Merge pull request #826 from rtfeldman/bughunt

Throw on overflow in Num.neg/Num.abs & fix mono bug
This commit is contained in:
Richard Feldman 2020-12-26 23:41:11 -05:00 committed by GitHub
commit 7a53003313
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
8 changed files with 279 additions and 74 deletions

View file

@ -327,13 +327,16 @@ mod repl_eval {
expect_success("List.sum [ 1.1, 2.2, 3.3 ]", "6.6 : F64"); expect_success("List.sum [ 1.1, 2.2, 3.3 ]", "6.6 : F64");
} }
// TODO add test cases for empty lists once error messages in the repl are correct
#[test] #[test]
fn list_first() { fn list_first() {
expect_success( expect_success(
"List.first [ 12, 9, 6, 3 ]", "List.first [ 12, 9, 6, 3 ]",
"Ok 12 : Result (Num *) [ ListWasEmpty ]*", "Ok 12 : Result (Num *) [ ListWasEmpty ]*",
); );
expect_success(
"List.first []",
"Err (ListWasEmpty) : Result * [ ListWasEmpty ]*",
);
} }
#[test] #[test]
@ -342,6 +345,11 @@ mod repl_eval {
"List.last [ 12, 9, 6, 3 ]", "List.last [ 12, 9, 6, 3 ]",
"Ok 3 : Result (Num *) [ ListWasEmpty ]*", "Ok 3 : Result (Num *) [ ListWasEmpty ]*",
); );
expect_success(
"List.last []",
"Err (ListWasEmpty) : Result * [ ListWasEmpty ]*",
);
} }
#[test] #[test]

View file

@ -9,7 +9,8 @@ use crate::llvm::build_str::{
}; };
use crate::llvm::compare::{build_eq, build_neq}; use crate::llvm::compare::{build_eq, build_neq};
use crate::llvm::convert::{ use crate::llvm::convert::{
basic_type_from_layout, block_of_memory, collection, get_fn_type, get_ptr_type, ptr_int, basic_type_from_builtin, basic_type_from_layout, block_of_memory, collection, get_fn_type,
get_ptr_type, ptr_int,
}; };
use crate::llvm::refcounting::{ use crate::llvm::refcounting::{
decrement_refcount_layout, increment_refcount_layout, refcount_is_one_comparison, decrement_refcount_layout, increment_refcount_layout, refcount_is_one_comparison,
@ -2909,7 +2910,7 @@ fn run_low_level<'a, 'ctx, 'env>(
match arg_builtin { match arg_builtin {
Int128 | Int64 | Int32 | Int16 | Int8 => { Int128 | Int64 | Int32 | Int16 | Int8 => {
build_int_unary_op(env, arg.into_int_value(), arg_layout, op) build_int_unary_op(env, arg.into_int_value(), arg_builtin, op)
} }
Float128 | Float64 | Float32 | Float16 => { Float128 | Float64 | Float32 | Float16 => {
build_float_unary_op(env, arg.into_float_value(), op) build_float_unary_op(env, arg.into_float_value(), op)
@ -3574,10 +3575,37 @@ fn build_float_binop<'a, 'ctx, 'env>(
} }
} }
fn int_type_signed_min(int_type: IntType) -> IntValue {
let width = int_type.get_bit_width();
debug_assert!(width <= 128);
let shift = 128 - width as usize;
if shift < 64 {
let min = i128::MIN >> shift;
let a = min as u64;
let b = (min >> 64) as u64;
int_type.const_int_arbitrary_precision(&[b, a])
} else {
int_type.const_int((i128::MIN >> shift) as u64, false)
}
}
fn builtin_to_int_type<'a, 'ctx, 'env>(
env: &Env<'a, 'ctx, 'env>,
builtin: &Builtin<'a>,
) -> IntType<'ctx> {
let result = basic_type_from_builtin(env.arena, env.context, builtin, env.ptr_bytes);
debug_assert!(result.is_int_type());
result.into_int_type()
}
fn build_int_unary_op<'a, 'ctx, 'env>( fn build_int_unary_op<'a, 'ctx, 'env>(
env: &Env<'a, 'ctx, 'env>, env: &Env<'a, 'ctx, 'env>,
arg: IntValue<'ctx>, arg: IntValue<'ctx>,
arg_layout: &Layout<'a>, arg_layout: &Builtin<'a>,
op: LowLevel, op: LowLevel,
) -> BasicValueEnum<'ctx> { ) -> BasicValueEnum<'ctx> {
use roc_module::low_level::LowLevel::*; use roc_module::low_level::LowLevel::*;
@ -3585,43 +3613,13 @@ fn build_int_unary_op<'a, 'ctx, 'env>(
let bd = env.builder; let bd = env.builder;
match op { match op {
NumNeg => bd.build_int_neg(arg, "negate_int").into(), NumNeg => {
// integer abs overflows when applied to the minimum value of a signed type
int_neg_raise_on_overflow(env, arg, arg_layout)
}
NumAbs => { NumAbs => {
// This is how libc's abs() is implemented - it uses no branching! // integer abs overflows when applied to the minimum value of a signed type
// int_abs_raise_on_overflow(env, arg, arg_layout)
// abs = \arg ->
// shifted = arg >>> 63
//
// (xor arg shifted) - shifted
let ctx = env.context;
let shifted_name = "abs_shift_right";
let shifted_alloca = {
let bits_to_shift = ((arg_layout.stack_size(env.ptr_bytes) as u64) * 8) - 1;
let shift_val = ctx.i64_type().const_int(bits_to_shift, false);
let shifted = bd.build_right_shift(arg, shift_val, true, shifted_name);
let alloca = bd.build_alloca(
basic_type_from_layout(env.arena, ctx, arg_layout, env.ptr_bytes),
"#int_abs_help",
);
// shifted = arg >>> 63
bd.build_store(alloca, shifted);
alloca
};
let xored_arg = bd.build_xor(
arg,
bd.build_load(shifted_alloca, shifted_name).into_int_value(),
"xor_arg_shifted",
);
BasicValueEnum::IntValue(bd.build_int_sub(
xored_arg,
bd.build_load(shifted_alloca, shifted_name).into_int_value(),
"sub_xored_shifted",
))
} }
NumToFloat => { NumToFloat => {
// This is an Int, so we need to convert it. // This is an Int, so we need to convert it.
@ -3638,6 +3636,109 @@ fn build_int_unary_op<'a, 'ctx, 'env>(
} }
} }
fn int_neg_raise_on_overflow<'a, 'ctx, 'env>(
env: &Env<'a, 'ctx, 'env>,
arg: IntValue<'ctx>,
builtin: &Builtin<'a>,
) -> BasicValueEnum<'ctx> {
let builder = env.builder;
let min_val = int_type_signed_min(builtin_to_int_type(env, builtin));
let condition = builder.build_int_compare(IntPredicate::EQ, arg, min_val, "is_min_val");
let block = env.builder.get_insert_block().expect("to be in a function");
let parent = block.get_parent().expect("to be in a function");
let then_block = env.context.append_basic_block(parent, "then");
let else_block = env.context.append_basic_block(parent, "else");
env.builder
.build_conditional_branch(condition, then_block, else_block);
builder.position_at_end(then_block);
throw_exception(
env,
"integer negation overflowed because its argument is the minimum value",
);
builder.position_at_end(else_block);
builder.build_int_neg(arg, "negate_int").into()
}
fn int_abs_raise_on_overflow<'a, 'ctx, 'env>(
env: &Env<'a, 'ctx, 'env>,
arg: IntValue<'ctx>,
builtin: &Builtin<'a>,
) -> BasicValueEnum<'ctx> {
let builder = env.builder;
let min_val = int_type_signed_min(builtin_to_int_type(env, builtin));
let condition = builder.build_int_compare(IntPredicate::EQ, arg, min_val, "is_min_val");
let block = env.builder.get_insert_block().expect("to be in a function");
let parent = block.get_parent().expect("to be in a function");
let then_block = env.context.append_basic_block(parent, "then");
let else_block = env.context.append_basic_block(parent, "else");
env.builder
.build_conditional_branch(condition, then_block, else_block);
builder.position_at_end(then_block);
throw_exception(
env,
"integer absolute overflowed because its argument is the minimum value",
);
builder.position_at_end(else_block);
int_abs_with_overflow(env, arg, builtin)
}
fn int_abs_with_overflow<'a, 'ctx, 'env>(
env: &Env<'a, 'ctx, 'env>,
arg: IntValue<'ctx>,
arg_layout: &Builtin<'a>,
) -> BasicValueEnum<'ctx> {
// This is how libc's abs() is implemented - it uses no branching!
//
// abs = \arg ->
// shifted = arg >>> 63
//
// (xor arg shifted) - shifted
let bd = env.builder;
let ctx = env.context;
let shifted_name = "abs_shift_right";
let shifted_alloca = {
let bits_to_shift = ((arg_layout.stack_size(env.ptr_bytes) as u64) * 8) - 1;
let shift_val = ctx.i64_type().const_int(bits_to_shift, false);
let shifted = bd.build_right_shift(arg, shift_val, true, shifted_name);
let alloca = bd.build_alloca(
basic_type_from_builtin(env.arena, ctx, arg_layout, env.ptr_bytes),
"#int_abs_help",
);
// shifted = arg >>> 63
bd.build_store(alloca, shifted);
alloca
};
let xored_arg = bd.build_xor(
arg,
bd.build_load(shifted_alloca, shifted_name).into_int_value(),
"xor_arg_shifted",
);
BasicValueEnum::IntValue(bd.build_int_sub(
xored_arg,
bd.build_load(shifted_alloca, shifted_name).into_int_value(),
"sub_xored_shifted",
))
}
fn build_float_unary_op<'a, 'ctx, 'env>( fn build_float_unary_op<'a, 'ctx, 'env>(
env: &Env<'a, 'ctx, 'env>, env: &Env<'a, 'ctx, 'env>,
arg: FloatValue<'ctx>, arg: FloatValue<'ctx>,

View file

@ -4,7 +4,7 @@ use inkwell::context::Context;
use inkwell::types::BasicTypeEnum::{self, *}; use inkwell::types::BasicTypeEnum::{self, *};
use inkwell::types::{ArrayType, BasicType, FunctionType, IntType, PointerType, StructType}; use inkwell::types::{ArrayType, BasicType, FunctionType, IntType, PointerType, StructType};
use inkwell::AddressSpace; use inkwell::AddressSpace;
use roc_mono::layout::Layout; use roc_mono::layout::{Builtin, Layout};
/// TODO could this be added to Inkwell itself as a method on BasicValueEnum? /// TODO could this be added to Inkwell itself as a method on BasicValueEnum?
pub fn get_ptr_type<'ctx>( pub fn get_ptr_type<'ctx>(
@ -103,8 +103,7 @@ pub fn basic_type_from_layout<'ctx>(
layout: &Layout<'_>, layout: &Layout<'_>,
ptr_bytes: u32, ptr_bytes: u32,
) -> BasicTypeEnum<'ctx> { ) -> BasicTypeEnum<'ctx> {
use roc_mono::layout::Builtin::*; use Layout::*;
use roc_mono::layout::Layout::*;
match layout { match layout {
FunctionPointer(args, ret_layout) => { FunctionPointer(args, ret_layout) => {
@ -147,22 +146,33 @@ pub fn basic_type_from_layout<'ctx>(
.as_basic_type_enum() .as_basic_type_enum()
} }
Builtin(builtin) => match builtin { Builtin(builtin) => basic_type_from_builtin(arena, context, builtin, ptr_bytes),
Int128 => context.i128_type().as_basic_type_enum(), }
Int64 => context.i64_type().as_basic_type_enum(), }
Int32 => context.i32_type().as_basic_type_enum(),
Int16 => context.i16_type().as_basic_type_enum(), pub fn basic_type_from_builtin<'ctx>(
Int8 => context.i8_type().as_basic_type_enum(), _arena: &Bump,
Int1 => context.bool_type().as_basic_type_enum(), context: &'ctx Context,
Float128 => context.f128_type().as_basic_type_enum(), builtin: &Builtin<'_>,
Float64 => context.f64_type().as_basic_type_enum(), ptr_bytes: u32,
Float32 => context.f32_type().as_basic_type_enum(), ) -> BasicTypeEnum<'ctx> {
Float16 => context.f16_type().as_basic_type_enum(), use Builtin::*;
Dict(_, _) | EmptyDict => panic!("TODO layout_to_basic_type for Builtin::Dict"),
Set(_) | EmptySet => panic!("TODO layout_to_basic_type for Builtin::Set"), match builtin {
List(_, _) | Str | EmptyStr => collection(context, ptr_bytes).into(), Int128 => context.i128_type().as_basic_type_enum(),
EmptyList => BasicTypeEnum::StructType(collection(context, ptr_bytes)), Int64 => context.i64_type().as_basic_type_enum(),
}, Int32 => context.i32_type().as_basic_type_enum(),
Int16 => context.i16_type().as_basic_type_enum(),
Int8 => context.i8_type().as_basic_type_enum(),
Int1 => context.bool_type().as_basic_type_enum(),
Float128 => context.f128_type().as_basic_type_enum(),
Float64 => context.f64_type().as_basic_type_enum(),
Float32 => context.f32_type().as_basic_type_enum(),
Float16 => context.f16_type().as_basic_type_enum(),
Dict(_, _) | EmptyDict => panic!("TODO layout_to_basic_type for Builtin::Dict"),
Set(_) | EmptySet => panic!("TODO layout_to_basic_type for Builtin::Set"),
List(_, _) | Str | EmptyStr => collection(context, ptr_bytes).into(),
EmptyList => BasicTypeEnum::StructType(collection(context, ptr_bytes)),
} }
} }

View file

@ -40,6 +40,8 @@ mod gen_num {
fn f64_abs() { fn f64_abs() {
assert_evals_to!("Num.abs -4.7", 4.7, f64); assert_evals_to!("Num.abs -4.7", 4.7, f64);
assert_evals_to!("Num.abs 5.8", 5.8, f64); assert_evals_to!("Num.abs 5.8", 5.8, f64);
//assert_evals_to!("Num.abs Num.maxFloat", f64::MAX, f64);
//assert_evals_to!("Num.abs Num.minFloat", -f64::MIN, f64);
} }
#[test] #[test]
@ -52,6 +54,24 @@ mod gen_num {
assert_evals_to!("Num.abs 1", 1, i64); assert_evals_to!("Num.abs 1", 1, i64);
assert_evals_to!("Num.abs 9_000_000_000_000", 9_000_000_000_000, i64); assert_evals_to!("Num.abs 9_000_000_000_000", 9_000_000_000_000, i64);
assert_evals_to!("Num.abs -9_000_000_000_000", 9_000_000_000_000, i64); assert_evals_to!("Num.abs -9_000_000_000_000", 9_000_000_000_000, i64);
assert_evals_to!("Num.abs Num.maxInt", i64::MAX, i64);
assert_evals_to!("Num.abs (Num.minInt + 1)", -(i64::MIN + 1), i64);
}
#[test]
#[should_panic(
expected = r#"Roc failed with message: "integer absolute overflowed because its argument is the minimum value"#
)]
fn abs_min_int_overflow() {
assert_evals_to!(
indoc!(
r#"
Num.abs Num.minInt
"#
),
0,
i64
);
} }
#[test] #[test]
@ -533,6 +553,24 @@ mod gen_num {
#[test] #[test]
fn int_negate() { fn int_negate() {
assert_evals_to!("Num.neg 123", -123, i64); assert_evals_to!("Num.neg 123", -123, i64);
assert_evals_to!("Num.neg Num.maxInt", -i64::MAX, i64);
assert_evals_to!("Num.neg (Num.minInt + 1)", i64::MAX, i64);
}
#[test]
#[should_panic(
expected = r#"Roc failed with message: "integer negation overflowed because its argument is the minimum value"#
)]
fn neg_min_int_overflow() {
assert_evals_to!(
indoc!(
r#"
Num.neg Num.minInt
"#
),
0,
i64
);
} }
#[test] #[test]

View file

@ -1732,4 +1732,20 @@ mod gen_primitives {
|_| 0 |_| 0
); );
} }
#[test]
fn hof_conditional() {
// exposed issue with the if condition being just a symbol
assert_evals_to!(
indoc!(
r#"
passTrue = \f -> f True
passTrue (\trueVal -> if trueVal then False else True)
"#
),
0,
u8
);
}
} }

View file

@ -2584,13 +2584,23 @@ pub fn with_hole<'a>(
let mut field_symbols_temp = Vec::with_capacity_in(args.len(), env.arena); let mut field_symbols_temp = Vec::with_capacity_in(args.len(), env.arena);
for (var, arg) in args.drain(..) { for (var, mut arg) in args.drain(..) {
// Layout will unpack this unwrapped tack if it only has one (non-zero-sized) field // Layout will unpack this unwrapped tack if it only has one (non-zero-sized) field
let layout = layout_cache let layout = match layout_cache.from_var(env.arena, var, env.subs) {
.from_var(env.arena, var, env.subs) Ok(cached) => cached,
.unwrap_or_else(|err| { Err(LayoutProblem::UnresolvedTypeVar(_)) => {
panic!("TODO turn fn_var into a RuntimeError {:?}", err) // this argument has type `forall a. a`, which is isomorphic to
}); // the empty type (Void, Never, the empty tag union `[]`)
use roc_can::expr::Expr;
use roc_problem::can::RuntimeError;
arg.value = Expr::RuntimeError(RuntimeError::VoidValue);
Layout::Struct(&[])
}
Err(LayoutProblem::Erroneous) => {
// something went very wrong
panic!("TODO turn fn_var into a RuntimeError")
}
};
let alignment = layout.alignment_bytes(8); let alignment = layout.alignment_bytes(8);
@ -3574,9 +3584,23 @@ pub fn with_hole<'a>(
let arg_symbols = arg_symbols.into_bump_slice(); let arg_symbols = arg_symbols.into_bump_slice();
// layout of the return type // layout of the return type
let layout = layout_cache let layout = match layout_cache.from_var(env.arena, ret_var, env.subs) {
.from_var(env.arena, ret_var, env.subs) Ok(cached) => cached,
.unwrap_or_else(|err| todo!("TODO turn fn_var into a RuntimeError {:?}", err)); Err(LayoutProblem::UnresolvedTypeVar(_)) => {
return Stmt::RuntimeError(env.arena.alloc(format!(
"UnresolvedTypeVar {} line {}",
file!(),
line!()
)));
}
Err(LayoutProblem::Erroneous) => {
return Stmt::RuntimeError(env.arena.alloc(format!(
"Erroneous {} line {}",
file!(),
line!()
)));
}
};
let result = Stmt::Let(assigned, Expr::RunLowLevel(op, arg_symbols), layout, hole); let result = Stmt::Let(assigned, Expr::RunLowLevel(op, arg_symbols), layout, hole);
@ -3653,7 +3677,7 @@ pub fn from_can<'a>(
let mut stmt = from_can(env, branch_var, final_else.value, procs, layout_cache); let mut stmt = from_can(env, branch_var, final_else.value, procs, layout_cache);
for (loc_cond, loc_then) in branches.into_iter().rev() { for (loc_cond, loc_then) in branches.into_iter().rev() {
let branching_symbol = env.unique_symbol(); let branching_symbol = possible_reuse_symbol(env, procs, &loc_cond.value);
let then = from_can(env, branch_var, loc_then.value, procs, layout_cache); let then = from_can(env, branch_var, loc_then.value, procs, layout_cache);
stmt = Stmt::Cond { stmt = Stmt::Cond {
@ -3666,15 +3690,14 @@ pub fn from_can<'a>(
ret_layout: ret_layout.clone(), ret_layout: ret_layout.clone(),
}; };
// add condition stmt = assign_to_symbol(
stmt = with_hole(
env, env,
loc_cond.value,
cond_var,
procs, procs,
layout_cache, layout_cache,
cond_var,
loc_cond,
branching_symbol, branching_symbol,
env.arena.alloc(stmt), stmt,
); );
} }

View file

@ -147,6 +147,9 @@ pub enum RuntimeError {
/// When the author specifies a type annotation but no implementation /// When the author specifies a type annotation but no implementation
NoImplementation, NoImplementation,
/// cases where the `[]` value (or equivalently, `forall a. a`) pops up
VoidValue,
ExposedButNotDefined(Symbol), ExposedButNotDefined(Symbol),
} }

View file

@ -338,6 +338,12 @@ fn pretty_runtime_error<'b>(
runtime_error: RuntimeError, runtime_error: RuntimeError,
) -> RocDocBuilder<'b> { ) -> RocDocBuilder<'b> {
match runtime_error { match runtime_error {
RuntimeError::VoidValue => {
// is used to communicate to the compiler that
// a branch is unreachable; this should never reach a user
unreachable!("")
}
RuntimeError::Shadowing { RuntimeError::Shadowing {
original_region, original_region,
shadow, shadow,