Delete obsolete stuff

This commit is contained in:
Richard Feldman 2019-04-17 19:32:10 -04:00
parent 0fd2bde5cd
commit 864eecf44c
30 changed files with 26 additions and 3805 deletions

2
Cargo.lock generated
View file

@ -1,3 +1,5 @@
# This file is automatically @generated by Cargo.
# It is not intended for manual editing.
[[package]] [[package]]
name = "ansi_term" name = "ansi_term"
version = "0.11.0" version = "0.11.0"

View file

@ -1 +0,0 @@
pub enum Annotation {}

View file

@ -1,24 +0,0 @@
use typ::Type;
// constrainDecls :: Can.Decls -> Constraint -> IO Constraint
// constrainDecls decls finalConstraint =
// case decls of
// Can.Declare def otherDecls ->
// Expr.constrainDef Map.empty def =<< constrainDecls otherDecls finalConstraint
// Can.DeclareRec defs otherDecls ->
// Expr.constrainRecursiveDefs Map.empty defs =<< constrainDecls otherDecls finalConstraint
// Can.SaveTheEnvironment ->
// return finalConstraint
pub type ExpectedType = Type;
pub enum Constraint {
True,
Equal(Type, ExpectedType),
Batch(Vec<Constraint>),
}

View file

@ -1,301 +0,0 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/// A very simple BitVector type.
pub struct BitVector {
data: Vec<u64>,
}
impl BitVector {
pub fn new(num_bits: usize) -> BitVector {
let num_words = u64s(num_bits);
BitVector { data: vec![0; num_words] }
}
pub fn contains(&self, bit: usize) -> bool {
let (word, mask) = word_mask(bit);
(self.data[word] & mask) != 0
}
/// Returns true if the bit has changed.
pub fn insert(&mut self, bit: usize) -> bool {
let (word, mask) = word_mask(bit);
let data = &mut self.data[word];
let value = *data;
let new_value = value | mask;
*data = new_value;
new_value != value
}
pub fn insert_all(&mut self, all: &BitVector) -> bool {
assert!(self.data.len() == all.data.len());
let mut changed = false;
for (i, j) in self.data.iter_mut().zip(&all.data) {
let value = *i;
*i = value | *j;
if value != *i {
changed = true;
}
}
changed
}
pub fn grow(&mut self, num_bits: usize) {
let num_words = u64s(num_bits);
let extra_words = self.data.len() - num_words;
self.data.extend((0..extra_words).map(|_| 0));
}
/// Iterates over indexes of set bits in a sorted order
pub fn iter<'a>(&'a self) -> BitVectorIter<'a> {
BitVectorIter {
iter: self.data.iter(),
current: 0,
idx: 0,
}
}
}
pub struct BitVectorIter<'a> {
iter: ::std::slice::Iter<'a, u64>,
current: u64,
idx: usize,
}
impl<'a> Iterator for BitVectorIter<'a> {
type Item = usize;
fn next(&mut self) -> Option<usize> {
while self.current == 0 {
self.current = if let Some(&i) = self.iter.next() {
if i == 0 {
self.idx += 64;
continue;
} else {
self.idx = u64s(self.idx) * 64;
i
}
} else {
return None;
}
}
let offset = self.current.trailing_zeros() as usize;
self.current >>= offset;
self.current >>= 1; // shift otherwise overflows for 0b1000_0000_…_0000
self.idx += offset + 1;
return Some(self.idx - 1);
}
}
/// A "bit matrix" is basically a square matrix of booleans
/// represented as one gigantic bitvector. In other words, it is as if
/// you have N bitvectors, each of length N. Note that `elements` here is `N`/
#[derive(Clone)]
pub struct BitMatrix {
elements: usize,
vector: Vec<u64>,
}
impl BitMatrix {
// Create a new `elements x elements` matrix, initially empty.
pub fn new(elements: usize) -> BitMatrix {
// For every element, we need one bit for every other
// element. Round up to an even number of u64s.
let u64s_per_elem = u64s(elements);
BitMatrix {
elements: elements,
vector: vec![0; elements * u64s_per_elem],
}
}
/// The range of bits for a given element.
fn range(&self, element: usize) -> (usize, usize) {
let u64s_per_elem = u64s(self.elements);
let start = element * u64s_per_elem;
(start, start + u64s_per_elem)
}
pub fn add(&mut self, source: usize, target: usize) -> bool {
let (start, _) = self.range(source);
let (word, mask) = word_mask(target);
let mut vector = &mut self.vector[..];
let v1 = vector[start + word];
let v2 = v1 | mask;
vector[start + word] = v2;
v1 != v2
}
/// Do the bits from `source` contain `target`?
///
/// Put another way, if the matrix represents (transitive)
/// reachability, can `source` reach `target`?
pub fn contains(&self, source: usize, target: usize) -> bool {
let (start, _) = self.range(source);
let (word, mask) = word_mask(target);
(self.vector[start + word] & mask) != 0
}
/// Returns those indices that are reachable from both `a` and
/// `b`. This is an O(n) operation where `n` is the number of
/// elements (somewhat independent from the actual size of the
/// intersection, in particular).
pub fn intersection(&self, a: usize, b: usize) -> Vec<usize> {
let (a_start, a_end) = self.range(a);
let (b_start, b_end) = self.range(b);
let mut result = Vec::with_capacity(self.elements);
for (base, (i, j)) in (a_start..a_end).zip(b_start..b_end).enumerate() {
let mut v = self.vector[i] & self.vector[j];
for bit in 0..64 {
if v == 0 {
break;
}
if v & 0x1 != 0 {
result.push(base * 64 + bit);
}
v >>= 1;
}
}
result
}
/// Add the bits from `read` to the bits from `write`,
/// return true if anything changed.
///
/// This is used when computing transitive reachability because if
/// you have an edge `write -> read`, because in that case
/// `write` can reach everything that `read` can (and
/// potentially more).
pub fn merge(&mut self, read: usize, write: usize) -> bool {
let (read_start, read_end) = self.range(read);
let (write_start, write_end) = self.range(write);
let vector = &mut self.vector[..];
let mut changed = false;
for (read_index, write_index) in (read_start..read_end).zip(write_start..write_end) {
let v1 = vector[write_index];
let v2 = v1 | vector[read_index];
vector[write_index] = v2;
changed = changed | (v1 != v2);
}
changed
}
}
fn u64s(elements: usize) -> usize {
(elements + 63) / 64
}
fn word_mask(index: usize) -> (usize, u64) {
let word = index / 64;
let mask = 1 << (index % 64);
(word, mask)
}
#[test]
fn bitvec_iter_works() {
let mut bitvec = BitVector::new(100);
bitvec.insert(1);
bitvec.insert(10);
bitvec.insert(19);
bitvec.insert(62);
bitvec.insert(63);
bitvec.insert(64);
bitvec.insert(65);
bitvec.insert(66);
bitvec.insert(99);
assert_eq!(bitvec.iter().collect::<Vec<_>>(),
[1, 10, 19, 62, 63, 64, 65, 66, 99]);
}
#[test]
fn bitvec_iter_works_2() {
let mut bitvec = BitVector::new(300);
bitvec.insert(1);
bitvec.insert(10);
bitvec.insert(19);
bitvec.insert(62);
bitvec.insert(66);
bitvec.insert(99);
bitvec.insert(299);
assert_eq!(bitvec.iter().collect::<Vec<_>>(),
[1, 10, 19, 62, 66, 99, 299]);
}
#[test]
fn bitvec_iter_works_3() {
let mut bitvec = BitVector::new(319);
bitvec.insert(0);
bitvec.insert(127);
bitvec.insert(191);
bitvec.insert(255);
bitvec.insert(319);
assert_eq!(bitvec.iter().collect::<Vec<_>>(), [0, 127, 191, 255, 319]);
}
#[test]
fn union_two_vecs() {
let mut vec1 = BitVector::new(65);
let mut vec2 = BitVector::new(65);
assert!(vec1.insert(3));
assert!(!vec1.insert(3));
assert!(vec2.insert(5));
assert!(vec2.insert(64));
assert!(vec1.insert_all(&vec2));
assert!(!vec1.insert_all(&vec2));
assert!(vec1.contains(3));
assert!(!vec1.contains(4));
assert!(vec1.contains(5));
assert!(!vec1.contains(63));
assert!(vec1.contains(64));
}
#[test]
fn grow() {
let mut vec1 = BitVector::new(65);
assert!(vec1.insert(3));
assert!(!vec1.insert(3));
assert!(vec1.insert(5));
assert!(vec1.insert(64));
vec1.grow(128);
assert!(vec1.contains(3));
assert!(vec1.contains(5));
assert!(vec1.contains(64));
assert!(!vec1.contains(126));
}
#[test]
fn matrix_intersection() {
let mut vec1 = BitMatrix::new(200);
// (*) Elements reachable from both 2 and 65.
vec1.add(2, 3);
vec1.add(2, 6);
vec1.add(2, 10); // (*)
vec1.add(2, 64); // (*)
vec1.add(2, 65);
vec1.add(2, 130);
vec1.add(2, 160); // (*)
vec1.add(64, 133);
vec1.add(65, 2);
vec1.add(65, 8);
vec1.add(65, 10); // (*)
vec1.add(65, 64); // (*)
vec1.add(65, 68);
vec1.add(65, 133);
vec1.add(65, 160); // (*)
let intersection = vec1.intersection(2, 64);
assert!(intersection.is_empty());
let intersection = vec1.intersection(2, 65);
assert_eq!(intersection, &[10, 64, 160]);
}

View file

@ -1,15 +0,0 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! An implementation of union-find. See the `unify` module for more
//! details.
pub mod snapshot_vec;
pub mod unify;

View file

@ -1,370 +0,0 @@
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A utility class for implementing "snapshottable" things; a snapshottable data structure permits
//! you to take a snapshot (via `start_snapshot`) and then, after making some changes, elect either
//! to rollback to the start of the snapshot or commit those changes.
//!
//! This vector is intended to be used as part of an abstraction, not serve as a complete
//! abstraction on its own. As such, while it will roll back most changes on its own, it also
//! supports a `get_mut` operation that gives you an arbitrary mutable pointer into the vector. To
//! ensure that any changes you make this with this pointer are rolled back, you must invoke
//! `record` to record any changes you make and also supplying a delegate capable of reversing
//! those changes.
use self::UndoLog::*;
use std::fmt;
use std::mem;
use std::ops;
#[derive(Debug)]
pub enum UndoLog<D: SnapshotVecDelegate> {
/// New variable with given index was created.
NewElem(usize),
/// Variable with given index was changed *from* the given value.
SetElem(usize, D::Value),
/// Extensible set of actions
Other(D::Undo),
}
pub struct SnapshotVec<D: SnapshotVecDelegate> {
values: Vec<D::Value>,
undo_log: Vec<UndoLog<D>>,
num_open_snapshots: usize,
}
impl<D> fmt::Debug for SnapshotVec<D>
where D: SnapshotVecDelegate,
D: fmt::Debug,
D::Undo: fmt::Debug,
D::Value: fmt::Debug
{
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
fmt.debug_struct("SnapshotVec")
.field("values", &self.values)
.field("undo_log", &self.undo_log)
.field("num_open_snapshots", &self.num_open_snapshots)
.finish()
}
}
// Snapshots are tokens that should be created/consumed linearly.
pub struct Snapshot {
// Length of the undo log at the time the snapshot was taken.
length: usize,
}
pub trait SnapshotVecDelegate {
type Value;
type Undo;
fn reverse(values: &mut Vec<Self::Value>, action: Self::Undo);
}
// HACK(eddyb) manual impl avoids `Default` bound on `D`.
impl<D: SnapshotVecDelegate> Default for SnapshotVec<D> {
fn default() -> Self {
SnapshotVec {
values: Vec::new(),
undo_log: Vec::new(),
num_open_snapshots: 0,
}
}
}
impl<D: SnapshotVecDelegate> SnapshotVec<D> {
pub fn new() -> Self {
Self::default()
}
pub fn with_capacity(c: usize) -> SnapshotVec<D> {
SnapshotVec {
values: Vec::with_capacity(c),
undo_log: Vec::new(),
num_open_snapshots: 0,
}
}
fn in_snapshot(&self) -> bool {
self.num_open_snapshots > 0
}
pub fn record(&mut self, action: D::Undo) {
if self.in_snapshot() {
self.undo_log.push(Other(action));
}
}
pub fn len(&self) -> usize {
self.values.len()
}
pub fn push(&mut self, elem: D::Value) -> usize {
let len = self.values.len();
self.values.push(elem);
if self.in_snapshot() {
self.undo_log.push(NewElem(len));
}
len
}
pub fn get(&self, index: usize) -> &D::Value {
&self.values[index]
}
/// Reserve space for new values, just like an ordinary vec.
pub fn reserve(&mut self, additional: usize) {
// This is not affected by snapshots or anything.
self.values.reserve(additional);
}
/// Returns a mutable pointer into the vec; whatever changes you make here cannot be undone
/// automatically, so you should be sure call `record()` with some sort of suitable undo
/// action.
pub fn get_mut(&mut self, index: usize) -> &mut D::Value {
&mut self.values[index]
}
/// Updates the element at the given index. The old value will saved (and perhaps restored) if
/// a snapshot is active.
pub fn set(&mut self, index: usize, new_elem: D::Value) {
let old_elem = mem::replace(&mut self.values[index], new_elem);
if self.in_snapshot() {
self.undo_log.push(SetElem(index, old_elem));
}
}
/// Updates all elements. Potentially more efficient -- but
/// otherwise equivalent to -- invoking `set` for each element.
pub fn set_all(&mut self, mut new_elems: impl FnMut(usize) -> D::Value) {
if !self.in_snapshot() {
for (slot, index) in self.values.iter_mut().zip(0..) {
*slot = new_elems(index);
}
} else {
for i in 0..self.values.len() {
self.set(i, new_elems(i));
}
}
}
pub fn update<OP>(&mut self, index: usize, op: OP)
where
OP: FnOnce(&mut D::Value),
D::Value: Clone,
{
if self.in_snapshot() {
let old_elem = self.values[index].clone();
self.undo_log.push(SetElem(index, old_elem));
}
op(&mut self.values[index]);
}
pub fn start_snapshot(&mut self) -> Snapshot {
let length = self.undo_log.len();
self.num_open_snapshots += 1;
Snapshot { length: length }
}
pub fn actions_since_snapshot(&self, snapshot: &Snapshot) -> &[UndoLog<D>] {
&self.undo_log[snapshot.length..]
}
fn assert_open_snapshot(&self, snapshot: &Snapshot) {
// Failures here may indicate a failure to follow a stack discipline.
assert!(self.undo_log.len() >= snapshot.length);
assert!(self.num_open_snapshots > 0);
}
pub fn rollback_to(&mut self, snapshot: Snapshot) {
debug!("rollback_to({})", snapshot.length);
self.assert_open_snapshot(&snapshot);
while self.undo_log.len() > snapshot.length {
match self.undo_log.pop().unwrap() {
NewElem(i) => {
self.values.pop();
assert!(self.values.len() == i);
}
SetElem(i, v) => {
self.values[i] = v;
}
Other(u) => {
D::reverse(&mut self.values, u);
}
}
}
self.num_open_snapshots -= 1;
}
/// Commits all changes since the last snapshot. Of course, they
/// can still be undone if there is a snapshot further out.
pub fn commit(&mut self, snapshot: Snapshot) {
debug!("commit({})", snapshot.length);
self.assert_open_snapshot(&snapshot);
if self.num_open_snapshots == 1 {
// The root snapshot. It's safe to clear the undo log because
// there's no snapshot further out that we might need to roll back
// to.
assert!(snapshot.length == 0);
self.undo_log.clear();
}
self.num_open_snapshots -= 1;
}
}
impl<D: SnapshotVecDelegate> ops::Deref for SnapshotVec<D> {
type Target = [D::Value];
fn deref(&self) -> &[D::Value] {
&*self.values
}
}
impl<D: SnapshotVecDelegate> ops::DerefMut for SnapshotVec<D> {
fn deref_mut(&mut self) -> &mut [D::Value] {
&mut *self.values
}
}
impl<D: SnapshotVecDelegate> ops::Index<usize> for SnapshotVec<D> {
type Output = D::Value;
fn index(&self, index: usize) -> &D::Value {
self.get(index)
}
}
impl<D: SnapshotVecDelegate> ops::IndexMut<usize> for SnapshotVec<D> {
fn index_mut(&mut self, index: usize) -> &mut D::Value {
self.get_mut(index)
}
}
impl<D: SnapshotVecDelegate> Extend<D::Value> for SnapshotVec<D> {
fn extend<T>(&mut self, iterable: T)
where
T: IntoIterator<Item = D::Value>,
{
let initial_len = self.values.len();
self.values.extend(iterable);
let final_len = self.values.len();
if self.in_snapshot() {
self.undo_log.extend((initial_len..final_len).map(|len| NewElem(len)));
}
}
}
impl<D: SnapshotVecDelegate> Clone for SnapshotVec<D>
where
D::Value: Clone,
D::Undo: Clone,
{
fn clone(&self) -> Self {
SnapshotVec {
values: self.values.clone(),
undo_log: self.undo_log.clone(),
num_open_snapshots: self.num_open_snapshots,
}
}
}
impl<D: SnapshotVecDelegate> Clone for UndoLog<D>
where
D::Value: Clone,
D::Undo: Clone,
{
fn clone(&self) -> Self {
match *self {
NewElem(i) => NewElem(i),
SetElem(i, ref v) => SetElem(i, v.clone()),
Other(ref u) => Other(u.clone()),
}
}
}
impl SnapshotVecDelegate for i32 {
type Value = i32;
type Undo = ();
fn reverse(_: &mut Vec<i32>, _: ()) {}
}
#[test]
fn basic() {
let mut vec: SnapshotVec<i32> = SnapshotVec::default();
assert!(!vec.in_snapshot());
assert_eq!(vec.len(), 0);
vec.push(22);
vec.push(33);
assert_eq!(vec.len(), 2);
assert_eq!(*vec.get(0), 22);
assert_eq!(*vec.get(1), 33);
vec.set(1, 34);
assert_eq!(vec.len(), 2);
assert_eq!(*vec.get(0), 22);
assert_eq!(*vec.get(1), 34);
let snapshot = vec.start_snapshot();
assert!(vec.in_snapshot());
vec.push(44);
vec.push(55);
vec.set(1, 35);
assert_eq!(vec.len(), 4);
assert_eq!(*vec.get(0), 22);
assert_eq!(*vec.get(1), 35);
assert_eq!(*vec.get(2), 44);
assert_eq!(*vec.get(3), 55);
vec.rollback_to(snapshot);
assert!(!vec.in_snapshot());
assert_eq!(vec.len(), 2);
assert_eq!(*vec.get(0), 22);
assert_eq!(*vec.get(1), 34);
}
#[test]
#[should_panic]
fn out_of_order() {
let mut vec: SnapshotVec<i32> = SnapshotVec::default();
vec.push(22);
let snapshot1 = vec.start_snapshot();
vec.push(33);
let snapshot2 = vec.start_snapshot();
vec.push(44);
vec.rollback_to(snapshot1); // bogus, but accepted
vec.rollback_to(snapshot2); // asserts
}
#[test]
fn nested_commit_then_rollback() {
let mut vec: SnapshotVec<i32> = SnapshotVec::default();
vec.push(22);
let snapshot1 = vec.start_snapshot();
let snapshot2 = vec.start_snapshot();
vec.set(0, 23);
vec.commit(snapshot2);
assert_eq!(*vec.get(0), 23);
vec.rollback_to(snapshot1);
assert_eq!(*vec.get(0), 22);
}

View file

@ -1,214 +0,0 @@
// This is a fork of ena, whose copyright and license info is in ena/unify/mod.rs
#[cfg(feature = "persistent")]
use dogged::DVec;
use ena::snapshot_vec as sv;
use std::ops;
use std::marker::PhantomData;
use std::fmt::Debug;
use super::{VarValue, UnifyKey};
#[allow(dead_code)] // rustc BUG
#[allow(type_alias_bounds)]
type Key<S: UnificationStore> = <S as UnificationStore>::Key;
/// Largely internal trait implemented by the unification table
/// backing store types. The most common such type is `InPlace`,
/// which indicates a standard, mutable unification table.
pub trait UnificationStore:
ops::Index<usize, Output = VarValue<Key<Self>>> + Clone + Default
{
type Key: UnifyKey<Value = Self::Value>;
type Value: Debug + Clone;
type Snapshot;
fn start_snapshot(&mut self) -> Self::Snapshot;
fn rollback_to(&mut self, snapshot: Self::Snapshot);
fn commit(&mut self, snapshot: Self::Snapshot);
fn reset_unifications(
&mut self,
value: impl FnMut(u32) -> VarValue<Self::Key>,
);
fn len(&self) -> usize;
fn push(&mut self, value: VarValue<Self::Key>);
fn reserve(&mut self, num_new_values: usize);
fn update<F>(&mut self, index: usize, op: F)
where F: FnOnce(&mut VarValue<Self::Key>);
fn tag() -> &'static str {
Self::Key::tag()
}
}
/// Backing store for an in-place unification table.
/// Not typically used directly.
#[derive(Clone, Debug)]
pub struct InPlace<K: UnifyKey> {
values: sv::SnapshotVec<Delegate<K>>
}
// HACK(eddyb) manual impl avoids `Default` bound on `K`.
impl<K: UnifyKey> Default for InPlace<K> {
fn default() -> Self {
InPlace { values: sv::SnapshotVec::new() }
}
}
impl<K: UnifyKey> UnificationStore for InPlace<K> {
type Key = K;
type Value = K::Value;
type Snapshot = sv::Snapshot;
#[inline]
fn start_snapshot(&mut self) -> Self::Snapshot {
self.values.start_snapshot()
}
#[inline]
fn rollback_to(&mut self, snapshot: Self::Snapshot) {
self.values.rollback_to(snapshot);
}
#[inline]
fn commit(&mut self, snapshot: Self::Snapshot) {
self.values.commit(snapshot);
}
#[inline]
fn reset_unifications(
&mut self,
mut value: impl FnMut(u32) -> VarValue<Self::Key>,
) {
self.values.set_all(|i| value(i as u32));
}
#[inline]
fn len(&self) -> usize {
self.values.len()
}
#[inline]
fn push(&mut self, value: VarValue<Self::Key>) {
self.values.push(value);
}
#[inline]
fn reserve(&mut self, num_new_values: usize) {
self.values.reserve(num_new_values);
}
#[inline]
fn update<F>(&mut self, index: usize, op: F)
where F: FnOnce(&mut VarValue<Self::Key>)
{
self.values.update(index, op)
}
}
impl<K> ops::Index<usize> for InPlace<K>
where K: UnifyKey
{
type Output = VarValue<K>;
fn index(&self, index: usize) -> &VarValue<K> {
&self.values[index]
}
}
#[derive(Copy, Clone, Debug)]
struct Delegate<K>(PhantomData<K>);
impl<K: UnifyKey> sv::SnapshotVecDelegate for Delegate<K> {
type Value = VarValue<K>;
type Undo = ();
fn reverse(_: &mut Vec<VarValue<K>>, _: ()) {}
}
#[cfg(feature = "persistent")]
#[derive(Clone, Debug)]
pub struct Persistent<K: UnifyKey> {
values: DVec<VarValue<K>>
}
// HACK(eddyb) manual impl avoids `Default` bound on `K`.
#[cfg(feature = "persistent")]
impl<K: UnifyKey> Default for Persistent<K> {
fn default() -> Self {
Persistent { values: DVec::new() }
}
}
#[cfg(feature = "persistent")]
impl<K: UnifyKey> UnificationStore for Persistent<K> {
type Key = K;
type Value = K::Value;
type Snapshot = Self;
#[inline]
fn start_snapshot(&mut self) -> Self::Snapshot {
self.clone()
}
#[inline]
fn rollback_to(&mut self, snapshot: Self::Snapshot) {
*self = snapshot;
}
#[inline]
fn commit(&mut self, _snapshot: Self::Snapshot) {
}
#[inline]
fn reset_unifications(
&mut self,
mut value: impl FnMut(u32) -> VarValue<Self::Key>,
) {
// Without extending dogged, there isn't obviously a more
// efficient way to do this. But it's pretty dumb. Maybe
// dogged needs a `map`.
for i in 0 .. self.values.len() {
self.values[i] = value(i as u32);
}
}
#[inline]
fn len(&self) -> usize {
self.values.len()
}
#[inline]
fn push(&mut self, value: VarValue<Self::Key>) {
self.values.push(value);
}
#[inline]
fn reserve(&mut self, _num_new_values: usize) {
// not obviously relevant to DVec.
}
#[inline]
fn update<F>(&mut self, index: usize, op: F)
where F: FnOnce(&mut VarValue<Self::Key>)
{
let p = &mut self.values[index];
op(p);
}
}
#[cfg(feature = "persistent")]
impl<K> ops::Index<usize> for Persistent<K>
where K: UnifyKey
{
type Output = VarValue<K>;
fn index(&self, index: usize) -> &VarValue<K> {
&self.values[index]
}
}

View file

@ -1,444 +0,0 @@
// This is a fork of ena, whose copyright and license info is below.
//
// The fork was made primarily in order to support unifying type unions, which
// requires looking up the current values of keys in the middle of unification.
// This fork implements that by replacing the UnificationValue trait with
// FnOnce callbacks which accept the table as well as the values to unify.
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Union-find implementation. The main type is `UnificationTable`.
//!
//! You can define your own type for the *keys* in the table, but you
//! must implement `UnifyKey` for that type. The assumption is that
//! keys will be newtyped integers, hence we require that they
//! implement `Copy`.
//!
//! Keys can have values associated with them. The assumption is that
//! these values are cheaply cloneable (ideally, `Copy`), and some of
//! the interfaces are oriented around that assumption. If you just
//! want the classical "union-find" algorithm where you group things
//! into sets, use the `Value` type of `()`.
//!
//! When you have keys with non-trivial values, you must also define
//! how those values can be merged.
//!
//! The best way to see how it is used is to read the `tests.rs` file;
//! search for e.g. `UnitKey`.
use std::marker;
use std::fmt::Debug;
mod backing_vec;
pub use self::backing_vec::{InPlace, UnificationStore};
#[cfg(feature = "persistent")]
pub use self::backing_vec::Persistent;
#[cfg(test)]
mod tests;
/// This trait is implemented by any type that can serve as a type
/// variable. We call such variables *unification keys*. For example,
/// this trait is implemented by `IntVid`, which represents integral
/// variables.
///
/// Each key type has an associated value type `V`. For example, for
/// `IntVid`, this is `Option<IntVarValue>`, representing some
/// (possibly not yet known) sort of integer.
///
/// Clients are expected to provide implementations of this trait; you
/// can see some examples in the `test` module.
pub trait UnifyKey: Copy + Clone + Debug + PartialEq {
type Value: Clone + Debug;
fn index(&self) -> u32;
fn from_index(u: u32) -> Self;
fn tag() -> &'static str;
/// If true, then `self` should be preferred as root to `other`.
/// Note that we assume a consistent partial ordering, so
/// returning true implies that `other.prefer_as_root_to(self)`
/// would return false. If there is no ordering between two keys
/// (i.e., `a.prefer_as_root_to(b)` and `b.prefer_as_root_to(a)`
/// both return false) then the rank will be used to determine the
/// root in an optimal way.
///
/// NB. The only reason to implement this method is if you want to
/// control what value is returned from `find()`. In general, it
/// is better to let the unification table determine the root,
/// since overriding the rank can cause execution time to increase
/// dramatically.
#[allow(unused_variables)]
fn order_roots(
a: Self,
a_value: &Self::Value,
b: Self,
b_value: &Self::Value,
) -> Option<(Self, Self)> {
None
}
}
/// Value of a unification key. We implement Tarjan's union-find
/// algorithm: when two keys are unified, one of them is converted
/// into a "redirect" pointing at the other. These redirects form a
/// DAG: the roots of the DAG (nodes that are not redirected) are each
/// associated with a value of type `V` and a rank. The rank is used
/// to keep the DAG relatively balanced, which helps keep the running
/// time of the algorithm under control. For more information, see
/// <http://en.wikipedia.org/wiki/Disjoint-set_data_structure>.
#[derive(PartialEq, Clone, Debug)]
pub struct VarValue<K: UnifyKey> { // FIXME pub
parent: K, // if equal to self, this is a root
value: K::Value, // value assigned (only relevant to root)
rank: u32, // max depth (only relevant to root)
}
/// Table of unification keys and their values. You must define a key type K
/// that implements the `UnifyKey` trait. Unification tables can be used in two-modes:
///
/// - in-place (`UnificationTable<InPlace<K>>` or `InPlaceUnificationTable<K>`):
/// - This is the standard mutable mode, where the array is modified
/// in place.
/// - To do backtracking, you can employ the `snapshot` and `rollback_to`
/// methods.
/// - persistent (`UnificationTable<Persistent<K>>` or `PersistentUnificationTable<K>`):
/// - In this mode, we use a persistent vector to store the data, so that
/// cloning the table is an O(1) operation.
/// - This implies that ordinary operations are quite a bit slower though.
/// - Requires the `persistent` feature be selected in your Cargo.toml file.
#[derive(Clone, Debug, Default)]
pub struct UnificationTable<S: UnificationStore> {
/// Indicates the current value of each key.
values: S,
}
/// A unification table that uses an "in-place" vector.
#[allow(type_alias_bounds)]
pub type InPlaceUnificationTable<K: UnifyKey> = UnificationTable<InPlace<K>>;
/// A unification table that uses a "persistent" vector.
#[cfg(feature = "persistent")]
#[allow(type_alias_bounds)]
pub type PersistentUnificationTable<K: UnifyKey> = UnificationTable<Persistent<K>>;
/// At any time, users may snapshot a unification table. The changes
/// made during the snapshot may either be *committed* or *rolled back*.
pub struct Snapshot<S: UnificationStore> {
// Link snapshot to the unification store `S` of the table.
marker: marker::PhantomData<S>,
snapshot: S::Snapshot,
}
impl<K: UnifyKey> VarValue<K> {
fn new_var(key: K, value: K::Value) -> VarValue<K> {
VarValue::new(key, value, 0)
}
fn new(parent: K, value: K::Value, rank: u32) -> VarValue<K> {
VarValue {
parent: parent, // this is a root
value: value,
rank: rank,
}
}
fn redirect(&mut self, to: K) {
self.parent = to;
}
fn root(&mut self, rank: u32, value: K::Value) {
self.rank = rank;
self.value = value;
}
fn parent(&self, self_key: K) -> Option<K> {
self.if_not_self(self.parent, self_key)
}
fn if_not_self(&self, key: K, self_key: K) -> Option<K> {
if key == self_key {
None
} else {
Some(key)
}
}
}
// We can't use V:LatticeValue, much as I would like to,
// because frequently the pattern is that V=Option<U> for some
// other type parameter U, and we have no way to say
// Option<U>:LatticeValue.
impl<S: UnificationStore> UnificationTable<S> {
pub fn new() -> Self {
Self::default()
}
/// Starts a new snapshot. Each snapshot must be either
/// rolled back or committed in a "LIFO" (stack) order.
pub fn snapshot(&mut self) -> Snapshot<S> {
Snapshot {
marker: marker::PhantomData::<S>,
snapshot: self.values.start_snapshot(),
}
}
/// Reverses all changes since the last snapshot. Also
/// removes any keys that have been created since then.
pub fn rollback_to(&mut self, snapshot: Snapshot<S>) {
debug!("{}: rollback_to()", S::tag());
self.values.rollback_to(snapshot.snapshot);
}
/// Commits all changes since the last snapshot. Of course, they
/// can still be undone if there is a snapshot further out.
pub fn commit(&mut self, snapshot: Snapshot<S>) {
debug!("{}: commit()", S::tag());
self.values.commit(snapshot.snapshot);
}
/// Creates a fresh key with the given value.
pub fn new_key(&mut self, value: S::Value) -> S::Key {
let len = self.values.len();
let key: S::Key = UnifyKey::from_index(len as u32);
self.values.push(VarValue::new_var(key, value));
debug!("{}: created new key: {:?}", S::tag(), key);
key
}
/// Reserve memory for `num_new_keys` to be created. Does not
/// actually create the new keys; you must then invoke `new_key`.
pub fn reserve(&mut self, num_new_keys: usize) {
self.values.reserve(num_new_keys);
}
/// Clears all unifications that have been performed, resetting to
/// the initial state. The values of each variable are given by
/// the closure.
pub fn reset_unifications(
&mut self,
mut value: impl FnMut(S::Key) -> S::Value,
) {
self.values.reset_unifications(|i| {
let key = UnifyKey::from_index(i as u32);
let value = value(key);
VarValue::new_var(key, value)
});
}
/// Returns the number of keys created so far.
pub fn len(&self) -> usize {
self.values.len()
}
/// Obtains the current value for a particular key.
/// Not for end-users; they can use `probe_value`.
fn value(&self, key: S::Key) -> &VarValue<S::Key> {
&self.values[key.index() as usize]
}
/// Find the root node for `vid`. This uses the standard
/// union-find algorithm with path compression:
/// <http://en.wikipedia.org/wiki/Disjoint-set_data_structure>.
///
/// NB. This is a building-block operation and you would probably
/// prefer to call `probe` below.
fn get_root_key(&mut self, vid: S::Key) -> S::Key {
let redirect = {
match self.value(vid).parent(vid) {
None => return vid,
Some(redirect) => redirect,
}
};
let root_key: S::Key = self.get_root_key(redirect);
if root_key != redirect {
// Path compression
self.update_value(vid, |value| value.parent = root_key);
}
root_key
}
fn update_value<OP>(&mut self, key: S::Key, op: OP)
where
OP: FnOnce(&mut VarValue<S::Key>),
{
self.values.update(key.index() as usize, op);
debug!("Updated variable {:?} to {:?}", key, self.value(key));
}
/// Either redirects `node_a` to `node_b` or vice versa, depending
/// on the relative rank. The value associated with the new root
/// will be `new_value`.
///
/// NB: This is the "union" operation of "union-find". It is
/// really more of a building block. If the values associated with
/// your key are non-trivial, you would probably prefer to call
/// `unify_var_var` below.
fn unify_roots(&mut self, key_a: S::Key, key_b: S::Key, new_value: S::Value) {
debug!("unify(key_a={:?}, key_b={:?})", key_a, key_b);
let rank_a = self.value(key_a).rank;
let rank_b = self.value(key_b).rank;
if let Some((new_root, redirected)) =
S::Key::order_roots(
key_a,
&self.value(key_a).value,
key_b,
&self.value(key_b).value,
) {
// compute the new rank for the new root that they chose;
// this may not be the optimal choice.
let new_rank = if new_root == key_a {
debug_assert!(redirected == key_b);
if rank_a > rank_b {
rank_a
} else {
rank_b + 1
}
} else {
debug_assert!(new_root == key_b);
debug_assert!(redirected == key_a);
if rank_b > rank_a {
rank_b
} else {
rank_a + 1
}
};
self.redirect_root(new_rank, redirected, new_root, new_value);
} else if rank_a > rank_b {
// a has greater rank, so a should become b's parent,
// i.e., b should redirect to a.
self.redirect_root(rank_a, key_b, key_a, new_value);
} else if rank_a < rank_b {
// b has greater rank, so a should redirect to b.
self.redirect_root(rank_b, key_a, key_b, new_value);
} else {
// If equal, redirect one to the other and increment the
// other's rank.
self.redirect_root(rank_a + 1, key_a, key_b, new_value);
}
}
/// Internal method to redirect `old_root_key` (which is currently
/// a root) to a child of `new_root_key` (which will remain a
/// root). The rank and value of `new_root_key` will be updated to
/// `new_rank` and `new_value` respectively.
fn redirect_root(
&mut self,
new_rank: u32,
old_root_key: S::Key,
new_root_key: S::Key,
new_value: S::Value,
) {
self.update_value(old_root_key, |old_root_value| {
old_root_value.redirect(new_root_key);
});
self.update_value(new_root_key, |new_root_value| {
new_root_value.root(new_rank, new_value);
});
}
}
/// ////////////////////////////////////////////////////////////////////////
/// Public API
impl<'tcx, S, K, V> UnificationTable<S>
where
S: UnificationStore<Key = K, Value = V>,
K: UnifyKey<Value = V>,
V: Debug + Clone,
{
/// Unions two keys without the possibility of failure; only
/// applicable when unify values use `NoError` as their error
/// type.
pub fn union<K1, K2, F>(&mut self, a_id: K1, b_id: K2, unify_values: F)
where
K1: Into<K>,
K2: Into<K>,
V: Debug + Clone,
F: FnOnce(&Self, &V, &V) -> V
{
let a_id = a_id.into();
let b_id = b_id.into();
let root_a = self.get_root_key(a_id);
let root_b = self.get_root_key(b_id);
if root_a == root_b {
return;
}
let combined = unify_values(&self, &self.value(root_a).value, &self.value(root_b).value);
self.unify_roots(root_a, root_b, combined);
}
/// Unions a key and a value without the possibility of failure.
pub fn union_value<K1, F>(&mut self, id: K1, value: V, unify_values: F)
where
K1: Into<K>,
V: Debug + Clone,
F: FnOnce(&Self, &V, &V) -> V
{
self.unify_var_value(id, value, unify_values);
}
/// Given two keys, indicates whether they have been unioned together.
pub fn unioned<K1, K2>(&mut self, a_id: K1, b_id: K2) -> bool
where
K1: Into<K>,
K2: Into<K>,
{
self.find(a_id) == self.find(b_id)
}
/// Given a key, returns the (current) root key.
pub fn find<K1>(&mut self, id: K1) -> K
where
K1: Into<K>,
{
let id = id.into();
self.get_root_key(id)
}
/// Sets the value of the key `a_id` to `b`, attempting to merge
/// with the previous value.
pub fn unify_var_value<K1, F>(&mut self, a_id: K1, b: V, unify_values: F)
where
K1: Into<K>,
F: FnOnce(&Self, &V, &V) -> V
{
let a_id = a_id.into();
let root_a = self.get_root_key(a_id);
let value = unify_values(&self, &self.value(root_a).value, &b);
self.update_value(root_a, |node| node.value = value);
}
/// Returns the current value for the given key. If the key has
/// been union'd, this will give the value from the current root.
pub fn probe_value<K1>(&mut self, id: K1) -> V
where
K1: Into<K>,
{
let id = id.into();
let id = self.get_root_key(id);
self.value(id).value.clone()
}
}

View file

@ -1,44 +0,0 @@
use name::Name;
use typ::Type;
#[derive(Clone, Debug, PartialEq, Eq, PartialOrd, Ord)]
pub enum Operator {
Plus, Minus, Star, Slash, DoubleSlash,
}
#[derive(Clone, Debug, PartialEq, Eq, PartialOrd, Ord)]
pub enum Builtin {
// Default
Negate,
Not,
// String
// StringLength,
}
#[derive(Debug, PartialEq)]
pub enum Expr {
Int(i64),
Ratio(i64, u64),
// Functions
CallOperator(Box<Expr>, Operator, Box<Expr>),
CallBuiltin(Builtin, Box<Expr>),
CallLambda(Box<Expr>, Box<Expr>),
}
#[derive(Debug, PartialEq)]
pub enum Pattern {
Name(Name), // `foo =`
As(Name, Box<Pattern>), // `<pattern> as foo`
Type(Type),
Symbol(String),
String(String),
Char(char),
Int(i64),
Float(f64),
Tuple(Vec<Pattern>),
Record(Vec<(Name, Option<Pattern>)>), // { a = 5, b : Int as x, c }
}

View file

@ -1,57 +0,0 @@
use unify::Expr;
use unify::Literal;
pub fn eval<'a>(expr: &'a Expr<'a>) -> &'a Literal<'a> {
match expr {
Expr::Literal(literal) => literal,
Expr::Assignment(_, subexpr) => eval(subexpr),
Expr::If(cond, if_true, if_false) => {
match eval(cond) {
Literal::Symbol("True") => eval(if_true),
Literal::Symbol("False") => eval(if_false),
_ => {
panic!("somehow an if-conditional did not evaluate to True or False!")
}
}
}
}
}
pub fn literal_to_string<'a>(literal: &'a Literal<'a>) -> String {
match literal {
Literal::String(str) => format!("\"{}\"", str),
Literal::Char(character) => format!("'{}'", character),
Literal::Symbol(str) => str.to_string(),
Literal::HexOctalBinary(str) => str.to_string(),
Literal::Number(str) => str.to_string(),
Literal::Record(field_exprs) => {
let mut field_strings = Vec::new();
for (field, subexpr) in field_exprs {
let val = literal_to_string(eval(subexpr));
field_strings.push(format!("{} = {}", field, val));
}
format!("{{ {} }}", field_strings.join(", "))
},
Literal::Tuple(elem_exprs) => {
let mut elem_strings = Vec::new();
for elem_expr in elem_exprs {
elem_strings.push(literal_to_string(eval(elem_expr)));
}
format!("({})", elem_strings.join(", "))
},
Literal::Array(elem_exprs) => {
let mut elem_strings = Vec::new();
for elem_expr in elem_exprs {
elem_strings.push(literal_to_string(eval(elem_expr)));
}
format!("[{}]", elem_strings.join(", "))
},
}
}

View file

@ -1,22 +0,0 @@
#![feature(box_syntax, box_patterns)]
// pub mod unify;
// pub mod interpret;
// pub mod repl;
pub mod solve;
pub mod expr;
pub mod constrain;
pub mod canonical;
pub mod name;
pub mod typ;
pub mod parse;
mod ena;
#[macro_use]
extern crate log;
#[cfg(feature = "persistent")]
extern crate dogged;
#[macro_use] extern crate combine;

View file

@ -1 +0,0 @@
pub type Name = String;

View file

@ -1,335 +0,0 @@
use expr::Operator;
use expr::Expr;
use std::char;
use std::iter;
use combine::parser::char::{char, string, letter, alpha_num, spaces, digit, hex_digit, HexDigit};
use combine::parser::repeat::{many, count_min_max};
use combine::parser::item::{any, satisfy, satisfy_map, value};
use combine::{choice, many1, parser, Parser, optional, between, unexpected_any};
use combine::error::{Consumed, ParseError};
use combine::stream::{Stream};
pub const ERR_EMPTY_CHAR: &'static str = "EMPTY_CHAR";
pub fn expr<I>() -> impl Parser<Input = I, Output = Expr>
where I: Stream<Item = char>,
I::Error: ParseError<I::Item, I::Range, I::Position>
{
// TODO change to expr() to reproduce rust compiler bug
expr_()
}
// This macro allows recursive parsers
parser! {
#[inline(always)]
fn expr_[I]()(I) -> Expr
where [ I: Stream<Item = char> ]
{
choice((
number_literal(),
ident(),
)).skip(spaces()).and(
// Optionally follow the expression with an operator,
//
// e.g. In the expression (1 + 2), the subexpression 1
// is followed by the operator + and another subexpression, 2
optional(
operator()
.skip(spaces())
.and(expr()
)
)).map(|(v1, maybe_op)| {
match maybe_op {
None => v1,
Some((op, v2)) => {
Expr::CallOperator(Box::new(v1), op, Box::new(v2))
},
}
})
}
}
pub fn operator<I>() -> impl Parser<Input = I, Output = Operator>
where I: Stream<Item = char>,
I::Error: ParseError<I::Item, I::Range, I::Position>
{
choice((
char('+').map(|_| Operator::Plus),
char('-').map(|_| Operator::Minus),
char('*').map(|_| Operator::Star),
))
}
pub fn ident<I>() -> impl Parser<Input = I, Output = Expr>
where I: Stream<Item = char>,
I::Error: ParseError<I::Item, I::Range, I::Position>
{
char('.').map(|_| Expr::Int(1))
}
pub fn string_literal<I>() -> impl Parser<Input = I, Output = Expr>
where I: Stream<Item = char>,
I::Error: ParseError<I::Item, I::Range, I::Position>
{
between(char('"'), char('"'), many(string_body()))
.map(|str| Expr::String(str))
}
pub fn char_literal<I>() -> impl Parser<Input = I, Output = Expr>
where I: Stream<Item = char>,
I::Error: ParseError<I::Item, I::Range, I::Position>
{
between(char('\''), char('\''), char_body().expected(ERR_EMPTY_CHAR))
.map(|ch| Expr::Char(ch))
}
fn unicode_code_pt<I>() -> impl Parser<Input = I, Output = char>
where
I: Stream<Item = char>,
I::Error: ParseError<I::Item, I::Range, I::Position>,
{
// You can put up to 6 hex digits inside \u{...}
// e.g. \u{00A0} or \u{101010}
// They must be no more than 10FFFF
let hex_code_pt =
count_min_max::<Vec<char>, HexDigit<I>>(1, 6, hex_digit())
.then(|hex_digits| {
let hex_str:String = hex_digits.into_iter().collect();
match u32::from_str_radix(&hex_str, 16) {
Ok(code_pt) => {
if code_pt > 0x10FFFF {
unexpected_any("Invalid Unicode code point. It must be no more than \\u{10FFFF}.").right()
} else {
match char::from_u32(code_pt) {
Some(ch) => value(ch).left(),
None => unexpected_any("Invalid Unicode code point.").right()
}
}
},
Err(_) => {
unexpected_any("Invalid hex code - Unicode code points must be specified using hexadecimal characters (the numbers 0-9 and letters A-F)").right()
}
}
});
char('u').with(between(char('{'), char('}'), hex_code_pt))
}
fn string_body<I>() -> impl Parser<Input = I, Output = char>
where
I: Stream<Item = char>,
I::Error: ParseError<I::Item, I::Range, I::Position>,
{
parser(|input: &mut I| {
let (parsed_char, consumed) = try!(any().parse_lazy(input).into());
let mut escaped = satisfy_map(|escaped_char| {
// NOTE! When modifying this, revisit char_body too!
// Their implementations are similar but not the same.
match escaped_char {
'"' => Some('"'),
'\\' => Some('\\'),
't' => Some('\t'),
'n' => Some('\n'),
'r' => Some('\r'),
_ => None,
}
});
match parsed_char {
'\\' => {
consumed.combine(|_| {
// Try to parse basic backslash-escaped literals
// e.g. \t, \n, \r
escaped.parse_stream(input).or_else(|_|
// If we didn't find any of those, try \u{...}
unicode_code_pt().parse_stream(input)
)
})
},
'"' => {
// We should never consume a double quote unless
// it's preceded by a backslash
Err(Consumed::Empty(I::Error::empty(input.position()).into()))
},
_ => Ok((parsed_char, consumed)),
}
})
}
fn char_body<I>() -> impl Parser<Input = I, Output = char>
where
I: Stream<Item = char>,
I::Error: ParseError<I::Item, I::Range, I::Position>,
{
parser(|input: &mut I| {
let (parsed_char, consumed) = try!(any().parse_lazy(input).into());
let mut escaped = satisfy_map(|escaped_char| {
// NOTE! When modifying this, revisit string_body too!
// Their implementations are similar but not the same.
match escaped_char {
'\'' => Some('\''),
'\\' => Some('\\'),
't' => Some('\t'),
'n' => Some('\n'),
'r' => Some('\r'),
_ => None,
}
});
match parsed_char {
'\\' => {
consumed.combine(|_| {
// Try to parse basic backslash-escaped literals
// e.g. \t, \n, \r
escaped.parse_stream(input).or_else(|_|
// If we didn't find any of those, try \u{...}
unicode_code_pt().parse_stream(input)
)
})
},
'\'' => {
// We should never consume a single quote unless
// it's preceded by a backslash
Err(Consumed::Empty(I::Error::empty(input.position()).into()))
},
_ => Ok((parsed_char, consumed)),
}
})
}
pub fn number_literal<I>() -> impl Parser<Input = I, Output = Expr>
where I: Stream<Item = char>,
I::Error: ParseError<I::Item, I::Range, I::Position>
{
// Digits before the decimal point can be space-separated
// e.g. one million can be written as 1 000 000
let digits_before_decimal = many1::<Vec<_>, _>(digit().skip(optional(char(' '))));
let digits_after_decimal = many1::<Vec<_>, _>(digit());
optional(char('-'))
.and(digits_before_decimal)
.and(optional(char('.').with(digits_after_decimal)))
.map(|((maybe_minus, int_digits), decimals): ((Option<char>, Vec<char>), Option<Vec<char>>)| {
let is_positive = maybe_minus.is_none();
// TODO check length of digits and make sure not to overflow
let int_str: String = int_digits.into_iter().collect();
let int_val = int_str.parse::<i64>().unwrap();
match decimals {
None => {
if is_positive {
Expr::Int(int_val as i64)
} else {
Expr::Int(-int_val as i64)
}
},
Some(nums) => {
let decimal_str: String = nums.into_iter().collect();
// calculate numerator and denominator
// e.g. 123.45 == 12345 / 100
let denom = (10 as i64).pow(decimal_str.len() as u32);
let decimal = decimal_str.parse::<u32>().unwrap();
let numerator = (int_val * denom) + (decimal as i64);
if is_positive {
Expr::Ratio(numerator, denom as u64)
} else {
Expr::Ratio(-numerator, denom as u64)
}
}
}
})
}
// pub fn parse_expr(state: &mut State) -> Result<Expr, Problem> {
// let digits = chomp_digits(state);
// if digits.is_empty() {
// Err(Problem::InvalidNumber)
// } else {
// // TODO store these in a bigint, and handle overflow.
// let num = digits.parse::<u32>().unwrap();
// if decimal_point
// Ok(Expr::Int(num))
// }
// }
// enum Parsed {
// Expr(Expr),
// Malformed(Problem),
// NotFound
// }
// #[inline]
// fn number_parser() -> {
// let has_minus_sign = false;
// let decimal_point_index: usize = 0;
// let len: usize = 0;
// for ch in state.text.chars() {
// if ch.is_ascii_digit() {
// len += 1;
// } else if ch == '-' {
// if has_minus_sign {
// if len == 1 {
// return Malformed(DoubleMinusSign);
// } else {
// // This second minus sign is a subtraction operator.
// // We've reached the end of the number!
// break;
// }
// } else {
// has_minus_sign = true;
// len += 1;
// }
// } else if ch == '.' {
// if len == 0 {
// return Malformed(NoDigitsBeforeDecimalPoint);
// } else if decimal_point_index != 0 {
// return Malformed(DoubleDecimalPoint);
// } else {
// // This might be a valid decimal number!
// decimal_point_index = len;
// len += 1;
// }
// }
// }
// state.col += len;
// if decimal_point_index == 0 {
// // This is an integer.
// Expr(Expr::Int(parse_int(&state.text[..len])))
// } else {
// // This is a decimal.
// let before_decimal_pt = &state.text[..decimal_point_index];
// let after_decimal_pt = &state.text[(decimal_point_index + 1)..];
// let numerator_str = before_decimal_pt.to_owned();
// numerator_str.push_str(after_decimal_pt);
// let numerator = parse_int(&numerator_str);
// let denominator = 10 * after_decimal_pt.len() as u64;
// Expr(Expr::Ratio(numerator, denominator))
// }
// }
// #[inline]
// fn parse_int(text: &str) -> i64 {
// // TODO parse as BigInt
// text.parse::<i64>().unwrap()
// }

View file

@ -1,63 +0,0 @@
use interpret::{eval, literal_to_string};
use unify::infer;
use unify::Expr;
use unify::Type;
pub fn eval_and_print<'a>(expr: &Expr<'a>) -> String {
match infer(&expr) {
Ok(typ) => {
let lit = eval(expr);
format!("{}\n: {}", literal_to_string(lit), type_to_string(true, &typ))
},
Err(_) =>
"[TYPE MISMATCH!]".to_string()
}
}
pub fn type_to_string<'a>(outermost: bool, typ: &'a Type<'a>) -> String {
match typ {
Type::Unbound => "*".to_string(),
Type::String => "String".to_string(),
Type::Char => "Char".to_string(),
Type::Int => "Int".to_string(),
Type::Float => "Float".to_string(),
Type::Number => "Int | Float".to_string(),
Type::Symbol(sym) => format!(":{}", sym),
Type::Array(elem_type) => {
let str = format!("Array {}", type_to_string(false, elem_type));
if outermost {
str
} else {
format!("({})", str)
}
},
Type::Record(fields) => {
let field_strings = fields.into_iter().map(|(field, subtyp)| {
let typ_str = type_to_string(false, subtyp);
format!("{} : {}", field, typ_str)
});
format!("{{ {} }}", field_strings.collect::<Vec<String>>().join(", "))
},
Type::Tuple(elems) => {
let elem_strings = elems.into_iter().map(|subtyp| { type_to_string(false, subtyp) });
let str = elem_strings.collect::<Vec<String>>().join(", ");
if outermost {
str
} else {
format!("({})", str)
}
}
Type::Assignment(_, assigned_typ) => type_to_string(outermost, assigned_typ),
Type::Union(set) => {
set.into_iter().collect::<Vec<&'a Type<'a>>>().into_iter().map(|typ_in_set| {
type_to_string(false, typ_in_set)
}).collect::<Vec<String>>().join(" | ")
}
}
}

View file

@ -1,317 +0,0 @@
use std::collections::BTreeSet;
use std::collections::HashMap;
use constrain::Constraint;
use typ::Type;
use canonical::Annotation;
use name::Name;
use self::Variable::*;
use ena::unify::{UnificationTable, UnifyKey, InPlace};
type UTable = UnificationTable<InPlace<VarId>>;
#[derive(Clone, Debug, PartialEq, Eq, PartialOrd, Ord)]
enum Variable {
Wildcard,
RigidVar(Name),
FlexUnion(BTreeSet<VarId>),
RigidUnion(BTreeSet<VarId>),
Structure(FlatType),
Mismatch
}
#[derive(Clone, Debug, PartialEq, Eq, PartialOrd, Ord)]
enum FlatType {
Function(VarId, VarId),
// Apply a higher-kinded type constructor by name. For example:
// "Apply the higher-kinded type constructor `Array` to the variable `Int`
// to form `Array Int`."
// ApplyTypeConstructor(CanonicalModuleName, Name, VarId)
Tuple2(VarId, VarId),
Tuple3(VarId, VarId, VarId),
// TupleN(Vec<VarId>), // Last resort - allocates
// Record1 (Map.Map N.Name VarId) VarId,
}
#[inline]
fn unify_rigid(named: &Variable, other: &Variable) -> Variable {
match other {
Wildcard => named.clone(),
RigidVar(_) => Mismatch,
FlexUnion(_) => Mismatch,
RigidUnion(_) => Mismatch,
Structure(_) => { panic!("TODO"); Mismatch }
Mismatch => other.clone()
}
}
#[inline]
fn unify_rigid_union(utable: &mut UTable, rigid_union: &BTreeSet<VarId>, var: &Variable, other: &Variable) -> Variable {
match other {
Wildcard => var.clone(),
RigidVar(_) => Mismatch,
FlexUnion(flex_union) => {
if rigid_union_fits_flex_union(utable, &rigid_union, &flex_union) {
var.clone()
} else {
Mismatch
}
},
Structure(_) => { panic!("TODO"); Mismatch }
RigidUnion(_) => Mismatch,
Mismatch => other.clone()
}
}
#[inline]
fn rigid_union_fits_flex_union(utable: &mut UTable, rigid_union: &BTreeSet<VarId>, flex_union: &BTreeSet<VarId>) -> bool {
if rigid_union.is_subset(&flex_union) {
// If the keys of the rigid one are a subset of the flex keys, we're done.
return true;
}
let potentially_missing_flex_ids = flex_union.difference(rigid_union);
// a flex union can conform to a rigid one, as long
// as the rigid union contains all the flex union's alternative types
let rigid_union_values: BTreeSet<Variable> =
rigid_union.iter().map(|var_id| utable.probe_value(*var_id)).collect();
for flex_var_id in potentially_missing_flex_ids {
let flex_val = utable.probe_value(*flex_var_id);
if !rigid_union_values.contains(&flex_val) {
return false;
}
}
true
}
#[inline]
fn unify_flex_union(utable: &mut UTable, flex_union: &BTreeSet<VarId>, var: &Variable, other: &Variable) -> Variable {
match other {
Wildcard => var.clone(),
RigidVar(_) => Mismatch,
RigidUnion(rigid_union) => {
if rigid_union_fits_flex_union(utable, &rigid_union, &flex_union) {
other.clone()
} else {
Mismatch
}
},
FlexUnion(other_union) => unify_flex_unions(&flex_union, &other_union),
Structure(_) => unify_flex_union_with_structure(&flex_union, other),
Mismatch => other.clone()
}
}
#[inline]
fn unify_flex_unions(my_union: &BTreeSet<VarId>, other_union: &BTreeSet<VarId>) -> Variable {
let ids_in_common = my_union.intersection(other_union);
let unified_union: BTreeSet<VarId> = ids_in_common.into_iter().map(|var_id| *var_id).collect();
// If they have no types in common, that's a mismatch.
if unified_union.len() == 0 {
Mismatch
} else {
FlexUnion(unified_union)
}
}
fn unify_vars(utable: &mut UTable, first: &Variable, second: &Variable) -> Variable {
match first {
// wildcard types defer to whatever the other type happens to be.
Wildcard => second.clone(),
FlexUnion(union) => unify_flex_union(utable, &union, first, second),
RigidVar(Name) => unify_rigid(first, second),
RigidUnion(union) => unify_rigid_union(utable, &union, first, second),
Structure(flat_type) => unify_structure(utable, flat_type, first, second),
// Mismatches propagate.
Mismatch => first.clone()
}
}
#[inline]
fn unify_structure(utable: &mut UTable, flat_type: &FlatType, var: &Variable, other: &Variable) -> Variable {
match other {
Wildcard => var.clone(),
RigidVar(_) => Mismatch,
FlexUnion(flex_union) => unify_flex_union_with_structure(&flex_union, var),
RigidUnion(_) => Mismatch,
Structure(other_flat_type) => unify_flat_types(utable, flat_type, other_flat_type),
Mismatch => other.clone()
}
}
#[inline]
fn unify_flat_types(utable: &mut UTable, flat_type: &FlatType, other_flat_type: &FlatType) -> Variable {
match (flat_type, other_flat_type) {
(FlatType::Function(my_arg, my_return),
FlatType::Function(other_arg, other_return)) => {
let new_arg = unify_var_ids(utable, *my_arg, *other_arg);
let new_return = unify_var_ids(utable, *my_return, *other_return);
// Propagate any mismatches.
if new_arg == Mismatch {
new_arg
} else if new_return == Mismatch {
new_return
} else {
let new_arg_id = utable.new_key(new_arg);
let new_return_id = utable.new_key(new_return);
Structure(FlatType::Function(new_arg_id, new_return_id))
}
},
(FlatType::Function(_, __return), _) => Mismatch,
(_, FlatType::Function(_, __return)) => Mismatch,
(FlatType::Tuple2(my_first, my_second),
FlatType::Tuple2(other_first, other_second)) => {
let new_first = unify_var_ids(utable, *my_first, *other_first);
let new_second = unify_var_ids(utable, *my_second, *other_second);
// Propagate any mismatches.
if new_first == Mismatch {
new_first
} else if new_second == Mismatch {
new_second
} else {
let new_first_id = utable.new_key(new_first);
let new_second_id = utable.new_key(new_second);
Structure(FlatType::Tuple2(new_first_id, new_second_id))
}
},
(FlatType::Tuple2(_, _), _) => Mismatch,
(_, FlatType::Tuple2(_, _)) => Mismatch,
(FlatType::Tuple3(my_first, my_second, my_third),
FlatType::Tuple3(other_first, other_second, other_third)) => {
let new_first = unify_var_ids(utable, *my_first, *other_first);
let new_second = unify_var_ids(utable, *my_second, *other_second);
let new_third = unify_var_ids(utable, *my_third, *other_third);
// Propagate any mismatches.
if new_first == Mismatch {
new_first
} else if new_second == Mismatch {
new_second
} else if new_third == Mismatch {
new_third
} else {
let new_first_id = utable.new_key(new_first);
let new_second_id = utable.new_key(new_second);
let new_third_id = utable.new_key(new_third);
Structure(FlatType::Tuple3(new_first_id, new_second_id, new_third_id))
}
},
// (FlatType::Tuple3(_, _, _), _) => Mismatch,
// (_, FlatType::Tuple3(_, _, _)) => Mismatch,
}
}
#[inline]
fn unify_flex_union_with_structure(flex_union: &BTreeSet<VarId>, var: &Variable) -> Variable {
// TODO I guess iterate through the set, looking up Variables
panic!("TODO");
// if flex_union.contains(var) {
// Narrow the union to the one member type
var.clone()
// } else {
// Mismatch
// }
}
// Given a type, create a constraint variable for it and add it to the table.
// Return the VarId corresponding to the variable in the table.
fn type_to_var_id(utable: &mut UTable, typ: Type) -> VarId {
match typ {
Type::Call(box fn_type, box arg_type) => {
panic!("TODO");
utable.new_key(Mismatch)
// let left_var_id = type_to_var_id(utable, left_type);
// let right_var_id = type_to_var_id(utable, right_type);
// // TODO should we match on op to hardcode the types we expect?
// let flat_type = FlatType::Function(left_var_id, right_var_id);
// utable.new_key(Structure(flat_type))
}
}
}
#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq, PartialOrd, Ord)]
struct VarId(u32);
impl UnifyKey for VarId {
type Value = Variable;
fn index(&self) -> u32 { self.0 }
fn from_index(u: u32) -> VarId { VarId(u) }
// tag is a static string that's only used in debugging
fn tag() -> &'static str { "VarId" }
}
fn unify_var_ids(utable: &mut UTable, left_id: VarId, right_id: VarId) -> Variable {
let left_content = utable.probe_value(left_id);
let right_content = utable.probe_value(right_id);
if left_content == right_content {
left_content
} else {
unify_vars(utable, &left_content, &right_content)
}
}
pub type TypeError = String;
pub fn solve_constraint(constraint: Constraint) -> Result<TypeError, HashMap<Name, Annotation>> {
let mut utable: UTable = UnificationTable::new();
solve(&mut utable, constraint);
Ok("TODO: actually gather errors etc".to_owned())
}
fn solve(utable: &mut UTable, constraint: Constraint) {
match constraint {
Constraint::True => {},
Constraint::Equal(actual_type, expectation) => {
let actual_var_id = type_to_var_id(utable, actual_type);
let expected_var_id = type_to_var_id(utable, expectation);
let answer = unify_var_ids(utable, actual_var_id, expected_var_id);
panic!("Oh no! TYPE MISMATCH! (TODO: record errors as appropriate)");
()
// match answer {
// Mismatch => {
// panic!("Oh no! TYPE MISMATCH! (TODO: record errors as appropriate)");
// }
// do introduce rank pools vars
// return state
// UF.modify var $ \(Descriptor content _ mark copy) ->
// Descriptor content rank mark copy
// Unify.Err vars actualType expectedType ->
// panic!("TODO xyz");
// do introduce rank pools vars
// return $ addError state $
// Error.BadExpr region category actualType $
// Error.typeReplace expectation expectedType
// }
},
Constraint::Batch(_) => {
panic!("TODO");
()
}
}
}

View file

@ -1,12 +0,0 @@
#[derive(Clone, Debug, PartialEq, Eq, PartialOrd, Ord)]
pub enum Type {
// Symbol(String),
// Int,
// Float,
// Number,
// TypeUnion(BTreeSet<Type>),
// Function(Box<Type>, Box<Type>),
Call(Box<Type>, Box<Type>),
}

View file

@ -1,363 +0,0 @@
use std::collections::BTreeSet;
use std::collections::BTreeMap;
use self::Type::*;
pub type Name<'a> = &'a str;
pub type ModuleName<'a> = &'a str;
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord)]
pub enum Type<'a> {
Unbound,
String,
Char,
Int,
Float,
Number,
Symbol(&'a str),
Array(Box<Type<'a>>),
Function(Box<Type<'a>>, Box<Type<'a>>),
Record(BTreeMap<Name<'a>, Type<'a>>),
Tuple(Vec<Type<'a>>),
Union(BTreeSet<Type<'a>>),
}
// CANONICAL IR - we have already done stuff like giving errors for
// duplicate field names
#[derive(Debug, PartialEq)]
pub enum Expr<'a> {
// Variables
Declaration(&'a Pattern<'a>, Box<&'a Expr<'a>>, Box<Expr<'a>>),
LookupLocal(&'a Name<'a>),
LookupGlobal(&'a ModuleName<'a>, &'a Name<'a>),
// Scalars
Symbol(&'a str),
String(&'a str),
Char(char),
HexOctalBinary(i64), // : Int
FractionalNumber(f64), // : Float
WholeNumber(i64), // : Int | Float
// Collections
Array(Vec<Expr<'a>>),
Record(Vec<(&'a Name<'a>, &'a Expr<'a>)>),
Tuple(Vec<&'a Expr<'a>>),
LookupName(Name<'a>, Box<&'a Expr<'a>>),
// TODO add record update
// Functions
Function(&'a Pattern<'a>, &'a Expr<'a>),
Call(Box<&'a Expr<'a>>, Box<&'a Expr<'a>>),
CallOperator(&'a Operator, Box<&'a Expr<'a>>, Box<&'a Expr<'a>>),
// Conditionals
If(Box<&'a Expr<'a>> /* Conditional */, Box<&'a Expr<'a>> /* True branch */, Box<&'a Expr<'a>> /* False branch */),
Case(Box<&'a Expr<'a>>, Vec<(&'a Pattern<'a>, &'a Expr<'a>)>),
}
#[derive(Debug, PartialEq)]
pub enum Operator {
Plus, Minus, Star, Caret, Percent, FloatDivision, IntDivision,
GT, GTE, LT, LTE,
EQ, NE, And, Or,
QuestionMark, Or
}
#[derive(Debug, PartialEq)]
pub enum Pattern<'a> {
Name(&'a Name<'a>), // `foo =`
As(&'a Name<'a>, &'a Pattern<'a>), // `<pattern> as foo`
Type(&'a Type<'a>),
Symbol(&'a str),
String(&'a str),
Char(char),
WholeNumber(&'a str),
FractionalNumber(&'a str),
HexOctalBinary(&'a str),
Tuple(Vec<Pattern<'a>>),
Record(Vec<(Name<'a>, Option<Pattern<'a>>)>), // { a = 5, b : Int as x, c }
}
pub fn infer<'a>(expr: &Expr<'a>) -> Result<Type<'a>, UnificationProblem> {
match expr {
Expr::String(_) => Ok(String),
Expr::Char(_) => Ok(Char),
Expr::HexOctalBinary(_) => Ok(Int),
Expr::FractionalNumber(_) => Ok(Float),
Expr::WholeNumber(_) => Ok(Number),
Expr::Symbol(sym) => Ok(Symbol(sym)),
Expr::Array(elem_exprs) => {
let elem_type;
if elem_exprs.is_empty() {
elem_type = Unbound;
} else {
let mut unified_type = BTreeSet::new();
// Unify the types of all the elements
for elem_expr in elem_exprs {
unified_type.insert(infer(&elem_expr)?);
}
if unified_type.len() == 1 {
// No point in storing a union of 1.
elem_type = unified_type.into_iter().next().unwrap()
} else {
elem_type = Union(unified_type)
}
}
Ok(Array(Box::new(elem_type)))
},
Expr::Record(fields) => {
let mut rec_type: BTreeMap<&'a Name<'a>, Type<'a>> = BTreeMap::new();
for (field, subexpr) in fields {
let field_type = infer(subexpr)?;
rec_type.insert(&field, field_type);
}
Ok(Record(rec_type))
},
Expr::Tuple(exprs) => {
let mut tuple_type: Vec<Type<'a>> = Vec::new();
for subexpr in exprs {
let field_type = infer(subexpr)?;
tuple_type.push(field_type);
}
Ok(Tuple(tuple_type))
},
Expr::If(box cond, expr_if_true, expr_if_false) => {
let cond_type = infer(&cond)?;
// if-conditionals must be of type Bool
if !matches_bool_type(&cond_type) {
return Err(UnificationProblem::IfConditionNotBool);
}
// unify the true and false branches
let true_type = infer(&expr_if_true)?;
let false_type = infer(&expr_if_false)?;
let mut unified_type = BTreeSet::new();
unified_type.insert(true_type);
unified_type.insert(false_type);
if unified_type.len() == 1 {
// No point in storing a union of 1.
//
// We can't reuse true_type because it's been moved into the set
// but we can pull it back out of the set
Ok(unified_type.into_iter().next().unwrap())
} else {
Ok(Union(unified_type))
}
},
Call(func, arg) => {
},
CallOperator(op, left_expr, right_expr) => {
let left = &(infer(left_expr)?);
let right = &(infer(right_expr)?);
match op {
Operator::EQ | Operator::NE | Operator::And | Operator::Or => {
if types_match(left, right) {
conform_to_bool(left)
} else {
Err(UnificationProblem::TypeMismatch)
}
},
Operator::Plus | Operator::Minus | Operator::Star
| Operator::GT | Operator::LT | Operator::GTE | Operator::LTE
| Operator::Caret | Operator::Percent => {
if types_match(left, right) {
conform_to_number(left)
} else {
Err(UnificationProblem::TypeMismatch)
}
},
Operator::FloatDivision => {
if matches_float_type(left) && matches_float_type(right) {
Ok(&Float)
} else {
Err(UnificationProblem::TypeMismatch)
}
},
Operator::IntDivision => {
if matches_int_type(left) && matches_int_type(right) {
Ok(&Int)
} else {
Err(UnificationProblem::TypeMismatch)
}
},
Operator::CombineStrings => {
if matches_string_type(left) && matches_string_type(right) {
Ok(&String)
} else {
Err(UnificationProblem::TypeMismatch)
}
},
Operator::QuestionMark => {
if types_match(left, right) {
conform_to_optional(left)
} else {
Err(UnificationProblem::TypeMismatch)
}
}
}
},
Expr::Declaration(pattern, let_expr, in_expr) => {
// Think of this as a let..in even though syntactically it's not.
// We need to type-check the let-binding, but the type of the
// *expression* we're expaning is only affected by the in-block.
check_pattern(&pattern, &let_expr)?;
infer(in_expr)
}
}
}
fn types_match<'a>(first: &'a Type<'a>, second: &'a Type<'a>) -> bool {
match (first, second) {
(Type::Union(first_types), Type::Union(second_types)) => {
// If any type is not directly present in the other union,
// it must at least match *some* type in the other union
first_types.difference(second_types).into_iter().all(|not_in_second_type| {
second_types.iter().any(|second_type| types_match(second_type, not_in_second_type))
}) &&
second_types.difference(first_types).into_iter().all(|not_in_first_type| {
first_types.iter().any(|first_type| types_match(first_type, not_in_first_type))
})
},
// Happy path: try these first, since we expect them to succeed.
// These are sorted based on a vague guess of how often they will be used in practice.
(Type::Symbol(sym_one), Type::Symbol(sym_two)) => sym_one == sym_two,
(Type::String, Type::String) => true,
(Type::Unbound, _) | (_, Type::Unbound)=> true,
(Type::Array(box elem_type_one), Type::Array(box elem_type_two)) => {
types_match(elem_type_one, elem_type_two)
},
(Type::Number, Type::Number) => true,
(Type::Number, other) => matches_number_type(other),
(other, Type::Number) => matches_number_type(other),
(Type::Int, Type::Int) => true,
(Type::Float, Type::Float) => true,
(Type::Tuple(first_elems), Type::Tuple(second_elems)) => {
// TODO verify that the elems and their types match up
// TODO write some scenarios to understand these better -
// like, what happens if you have a function that takes
// a lambda whose argument takes an open record,
// and you pass a lamba whose argument takes *fewer* fields?
// that should work! the function is gonna pass it a lambda that
// has more fields than it needs.
// I think there's an element of directionality here that I'm
// disregarding. Maybe this function shouldn't commute.
},
(Type::Function(first_arg), Type::Function(second_arg)) => {
// TODO verify that the elems and their types match up
},
(Type::Record(first_fields), Type::Record(second_fields)) => {
// TODO verify that the fields and their types match up
// TODO what should happen if one is a superset of the other? fail?
},
(Type::Char, Type::Char) => true,
// Unhappy path - expect these to fail, so check them last
(Type::Union(first_types), _) => {
first_types.iter().all(|typ| types_match(typ, second))
},
(_, Type::Union(second_types)) => {
second_types.iter().all(|typ| types_match(first, typ))
},
(Type::String, _) | (_, Type::String) => false,
(Type::Char, _) | (_, Type::Char) => false,
(Type::Int, _) | (_, Type::Int) => false,
(Type::Float, _) | (_, Type::Float) => false,
(Type::Symbol(_), _) | (_, Type::Symbol(_)) => false,
(Type::Array(_), _) | (_, Type::Array(_)) => false,
(Type::Record(_), _) | (_, Type::Record(_)) => false,
(Type::Tuple(_), _) | (_, Type::Tuple(_)) => false,
(Type::Function(_, _), _) | (_, Type::Function(_, _)) => false,
}
}
fn check_pattern<'a>(pattern: &'a Pattern<'a>, expr: &'a Expr<'a>) -> Result<(), UnificationProblem> {
let expr_type = infer(expr)?;
panic!("TODO check the pattern's type against expr_type, then write some tests for funky record pattern cases - this is our first real unification! Next one will be field access, ooooo - gonna want lots of tests for that")
}
const TRUE_SYMBOL_STR: &'static str = "True";
const FALSE_SYMBOL_STR: &'static str = "False";
pub fn matches_string_type<'a>(candidate: &Type<'a>) -> bool {
match candidate {
Unbound | String => true,
Type::Union(types) => {
types.iter().all(|typ| matches_string_type(typ))
},
_ => Err(UnificationProblem::TypeMismatch)
}
}
pub fn matches_bool_type<'a>(candidate: &Type<'a>) -> bool {
match candidate {
Type::Unbound => true,
Type::Symbol(str) => str == &TRUE_SYMBOL_STR || str == &FALSE_SYMBOL_STR,
Type::Union(types) => {
types.iter().all(|typ| matches_bool_type(typ))
}
_ => false
}
}
pub fn matches_number_type<'a>(candidate: &Type<'a>) -> bool {
match candidate {
Type::Unbound | Type::Int | Type::Float | Type::Number => true,
Type::Union(types) => {
types.iter().all(|typ| matches_number_type(typ))
}
_ => false
}
}
pub fn matches_int_type<'a>(candidate: &Type<'a>) -> bool {
match candidate {
Type::Unbound | Type::Int => true,
Type::Union(types) => {
types.iter().all(|typ| matches_int_type(typ))
}
_ => false
}
}
pub fn matches_float_type<'a>(candidate: &Type<'a>) -> bool {
match candidate {
Type::Unbound | Type::Float => true,
Type::Union(types) => {
types.iter().all(|typ| matches_float_type(typ))
}
_ => false
}
}
#[derive(Debug)]
pub enum UnificationProblem {
CannotUnifyAssignments,
NotMemberOfUnion,
TypeMismatch,
IfConditionNotBool,
SymbolMismatch
}

View file

@ -1,38 +0,0 @@
#[macro_use] extern crate pretty_assertions;
extern crate roc;
#[cfg(test)]
mod interpreter_tests {
use roc::interpret::literal_to_string;
use roc::unify::Expr::Literal;
use roc::unify::Literal::{String, Record};
#[test]
fn test_string_literal() {
let expected = "\"hi!\"";
let literal = String("hi!");
assert_eq!(expected, literal_to_string(&literal));
}
#[test]
fn test_record_literal() {
let str0 = &String("blah");
let str1 = &String("foo");
let str2 = &String("bar");
let x = ("x", &Literal(str1));
let y = ("y", &Literal(str2));
let subrec = &Record(vec![x, y]);
let str_pair = ("string", &Literal(str0));
let rec_pair = ("record", &Literal(subrec));
let toprec = vec![str_pair, rec_pair];
let literal = &Record(toprec);
let expected = "{ string = \"blah\", record = { x = \"foo\", y = \"bar\" } }";
assert_eq!(expected, literal_to_string(literal));
}
}

View file

@ -1,41 +0,0 @@
#[macro_use] extern crate pretty_assertions;
extern crate roc;
#[cfg(test)]
mod repl_tests {
use roc::repl::eval_and_print;
use roc::unify::Expr::{Literal};
use roc::unify::Literal::{String, Record};
#[test]
fn test_eval_and_print() {
let expected = "\"hi!\"\n: String";
let literal = String("hi!");
let expr = Literal(&literal);
assert_eq!(expected, eval_and_print(&expr));
}
#[test]
fn test_record_literal() {
let expected = "{ string = \"abc\", record = { x = \"one\", y = \"two\" } }\n: { string : String, record : { x : String, y : String } }";
let str0 = &String("abc");
let str1 = &String("one");
let str2 = &String("two");
let x = ("x", &Literal(str1));
let y = ("y", &Literal(str2));
let subrec = &Record(vec![x, y]);
let str_pair = ("string", &Literal(str0));
let rec_pair = ("record", &Literal(subrec));
let toprec = vec![str_pair, rec_pair];
let literal = &Record(toprec);
let expr = Literal(&literal);
assert_eq!(expected, eval_and_print(&expr));
}
}

View file

@ -1,134 +0,0 @@
#[macro_use] extern crate pretty_assertions;
extern crate roc;
#[cfg(test)]
mod tests {
use std::collections::HashMap;
use roc::solve::solve_constraint;
use roc::typ::Type::*;
use roc::constrain::Constraint::*;
use roc::expr::Expr::*;
#[test]
fn test_solve_true() {
let expected = HashMap::new();
assert_eq!(Ok(expected), solve_constraint(True));
}
#[test]
fn test_solve_unify_basic() {
let expected = HashMap::new();
// TODO unify a function call.
// TODO to do this, will nee to introduce let-bindings to put stuff in the Name Map
// TODO since function calls are looked up by name.
let type_to_unify:Type = ...
let expected_type_to_unify:ExpectedType = ...
assert_eq!(Ok(expected), solve_constraint(Unify(type_to_unify, expected_type_to_unify));
}
// #[test]
// fn test_negate_number() {
// expect_type(Type::Number, CallBuiltin(Negate, WholeNumber(5)));
// }
// #[test]
// fn test_negate_float() {
// expect_type(Type::Float, CallBuiltin(Negate, FractinalNumber(3.1)));
// }
// #[test]
// fn test_negate_int_twice() {
// expect_type(Type::Int, negate_twice(HexOctalBinary(0x12)));
// }
// #[test]
// fn test_negate_number_twice() {
// expect_type(Type::Number, negate_twice(WholeNumber(5)));
// }
// #[test]
// fn test_negate_float_twice() {
// expect_type(Type::Float, negate_twice(FractinalNumber(3.1)));
// }
// #[test]
// fn test_int_literal() {
// expect_type(Type::Int, HexOctalBinary(0x12));
// }
// #[test]
// fn test_float_literal() {
// expect_type(Type::Float, FractionalNumber(3.1));
// }
// #[test]
// fn test_number_literal() {
// expect_type(Type::Number, WholeNumber(5));
// }
// #[test]
// fn add_ints_returns_int() {
// expect_type(Type::Int, CallOperator(Plus, int(), int()));
// }
// #[test]
// fn add_floats_returns_float() {
// expect_type(Type::Float, CallOperator(Plus, float(), float()));
// }
// #[test]
// fn add_nums_returns_num() {
// expect_type(Type::Number, CallOperator(Plus, num(), num()));
// }
// #[test]
// fn add_num_int_returns_int() {
// expect_type(Type::Int, CallOperator(Plus, num(), int()));
// expect_type(Type::Int, CallOperator(Plus, int(), num()));
// }
// #[test]
// fn add_num_float_returns_float() {
// expect_type(Type::Float, CallOperator(Plus, num(), float()));
// expect_type(Type::Float, CallOperator(Plus, float(), num()));
// }
// #[test]
// fn add_int_float_returns_mismatch() {
// expect_mismatch(CallOperator(Plus, int(), float()));
// }
// fn expect_type<'a>(expected_type: Type<'a>, expr: Expr<'a>) {
// assert_eq!(expected_type, infer_type(expr).unwrap());
// }
// fn expect_mismatch<'a>(expr: Expr<'a>) {
// assert_eq!(Err(Problem::Mismatch), infer_type(expr));
// }
// #[inline]
// fn negate_twice(expr) {
// CallBuiltin(Negate, CallBuiltin(Negate, expr))
// }
// fn int<'a>() -> Box<&'a Expr<'a>> { Box::new(&HexOctalBinary(0x12)) }
// fn float<'a>() -> Box<&'a Expr<'a>> { Box::new(&FractionalNumber(3.1)) }
// fn num<'a>() -> Box<&'a Expr<'a>> { Box::new(&WholeNumber(5)) }
// TODO test unions that ought to be equivalent, but only after
// a reduction of some sort, e.g.
//
// ((a|b)|c) vs (a|(b|c))
//
// ((a|z)|(b|z)) vs (a|b|z)
//
// ideally, we fix these when constructing unions
// e.g. if a user puts this in as an annotation, reduce it immediately
// and when we're inferring unions, always infer them flat.
// This way we can avoid checking recursively.
}

View file

@ -1,39 +0,0 @@
#[macro_use] extern crate pretty_assertions;
extern crate roc;
#[cfg(test)]
mod tests {
use roc::unify::Type;
use roc::unify::Expr::Literal;
use roc::unify::Literal::{String, Record};
use roc::unify::infer;
#[test]
fn test_infer_record_literals() {
let str0 = &String("doesn't matter");
let str1 = &String("ignored");
let str2 = &String("also ignored");
let x = ("x", &Literal(str1));
let y = ("y", &Literal(str2));
let subrec = &Record(vec![x, y]);
let str_pair = ("string", &Literal(str0));
let rec_pair = ("record", &Literal(subrec));
let toprec = vec![str_pair, rec_pair];
let literal = &Record(toprec);
let expr = Literal(literal);
let expected_type = Type::Record(vec![
("string", Type::String),
("record", Type::Record(vec![
("x", Type::String),
("y", Type::String)
]))
]);
assert_eq!(expected_type, infer(&expr).unwrap());
}
}

View file

@ -1,24 +0,0 @@
use typ::Type;
// constrainDecls :: Can.Decls -> Constraint -> IO Constraint
// constrainDecls decls finalConstraint =
// case decls of
// Can.Declare def otherDecls ->
// Expr.constrainDef Map.empty def =<< constrainDecls otherDecls finalConstraint
// Can.DeclareRec defs otherDecls ->
// Expr.constrainRecursiveDefs Map.empty defs =<< constrainDecls otherDecls finalConstraint
// Can.SaveTheEnvironment ->
// return finalConstraint
pub type ExpectedType = Type;
pub enum Constraint {
True,
Equal(Type, ExpectedType),
Batch(Vec<Constraint>),
}

View file

@ -1,44 +1,21 @@
use name::Name;
use typ::Type; #[derive(Debug, PartialEq)]
pub enum Expr {
// Literals
Int(i64),
Frac(i64, u64),
String(String),
Char(char),
Var(String),
// Functions
Func(String, Box<Expr>),
Apply(Box<Expr>, Box<Expr>),
Operator(Box<Expr>, Operator, Box<Expr>),
}
#[derive(Clone, Debug, PartialEq, Eq, PartialOrd, Ord)] #[derive(Clone, Debug, PartialEq, Eq, PartialOrd, Ord)]
pub enum Operator { pub enum Operator {
Plus, Minus, Star, Slash, DoubleSlash, Plus, Minus, Star, Slash, DoubleSlash,
} }
#[derive(Clone, Debug, PartialEq, Eq, PartialOrd, Ord)]
pub enum Builtin {
// Default
Negate,
Not,
// String
// StringLength,
}
#[derive(Debug, PartialEq)]
pub enum Expr {
Int(i64),
Ratio(i64, u64),
// Functions
CallOperator(Box<Expr>, Operator, Box<Expr>),
CallBuiltin(Builtin, Box<Expr>),
CallLambda(Box<Expr>, Box<Expr>),
}
#[derive(Debug, PartialEq)]
pub enum Pattern {
Name(Name), // `foo =`
As(Name, Box<Pattern>), // `<pattern> as foo`
Type(Type),
Symbol(String),
String(String),
Char(char),
Int(i64),
Float(f64),
Tuple(Vec<Pattern>),
Record(Vec<(Name, Option<Pattern>)>), // { a = 5, b : Int as x, c }
}

View file

@ -1,57 +0,0 @@
use unify::Expr;
use unify::Literal;
pub fn eval<'a>(expr: &'a Expr<'a>) -> &'a Literal<'a> {
match expr {
Expr::Literal(literal) => literal,
Expr::Assignment(_, subexpr) => eval(subexpr),
Expr::If(cond, if_true, if_false) => {
match eval(cond) {
Literal::Symbol("True") => eval(if_true),
Literal::Symbol("False") => eval(if_false),
_ => {
panic!("somehow an if-conditional did not evaluate to True or False!")
}
}
}
}
}
pub fn literal_to_string<'a>(literal: &'a Literal<'a>) -> String {
match literal {
Literal::String(str) => format!("\"{}\"", str),
Literal::Char(character) => format!("'{}'", character),
Literal::Symbol(str) => str.to_string(),
Literal::HexOctalBinary(str) => str.to_string(),
Literal::Number(str) => str.to_string(),
Literal::Record(field_exprs) => {
let mut field_strings = Vec::new();
for (field, subexpr) in field_exprs {
let val = literal_to_string(eval(subexpr));
field_strings.push(format!("{} = {}", field, val));
}
format!("{{ {} }}", field_strings.join(", "))
},
Literal::Tuple(elem_exprs) => {
let mut elem_strings = Vec::new();
for elem_expr in elem_exprs {
elem_strings.push(literal_to_string(eval(elem_expr)));
}
format!("({})", elem_strings.join(", "))
},
Literal::Array(elem_exprs) => {
let mut elem_strings = Vec::new();
for elem_expr in elem_exprs {
elem_strings.push(literal_to_string(eval(elem_expr)));
}
format!("[{}]", elem_strings.join(", "))
},
}
}

View file

@ -1 +0,0 @@
pub type Name = String;

View file

@ -2,11 +2,10 @@ use expr::Operator;
use expr::Expr; use expr::Expr;
use std::char; use std::char;
use std::iter;
use combine::parser::char::{char, string, letter, alpha_num, spaces, digit, hex_digit, HexDigit}; use combine::parser::char::{char, spaces, digit, hex_digit, HexDigit};
use combine::parser::repeat::{many, count_min_max}; use combine::parser::repeat::{many, count_min_max};
use combine::parser::item::{any, satisfy, satisfy_map, value}; use combine::parser::item::{any, satisfy_map, value};
use combine::{choice, many1, parser, Parser, optional, between, unexpected_any}; use combine::{choice, many1, parser, Parser, optional, between, unexpected_any};
use combine::error::{Consumed, ParseError}; use combine::error::{Consumed, ParseError};
use combine::stream::{Stream}; use combine::stream::{Stream};
@ -39,13 +38,13 @@ parser! {
optional( optional(
operator() operator()
.skip(spaces()) .skip(spaces())
.and(expr() .and(expr())
) )
)).map(|(v1, maybe_op)| { ).map(|(v1, maybe_op)| {
match maybe_op { match maybe_op {
None => v1, None => v1,
Some((op, v2)) => { Some((op, v2)) => {
Expr::CallOperator(Box::new(v1), op, Box::new(v2)) Expr::Operator(Box::new(v1), op, Box::new(v2))
}, },
} }
}) })
@ -60,6 +59,7 @@ where I: Stream<Item = char>,
char('+').map(|_| Operator::Plus), char('+').map(|_| Operator::Plus),
char('-').map(|_| Operator::Minus), char('-').map(|_| Operator::Minus),
char('*').map(|_| Operator::Star), char('*').map(|_| Operator::Star),
char('/').map(|_| Operator::Slash),
)) ))
} }
@ -238,98 +238,12 @@ where I: Stream<Item = char>,
let numerator = (int_val * denom) + (decimal as i64); let numerator = (int_val * denom) + (decimal as i64);
if is_positive { if is_positive {
Expr::Ratio(numerator, denom as u64) Expr::Frac(numerator, denom as u64)
} else { } else {
Expr::Ratio(-numerator, denom as u64) Expr::Frac(-numerator, denom as u64)
} }
} }
} }
}) })
} }
// pub fn parse_expr(state: &mut State) -> Result<Expr, Problem> {
// let digits = chomp_digits(state);
// if digits.is_empty() {
// Err(Problem::InvalidNumber)
// } else {
// // TODO store these in a bigint, and handle overflow.
// let num = digits.parse::<u32>().unwrap();
// if decimal_point
// Ok(Expr::Int(num))
// }
// }
// enum Parsed {
// Expr(Expr),
// Malformed(Problem),
// NotFound
// }
// #[inline]
// fn number_parser() -> {
// let has_minus_sign = false;
// let decimal_point_index: usize = 0;
// let len: usize = 0;
// for ch in state.text.chars() {
// if ch.is_ascii_digit() {
// len += 1;
// } else if ch == '-' {
// if has_minus_sign {
// if len == 1 {
// return Malformed(DoubleMinusSign);
// } else {
// // This second minus sign is a subtraction operator.
// // We've reached the end of the number!
// break;
// }
// } else {
// has_minus_sign = true;
// len += 1;
// }
// } else if ch == '.' {
// if len == 0 {
// return Malformed(NoDigitsBeforeDecimalPoint);
// } else if decimal_point_index != 0 {
// return Malformed(DoubleDecimalPoint);
// } else {
// // This might be a valid decimal number!
// decimal_point_index = len;
// len += 1;
// }
// }
// }
// state.col += len;
// if decimal_point_index == 0 {
// // This is an integer.
// Expr(Expr::Int(parse_int(&state.text[..len])))
// } else {
// // This is a decimal.
// let before_decimal_pt = &state.text[..decimal_point_index];
// let after_decimal_pt = &state.text[(decimal_point_index + 1)..];
// let numerator_str = before_decimal_pt.to_owned();
// numerator_str.push_str(after_decimal_pt);
// let numerator = parse_int(&numerator_str);
// let denominator = 10 * after_decimal_pt.len() as u64;
// Expr(Expr::Ratio(numerator, denominator))
// }
// }
// #[inline]
// fn parse_int(text: &str) -> i64 {
// // TODO parse as BigInt
// text.parse::<i64>().unwrap()
// }

View file

@ -1,63 +0,0 @@
use interpret::{eval, literal_to_string};
use unify::infer;
use unify::Expr;
use unify::Type;
pub fn eval_and_print<'a>(expr: &Expr<'a>) -> String {
match infer(&expr) {
Ok(typ) => {
let lit = eval(expr);
format!("{}\n: {}", literal_to_string(lit), type_to_string(true, &typ))
},
Err(_) =>
"[TYPE MISMATCH!]".to_string()
}
}
pub fn type_to_string<'a>(outermost: bool, typ: &'a Type<'a>) -> String {
match typ {
Type::Unbound => "*".to_string(),
Type::String => "String".to_string(),
Type::Char => "Char".to_string(),
Type::Int => "Int".to_string(),
Type::Float => "Float".to_string(),
Type::Number => "Int | Float".to_string(),
Type::Symbol(sym) => format!(":{}", sym),
Type::Array(elem_type) => {
let str = format!("Array {}", type_to_string(false, elem_type));
if outermost {
str
} else {
format!("({})", str)
}
},
Type::Record(fields) => {
let field_strings = fields.into_iter().map(|(field, subtyp)| {
let typ_str = type_to_string(false, subtyp);
format!("{} : {}", field, typ_str)
});
format!("{{ {} }}", field_strings.collect::<Vec<String>>().join(", "))
},
Type::Tuple(elems) => {
let elem_strings = elems.into_iter().map(|subtyp| { type_to_string(false, subtyp) });
let str = elem_strings.collect::<Vec<String>>().join(", ");
if outermost {
str
} else {
format!("({})", str)
}
}
Type::Assignment(_, assigned_typ) => type_to_string(outermost, assigned_typ),
Type::Union(set) => {
set.into_iter().collect::<Vec<&'a Type<'a>>>().into_iter().map(|typ_in_set| {
type_to_string(false, typ_in_set)
}).collect::<Vec<String>>().join(" | ")
}
}
}

View file

@ -1,317 +0,0 @@
use std::collections::BTreeSet;
use std::collections::HashMap;
use constrain::Constraint;
use typ::Type;
use canonical::Annotation;
use name::Name;
use self::Variable::*;
use ena::unify::{UnificationTable, UnifyKey, InPlace};
type UTable = UnificationTable<InPlace<VarId>>;
#[derive(Clone, Debug, PartialEq, Eq, PartialOrd, Ord)]
enum Variable {
Wildcard,
RigidVar(Name),
FlexUnion(BTreeSet<VarId>),
RigidUnion(BTreeSet<VarId>),
Structure(FlatType),
Mismatch
}
#[derive(Clone, Debug, PartialEq, Eq, PartialOrd, Ord)]
enum FlatType {
Function(VarId, VarId),
// Apply a higher-kinded type constructor by name. For example:
// "Apply the higher-kinded type constructor `Array` to the variable `Int`
// to form `Array Int`."
// ApplyTypeConstructor(CanonicalModuleName, Name, VarId)
Tuple2(VarId, VarId),
Tuple3(VarId, VarId, VarId),
// TupleN(Vec<VarId>), // Last resort - allocates
// Record1 (Map.Map N.Name VarId) VarId,
}
#[inline]
fn unify_rigid(named: &Variable, other: &Variable) -> Variable {
match other {
Wildcard => named.clone(),
RigidVar(_) => Mismatch,
FlexUnion(_) => Mismatch,
RigidUnion(_) => Mismatch,
Structure(_) => { panic!("TODO"); Mismatch }
Mismatch => other.clone()
}
}
#[inline]
fn unify_rigid_union(utable: &mut UTable, rigid_union: &BTreeSet<VarId>, var: &Variable, other: &Variable) -> Variable {
match other {
Wildcard => var.clone(),
RigidVar(_) => Mismatch,
FlexUnion(flex_union) => {
if rigid_union_fits_flex_union(utable, &rigid_union, &flex_union) {
var.clone()
} else {
Mismatch
}
},
Structure(_) => { panic!("TODO"); Mismatch }
RigidUnion(_) => Mismatch,
Mismatch => other.clone()
}
}
#[inline]
fn rigid_union_fits_flex_union(utable: &mut UTable, rigid_union: &BTreeSet<VarId>, flex_union: &BTreeSet<VarId>) -> bool {
if rigid_union.is_subset(&flex_union) {
// If the keys of the rigid one are a subset of the flex keys, we're done.
return true;
}
let potentially_missing_flex_ids = flex_union.difference(rigid_union);
// a flex union can conform to a rigid one, as long
// as the rigid union contains all the flex union's alternative types
let rigid_union_values: BTreeSet<Variable> =
rigid_union.iter().map(|var_id| utable.probe_value(*var_id)).collect();
for flex_var_id in potentially_missing_flex_ids {
let flex_val = utable.probe_value(*flex_var_id);
if !rigid_union_values.contains(&flex_val) {
return false;
}
}
true
}
#[inline]
fn unify_flex_union(utable: &mut UTable, flex_union: &BTreeSet<VarId>, var: &Variable, other: &Variable) -> Variable {
match other {
Wildcard => var.clone(),
RigidVar(_) => Mismatch,
RigidUnion(rigid_union) => {
if rigid_union_fits_flex_union(utable, &rigid_union, &flex_union) {
other.clone()
} else {
Mismatch
}
},
FlexUnion(other_union) => unify_flex_unions(&flex_union, &other_union),
Structure(_) => unify_flex_union_with_structure(&flex_union, other),
Mismatch => other.clone()
}
}
#[inline]
fn unify_flex_unions(my_union: &BTreeSet<VarId>, other_union: &BTreeSet<VarId>) -> Variable {
let ids_in_common = my_union.intersection(other_union);
let unified_union: BTreeSet<VarId> = ids_in_common.into_iter().map(|var_id| *var_id).collect();
// If they have no types in common, that's a mismatch.
if unified_union.len() == 0 {
Mismatch
} else {
FlexUnion(unified_union)
}
}
fn unify_vars(utable: &mut UTable, first: &Variable, second: &Variable) -> Variable {
match first {
// wildcard types defer to whatever the other type happens to be.
Wildcard => second.clone(),
FlexUnion(union) => unify_flex_union(utable, &union, first, second),
RigidVar(Name) => unify_rigid(first, second),
RigidUnion(union) => unify_rigid_union(utable, &union, first, second),
Structure(flat_type) => unify_structure(utable, flat_type, first, second),
// Mismatches propagate.
Mismatch => first.clone()
}
}
#[inline]
fn unify_structure(utable: &mut UTable, flat_type: &FlatType, var: &Variable, other: &Variable) -> Variable {
match other {
Wildcard => var.clone(),
RigidVar(_) => Mismatch,
FlexUnion(flex_union) => unify_flex_union_with_structure(&flex_union, var),
RigidUnion(_) => Mismatch,
Structure(other_flat_type) => unify_flat_types(utable, flat_type, other_flat_type),
Mismatch => other.clone()
}
}
#[inline]
fn unify_flat_types(utable: &mut UTable, flat_type: &FlatType, other_flat_type: &FlatType) -> Variable {
match (flat_type, other_flat_type) {
(FlatType::Function(my_arg, my_return),
FlatType::Function(other_arg, other_return)) => {
let new_arg = unify_var_ids(utable, *my_arg, *other_arg);
let new_return = unify_var_ids(utable, *my_return, *other_return);
// Propagate any mismatches.
if new_arg == Mismatch {
new_arg
} else if new_return == Mismatch {
new_return
} else {
let new_arg_id = utable.new_key(new_arg);
let new_return_id = utable.new_key(new_return);
Structure(FlatType::Function(new_arg_id, new_return_id))
}
},
(FlatType::Function(_, __return), _) => Mismatch,
(_, FlatType::Function(_, __return)) => Mismatch,
(FlatType::Tuple2(my_first, my_second),
FlatType::Tuple2(other_first, other_second)) => {
let new_first = unify_var_ids(utable, *my_first, *other_first);
let new_second = unify_var_ids(utable, *my_second, *other_second);
// Propagate any mismatches.
if new_first == Mismatch {
new_first
} else if new_second == Mismatch {
new_second
} else {
let new_first_id = utable.new_key(new_first);
let new_second_id = utable.new_key(new_second);
Structure(FlatType::Tuple2(new_first_id, new_second_id))
}
},
(FlatType::Tuple2(_, _), _) => Mismatch,
(_, FlatType::Tuple2(_, _)) => Mismatch,
(FlatType::Tuple3(my_first, my_second, my_third),
FlatType::Tuple3(other_first, other_second, other_third)) => {
let new_first = unify_var_ids(utable, *my_first, *other_first);
let new_second = unify_var_ids(utable, *my_second, *other_second);
let new_third = unify_var_ids(utable, *my_third, *other_third);
// Propagate any mismatches.
if new_first == Mismatch {
new_first
} else if new_second == Mismatch {
new_second
} else if new_third == Mismatch {
new_third
} else {
let new_first_id = utable.new_key(new_first);
let new_second_id = utable.new_key(new_second);
let new_third_id = utable.new_key(new_third);
Structure(FlatType::Tuple3(new_first_id, new_second_id, new_third_id))
}
},
// (FlatType::Tuple3(_, _, _), _) => Mismatch,
// (_, FlatType::Tuple3(_, _, _)) => Mismatch,
}
}
#[inline]
fn unify_flex_union_with_structure(flex_union: &BTreeSet<VarId>, var: &Variable) -> Variable {
// TODO I guess iterate through the set, looking up Variables
panic!("TODO");
// if flex_union.contains(var) {
// Narrow the union to the one member type
var.clone()
// } else {
// Mismatch
// }
}
// Given a type, create a constraint variable for it and add it to the table.
// Return the VarId corresponding to the variable in the table.
fn type_to_var_id(utable: &mut UTable, typ: Type) -> VarId {
match typ {
Type::Call(box fn_type, box arg_type) => {
panic!("TODO");
utable.new_key(Mismatch)
// let left_var_id = type_to_var_id(utable, left_type);
// let right_var_id = type_to_var_id(utable, right_type);
// // TODO should we match on op to hardcode the types we expect?
// let flat_type = FlatType::Function(left_var_id, right_var_id);
// utable.new_key(Structure(flat_type))
}
}
}
#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq, PartialOrd, Ord)]
struct VarId(u32);
impl UnifyKey for VarId {
type Value = Variable;
fn index(&self) -> u32 { self.0 }
fn from_index(u: u32) -> VarId { VarId(u) }
// tag is a static string that's only used in debugging
fn tag() -> &'static str { "VarId" }
}
fn unify_var_ids(utable: &mut UTable, left_id: VarId, right_id: VarId) -> Variable {
let left_content = utable.probe_value(left_id);
let right_content = utable.probe_value(right_id);
if left_content == right_content {
left_content
} else {
unify_vars(utable, &left_content, &right_content)
}
}
pub type TypeError = String;
pub fn solve_constraint(constraint: Constraint) -> Result<TypeError, HashMap<Name, Annotation>> {
let mut utable: UTable = UnificationTable::new();
solve(&mut utable, constraint);
Ok("TODO: actually gather errors etc".to_owned())
}
fn solve(utable: &mut UTable, constraint: Constraint) {
match constraint {
Constraint::True => {},
Constraint::Equal(actual_type, expectation) => {
let actual_var_id = type_to_var_id(utable, actual_type);
let expected_var_id = type_to_var_id(utable, expectation);
let answer = unify_var_ids(utable, actual_var_id, expected_var_id);
panic!("Oh no! TYPE MISMATCH! (TODO: record errors as appropriate)");
()
// match answer {
// Mismatch => {
// panic!("Oh no! TYPE MISMATCH! (TODO: record errors as appropriate)");
// }
// do introduce rank pools vars
// return state
// UF.modify var $ \(Descriptor content _ mark copy) ->
// Descriptor content rank mark copy
// Unify.Err vars actualType expectedType ->
// panic!("TODO xyz");
// do introduce rank pools vars
// return $ addError state $
// Error.BadExpr region category actualType $
// Error.typeReplace expectation expectedType
// }
},
Constraint::Batch(_) => {
panic!("TODO");
()
}
}
}

View file

@ -1,12 +0,0 @@
#[derive(Clone, Debug, PartialEq, Eq, PartialOrd, Ord)]
pub enum Type {
// Symbol(String),
// Int,
// Float,
// Number,
// TypeUnion(BTreeSet<Type>),
// Function(Box<Type>, Box<Type>),
Call(Box<Type>, Box<Type>),
}

View file

@ -1,363 +0,0 @@
use std::collections::BTreeSet;
use std::collections::BTreeMap;
use self::Type::*;
pub type Name<'a> = &'a str;
pub type ModuleName<'a> = &'a str;
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord)]
pub enum Type<'a> {
Unbound,
String,
Char,
Int,
Float,
Number,
Symbol(&'a str),
Array(Box<Type<'a>>),
Function(Box<Type<'a>>, Box<Type<'a>>),
Record(BTreeMap<Name<'a>, Type<'a>>),
Tuple(Vec<Type<'a>>),
Union(BTreeSet<Type<'a>>),
}
// CANONICAL IR - we have already done stuff like giving errors for
// duplicate field names
#[derive(Debug, PartialEq)]
pub enum Expr<'a> {
// Variables
Declaration(&'a Pattern<'a>, Box<&'a Expr<'a>>, Box<Expr<'a>>),
LookupLocal(&'a Name<'a>),
LookupGlobal(&'a ModuleName<'a>, &'a Name<'a>),
// Scalars
Symbol(&'a str),
String(&'a str),
Char(char),
HexOctalBinary(i64), // : Int
FractionalNumber(f64), // : Float
WholeNumber(i64), // : Int | Float
// Collections
Array(Vec<Expr<'a>>),
Record(Vec<(&'a Name<'a>, &'a Expr<'a>)>),
Tuple(Vec<&'a Expr<'a>>),
LookupName(Name<'a>, Box<&'a Expr<'a>>),
// TODO add record update
// Functions
Function(&'a Pattern<'a>, &'a Expr<'a>),
Call(Box<&'a Expr<'a>>, Box<&'a Expr<'a>>),
CallOperator(&'a Operator, Box<&'a Expr<'a>>, Box<&'a Expr<'a>>),
// Conditionals
If(Box<&'a Expr<'a>> /* Conditional */, Box<&'a Expr<'a>> /* True branch */, Box<&'a Expr<'a>> /* False branch */),
Case(Box<&'a Expr<'a>>, Vec<(&'a Pattern<'a>, &'a Expr<'a>)>),
}
#[derive(Debug, PartialEq)]
pub enum Operator {
Plus, Minus, Star, Caret, Percent, FloatDivision, IntDivision,
GT, GTE, LT, LTE,
EQ, NE, And, Or,
QuestionMark, Or
}
#[derive(Debug, PartialEq)]
pub enum Pattern<'a> {
Name(&'a Name<'a>), // `foo =`
As(&'a Name<'a>, &'a Pattern<'a>), // `<pattern> as foo`
Type(&'a Type<'a>),
Symbol(&'a str),
String(&'a str),
Char(char),
WholeNumber(&'a str),
FractionalNumber(&'a str),
HexOctalBinary(&'a str),
Tuple(Vec<Pattern<'a>>),
Record(Vec<(Name<'a>, Option<Pattern<'a>>)>), // { a = 5, b : Int as x, c }
}
pub fn infer<'a>(expr: &Expr<'a>) -> Result<Type<'a>, UnificationProblem> {
match expr {
Expr::String(_) => Ok(String),
Expr::Char(_) => Ok(Char),
Expr::HexOctalBinary(_) => Ok(Int),
Expr::FractionalNumber(_) => Ok(Float),
Expr::WholeNumber(_) => Ok(Number),
Expr::Symbol(sym) => Ok(Symbol(sym)),
Expr::Array(elem_exprs) => {
let elem_type;
if elem_exprs.is_empty() {
elem_type = Unbound;
} else {
let mut unified_type = BTreeSet::new();
// Unify the types of all the elements
for elem_expr in elem_exprs {
unified_type.insert(infer(&elem_expr)?);
}
if unified_type.len() == 1 {
// No point in storing a union of 1.
elem_type = unified_type.into_iter().next().unwrap()
} else {
elem_type = Union(unified_type)
}
}
Ok(Array(Box::new(elem_type)))
},
Expr::Record(fields) => {
let mut rec_type: BTreeMap<&'a Name<'a>, Type<'a>> = BTreeMap::new();
for (field, subexpr) in fields {
let field_type = infer(subexpr)?;
rec_type.insert(&field, field_type);
}
Ok(Record(rec_type))
},
Expr::Tuple(exprs) => {
let mut tuple_type: Vec<Type<'a>> = Vec::new();
for subexpr in exprs {
let field_type = infer(subexpr)?;
tuple_type.push(field_type);
}
Ok(Tuple(tuple_type))
},
Expr::If(box cond, expr_if_true, expr_if_false) => {
let cond_type = infer(&cond)?;
// if-conditionals must be of type Bool
if !matches_bool_type(&cond_type) {
return Err(UnificationProblem::IfConditionNotBool);
}
// unify the true and false branches
let true_type = infer(&expr_if_true)?;
let false_type = infer(&expr_if_false)?;
let mut unified_type = BTreeSet::new();
unified_type.insert(true_type);
unified_type.insert(false_type);
if unified_type.len() == 1 {
// No point in storing a union of 1.
//
// We can't reuse true_type because it's been moved into the set
// but we can pull it back out of the set
Ok(unified_type.into_iter().next().unwrap())
} else {
Ok(Union(unified_type))
}
},
Call(func, arg) => {
},
CallOperator(op, left_expr, right_expr) => {
let left = &(infer(left_expr)?);
let right = &(infer(right_expr)?);
match op {
Operator::EQ | Operator::NE | Operator::And | Operator::Or => {
if types_match(left, right) {
conform_to_bool(left)
} else {
Err(UnificationProblem::TypeMismatch)
}
},
Operator::Plus | Operator::Minus | Operator::Star
| Operator::GT | Operator::LT | Operator::GTE | Operator::LTE
| Operator::Caret | Operator::Percent => {
if types_match(left, right) {
conform_to_number(left)
} else {
Err(UnificationProblem::TypeMismatch)
}
},
Operator::FloatDivision => {
if matches_float_type(left) && matches_float_type(right) {
Ok(&Float)
} else {
Err(UnificationProblem::TypeMismatch)
}
},
Operator::IntDivision => {
if matches_int_type(left) && matches_int_type(right) {
Ok(&Int)
} else {
Err(UnificationProblem::TypeMismatch)
}
},
Operator::CombineStrings => {
if matches_string_type(left) && matches_string_type(right) {
Ok(&String)
} else {
Err(UnificationProblem::TypeMismatch)
}
},
Operator::QuestionMark => {
if types_match(left, right) {
conform_to_optional(left)
} else {
Err(UnificationProblem::TypeMismatch)
}
}
}
},
Expr::Declaration(pattern, let_expr, in_expr) => {
// Think of this as a let..in even though syntactically it's not.
// We need to type-check the let-binding, but the type of the
// *expression* we're expaning is only affected by the in-block.
check_pattern(&pattern, &let_expr)?;
infer(in_expr)
}
}
}
fn types_match<'a>(first: &'a Type<'a>, second: &'a Type<'a>) -> bool {
match (first, second) {
(Type::Union(first_types), Type::Union(second_types)) => {
// If any type is not directly present in the other union,
// it must at least match *some* type in the other union
first_types.difference(second_types).into_iter().all(|not_in_second_type| {
second_types.iter().any(|second_type| types_match(second_type, not_in_second_type))
}) &&
second_types.difference(first_types).into_iter().all(|not_in_first_type| {
first_types.iter().any(|first_type| types_match(first_type, not_in_first_type))
})
},
// Happy path: try these first, since we expect them to succeed.
// These are sorted based on a vague guess of how often they will be used in practice.
(Type::Symbol(sym_one), Type::Symbol(sym_two)) => sym_one == sym_two,
(Type::String, Type::String) => true,
(Type::Unbound, _) | (_, Type::Unbound)=> true,
(Type::Array(box elem_type_one), Type::Array(box elem_type_two)) => {
types_match(elem_type_one, elem_type_two)
},
(Type::Number, Type::Number) => true,
(Type::Number, other) => matches_number_type(other),
(other, Type::Number) => matches_number_type(other),
(Type::Int, Type::Int) => true,
(Type::Float, Type::Float) => true,
(Type::Tuple(first_elems), Type::Tuple(second_elems)) => {
// TODO verify that the elems and their types match up
// TODO write some scenarios to understand these better -
// like, what happens if you have a function that takes
// a lambda whose argument takes an open record,
// and you pass a lamba whose argument takes *fewer* fields?
// that should work! the function is gonna pass it a lambda that
// has more fields than it needs.
// I think there's an element of directionality here that I'm
// disregarding. Maybe this function shouldn't commute.
},
(Type::Function(first_arg), Type::Function(second_arg)) => {
// TODO verify that the elems and their types match up
},
(Type::Record(first_fields), Type::Record(second_fields)) => {
// TODO verify that the fields and their types match up
// TODO what should happen if one is a superset of the other? fail?
},
(Type::Char, Type::Char) => true,
// Unhappy path - expect these to fail, so check them last
(Type::Union(first_types), _) => {
first_types.iter().all(|typ| types_match(typ, second))
},
(_, Type::Union(second_types)) => {
second_types.iter().all(|typ| types_match(first, typ))
},
(Type::String, _) | (_, Type::String) => false,
(Type::Char, _) | (_, Type::Char) => false,
(Type::Int, _) | (_, Type::Int) => false,
(Type::Float, _) | (_, Type::Float) => false,
(Type::Symbol(_), _) | (_, Type::Symbol(_)) => false,
(Type::Array(_), _) | (_, Type::Array(_)) => false,
(Type::Record(_), _) | (_, Type::Record(_)) => false,
(Type::Tuple(_), _) | (_, Type::Tuple(_)) => false,
(Type::Function(_, _), _) | (_, Type::Function(_, _)) => false,
}
}
fn check_pattern<'a>(pattern: &'a Pattern<'a>, expr: &'a Expr<'a>) -> Result<(), UnificationProblem> {
let expr_type = infer(expr)?;
panic!("TODO check the pattern's type against expr_type, then write some tests for funky record pattern cases - this is our first real unification! Next one will be field access, ooooo - gonna want lots of tests for that")
}
const TRUE_SYMBOL_STR: &'static str = "True";
const FALSE_SYMBOL_STR: &'static str = "False";
pub fn matches_string_type<'a>(candidate: &Type<'a>) -> bool {
match candidate {
Unbound | String => true,
Type::Union(types) => {
types.iter().all(|typ| matches_string_type(typ))
},
_ => Err(UnificationProblem::TypeMismatch)
}
}
pub fn matches_bool_type<'a>(candidate: &Type<'a>) -> bool {
match candidate {
Type::Unbound => true,
Type::Symbol(str) => str == &TRUE_SYMBOL_STR || str == &FALSE_SYMBOL_STR,
Type::Union(types) => {
types.iter().all(|typ| matches_bool_type(typ))
}
_ => false
}
}
pub fn matches_number_type<'a>(candidate: &Type<'a>) -> bool {
match candidate {
Type::Unbound | Type::Int | Type::Float | Type::Number => true,
Type::Union(types) => {
types.iter().all(|typ| matches_number_type(typ))
}
_ => false
}
}
pub fn matches_int_type<'a>(candidate: &Type<'a>) -> bool {
match candidate {
Type::Unbound | Type::Int => true,
Type::Union(types) => {
types.iter().all(|typ| matches_int_type(typ))
}
_ => false
}
}
pub fn matches_float_type<'a>(candidate: &Type<'a>) -> bool {
match candidate {
Type::Unbound | Type::Float => true,
Type::Union(types) => {
types.iter().all(|typ| matches_float_type(typ))
}
_ => false
}
}
#[derive(Debug)]
pub enum UnificationProblem {
CannotUnifyAssignments,
NotMemberOfUnion,
TypeMismatch,
IfConditionNotBool,
SymbolMismatch
}