Add ability to return int literals

This commit is contained in:
Brendan Hansknecht 2020-11-15 14:06:20 -08:00
parent 86c3c0a409
commit a8986087f9
4 changed files with 136 additions and 32 deletions

View file

@ -59,9 +59,9 @@ pub fn build_module<'a>(
} }
// Build procedures. // Build procedures.
let mut backend: X86_64Backend = Backend::new(); let mut backend: X86_64Backend = Backend::new(env);
for (proc_id, proc) in procs { for (proc_id, proc) in procs {
let proc_data = backend.build_proc(env, proc); let proc_data = backend.build_proc(proc);
output.add_symbol_data(proc_id, text, proc_data, 16); output.add_symbol_data(proc_id, text, proc_data, 16);
} }
Ok(output) Ok(output)

View file

@ -11,11 +11,11 @@
// re-enable this when working on performance optimizations than have it block PRs. // re-enable this when working on performance optimizations than have it block PRs.
#![allow(clippy::large_enum_variant)] #![allow(clippy::large_enum_variant)]
use bumpalo::Bump; use bumpalo::{collections::Vec, Bump};
use object::write::Object; use object::write::Object;
use roc_collections::all::{MutMap, MutSet}; use roc_collections::all::{MutMap, MutSet};
use roc_module::symbol::{Interns, Symbol}; use roc_module::symbol::{Interns, Symbol};
use roc_mono::ir::Proc; use roc_mono::ir::{Expr, Literal, Proc, Stmt};
use roc_mono::layout::Layout; use roc_mono::layout::Layout;
use target_lexicon::{BinaryFormat, Triple}; use target_lexicon::{BinaryFormat, Triple};
@ -44,9 +44,11 @@ pub fn build_module<'a>(
} }
} }
trait Backend { trait Backend<'a> {
/// new creates a new backend that will output to the specific Object. /// new creates a new backend that will output to the specific Object.
fn new() -> Self; fn new(env: &'a Env) -> Self;
fn env(&self) -> &'a Env<'a>;
/// reset resets any registers or other values that may be occupied at the end of a procedure. /// reset resets any registers or other values that may be occupied at the end of a procedure.
fn reset(&mut self); fn reset(&mut self);
@ -54,12 +56,56 @@ trait Backend {
/// build_proc creates a procedure and outputs it to the wrapped object writer. /// build_proc creates a procedure and outputs it to the wrapped object writer.
/// This will need to return the list of relocations because they have to be added differently based on file format. /// This will need to return the list of relocations because they have to be added differently based on file format.
/// Also, assembly will of course be generated by individual calls on backend like may setup_stack. /// Also, assembly will of course be generated by individual calls on backend like may setup_stack.
fn build_proc<'a>(&mut self, env: &'a Env, _proc: Proc<'a>) -> &'a [u8] { fn build_proc(&mut self, proc: Proc<'a>) -> &'a [u8] {
let mut out = bumpalo::vec![in env.arena; 0x55, 0x48, 0x89, 0xE5]; self.reset();
let body = [0xb8, 0x06, 0x00, 0x00, 0x00]; // TODO: let the backend know of all the arguments.
out.extend(body.iter()); let mut buf = bumpalo::vec!(in self.env().arena);
out.push(0x5D); self.build_stmt(&mut buf, &proc.body);
out.push(0xC3); self.wrap_proc(buf).into_bump_slice()
out.into_bump_slice()
} }
/// wrap_proc does any setup and cleanup that should happen around the procedure.
/// For example, this can store the frame pionter and setup stack space.
/// wrap_proc is run at the end of build_proc when all internal code is finalized.
/// wrap_proc returns a Vec because it is expected to prepend data.
fn wrap_proc(&mut self, buf: Vec<'a, u8>) -> Vec<'a, u8>;
/// build_stmt builds a statement and outputs at the end of the buffer.
fn build_stmt(&mut self, buf: &mut Vec<'a, u8>, stmt: &Stmt<'a>) {
match stmt {
Stmt::Let(sym, expr, layout, following) => {
self.build_expr(buf, sym, expr, layout);
self.build_stmt(buf, following);
}
Stmt::Ret(sym) => {
self.return_symbol(buf, sym);
}
x => unimplemented!("the statement, {:?}, is not yet implemented", x),
}
}
/// build_expr builds the expressions for the specified symbol.
/// The builder must keep track of the symbol because it may be refered to later.
/// In many cases values can be lazy loaded, like literals.
fn build_expr(
&mut self,
_buf: &mut Vec<'a, u8>,
sym: &Symbol,
expr: &Expr<'a>,
layout: &Layout<'a>,
) {
match expr {
Expr::Literal(lit) => {
self.set_symbol_to_lit(sym, lit, layout);
}
x => unimplemented!("the expression, {:?}, is not yet implemented", x),
}
}
/// set_symbol_to_lit sets a symbol to be equal to a literal.
/// When the symbol is used, the literal should be loaded.
fn set_symbol_to_lit(&mut self, sym: &Symbol, lit: &Literal<'a>, layout: &Layout<'a>);
/// return_symbol moves a symbol to the correct return location for the backend.
fn return_symbol(&mut self, buf: &mut Vec<'a, u8>, sym: &Symbol);
} }

View file

@ -1,23 +1,77 @@
use crate::Backend; use crate::{Backend, Env};
use bumpalo::collections::Vec;
use roc_collections::all::MutMap;
use roc_module::symbol::Symbol;
use roc_mono::ir::Literal;
use roc_mono::layout::Layout;
pub struct X86_64Backend { pub struct X86_64Backend<'a> {
env: &'a Env<'a>,
// This will need to hold info a symbol is held in a register or on the stack as well.
symbols_map: MutMap<Symbol, (Literal<'a>, Layout<'a>)>,
// This is gonna need to include a lot of data. Right now I can think of quite a few. // This is gonna need to include a lot of data. Right now I can think of quite a few.
// Registers order by priority with info of what data is stored in them. // Registers order by priority with info of what data is stored in them.
// Scope with knows were all variables are currently stored.X86_64Backend // Scope with knows were all variables are currently stored.X86_64Backend
// Since this is x86_64 the calling convetions is really just windows or linux/macos. // Since this is x86_64 the calling convetions is really just windows or linux/macos.
// Hopefully this will be easy to extract into a trait somehow. Cause probably don't want if's everywhere. // Hopefully this will be easy to extract into a trait somehow. Cause probably don't want if's everywhere.
// Also, don't really want to build an x86_64-win backend specifically for it. // Also, don't really want to build an x86_64-win backend specifically for it.
// function parameter registers listed by order. Need to know the float equivalent registers as well. // function parameter registers listed by order. Need to know the float equivalent registers as well.
// Probably need to encode stack parameter knowledge here too. // Probably need to encode stack parameter knowledge here too.
// return parameter register. This includes dealing with multiple value returns. // return parameter register. This includes dealing with multiple value returns.
} }
impl Backend for X86_64Backend { impl<'a> Backend<'a> for X86_64Backend<'a> {
fn new() -> Self { fn new(env: &'a Env) -> Self {
X86_64Backend {} X86_64Backend {
env,
symbols_map: MutMap::default(),
}
} }
fn reset(&mut self) {} fn env(&self) -> &'a Env<'a> {
self.env
}
fn reset(&mut self) {
self.symbols_map.clear();
}
fn wrap_proc(&mut self, body: Vec<'a, u8>) -> Vec<'a, u8> {
// push rbp (0x55)
// mov rbp, rsp (0x48, 0x89, 0xE5)
let mut out = bumpalo::vec![in self.env.arena; 0x55, 0x48, 0x89, 0xE5];
out.reserve(body.len() + 2);
// TODO: handle allocating and cleaning up data on the stack.
out.extend(body);
// pop rbp
out.push(0x5D);
// ret
out.push(0xC3);
out
}
fn set_symbol_to_lit(&mut self, sym: &Symbol, lit: &Literal<'a>, layout: &Layout<'a>) {
self.symbols_map
.insert(sym.clone(), (lit.clone(), layout.clone()));
}
fn return_symbol(&mut self, body: &mut Vec<'a, u8>, sym: &Symbol) {
//let body = bumpalo::vec![in env.arena; 0xb8, 0x06, 0x00, 0x00, 0x00];
match self.symbols_map.get(sym) {
Some((Literal::Int(x), _)) => {
// movabs rax, ...
body.extend(&[0x48, 0xB8]);
body.extend(&x.to_le_bytes());
}
Some(x) => unimplemented!("return value, {:?}, is not yet implemented", x),
None => panic!("Unknown return symbol: {}", sym),
}
}
} }

View file

@ -15,7 +15,15 @@ mod gen_num {
#[test] #[test]
fn i64_values() { fn i64_values() {
assert_evals_to!("6", 6, i64); assert_evals_to!("0", 0, i64);
assert_evals_to!("-0", 0, i64);
assert_evals_to!("-1", -1, i64);
assert_evals_to!("1", 1, i64);
assert_evals_to!("9_000_000_000_000", 9_000_000_000_000, i64);
assert_evals_to!("-9_000_000_000_000", -9_000_000_000_000, i64);
assert_evals_to!("0b1010", 0b1010, i64);
assert_evals_to!("0o17", 0o17, i64);
assert_evals_to!("0x1000_0000_0000_0000", 0x1000_0000_0000_0000, i64);
} }
/* /*
#[test] #[test]
@ -44,12 +52,10 @@ mod gen_num {
assert_evals_to!("Num.abs -4.7", 4.7, f64); assert_evals_to!("Num.abs -4.7", 4.7, f64);
assert_evals_to!("Num.abs 5.8", 5.8, f64); assert_evals_to!("Num.abs 5.8", 5.8, f64);
} }
*/
#[test] #[test]
fn i64_abs() { fn i64_abs() {
//assert_evals_to!("Num.abs -6", 6, i64); //assert_evals_to!("Num.abs -6", 6, i64);
/*
assert_evals_to!("Num.abs 7", 7, i64); assert_evals_to!("Num.abs 7", 7, i64);
assert_evals_to!("Num.abs 0", 0, i64); assert_evals_to!("Num.abs 0", 0, i64);
assert_evals_to!("Num.abs -0", 0, i64); assert_evals_to!("Num.abs -0", 0, i64);
@ -57,10 +63,8 @@ mod gen_num {
assert_evals_to!("Num.abs 1", 1, i64); assert_evals_to!("Num.abs 1", 1, i64);
assert_evals_to!("Num.abs 9_000_000_000_000", 9_000_000_000_000, i64); assert_evals_to!("Num.abs 9_000_000_000_000", 9_000_000_000_000, i64);
assert_evals_to!("Num.abs -9_000_000_000_000", 9_000_000_000_000, i64); assert_evals_to!("Num.abs -9_000_000_000_000", 9_000_000_000_000, i64);
*/
} }
/*
#[test] #[test]
fn gen_if_fn() { fn gen_if_fn() {
assert_evals_to!( assert_evals_to!(