asuming the closure has type `a, b, closure_data -> c`
// change that into `a, b, *const closure_data, *mut output -> ()`
// a function `a, b, closure_data -> RocCallResult<c>`
let wrapped_function = make_exception_catching_wrapper(env, closure_function);
let closure_function_type = closure_function.get_type();
let wrapped_function_type = wrapped_function.get_type();
let mut arguments = closure_function_type.get_param_types();
// require that the closure data is passed by reference
let closure_data_type = arguments.pop().unwrap();
let closure_data_ptr_type = get_ptr_type(&closure_data_type, AddressSpace::Generic);
arguments.push(closure_data_ptr_type.into());
// require that a pointer is passed in to write the result into
let output_type = get_ptr_type(
&wrapped_function_type.get_return_type().unwrap(),
AddressSpace::Generic,
);
arguments.push(output_type.into());
let caller_function_type = env.context.void_type().fn_type(&arguments, false);
let caller_function_name: String =
format!("{}_caller", closure_function.get_name().to_str().unwrap());
let caller_function = env.module.add_function(
caller_function_name.as_str(),
caller_function_type,
Some(Linkage::External),
);
caller_function.set_call_conventions(C_CALL_CONV);
let entry = context.append_basic_block(caller_function, "entry");
builder.position_at_end(entry);
let mut parameters = caller_function.get_params();
let output = parameters.pop().unwrap();
let closure_data_ptr = parameters.pop().unwrap();
let closure_data =
builder.build_load(closure_data_ptr.into_pointer_value(), "load_closure_data");
parameters.push(closure_data);
let call = builder.build_call(wrapped_function, &parameters, "call_wrapped_function");
call.set_call_convention(FAST_CALL_CONV);
let result = call.try_as_basic_value().left().unwrap();
builder.build_store(output.into_pointer_value(), result);
builder.build_return(None);
}
pub fn build_proc<'a, 'ctx, 'env>( pub fn build_proc<'a, 'ctx, 'env>(
env: &'a Env<'a, 'ctx, 'env>, env: &'a Env<'a, 'ctx, 'env>,
layout_ids: &mut LayoutIds<'a>, layout_ids: &mut LayoutIds<'a>,

View file

@ -36,15 +36,20 @@ macro_rules! run_jit_function {
($lib: expr, $main_fn_name: expr, $ty:ty, $transform:expr, $errors:expr) => {{ ($lib: expr, $main_fn_name: expr, $ty:ty, $transform:expr, $errors:expr) => {{
use inkwell::context::Context; use inkwell::context::Context;
use roc_gen::run_roc::RocCallResult; use roc_gen::run_roc::RocCallResult;
use std::mem::MaybeUninit;
unsafe { unsafe {
let main: libloading::Symbol<unsafe extern "C" fn() -> RocCallResult<$ty>> = $lib let main: libloading::Symbol<unsafe extern "C" fn(*mut RocCallResult<$ty>) -> ()> =
.get($main_fn_name.as_bytes()) $lib.get($main_fn_name.as_bytes())
.ok() .ok()
.ok_or(format!("Unable to JIT compile `{}`", $main_fn_name)) .ok_or(format!("Unable to JIT compile `{}`", $main_fn_name))
.expect("errored"); .expect("errored");
match main().into() { let mut result = MaybeUninit::uninit();
main(result.as_mut_ptr());
match result.assume_init().into() {
Ok(success) => { Ok(success) => {
// only if there are no exceptions thrown, check for errors // only if there are no exceptions thrown, check for errors
assert_eq!( assert_eq!(

View file

@ -1064,4 +1064,51 @@ mod gen_primitives {
f64 f64
); );
} }
#[test]
fn return_wrapped_function_pointer() {
assert_non_opt_evals_to!(
indoc!(
r#"
app Test provides [ main ] imports []
Effect a : [ @Effect ({} -> a) ]
foo : Effect {}
foo = @Effect \{} -> {}
main : Effect {}
main = foo
"#
),
1,
i64,
|_| 1
);
}
#[test]
fn return_wrapped_closure() {
assert_non_opt_evals_to!(
indoc!(
r#"
app Test provides [ main ] imports []
Effect a : [ @Effect ({} -> a) ]
foo : Effect {}
foo =
x = 5
@Effect (\{} -> if x > 3 then {} else {})
main : Effect {}
main = foo
"#
),
1,
i64,
|_| 1
);
}
} }

View file

@ -1613,7 +1613,7 @@ fn update<'a>(
// state.timings.insert(module_id, module_timing); // state.timings.insert(module_id, module_timing);
// display the mono IR of the module, for debug purposes // display the mono IR of the module, for debug purposes
if false { if roc_mono::ir::PRETTY_PRINT_IR_SYMBOLS {
let procs_string = state let procs_string = state
.procedures .procedures
.values() .values()

View file

@ -14,6 +14,8 @@ use roc_types::subs::{Content, FlatType, Subs, Variable};
use std::collections::HashMap; use std::collections::HashMap;
use ven_pretty::{BoxAllocator, DocAllocator, DocBuilder}; use ven_pretty::{BoxAllocator, DocAllocator, DocBuilder};
pub const PRETTY_PRINT_IR_SYMBOLS: bool = false;
#[derive(Clone, Debug, PartialEq)] #[derive(Clone, Debug, PartialEq)]
pub enum MonoProblem { pub enum MonoProblem {
PatternProblem(crate::exhaustive::Error), PatternProblem(crate::exhaustive::Error),
@ -902,8 +904,11 @@ where
D::Doc: Clone, D::Doc: Clone,
A: Clone, A: Clone,
{ {
if PRETTY_PRINT_IR_SYMBOLS {
alloc.text(format!("{:?}", symbol))
} else {
alloc.text(format!("{}", symbol)) alloc.text(format!("{}", symbol))
// alloc.text(format!("{:?}", symbol)) }
} }
fn join_point_to_doc<'b, D, A>(alloc: &'b D, symbol: JoinPointId) -> DocBuilder<'b, D, A> fn join_point_to_doc<'b, D, A>(alloc: &'b D, symbol: JoinPointId) -> DocBuilder<'b, D, A>
@ -1514,10 +1519,83 @@ fn specialize_external<'a>(
pattern_symbols pattern_symbols
}; };
let (proc_args, opt_closure_layout, ret_layout) = let specialized =
build_specialized_proc_from_var(env, layout_cache, proc_name, pattern_symbols, fn_var)?; build_specialized_proc_from_var(env, layout_cache, proc_name, pattern_symbols, fn_var)?;
// determine the layout of aliases/rigids exposed to the host
let host_exposed_layouts = if host_exposed_variables.is_empty() {
HostExposedLayouts::NotHostExposed
} else {
let mut aliases = MutMap::default();
for (symbol, variable) in host_exposed_variables {
let layout = layout_cache
.from_var(env.arena, *variable, env.subs)
.unwrap();
aliases.insert(*symbol, layout);
}
HostExposedLayouts::HostExposed {
rigids: MutMap::default(),
aliases,
}
};
let recursivity = if is_self_recursive {
SelfRecursive::SelfRecursive(JoinPointId(env.unique_symbol()))
} else {
SelfRecursive::NotSelfRecursive
};
let mut specialized_body = from_can(env, fn_var, body, procs, layout_cache); let mut specialized_body = from_can(env, fn_var, body, procs, layout_cache);
match specialized {
SpecializedLayout::FunctionPointerBody {
arguments,
ret_layout,
closure: opt_closure_layout,
} => {
// this is a function body like
//
// foo = Num.add
//
// we need to expand this to
//
// foo = \x,y -> Num.add x y
// reset subs, so we don't get type errors when specializing for a different signature
layout_cache.rollback_to(cache_snapshot);
env.subs.rollback_to(snapshot);
let closure_data_layout = match opt_closure_layout {
Some(closure_layout) => Some(closure_layout.as_named_layout(proc_name)),
None => None,
};
// I'm not sure how to handle the closure case, does it ever occur?
debug_assert_eq!(closure_data_layout, None);
debug_assert!(matches!(captured_symbols, CapturedSymbols::None));
// this will be a thunk returning a function, so its ret_layout must be a function!
let full_layout = Layout::FunctionPointer(arguments, env.arena.alloc(ret_layout));
let proc = Proc {
name: proc_name,
args: &[],
body: specialized_body,
closure_data_layout,
ret_layout: full_layout,
is_self_recursive: recursivity,
host_exposed_layouts,
};
Ok(proc)
}
SpecializedLayout::FunctionBody {
arguments: proc_args,
closure: opt_closure_layout,
ret_layout,
} => {
// unpack the closure symbols, if any // unpack the closure symbols, if any
if let CapturedSymbols::Captured(captured) = captured_symbols { if let CapturedSymbols::Captured(captured) = captured_symbols {
let mut layouts = Vec::with_capacity_in(captured.len(), env.arena); let mut layouts = Vec::with_capacity_in(captured.len(), env.arena);
@ -1555,39 +1633,15 @@ fn specialize_external<'a>(
} }
}; };
specialized_body = Stmt::Let(*symbol, expr, layout, env.arena.alloc(specialized_body)); specialized_body =
Stmt::Let(*symbol, expr, layout, env.arena.alloc(specialized_body));
} }
} }
// determine the layout of aliases/rigids exposed to the host
let host_exposed_layouts = if host_exposed_variables.is_empty() {
HostExposedLayouts::NotHostExposed
} else {
let mut aliases = MutMap::default();
for (symbol, variable) in host_exposed_variables {
let layout = layout_cache
.from_var(env.arena, *variable, env.subs)
.unwrap();
aliases.insert(*symbol, layout);
}
HostExposedLayouts::HostExposed {
rigids: MutMap::default(),
aliases,
}
};
// reset subs, so we don't get type errors when specializing for a different signature // reset subs, so we don't get type errors when specializing for a different signature
layout_cache.rollback_to(cache_snapshot); layout_cache.rollback_to(cache_snapshot);
env.subs.rollback_to(snapshot); env.subs.rollback_to(snapshot);
let recursivity = if is_self_recursive {
SelfRecursive::SelfRecursive(JoinPointId(env.unique_symbol()))
} else {
SelfRecursive::NotSelfRecursive
};
let closure_data_layout = match opt_closure_layout { let closure_data_layout = match opt_closure_layout {
Some(closure_layout) => Some(closure_layout.as_named_layout(proc_name)), Some(closure_layout) => Some(closure_layout.as_named_layout(proc_name)),
None => None, None => None,
@ -1605,12 +1659,23 @@ fn specialize_external<'a>(
Ok(proc) Ok(proc)
} }
}
}
type SpecializedLayout<'a> = ( enum SpecializedLayout<'a> {
&'a [(Layout<'a>, Symbol)], /// A body like `foo = \a,b,c -> ...`
Option<ClosureLayout<'a>>, FunctionBody {
Layout<'a>, arguments: &'a [(Layout<'a>, Symbol)],
); closure: Option<ClosureLayout<'a>>,
ret_layout: Layout<'a>,
},
/// A body like `foo = Num.add`
FunctionPointerBody {
arguments: &'a [Layout<'a>],
closure: Option<ClosureLayout<'a>>,
ret_layout: Layout<'a>,
},
}
#[allow(clippy::type_complexity)] #[allow(clippy::type_complexity)]
fn build_specialized_proc_from_var<'a>( fn build_specialized_proc_from_var<'a>(
@ -1739,6 +1804,7 @@ fn build_specialized_proc<'a>(
let mut proc_args = Vec::with_capacity_in(pattern_layouts.len(), arena); let mut proc_args = Vec::with_capacity_in(pattern_layouts.len(), arena);
let pattern_layouts_len = pattern_layouts.len(); let pattern_layouts_len = pattern_layouts.len();
let pattern_layouts_slice = pattern_layouts.clone().into_bump_slice();
for (arg_layout, arg_name) in pattern_layouts.into_iter().zip(pattern_symbols.iter()) { for (arg_layout, arg_name) in pattern_layouts.into_iter().zip(pattern_symbols.iter()) {
proc_args.push((arg_layout, *arg_name)); proc_args.push((arg_layout, *arg_name));
@ -1761,6 +1827,7 @@ fn build_specialized_proc<'a>(
// f_closure = { ptr: f, closure: x } // f_closure = { ptr: f, closure: x }
// //
// then // then
use SpecializedLayout::*;
match opt_closure_layout { match opt_closure_layout {
Some(layout) if pattern_symbols.last() == Some(&Symbol::ARG_CLOSURE) => { Some(layout) if pattern_symbols.last() == Some(&Symbol::ARG_CLOSURE) => {
// here we define the lifted (now top-level) f function. Its final argument is `Symbol::ARG_CLOSURE`, // here we define the lifted (now top-level) f function. Its final argument is `Symbol::ARG_CLOSURE`,
@ -1776,7 +1843,11 @@ fn build_specialized_proc<'a>(
let proc_args = proc_args.into_bump_slice(); let proc_args = proc_args.into_bump_slice();
Ok((proc_args, Some(layout), ret_layout)) Ok(FunctionBody {
arguments: proc_args,
closure: Some(layout),
ret_layout,
})
} }
Some(layout) => { Some(layout) => {
// else if there is a closure layout, we're building the `f_closure` value // else if there is a closure layout, we're building the `f_closure` value
@ -1791,7 +1862,11 @@ fn build_specialized_proc<'a>(
let closure_layout = let closure_layout =
Layout::Struct(arena.alloc([function_ptr_layout, closure_data_layout])); Layout::Struct(arena.alloc([function_ptr_layout, closure_data_layout]));
Ok((&[], None, closure_layout)) Ok(FunctionBody {
arguments: &[],
closure: None,
ret_layout: closure_layout,
})
} }
None => { None => {
// else we're making a normal function, no closure problems to worry about // else we're making a normal function, no closure problems to worry about
@ -1805,16 +1880,32 @@ fn build_specialized_proc<'a>(
Ordering::Equal => { Ordering::Equal => {
let proc_args = proc_args.into_bump_slice(); let proc_args = proc_args.into_bump_slice();
Ok((proc_args, None, ret_layout)) Ok(FunctionBody {
arguments: proc_args,
closure: None,
ret_layout,
})
} }
Ordering::Greater => { Ordering::Greater => {
if pattern_symbols.is_empty() {
Ok(FunctionPointerBody {
arguments: pattern_layouts_slice,
closure: None,
ret_layout,
})
} else {
// so far, the problem when hitting this branch was always somewhere else // so far, the problem when hitting this branch was always somewhere else
// I think this branch should not be reachable in a bugfree compiler // I think this branch should not be reachable in a bugfree compiler
panic!("more arguments (according to the layout) than argument symbols") panic!(
"more arguments (according to the layout) than argument symbols for {:?}",
proc_name
)
} }
Ordering::Less => {
panic!("more argument symbols than arguments (according to the layout)")
} }
Ordering::Less => panic!(
"more argument symbols than arguments (according to the layout) for {:?}",
proc_name
),
} }
} }
} }
@ -2213,8 +2304,22 @@ pub fn with_hole<'a>(
} else if symbol.module_id() != env.home && symbol.module_id() != ModuleId::ATTR { } else if symbol.module_id() != env.home && symbol.module_id() != ModuleId::ATTR {
match layout_cache.from_var(env.arena, variable, env.subs) { match layout_cache.from_var(env.arena, variable, env.subs) {
Err(e) => panic!("invalid layout {:?}", e), Err(e) => panic!("invalid layout {:?}", e),
Ok(Layout::FunctionPointer(_, _)) => { Ok(layout @ Layout::FunctionPointer(_, _)) => {
add_needed_external(procs, env, variable, symbol); add_needed_external(procs, env, variable, symbol);
match hole {
Stmt::Jump(_, _) => todo!("not sure what to do in this case yet"),
_ => {
let expr = Expr::FunctionPointer(symbol, layout.clone());
let new_symbol = env.unique_symbol();
return Stmt::Let(
new_symbol,
expr,
layout,
env.arena.alloc(Stmt::Ret(new_symbol)),
);
}
}
} }
Ok(_) => { Ok(_) => {
// this is a 0-arity thunk // this is a 0-arity thunk
@ -4678,6 +4783,12 @@ fn call_by_name<'a>(
.specialized .specialized
.contains_key(&(proc_name, full_layout.clone())) .contains_key(&(proc_name, full_layout.clone()))
{ {
debug_assert_eq!(
arg_layouts.len(),
field_symbols.len(),
"see call_by_name for background (scroll down a bit)"
);
let call = Expr::FunctionCall { let call = Expr::FunctionCall {
call_type: CallType::ByName(proc_name), call_type: CallType::ByName(proc_name),
ret_layout: ret_layout.clone(), ret_layout: ret_layout.clone(),
@ -4721,6 +4832,11 @@ fn call_by_name<'a>(
); );
} }
debug_assert_eq!(
arg_layouts.len(),
field_symbols.len(),
"see call_by_name for background (scroll down a bit)"
);
let call = Expr::FunctionCall { let call = Expr::FunctionCall {
call_type: CallType::ByName(proc_name), call_type: CallType::ByName(proc_name),
ret_layout: ret_layout.clone(), ret_layout: ret_layout.clone(),
@ -4762,13 +4878,74 @@ fn call_by_name<'a>(
let function_layout = let function_layout =
FunctionLayouts::from_layout(env.arena, layout); FunctionLayouts::from_layout(env.arena, layout);
procs.specialized.remove(&(proc_name, full_layout)); procs.specialized.remove(&(proc_name, full_layout.clone()));
procs.specialized.insert( procs.specialized.insert(
(proc_name, function_layout.full.clone()), (proc_name, function_layout.full.clone()),
Done(proc), Done(proc),
); );
if field_symbols.is_empty() {
debug_assert!(loc_args.is_empty());
// This happens when we return a function, e.g.
//
// foo = Num.add
//
// Even though the layout (and type) are functions,
// there are no arguments. This confuses our IR,
// and we have to fix it here.
match full_layout {
Layout::Closure(_, closure_layout, _) => {
let call = Expr::FunctionCall {
call_type: CallType::ByName(proc_name),
ret_layout: function_layout.result.clone(),
full_layout: function_layout.full.clone(),
arg_layouts: function_layout.arguments,
args: field_symbols,
};
// in the case of a closure specifically, we
// have to create a custom layout, to make sure
// the closure data is part of the layout
let closure_struct_layout = Layout::Struct(
env.arena.alloc([
function_layout.full,
closure_layout
.as_block_of_memory_layout(),
]),
);
Stmt::Let(
assigned,
call,
closure_struct_layout,
hole,
)
}
_ => {
let call = Expr::FunctionCall {
call_type: CallType::ByName(proc_name),
ret_layout: function_layout.result.clone(),
full_layout: function_layout.full.clone(),
arg_layouts: function_layout.arguments,
args: field_symbols,
};
Stmt::Let(
assigned,
call,
function_layout.full,
hole,
)
}
}
} else {
debug_assert_eq!(
function_layout.arguments.len(),
field_symbols.len(),
"scroll up a bit for background"
);
let call = Expr::FunctionCall { let call = Expr::FunctionCall {
call_type: CallType::ByName(proc_name), call_type: CallType::ByName(proc_name),
ret_layout: function_layout.result.clone(), ret_layout: function_layout.result.clone(),
@ -4782,10 +4959,21 @@ fn call_by_name<'a>(
.rev() .rev()
.zip(field_symbols.iter().rev()); .zip(field_symbols.iter().rev());
let result = let result = Stmt::Let(
Stmt::Let(assigned, call, function_layout.result, hole); assigned,
call,
function_layout.result,
hole,
);
assign_to_symbols(env, procs, layout_cache, iter, result) assign_to_symbols(
env,
procs,
layout_cache,
iter,
result,
)
}
} }
Err(error) => { Err(error) => {
let error_msg = env.arena.alloc(format!( let error_msg = env.arena.alloc(format!(
@ -4804,6 +4992,12 @@ fn call_by_name<'a>(
None if assigned.module_id() != proc_name.module_id() => { None if assigned.module_id() != proc_name.module_id() => {
add_needed_external(procs, env, original_fn_var, proc_name); add_needed_external(procs, env, original_fn_var, proc_name);
debug_assert_eq!(
arg_layouts.len(),
field_symbols.len(),
"scroll up a bit for background"
);
let call = Expr::FunctionCall { let call = Expr::FunctionCall {
call_type: CallType::ByName(proc_name), call_type: CallType::ByName(proc_name),
ret_layout: ret_layout.clone(), ret_layout: ret_layout.clone(),

View file

@ -1422,27 +1422,27 @@ mod test_mono {
indoc!( indoc!(
r#" r#"
procedure Num.15 (#Attr.2, #Attr.3): procedure Num.15 (#Attr.2, #Attr.3):
let Test.13 = lowlevel NumSub #Attr.2 #Attr.3; let Test.14 = lowlevel NumSub #Attr.2 #Attr.3;
ret Test.13; ret Test.14;
procedure Num.16 (#Attr.2, #Attr.3): procedure Num.16 (#Attr.2, #Attr.3):
let Test.11 = lowlevel NumMul #Attr.2 #Attr.3; let Test.12 = lowlevel NumMul #Attr.2 #Attr.3;
ret Test.11; ret Test.12;
procedure Test.1 (Test.2, Test.3): procedure Test.1 (Test.2, Test.3):
jump Test.18 Test.2 Test.3; jump Test.7 Test.2 Test.3;
joinpoint Test.18 Test.2 Test.3: joinpoint Test.7 Test.2 Test.3:
let Test.15 = true; let Test.16 = true;
let Test.16 = 0i64; let Test.17 = 0i64;
let Test.17 = lowlevel Eq Test.16 Test.2; let Test.18 = lowlevel Eq Test.17 Test.2;
let Test.14 = lowlevel And Test.17 Test.15; let Test.15 = lowlevel And Test.18 Test.16;
if Test.14 then if Test.15 then
ret Test.3; ret Test.3;
else else
let Test.12 = 1i64; let Test.13 = 1i64;
let Test.9 = CallByName Num.15 Test.2 Test.12; let Test.10 = CallByName Num.15 Test.2 Test.13;
let Test.10 = CallByName Num.16 Test.2 Test.3; let Test.11 = CallByName Num.16 Test.2 Test.3;
jump Test.18 Test.9 Test.10; jump Test.7 Test.10 Test.11;
procedure Test.0 (): procedure Test.0 ():
let Test.5 = 10i64; let Test.5 = 10i64;

View file

@ -3,6 +3,5 @@ app Main provides [ main ] imports [ Effect ]
main : Effect.Effect {} as Fx main : Effect.Effect {} as Fx
main = main =
Effect.putLine "Write a thing!" Effect.putLine "Write a thing!"
|> Effect.after (\{} -> Effect.getLine {}) |> Effect.after (\{} -> Effect.getLine)
|> Effect.after (\line -> Effect.putLine line) |> Effect.after (\line -> Effect.putLine line)

View file

@ -6,5 +6,8 @@ platform folkertdev/foo
{ {
putChar : Int -> Effect {}, putChar : Int -> Effect {},
putLine : Str -> Effect {}, putLine : Str -> Effect {},
getLine : {} -> Effect Str getLine : Effect Str
} }
mainForHost : Effect {} as Fx
mainForHost = main

View file

@ -38,7 +38,7 @@ pub fn roc_fx_putLine(line: RocStr) -> () {
} }
#[no_mangle] #[no_mangle]
pub fn roc_fx_getLine(_: ()) -> RocStr { pub fn roc_fx_getLine() -> RocStr {
use std::io::{self, BufRead}; use std::io::{self, BufRead};
let stdin = io::stdin(); let stdin = io::stdin();