Merge pull request #74 from rtfeldman/pools

Introduce Pools
This commit is contained in:
Richard Feldman 2019-12-19 22:57:24 -05:00 committed by GitHub
commit b47522489c
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
8 changed files with 529 additions and 77 deletions

View file

@ -170,6 +170,10 @@ impl<K: UnifyKey> VarValue<K> {
self.if_not_self(self.parent, self_key)
}
fn raw_parent(&self) -> K {
self.parent
}
fn if_not_self(&self, key: K, self_key: K) -> Option<K> {
if key == self_key {
None
@ -267,20 +271,29 @@ impl<S: UnificationStore> UnificationTable<S> {
/// NB. This is a building-block operation and you would probably
/// prefer to call `probe` below.
pub fn get_root_key(&mut self, vid: S::Key) -> S::Key {
let redirect = {
match self.value(vid).parent(vid) {
None => return vid,
Some(redirect) => redirect,
match self.value(vid).parent(vid) {
None => vid,
Some(redirect) => {
let root_key: S::Key = self.get_root_key(redirect);
if root_key != redirect {
// Path compression
self.update_value(vid, |value| value.parent = root_key);
}
root_key
}
};
let root_key: S::Key = self.get_root_key(redirect);
if root_key != redirect {
// Path compression
self.update_value(vid, |value| value.parent = root_key);
}
}
root_key
pub fn get_root_key_without_compacting(&self, vid: S::Key) -> S::Key {
match self.value(vid).parent(vid) {
None => vid,
Some(redirect) => self.get_root_key_without_compacting(redirect),
}
}
pub fn is_redirect(&mut self, vid: S::Key) -> bool {
self.value(vid).raw_parent() != vid
}
pub fn update_value<OP>(&mut self, key: S::Key, op: OP)
@ -400,4 +413,15 @@ where
let id = self.get_root_key(id);
self.value(id).value.clone()
}
/// This is for a debug_assert! in solve() only. Do not use it elsewhere!
pub fn probe_value_without_compacting<K1>(&self, id: K1) -> V
where
K1: Into<K>,
{
let id = id.into();
let id = self.get_root_key_without_compacting(id);
self.value(id).value.clone()
}
}

View file

@ -1,5 +1,5 @@
use crate::collections::ImMap;
use crate::solve::solve;
use crate::solve;
use crate::subs::{Content, Subs, Variable};
use crate::types::Constraint;
use crate::unify::Problems;
@ -10,7 +10,7 @@ pub fn infer_expr(
constraint: &Constraint,
expr_var: Variable,
) -> Content {
solve(&ImMap::default(), problems, subs, constraint);
solve::run(&ImMap::default(), problems, subs, constraint);
subs.get(expr_var).content
}

View file

@ -9,7 +9,7 @@ use crate::parse::ast::{self, Attempting, ExposesEntry, ImportsEntry};
use crate::parse::module::{self, module_defs};
use crate::parse::parser::{Fail, Parser, State};
use crate::region::{Located, Region};
use crate::solve::solve;
use crate::solve;
use crate::subs::VarStore;
use crate::subs::{Subs, Variable};
use crate::types::Constraint;
@ -414,8 +414,8 @@ pub fn solve_loaded(
}
for constraint in constraints {
solve(&vars_by_symbol, problems, subs, &constraint);
solve::run(&vars_by_symbol, problems, subs, &constraint);
}
solve(&vars_by_symbol, problems, subs, &module.constraint);
solve::run(&vars_by_symbol, problems, subs, &module.constraint);
}

View file

@ -2,7 +2,7 @@ use crate::can::ident::Lowercase;
use crate::can::symbol::Symbol;
use crate::collections::ImMap;
use crate::region::Located;
use crate::subs::{Content, Descriptor, FlatType, Subs, Variable};
use crate::subs::{Content, Descriptor, FlatType, Mark, Rank, Subs, Variable};
use crate::types::Constraint::{self, *};
use crate::types::Problem;
use crate::types::Type::{self, *};
@ -10,20 +10,100 @@ use crate::unify::{unify, Problems};
type Env = ImMap<Symbol, Variable>;
pub fn solve(
const DEFAULT_POOLS: usize = 8;
#[derive(Clone)]
struct Pools(Vec<Vec<Variable>>);
impl Default for Pools {
fn default() -> Self {
Pools::new(DEFAULT_POOLS)
}
}
impl Pools {
pub fn new(num_pools: usize) -> Self {
let mut pools = Vec::with_capacity(num_pools);
for _ in 0..num_pools {
pools.push(Vec::new());
}
Pools(pools)
}
pub fn get_mut(&mut self, rank: Rank) -> &mut Vec<Variable> {
self.0
.get_mut(rank.into_usize())
.unwrap_or_else(|| panic!("Compiler bug: could not find pool at rank {}", rank))
}
pub fn get(&self, rank: Rank) -> &Vec<Variable> {
self.0
.get(rank.into_usize())
.unwrap_or_else(|| panic!("Compiler bug: could not find pool at rank {}", rank))
}
pub fn iter<'a>(&'a self) -> std::slice::Iter<'a, Vec<Variable>> {
self.0.iter()
}
pub fn split_last(&self) -> (&Vec<Variable>, &[Vec<Variable>]) {
self.0
.split_last()
.unwrap_or_else(|| panic!("Attempted to split_last() on non-empy Pools"))
}
}
struct State {
vars_by_symbol: Env,
mark: Mark,
}
pub fn run(
vars_by_symbol: &Env,
problems: &mut Problems,
subs: &mut Subs,
constraint: &Constraint,
) {
let mut pools = Pools::default();
let state = State {
vars_by_symbol: vars_by_symbol.clone(),
mark: Mark::none().next(),
};
let rank = Rank::outermost();
solve(
vars_by_symbol,
state,
rank,
&mut pools,
problems,
subs,
constraint,
);
}
fn solve(
vars_by_symbol: &Env,
state: State,
rank: Rank,
pools: &mut Pools,
problems: &mut Problems,
subs: &mut Subs,
constraint: &Constraint,
) -> State {
match constraint {
True => (),
True => state,
Eq(typ, expected_type, _region) => {
// TODO use region?
let actual = type_to_var(subs, typ.clone());
let expected = type_to_var(subs, expected_type.clone().get_type());
let vars = unify(subs, problems, actual, expected);
unify(subs, problems, actual, expected);
introduce(subs, rank, pools, &vars);
state
}
Lookup(symbol, expected_type, _region) => {
// TODO use region?
@ -36,29 +116,80 @@ pub fn solve(
)
}));
let expected = type_to_var(subs, expected_type.clone().get_type());
let vars = unify(subs, problems, actual, expected);
unify(subs, problems, actual, expected);
introduce(subs, rank, pools, &vars);
state
}
And(sub_constraints) => {
let mut state = state;
for sub_constraint in sub_constraints.iter() {
solve(vars_by_symbol, problems, subs, sub_constraint);
state = solve(
vars_by_symbol,
state,
rank,
pools,
problems,
subs,
sub_constraint,
);
}
state
}
Pattern(_region, _category, typ, expected) => {
// TODO use region?
let actual = type_to_var(subs, typ.clone());
let expected = type_to_var(subs, expected.clone().get_type());
let vars = unify(subs, problems, actual, expected);
unify(subs, problems, actual, expected);
introduce(subs, rank, pools, &vars);
state
}
Let(let_con) => {
match &let_con.ret_constraint {
True => {
introduce(subs, rank, pools, &let_con.flex_vars);
// If the return expression is guaranteed to solve,
// solve the assignments themselves and move on.
solve(vars_by_symbol, problems, subs, &let_con.defs_constraint)
solve(
vars_by_symbol,
state,
rank,
pools,
problems,
subs,
&let_con.defs_constraint,
)
}
ret_con => {
let rigid_vars = &let_con.rigid_vars;
let flex_vars = &let_con.flex_vars;
// work in the next pool to localize header
let next_rank = rank.next();
let mut next_pools = pools.clone();
// introduce variables
for &var in rigid_vars.iter() {
subs.set_rank(var, next_rank);
}
for &var in flex_vars.iter() {
subs.set_rank(var, next_rank);
}
let pool: &mut Vec<Variable> = next_pools.get_mut(next_rank);
pool.reserve(rigid_vars.len() + flex_vars.len());
pool.extend(rigid_vars.iter());
pool.extend(flex_vars.iter());
// Add a variable for each assignment to the vars_by_symbol.
let mut locals = ImMap::default();
@ -74,8 +205,31 @@ pub fn solve(
);
}
// run solver in next pool
// Solve the assignments' constraints first.
solve(vars_by_symbol, problems, subs, &let_con.defs_constraint);
let new_state = solve(
vars_by_symbol,
state,
next_rank,
&mut next_pools,
problems,
subs,
&let_con.defs_constraint,
);
let young_mark = new_state.mark;
let visit_mark = young_mark.next();
let final_mark = visit_mark.next();
// pop pool
generalize(subs, young_mark, visit_mark, next_rank, &mut next_pools);
next_pools.get_mut(next_rank).clear();
// check that things went well
debug_assert!(rigid_vars
.iter()
.all(|&var| subs.get_without_compacting(var).rank == Rank::none()));
let mut new_vars_by_symbol = vars_by_symbol.clone();
@ -83,13 +237,30 @@ pub fn solve(
new_vars_by_symbol.insert(symbol.clone(), loc_var.value);
}
// Note that this vars_by_symbol is the one returned by the
// previous call to solve()
let temp_state = State {
vars_by_symbol: new_state.vars_by_symbol,
mark: final_mark,
};
// Now solve the body, using the new vars_by_symbol which includes
// the assignments' name-to-variable mappings.
solve(&new_vars_by_symbol, problems, subs, &ret_con);
let new_state = solve(
&new_vars_by_symbol,
temp_state,
rank,
&mut next_pools,
problems,
subs,
&ret_con,
);
for (symbol, loc_var) in locals {
check_for_infinite_type(subs, problems, symbol, loc_var);
}
new_state
}
}
}
@ -193,3 +364,193 @@ fn check_for_infinite_type(
problems.push(problem);
}
}
fn generalize(
subs: &mut Subs,
young_mark: Mark,
visit_mark: Mark,
young_rank: Rank,
pools: &mut Pools,
) {
let young_vars = pools.get(young_rank);
let rank_table = pool_to_rank_table(subs, young_mark, young_rank, young_vars);
// get the ranks right for each entry.
// start at low ranks so that we only have to pass
// over the information once.
for (index, table) in rank_table.iter().enumerate() {
for &var in table.iter() {
adjust_rank(subs, young_mark, visit_mark, Rank::from(index), var);
}
}
let (last_pool, all_but_last_pool) = rank_table.split_last();
// For variables that have rank lowerer than youngRank, register them in
// the appropriate old pool if they are not redundant.
for vars in all_but_last_pool {
for &var in vars {
if !subs.redundant(var) {
let rank = subs.get(var).rank;
pools.get_mut(rank).push(var);
}
}
}
// For variables with rank youngRank
// If rank < youngRank: register in oldPool
// otherwise generalize
for &var in last_pool {
if !subs.redundant(var) {
let mut desc = subs.get(var);
if desc.rank < young_rank {
pools.get_mut(desc.rank).push(var);
} else {
desc.rank = Rank::none();
subs.set(var, desc);
}
}
}
}
fn pool_to_rank_table(
subs: &mut Subs,
young_mark: Mark,
young_rank: Rank,
young_vars: &[Variable],
) -> Pools {
let mut pools = Pools::new(young_rank.into_usize() + 1);
// Sort the variables into buckets by rank.
for &var in young_vars.iter() {
let rank = subs.get(var).rank;
subs.set_mark(var, young_mark);
pools.get_mut(rank).push(var);
}
pools
}
/// Adjust variable ranks such that ranks never increase as you move deeper.
/// This way the outermost rank is representative of the entire structure.
///
fn adjust_rank(
subs: &mut Subs,
young_mark: Mark,
visit_mark: Mark,
group_rank: Rank,
var: Variable,
) -> Rank {
let mut desc = subs.get(var);
let mark = desc.mark;
if mark == young_mark {
desc.mark = visit_mark;
let content = desc.content.clone();
let mut marked_desc = desc.clone();
// Mark the variable as visited before adjusting content, as it may be cyclic.
subs.set(var, desc);
let max_rank = adjust_rank_content(subs, young_mark, visit_mark, group_rank, content);
marked_desc.rank = max_rank;
subs.set(var, marked_desc);
max_rank
} else if mark == visit_mark {
desc.rank
} else {
let min_rank = desc.rank.min(group_rank);
// TODO from elm-compiler: how can min_rank ever be group_rank?
desc.rank = min_rank;
desc.mark = visit_mark;
subs.set(var, desc);
min_rank
}
}
fn adjust_rank_content(
subs: &mut Subs,
young_mark: Mark,
visit_mark: Mark,
group_rank: Rank,
content: Content,
) -> Rank {
use crate::subs::Content::*;
use crate::subs::FlatType::*;
match content {
FlexVar(_) | RigidVar(_) | Error(_) => group_rank,
Structure(flat_type) => {
match flat_type {
Apply { args, .. } => {
let mut rank = Rank::outermost();
for var in args {
rank = rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
}
rank
}
Func(arg_vars, ret_var) => {
let mut rank = adjust_rank(subs, young_mark, visit_mark, group_rank, ret_var);
for var in arg_vars {
rank = rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
}
rank
}
EmptyRecord => {
// from elm-compiler: THEORY: an empty record never needs to get generalized
Rank::outermost()
}
Record(fields, ext_var) => {
let mut rank = adjust_rank(subs, young_mark, visit_mark, group_rank, ext_var);
for (_, var) in fields {
rank = rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
}
rank
}
Erroneous(_) => group_rank,
}
}
Alias(_, _, args, _) => {
let mut rank = Rank::outermost();
// from elm-compiler: THEORY: anything in the realVar would be outermostRank
for (_, var) in args {
rank = rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
}
rank
}
}
}
fn introduce(subs: &mut Subs, rank: Rank, pools: &mut Pools, vars: &[Variable]) {
let pool: &mut Vec<Variable> = pools.get_mut(rank);
for &var in vars.iter() {
subs.set_rank(var, rank);
}
pool.extend(vars);
}

View file

@ -11,7 +11,7 @@ pub struct Mark(i32);
impl Mark {
#[inline(always)]
pub fn none() -> Mark {
Mark(0)
Mark(2)
}
#[inline(always)]
@ -21,12 +21,12 @@ impl Mark {
#[inline(always)]
pub fn get_var_names() -> Mark {
Mark(2)
Mark(0)
}
#[inline(always)]
pub fn next(self) -> Mark {
Mark(self.0 - 1)
Mark(self.0 + 1)
}
}
@ -83,7 +83,7 @@ impl Into<usize> for VarStore {
}
}
#[derive(Copy, PartialEq, Eq, Clone, Hash)]
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
pub struct Variable(usize);
impl Variable {
@ -159,6 +159,10 @@ impl Subs {
self.utable.probe_value(key)
}
pub fn get_without_compacting(&self, key: Variable) -> Descriptor {
self.utable.probe_value_without_compacting(key)
}
pub fn get_root_key(&mut self, key: Variable) -> Variable {
self.utable.get_root_key(key)
}
@ -215,6 +219,10 @@ impl Subs {
self.utable.unioned(left, right)
}
pub fn redundant(&mut self, var: Variable) -> bool {
self.utable.is_redirect(var)
}
pub fn occurs(&mut self, var: Variable) -> bool {
occurs(self, &ImSet::default(), var)
}
@ -244,7 +252,7 @@ fn unnamed_flex_var() -> Content {
}
#[derive(Copy, Clone, Default, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct Rank(u8);
pub struct Rank(usize);
impl Rank {
pub fn none() -> Self {
@ -258,17 +266,27 @@ impl Rank {
pub fn next(self) -> Self {
Rank(self.0 + 1)
}
pub fn into_usize(self) -> usize {
self.0
}
}
impl Into<u8> for Rank {
fn into(self) -> u8 {
self.0
impl fmt::Display for Rank {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.0.fmt(f)
}
}
impl Into<usize> for Rank {
fn into(self) -> usize {
self.0 as usize
self.0
}
}
impl From<usize> for Rank {
fn from(index: usize) -> Self {
Rank(index)
}
}

View file

@ -18,9 +18,25 @@ struct RecordStructure {
}
pub type Problems = Vec<Problem>;
pub type Pool = Vec<Variable>;
#[inline(always)]
pub fn unify(subs: &mut Subs, problems: &mut Problems, var1: Variable, var2: Variable) {
pub fn unify(subs: &mut Subs, problems: &mut Problems, var1: Variable, var2: Variable) -> Pool {
let mut pool = Vec::new();
unify_pool(subs, &mut pool, problems, var1, var2);
pool
}
#[inline(always)]
pub fn unify_pool(
subs: &mut Subs,
pool: &mut Pool,
problems: &mut Problems,
var1: Variable,
var2: Variable,
) {
if !subs.equivalent(var1, var2) {
let ctx = Context {
first: var1,
@ -29,19 +45,24 @@ pub fn unify(subs: &mut Subs, problems: &mut Problems, var1: Variable, var2: Var
second_desc: subs.get(var2),
};
unify_context(subs, problems, ctx)
unify_context(subs, pool, problems, ctx);
}
}
fn unify_context(subs: &mut Subs, problems: &mut Problems, ctx: Context) {
fn unify_context(subs: &mut Subs, pool: &mut Pool, problems: &mut Problems, ctx: Context) {
match &ctx.first_desc.content {
FlexVar(opt_name) => unify_flex(subs, problems, &ctx, opt_name, &ctx.second_desc.content),
RigidVar(name) => unify_rigid(subs, problems, &ctx, name, &ctx.second_desc.content),
Structure(flat_type) => {
unify_structure(subs, problems, &ctx, flat_type, &ctx.second_desc.content)
}
Structure(flat_type) => unify_structure(
subs,
pool,
problems,
&ctx,
flat_type,
&ctx.second_desc.content,
),
Alias(home, name, args, real_var) => {
unify_alias(subs, problems, &ctx, home, name, args, *real_var)
unify_alias(subs, pool, problems, &ctx, home, name, args, *real_var)
}
Error(problem) => {
// Error propagates. Whatever we're comparing it to doesn't matter!
@ -51,9 +72,12 @@ fn unify_context(subs: &mut Subs, problems: &mut Problems, ctx: Context) {
}
}
// TODO trim down this arg list
#[allow(clippy::too_many_arguments)]
#[inline(always)]
fn unify_alias(
subs: &mut Subs,
pool: &mut Pool,
problems: &mut Problems,
ctx: &Context,
home: &ModuleName,
@ -72,7 +96,7 @@ fn unify_alias(
Alias(home.clone(), name.clone(), args.to_owned(), real_var),
);
}
RigidVar(_) => unify(subs, problems, real_var, ctx.second),
RigidVar(_) => unify_pool(subs, pool, problems, real_var, ctx.second),
Alias(other_home, other_name, other_args, other_real_var) => {
if name == other_name && home == other_home {
match args.len().cmp(&other_args.len()) {
@ -90,16 +114,16 @@ fn unify_alias(
}
Ordering::Equal => {
for ((_, l_var), (_, r_var)) in args.iter().zip(other_args.iter()) {
unify(subs, problems, *l_var, *r_var);
unify_pool(subs, pool, problems, *l_var, *r_var);
}
merge(subs, &ctx, other_content.clone());
}
}
} else {
unify(subs, problems, real_var, *other_real_var)
unify_pool(subs, pool, problems, real_var, *other_real_var)
}
}
Structure(_) => unify(subs, problems, real_var, ctx.second),
Structure(_) => unify_pool(subs, pool, problems, real_var, ctx.second),
Error(problem) => {
merge(subs, ctx, Error(problem.clone()));
problems.push(problem.clone());
@ -110,6 +134,7 @@ fn unify_alias(
#[inline(always)]
fn unify_structure(
subs: &mut Subs,
pool: &mut Pool,
problems: &mut Problems,
ctx: &Context,
flat_type: &FlatType,
@ -128,9 +153,9 @@ fn unify_structure(
}
Structure(ref other_flat_type) => {
// Unify the two flat types
unify_flat_type(subs, problems, ctx, flat_type, other_flat_type)
unify_flat_type(subs, pool, problems, ctx, flat_type, other_flat_type)
}
Alias(_, _, _, real_var) => unify(subs, problems, ctx.first, *real_var),
Alias(_, _, _, real_var) => unify_pool(subs, pool, problems, ctx.first, *real_var),
Error(problem) => {
// Error propagates.
merge(subs, ctx, Error(problem.clone()));
@ -141,6 +166,7 @@ fn unify_structure(
fn unify_record(
subs: &mut Subs,
pool: &mut Pool,
problems: &mut Problems,
ctx: &Context,
rec1: RecordStructure,
@ -156,9 +182,10 @@ fn unify_record(
if unique_fields1.is_empty() {
if unique_fields2.is_empty() {
unify(subs, problems, rec1.ext, rec2.ext);
unify_pool(subs, pool, problems, rec1.ext, rec2.ext);
unify_shared_fields(
subs,
pool,
problems,
ctx,
shared_fields,
@ -167,12 +194,13 @@ fn unify_record(
)
} else {
let flat_type = FlatType::Record(unique_fields2, rec2.ext);
let sub_record = subs.fresh(Structure(flat_type).into());
let sub_record = fresh(subs, pool, ctx, Structure(flat_type));
unify(subs, problems, rec1.ext, sub_record);
unify_pool(subs, pool, problems, rec1.ext, sub_record);
unify_shared_fields(
subs,
pool,
problems,
ctx,
shared_fields,
@ -182,12 +210,13 @@ fn unify_record(
}
} else if unique_fields2.is_empty() {
let flat_type = FlatType::Record(unique_fields1, rec1.ext);
let sub_record = subs.fresh(Structure(flat_type).into());
let sub_record = fresh(subs, pool, ctx, Structure(flat_type));
unify(subs, problems, sub_record, rec2.ext);
unify_pool(subs, pool, problems, sub_record, rec2.ext);
unify_shared_fields(
subs,
pool,
problems,
ctx,
shared_fields,
@ -196,21 +225,22 @@ fn unify_record(
);
} else {
let other_fields = unique_fields1.clone().union(unique_fields2.clone());
let ext = subs.fresh_unnamed_flex_var();
let ext = fresh(subs, pool, ctx, Content::FlexVar(None));
let flat_type1 = FlatType::Record(unique_fields1, rec1.ext);
let sub1 = subs.fresh(Structure(flat_type1).into());
let sub1 = fresh(subs, pool, ctx, Structure(flat_type1));
let flat_type2 = FlatType::Record(unique_fields2, rec2.ext);
let sub2 = subs.fresh(Structure(flat_type2).into());
let sub2 = fresh(subs, pool, ctx, Structure(flat_type2));
unify(subs, problems, rec1.ext, sub2);
unify(subs, problems, sub1, rec2.ext);
unify_pool(subs, pool, problems, rec1.ext, sub2);
unify_pool(subs, pool, problems, sub1, rec2.ext);
unify_shared_fields(subs, problems, ctx, shared_fields, other_fields, ext);
unify_shared_fields(subs, pool, problems, ctx, shared_fields, other_fields, ext);
}
}
fn unify_shared_fields(
subs: &mut Subs,
pool: &mut Pool,
problems: &mut Problems,
ctx: &Context,
shared_fields: ImMap<Lowercase, (Variable, Variable)>,
@ -225,7 +255,7 @@ fn unify_shared_fields(
// TODO another way to do this might be to pass around a problems vec
// and check to see if its length increased after doing this unification.
unify(subs, problems, actual, expected);
unify_pool(subs, pool, problems, actual, expected);
if problems.len() == prev_problem_count {
matching_fields.insert(name, actual);
@ -248,6 +278,7 @@ fn unify_shared_fields(
#[inline(always)]
fn unify_flat_type(
subs: &mut Subs,
pool: &mut Pool,
problems: &mut Problems,
ctx: &Context,
left: &FlatType,
@ -261,18 +292,18 @@ fn unify_flat_type(
}
(Record(fields, ext), EmptyRecord) if fields.is_empty() => {
unify(subs, problems, *ext, ctx.second)
unify_pool(subs, pool, problems, *ext, ctx.second)
}
(EmptyRecord, Record(fields, ext)) if fields.is_empty() => {
unify(subs, problems, ctx.first, *ext)
unify_pool(subs, pool, problems, ctx.first, *ext)
}
(Record(fields1, ext1), Record(fields2, ext2)) => {
let rec1 = gather_fields(subs, problems, fields1.clone(), *ext1);
let rec2 = gather_fields(subs, problems, fields2.clone(), *ext2);
unify_record(subs, problems, ctx, rec1, rec2)
unify_record(subs, pool, problems, ctx, rec1, rec2)
}
(
Apply {
@ -286,7 +317,7 @@ fn unify_flat_type(
args: r_args,
},
) if l_module_name == r_module_name && l_type_name == r_type_name => {
unify_zip(subs, problems, l_args.iter(), r_args.iter());
unify_zip(subs, pool, problems, l_args.iter(), r_args.iter());
merge(
subs,
@ -302,8 +333,8 @@ fn unify_flat_type(
Ordering::Greater => merge(subs, ctx, Error(Problem::ExtraArguments)),
Ordering::Less => merge(subs, ctx, Error(Problem::MissingArguments)),
Ordering::Equal => {
unify_zip(subs, problems, l_args.iter(), r_args.iter());
unify(subs, problems, *l_ret, *r_ret);
unify_zip(subs, pool, problems, l_args.iter(), r_args.iter());
unify_pool(subs, pool, problems, *l_ret, *r_ret);
merge(subs, ctx, Structure(Func((*r_args).clone(), *r_ret)));
}
},
@ -316,12 +347,17 @@ fn unify_flat_type(
}
}
fn unify_zip<'a, I>(subs: &mut Subs, problems: &mut Problems, left_iter: I, right_iter: I)
where
fn unify_zip<'a, I>(
subs: &mut Subs,
pool: &mut Pool,
problems: &mut Problems,
left_iter: I,
right_iter: I,
) where
I: Iterator<Item = &'a Variable>,
{
for (&l_var, &r_var) in left_iter.zip(right_iter) {
unify(subs, problems, l_var, r_var);
unify_pool(subs, pool, problems, l_var, r_var);
}
}
@ -412,3 +448,24 @@ fn merge(subs: &mut Subs, ctx: &Context, content: Content) {
subs.union(ctx.first, ctx.second, desc);
}
fn register(subs: &mut Subs, desc: Descriptor, pool: &mut Pool) -> Variable {
let var = subs.fresh(desc);
pool.push(var);
var
}
fn fresh(subs: &mut Subs, pool: &mut Pool, ctx: &Context, content: Content) -> Variable {
register(
subs,
Descriptor {
content,
rank: ctx.first_desc.rank.min(ctx.second_desc.rank),
mark: Mark::none(),
copy: None,
},
pool,
)
}

View file

@ -509,10 +509,6 @@ mod test_infer {
);
}
// TODO type annotations
// TODO BoundTypeVariables
// TODO conditionals
#[test]
fn indirect_always() {
infer_eq(

View file

@ -527,10 +527,6 @@ mod test_infer_uniq {
);
}
// TODO type annotations
// TODO BoundTypeVariables
// TODO conditionals
#[test]
fn indirect_always() {
infer_eq(