transform TypedDef to use fewer clones

This commit is contained in:
Folkert 2022-03-05 15:50:00 +01:00
parent 5e48577d29
commit b421df2a28
No known key found for this signature in database
GPG key ID: 1F17F6FFD112B97C

View file

@ -1024,21 +1024,23 @@ fn canonicalize_pending_def<'a>(
InvalidAlias { .. } => {
// invalid aliases and opaques (shadowed, incorrect patterns) get ignored
}
TypedBody(loc_pattern, loc_can_pattern, loc_ann, loc_expr) => {
let ann =
TypedBody(_loc_pattern, loc_can_pattern, loc_ann, loc_expr) => {
let type_annotation =
canonicalize_annotation(env, scope, &loc_ann.value, loc_ann.region, var_store);
// Record all the annotation's references in output.references.lookups
for symbol in ann.references.iter() {
for symbol in type_annotation.references.iter() {
output.references.lookups.insert(*symbol);
output.references.referenced_type_defs.insert(*symbol);
}
for (symbol, alias) in ann.aliases.clone() {
for (symbol, alias) in type_annotation.aliases.clone() {
aliases.insert(symbol, alias);
}
output.introduced_variables.union(&ann.introduced_variables);
output
.introduced_variables
.union(&type_annotation.introduced_variables);
// bookkeeping for tail-call detection. If we're assigning to an
// identifier (e.g. `f = \x -> ...`), then this symbol can be tail-called.
@ -1071,130 +1073,112 @@ fn canonicalize_pending_def<'a>(
// which also implies it's not a self tail call!
//
// Only defs of the form (foo = ...) can be closure declarations or self tail calls.
if let (
&Pattern::Identifier(ref defined_symbol),
&Closure(ClosureData {
if let Loc {
region,
value: Pattern::Identifier(symbol),
} = loc_can_pattern
{
if let &Closure(ClosureData {
function_type,
closure_type,
closure_ext_var,
return_type,
name: ref symbol,
name: ref closure_name,
ref arguments,
loc_body: ref body,
ref captured_symbols,
..
}),
) = (&loc_can_pattern.value, &loc_can_expr.value)
{
// Since everywhere in the code it'll be referred to by its defined name,
// remove its generated name from the closure map. (We'll re-insert it later.)
let references = env.closures.remove(symbol).unwrap_or_else(|| {
panic!(
"Tried to remove symbol {:?} from procedures, but it was not found: {:?}",
symbol, env.closures
)
});
// Re-insert the closure into the map, under its defined name.
// closures don't have a name, and therefore pick a fresh symbol. But in this
// case, the closure has a proper name (e.g. `foo` in `foo = \x y -> ...`
// and we want to reference it by that name.
env.closures.insert(*defined_symbol, references);
// The closure is self tail recursive iff it tail calls itself (by defined name).
let is_recursive = match can_output.tail_call {
Some(ref symbol) if symbol == defined_symbol => Recursive::TailRecursive,
_ => Recursive::NotRecursive,
};
// Recursion doesn't count as referencing. (If it did, all recursive functions
// would result in circular def errors!)
refs_by_symbol
.entry(*defined_symbol)
.and_modify(|(_, refs)| {
refs.lookups = refs.lookups.without(defined_symbol);
}) = &loc_can_expr.value
{
// Since everywhere in the code it'll be referred to by its defined name,
// remove its generated name from the closure map. (We'll re-insert it later.)
let references = env.closures.remove(closure_name).unwrap_or_else(|| {
panic!(
"Tried to remove symbol {:?} from procedures, but it was not found: {:?}",
closure_name, env.closures
)
});
// renamed_closure_def = Some(&defined_symbol);
loc_can_expr.value = Closure(ClosureData {
function_type,
closure_type,
closure_ext_var,
return_type,
name: *defined_symbol,
captured_symbols: captured_symbols.clone(),
recursive: is_recursive,
arguments: arguments.clone(),
loc_body: body.clone(),
});
// Re-insert the closure into the map, under its defined name.
// closures don't have a name, and therefore pick a fresh symbol. But in this
// case, the closure has a proper name (e.g. `foo` in `foo = \x y -> ...`
// and we want to reference it by that name.
env.closures.insert(symbol, references);
// Functions' references don't count in defs.
// See 3d5a2560057d7f25813112dfa5309956c0f9e6a9 and its
// parent commit for the bug this fixed!
let refs = References::new();
// The closure is self tail recursive iff it tail calls itself (by defined name).
let is_recursive = match can_output.tail_call {
Some(tail_symbol) if tail_symbol == symbol => Recursive::TailRecursive,
_ => Recursive::NotRecursive,
};
refs_by_symbol.insert(*defined_symbol, (loc_can_pattern.region, refs));
// Recursion doesn't count as referencing. (If it did, all recursive functions
// would result in circular def errors!)
refs_by_symbol.entry(symbol).and_modify(|(_, refs)| {
refs.lookups = refs.lookups.without(&symbol);
});
// renamed_closure_def = Some(&symbol);
loc_can_expr.value = Closure(ClosureData {
function_type,
closure_type,
closure_ext_var,
return_type,
name: symbol,
captured_symbols: captured_symbols.clone(),
recursive: is_recursive,
arguments: arguments.clone(),
loc_body: body.clone(),
});
// Functions' references don't count in defs.
// See 3d5a2560057d7f25813112dfa5309956c0f9e6a9 and its
// parent commit for the bug this fixed!
let refs = References::new();
refs_by_symbol.insert(symbol, (loc_can_pattern.region, refs));
} else {
let refs = can_output.references;
refs_by_symbol.insert(symbol, (region, refs));
}
let symbol = *defined_symbol;
let def = single_typed_can_def(
loc_can_pattern,
loc_can_expr,
expr_var,
Loc::at(loc_ann.region, ann),
Loc::at(loc_ann.region, type_annotation),
vars_by_symbol.clone(),
);
can_defs_by_symbol.insert(symbol, def);
} else {
// Store the referenced locals in the refs_by_symbol map, so we can later figure out
// which defined names reference each other.
if let Loc {
region,
value: Pattern::Identifier(symbol),
} = loc_can_pattern
{
let refs = can_output.references;
refs_by_symbol.insert(symbol, (region, refs));
let def = single_typed_can_def(
loc_can_pattern,
loc_can_expr,
expr_var,
Loc::at(loc_ann.region, ann),
vars_by_symbol.clone(),
);
can_defs_by_symbol.insert(symbol, def);
} else {
for (_, (symbol, region)) in scope.idents() {
if !vars_by_symbol.contains_key(symbol) {
continue;
}
let refs = can_output.references.clone();
refs_by_symbol.insert(*symbol, (*region, refs));
can_defs_by_symbol.insert(
*symbol,
Def {
expr_var,
// TODO try to remove this .clone()!
loc_pattern: loc_can_pattern.clone(),
loc_expr: Loc {
region: loc_can_expr.region,
// TODO try to remove this .clone()!
value: loc_can_expr.value.clone(),
},
pattern_vars: vars_by_symbol.clone(),
annotation: Some(Annotation {
signature: ann.typ.clone(),
introduced_variables: ann.introduced_variables.clone(),
aliases: ann.aliases.clone(),
region: loc_ann.region,
}),
},
);
for (_, (symbol, region)) in scope.idents() {
if !vars_by_symbol.contains_key(symbol) {
continue;
}
let refs = can_output.references.clone();
refs_by_symbol.insert(*symbol, (*region, refs));
can_defs_by_symbol.insert(
*symbol,
Def {
expr_var,
// TODO try to remove this .clone()!
loc_pattern: loc_can_pattern.clone(),
loc_expr: Loc {
region: loc_can_expr.region,
// TODO try to remove this .clone()!
value: loc_can_expr.value.clone(),
},
pattern_vars: vars_by_symbol.clone(),
annotation: Some(Annotation {
signature: type_annotation.typ.clone(),
introduced_variables: type_annotation.introduced_variables.clone(),
aliases: type_annotation.aliases.clone(),
region: loc_ann.region,
}),
},
);
}
}
}