Add basic 1-iteration repl

This commit is contained in:
Richard Feldman 2020-04-18 15:32:04 -04:00
parent d4a45ed489
commit 73fbc0e490
2 changed files with 620 additions and 1 deletions

View file

@ -2,7 +2,6 @@ extern crate roc_gen;
extern crate roc_reporting;
#[macro_use]
extern crate clap;
use bumpalo::Bump;
use inkwell::context::Context;
use inkwell::module::Linkage;
@ -32,6 +31,8 @@ use target_lexicon::{Architecture, OperatingSystem, Triple, Vendor};
use tokio::process::Command;
use tokio::runtime::Builder;
pub mod repl;
pub static FLAG_OPTIMIZE: &str = "optimize";
pub static FLAG_ROC_FILE: &str = "ROC_FILE";
@ -66,6 +67,9 @@ pub fn build_app<'a>() -> App<'a> {
.required(false),
)
)
.subcommand(App::new("repl")
.about("Launch the interactive Read Eval Print Loop (REPL)")
)
}
fn main() -> io::Result<()> {
@ -74,10 +78,12 @@ fn main() -> io::Result<()> {
match matches.subcommand_name() {
Some("build") => build(matches.subcommand_matches("build").unwrap(), false),
Some("run") => build(matches.subcommand_matches("run").unwrap(), true),
Some("repl") => repl::main(),
_ => unreachable!(),
}
}
pub fn build(matches: &ArgMatches, run_after_build: bool) -> io::Result<()> {
let filename = matches.value_of(FLAG_ROC_FILE).unwrap();
let opt_level = if matches.is_present(FLAG_OPTIMIZE) {

613
cli/src/repl.rs Normal file
View file

@ -0,0 +1,613 @@
use bumpalo::Bump;
use inkwell::context::Context;
use inkwell::execution_engine::JitFunction;
use inkwell::passes::PassManager;
use inkwell::types::BasicType;
use inkwell::OptimizationLevel;
use roc_builtins::unique::uniq_stdlib;
use roc_can::constraint::Constraint;
use roc_can::env::Env;
use roc_can::expected::Expected;
use roc_can::expr::{canonicalize_expr, Output};
use roc_can::operator;
use roc_can::scope::Scope;
use roc_collections::all::{ImMap, ImSet, MutMap, SendMap, SendSet};
use roc_constrain::expr::constrain_expr;
use roc_constrain::module::{constrain_imported_values, load_builtin_aliases, Import};
use roc_gen::llvm::build::{build_proc, build_proc_header, OptLevel};
use roc_gen::llvm::convert::basic_type_from_layout;
use roc_module::ident::Ident;
use roc_module::symbol::{IdentIds, Interns, ModuleId, ModuleIds, Symbol};
use roc_mono::expr::Procs;
use roc_mono::layout::Layout;
use roc_parse::ast::{self, Attempting};
use roc_parse::blankspace::space0_before;
use roc_parse::parser::{loc, Fail, Parser, State};
use roc_problem::can::Problem;
use roc_region::all::{Located, Region};
use roc_solve::solve;
use roc_types::subs::{Content, Subs, VarStore, Variable};
use roc_types::types::Type;
use std::hash::Hash;
use std::io::{self, Write};
use std::path::PathBuf;
use target_lexicon::Triple;
pub fn main() -> io::Result<()> {
use std::io::BufRead;
print!("");
io::stdout().flush().unwrap();
let stdin = io::stdin();
let line = stdin
.lock()
.lines()
.next()
.expect("there was no next line")
.expect("the line could not be read");
let out = gen(line.as_str(), Triple::host(), OptLevel::Normal);
println!("{}", out);
Ok(())
}
pub fn repl_home() -> ModuleId {
ModuleIds::default().get_or_insert(&"REPL".into())
}
pub fn gen(src: &str, target: Triple, opt_level: OptLevel) -> String {
use roc_reporting::report::{can_problem, type_problem, RocDocAllocator, DEFAULT_PALETTE};
// Look up the types and expressions of the `provided` values
let ptr_bytes = target.pointer_width().unwrap().bytes() as u32;
let arena = Bump::new();
let CanExprOut {
loc_expr,
var_store,
var,
constraint,
home,
interns,
problems: can_problems,
output: _,
} = can_expr(src);
let subs = Subs::new(var_store.into());
let mut type_problems = Vec::new();
let (content, mut subs) = infer_expr(subs, &mut type_problems, &constraint, var);
// Report problems
let src_lines: Vec<&str> = src.split('\n').collect();
let palette = DEFAULT_PALETTE;
// Report parsing and canonicalization problems
let alloc = RocDocAllocator::new(&src_lines, home, &interns);
// Used for reporting where an error came from.
//
// TODO: maybe Reporting should have this be an Option?
let path = PathBuf::new();
for problem in can_problems.into_iter() {
let report = can_problem(&alloc, path.clone(), problem);
let mut buf = String::new();
report.render_color_terminal(&mut buf, &alloc, &palette);
println!("\n{}\n", buf);
}
for problem in type_problems.into_iter() {
let report = type_problem(&alloc, path.clone(), problem);
let mut buf = String::new();
report.render_color_terminal(&mut buf, &alloc, &palette);
println!("\n{}\n", buf);
}
let context = Context::create();
let module = roc_gen::llvm::build::module_from_builtins(&context, "app");
let builder = context.create_builder();
let fpm = PassManager::create(&module);
roc_gen::llvm::build::add_passes(&fpm, opt_level);
fpm.initialize();
// Compute main_fn_type before moving subs to Env
let layout = Layout::from_content(&arena, content, &subs, ptr_bytes).unwrap_or_else(|err| {
panic!(
"Code gen error in test: could not convert to layout. Err was {:?} and Subs were {:?}",
err, subs
)
});
let execution_engine = module
.create_jit_execution_engine(OptimizationLevel::None)
.expect("Error creating JIT execution engine for test");
let main_fn_type =
basic_type_from_layout(&arena, &context, &layout, ptr_bytes).fn_type(&[], false);
let main_fn_name = "$Test.main";
// Compile and add all the Procs before adding main
let mut env = roc_gen::llvm::build::Env {
arena: &arena,
builder: &builder,
context: &context,
interns,
module: arena.alloc(module),
ptr_bytes,
};
let mut procs = Procs::default();
let mut ident_ids = env.interns.all_ident_ids.remove(&home).unwrap();
// Populate Procs and get the low-level Expr from the canonical Expr
let mut mono_problems = Vec::new();
let main_body = roc_mono::expr::Expr::new(
&arena,
&mut subs,
&mut mono_problems,
loc_expr.value,
&mut procs,
home,
&mut ident_ids,
ptr_bytes,
);
// Put this module's ident_ids back in the interns, so we can use them in Env.
env.interns.all_ident_ids.insert(home, ident_ids);
let mut headers = Vec::with_capacity(procs.len());
// Add all the Proc headers to the module.
// We have to do this in a separate pass first,
// because their bodies may reference each other.
for (symbol, opt_proc) in procs.as_map().into_iter() {
if let Some(proc) = opt_proc {
let (fn_val, arg_basic_types) = build_proc_header(&env, symbol, &proc);
headers.push((proc, fn_val, arg_basic_types));
}
}
// Build each proc using its header info.
for (proc, fn_val, arg_basic_types) in headers {
// NOTE: This is here to be uncommented in case verification fails.
// (This approach means we don't have to defensively clone name here.)
//
// println!("\n\nBuilding and then verifying function {}\n\n", name);
build_proc(&env, proc, &procs, fn_val, arg_basic_types);
if fn_val.verify(true) {
fpm.run_on(&fn_val);
} else {
// NOTE: If this fails, uncomment the above println to debug.
panic!(
"Non-main function failed LLVM verification. Uncomment the above println to debug!"
);
}
}
// Add main to the module.
let main_fn = env.module.add_function(main_fn_name, main_fn_type, None);
let cc =
roc_gen::llvm::build::get_call_conventions(target.default_calling_convention().unwrap());
main_fn.set_call_conventions(cc);
// Add main's body
let basic_block = context.append_basic_block(main_fn, "entry");
builder.position_at_end(basic_block);
let ret = roc_gen::llvm::build::build_expr(
&env,
&ImMap::default(),
main_fn,
&main_body,
&mut Procs::default(),
);
builder.build_return(Some(&ret));
// Uncomment this to see the module's un-optimized LLVM instruction output:
// env.module.print_to_stderr();
if main_fn.verify(true) {
fpm.run_on(&main_fn);
} else {
panic!("Function {} failed LLVM verification.", main_fn_name);
}
// Verify the module
if let Err(errors) = env.module.verify() {
panic!("Errors defining module: {:?}", errors);
}
// Uncomment this to see the module's optimized LLVM instruction output:
// env.module.print_to_stderr();
unsafe {
let main: JitFunction<unsafe extern "C" fn() -> i64> = execution_engine
.get_function(main_fn_name)
.ok()
.ok_or(format!("Unable to JIT compile `{}`", main_fn_name))
.expect("errored");
format!("{}", main.call())
}
}
pub fn infer_expr(
subs: Subs,
problems: &mut Vec<solve::TypeError>,
constraint: &Constraint,
expr_var: Variable,
) -> (Content, Subs) {
let env = solve::Env {
aliases: MutMap::default(),
vars_by_symbol: SendMap::default(),
};
let (solved, _) = solve::run(&env, problems, subs, constraint);
let content = solved.inner().get_without_compacting(expr_var).content;
(content, solved.into_inner())
}
pub fn parse_with<'a>(arena: &'a Bump, input: &'a str) -> Result<ast::Expr<'a>, Fail> {
parse_loc_with(arena, input).map(|loc_expr| loc_expr.value)
}
pub fn parse_loc_with<'a>(arena: &'a Bump, input: &'a str) -> Result<Located<ast::Expr<'a>>, Fail> {
let state = State::new(&input, Attempting::Module);
let parser = space0_before(loc(roc_parse::expr::expr(0)), 0);
let answer = parser.parse(&arena, state);
answer
.map(|(loc_expr, _)| loc_expr)
.map_err(|(fail, _)| fail)
}
pub fn can_expr(expr_str: &str) -> CanExprOut {
can_expr_with(&Bump::new(), repl_home(), expr_str)
}
pub fn uniq_expr(
expr_str: &str,
) -> (
Located<roc_can::expr::Expr>,
Output,
Vec<Problem>,
Subs,
Variable,
Constraint,
ModuleId,
Interns,
) {
let declared_idents: &ImMap<Ident, (Symbol, Region)> = &ImMap::default();
uniq_expr_with(&Bump::new(), expr_str, declared_idents)
}
pub fn uniq_expr_with(
arena: &Bump,
expr_str: &str,
declared_idents: &ImMap<Ident, (Symbol, Region)>,
) -> (
Located<roc_can::expr::Expr>,
Output,
Vec<Problem>,
Subs,
Variable,
Constraint,
ModuleId,
Interns,
) {
let home = repl_home();
let CanExprOut {
loc_expr,
output,
problems,
var_store: old_var_store,
var,
interns,
..
} = can_expr_with(arena, home, expr_str);
// double check
let var_store = VarStore::new(old_var_store.fresh());
let expected2 = Expected::NoExpectation(Type::Variable(var));
let constraint = roc_constrain::uniq::constrain_declaration(
home,
&var_store,
Region::zero(),
&loc_expr,
declared_idents,
expected2,
);
let stdlib = uniq_stdlib();
let types = stdlib.types;
let imports: Vec<_> = types
.iter()
.map(|(symbol, (solved_type, region))| Import {
loc_symbol: Located::at(*region, *symbol),
solved_type,
})
.collect();
// load builtin values
// TODO what to do with those rigids?
let (_introduced_rigids, constraint) =
constrain_imported_values(imports, constraint, &var_store);
// load builtin types
let mut constraint = load_builtin_aliases(&stdlib.aliases, constraint, &var_store);
constraint.instantiate_aliases(&var_store);
let subs2 = Subs::new(var_store.into());
(
loc_expr, output, problems, subs2, var, constraint, home, interns,
)
}
pub struct CanExprOut {
pub loc_expr: Located<roc_can::expr::Expr>,
pub output: Output,
pub problems: Vec<Problem>,
pub home: ModuleId,
pub interns: Interns,
pub var_store: VarStore,
pub var: Variable,
pub constraint: Constraint,
}
pub fn can_expr_with(arena: &Bump, home: ModuleId, expr_str: &str) -> CanExprOut {
let loc_expr = parse_loc_with(&arena, expr_str).unwrap_or_else(|e| {
panic!(
"can_expr_with() got a parse error when attempting to canonicalize:\n\n{:?} {:?}",
expr_str, e
)
});
let var_store = VarStore::default();
let var = var_store.fresh();
let expected = Expected::NoExpectation(Type::Variable(var));
let module_ids = ModuleIds::default();
// Desugar operators (convert them to Apply calls, taking into account
// operator precedence and associativity rules), before doing other canonicalization.
//
// If we did this *during* canonicalization, then each time we
// visited a BinOp node we'd recursively try to apply this to each of its nested
// operators, and then again on *their* nested operators, ultimately applying the
// rules multiple times unnecessarily.
let loc_expr = operator::desugar_expr(arena, &loc_expr);
let mut scope = Scope::new(home);
let dep_idents = IdentIds::exposed_builtins(0);
let mut env = Env::new(home, dep_idents, &module_ids, IdentIds::default());
let (loc_expr, output) = canonicalize_expr(
&mut env,
&var_store,
&mut scope,
Region::zero(),
&loc_expr.value,
);
let constraint = constrain_expr(
&roc_constrain::expr::Env {
rigids: ImMap::default(),
home,
},
loc_expr.region,
&loc_expr.value,
expected,
);
let types = roc_builtins::std::types();
let imports: Vec<_> = types
.iter()
.map(|(symbol, (solved_type, region))| Import {
loc_symbol: Located::at(*region, *symbol),
solved_type,
})
.collect();
//load builtin values
let (_introduced_rigids, constraint) =
constrain_imported_values(imports, constraint, &var_store);
// TODO determine what to do with those rigids
// for var in introduced_rigids {
// output.ftv.insert(var, format!("internal_{:?}", var).into());
// }
//load builtin types
let mut constraint =
load_builtin_aliases(&roc_builtins::std::aliases(), constraint, &var_store);
constraint.instantiate_aliases(&var_store);
let mut all_ident_ids = MutMap::default();
// When pretty printing types, we may need the exposed builtins,
// so include them in the Interns we'll ultimately return.
for (module_id, ident_ids) in IdentIds::exposed_builtins(0) {
all_ident_ids.insert(module_id, ident_ids);
}
all_ident_ids.insert(home, env.ident_ids);
let interns = Interns {
module_ids: env.module_ids.clone(),
all_ident_ids,
};
CanExprOut {
loc_expr,
output,
problems: env.problems,
home: env.home,
var_store,
interns,
var,
constraint,
}
}
pub fn mut_map_from_pairs<K, V, I>(pairs: I) -> MutMap<K, V>
where
I: IntoIterator<Item = (K, V)>,
K: Hash + Eq,
{
let mut answer = MutMap::default();
for (key, value) in pairs {
answer.insert(key, value);
}
answer
}
pub fn im_map_from_pairs<K, V, I>(pairs: I) -> ImMap<K, V>
where
I: IntoIterator<Item = (K, V)>,
K: Hash + Eq + Clone,
V: Clone,
{
let mut answer = ImMap::default();
for (key, value) in pairs {
answer.insert(key, value);
}
answer
}
pub fn send_set_from<V, I>(elems: I) -> SendSet<V>
where
I: IntoIterator<Item = V>,
V: Hash + Eq + Clone,
{
let mut answer = SendSet::default();
for elem in elems {
answer.insert(elem);
}
answer
}
// Check constraints
//
// Keep track of the used (in types or expectations) variables, and the declared variables (in
// flex_vars or rigid_vars fields of LetConstraint. These roc_collections should match: no duplicates
// and no variables that are used but not declared are allowed.
//
// There is one exception: the initial variable (that stores the type of the whole expression) is
// never declared, but is used.
pub fn assert_correct_variable_usage(constraint: &Constraint) {
// variables declared in constraint (flex_vars or rigid_vars)
// and variables actually used in constraints
let (declared, used) = variable_usage(constraint);
let used: ImSet<Variable> = used.into();
let mut decl: ImSet<Variable> = declared.rigid_vars.clone().into();
for var in declared.flex_vars.clone() {
decl.insert(var);
}
let diff = used.clone().relative_complement(decl);
// NOTE: this checks whether we're using variables that are not declared. For recursive type
// definitions, their rigid types are declared twice, which is correct!
if !diff.is_empty() {
println!("VARIABLE USAGE PROBLEM");
println!("used: {:?}", &used);
println!("rigids: {:?}", &declared.rigid_vars);
println!("flexs: {:?}", &declared.flex_vars);
println!("difference: {:?}", &diff);
panic!("variable usage problem (see stdout for details)");
}
}
#[derive(Default)]
pub struct SeenVariables {
pub rigid_vars: Vec<Variable>,
pub flex_vars: Vec<Variable>,
}
pub fn variable_usage(con: &Constraint) -> (SeenVariables, Vec<Variable>) {
let mut declared = SeenVariables::default();
let mut used = ImSet::default();
variable_usage_help(con, &mut declared, &mut used);
used.remove(unsafe { &Variable::unsafe_test_debug_variable(1) });
let mut used_vec: Vec<Variable> = used.into_iter().collect();
used_vec.sort();
declared.rigid_vars.sort();
declared.flex_vars.sort();
(declared, used_vec)
}
fn variable_usage_help(con: &Constraint, declared: &mut SeenVariables, used: &mut ImSet<Variable>) {
use Constraint::*;
match con {
True | SaveTheEnvironment => (),
Eq(tipe, expectation, _, _) => {
for v in tipe.variables() {
used.insert(v);
}
for v in expectation.get_type_ref().variables() {
used.insert(v);
}
}
Lookup(_, expectation, _) => {
for v in expectation.get_type_ref().variables() {
used.insert(v);
}
}
Pattern(_, _, tipe, pexpectation) => {
for v in tipe.variables() {
used.insert(v);
}
for v in pexpectation.get_type_ref().variables() {
used.insert(v);
}
}
Let(letcon) => {
declared.rigid_vars.extend(letcon.rigid_vars.clone());
declared.flex_vars.extend(letcon.flex_vars.clone());
variable_usage_help(&letcon.defs_constraint, declared, used);
variable_usage_help(&letcon.ret_constraint, declared, used);
}
And(constraints) => {
for sub in constraints {
variable_usage_help(sub, declared, used);
}
}
}
}