Progress on updating entire compiler for snake_case

This commit is contained in:
Sam Mohr 2025-01-05 03:48:03 -08:00
parent db6cc5a7b1
commit b56fbd38e1
No known key found for this signature in database
GPG key ID: EA41D161A3C1BC99
297 changed files with 8416 additions and 8544 deletions

View file

@ -1,107 +1,107 @@
module [findPath, Model, initialModel, cheapestOpen, reconstructPath]
module [find_path, Model, initial_model, cheapest_open, reconstruct_path]
import Quicksort
findPath = \costFn, moveFn, start, end ->
astar costFn moveFn end (initialModel start)
find_path = \cost_fn, move_fn, start, end ->
astar(cost_fn, move_fn, end, initial_model(start))
Model position : {
evaluated : Set position,
openSet : Set position,
open_set : Set position,
costs : Dict position F64,
cameFrom : Dict position position,
came_from : Dict position position,
} where position implements Hash & Eq
initialModel : position -> Model position where position implements Hash & Eq
initialModel = \start -> {
evaluated: Set.empty {},
openSet: Set.single start,
costs: Dict.single start 0,
cameFrom: Dict.empty {},
initial_model : position -> Model position where position implements Hash & Eq
initial_model = \start -> {
evaluated: Set.empty({}),
open_set: Set.single(start),
costs: Dict.single(start, 0),
came_from: Dict.empty({}),
}
cheapestOpen : (position -> F64), Model position -> Result position {} where position implements Hash & Eq
cheapestOpen = \costFn, model ->
model.openSet
|> Set.toList
|> List.keepOks
(\position ->
when Dict.get model.costs position is
Err _ -> Err {}
Ok cost -> Ok { cost: cost + costFn position, position }
)
|> Quicksort.sortBy .cost
cheapest_open : (position -> F64), Model position -> Result position {} where position implements Hash & Eq
cheapest_open = \cost_fn, model ->
model.open_set
|> Set.to_list
|> List.keep_oks(
\position ->
when Dict.get(model.costs, position) is
Err(_) -> Err({})
Ok(cost) -> Ok({ cost: cost + cost_fn(position), position }),
)
|> Quicksort.sort_by(.cost)
|> List.first
|> Result.map .position
|> Result.mapErr (\_ -> {})
|> Result.map(.position)
|> Result.map_err(\_ -> {})
reconstructPath : Dict position position, position -> List position where position implements Hash & Eq
reconstructPath = \cameFrom, goal ->
when Dict.get cameFrom goal is
Err _ -> []
Ok next -> List.append (reconstructPath cameFrom next) goal
reconstruct_path : Dict position position, position -> List position where position implements Hash & Eq
reconstruct_path = \came_from, goal ->
when Dict.get(came_from, goal) is
Err(_) -> []
Ok(next) -> List.append(reconstruct_path(came_from, next), goal)
updateCost : position, position, Model position -> Model position where position implements Hash & Eq
updateCost = \current, neighbor, model ->
newCameFrom =
Dict.insert model.cameFrom neighbor current
update_cost : position, position, Model position -> Model position where position implements Hash & Eq
update_cost = \current, neighbor, model ->
new_came_from =
Dict.insert(model.came_from, neighbor, current)
newCosts =
Dict.insert model.costs neighbor distanceTo
new_costs =
Dict.insert(model.costs, neighbor, distance_to)
distanceTo =
reconstructPath newCameFrom neighbor
distance_to =
reconstruct_path(new_came_from, neighbor)
|> List.len
|> Num.toFrac
|> Num.to_frac
newModel =
new_model =
{ model &
costs: newCosts,
cameFrom: newCameFrom,
costs: new_costs,
came_from: new_came_from,
}
when Dict.get model.costs neighbor is
Err _ ->
newModel
when Dict.get(model.costs, neighbor) is
Err(_) ->
new_model
Ok previousDistance ->
if distanceTo < previousDistance then
newModel
Ok(previous_distance) ->
if distance_to < previous_distance then
new_model
else
model
astar : (position, position -> F64), (position -> Set position), position, Model position -> Result (List position) {} where position implements Hash & Eq
astar = \costFn, moveFn, goal, model ->
when cheapestOpen (\source -> costFn source goal) model is
Err {} -> Err {}
Ok current ->
astar = \cost_fn, move_fn, goal, model ->
when cheapest_open(\source -> cost_fn(source, goal), model) is
Err({}) -> Err({})
Ok(current) ->
if current == goal then
Ok (reconstructPath model.cameFrom goal)
Ok(reconstruct_path(model.came_from, goal))
else
modelPopped =
model_popped =
{ model &
openSet: Set.remove model.openSet current,
evaluated: Set.insert model.evaluated current,
open_set: Set.remove(model.open_set, current),
evaluated: Set.insert(model.evaluated, current),
}
neighbors =
moveFn current
move_fn(current)
newNeighbors =
Set.difference neighbors modelPopped.evaluated
new_neighbors =
Set.difference(neighbors, model_popped.evaluated)
modelWithNeighbors : Model position
modelWithNeighbors =
modelPopped
|> &openSet (Set.union modelPopped.openSet newNeighbors)
model_with_neighbors : Model position
model_with_neighbors =
model_popped
|> &open_set(Set.union(model_popped.open_set, new_neighbors))
walker : Model position, position -> Model position
walker = \amodel, n -> updateCost current n amodel
walker = \amodel, n -> update_cost(current, n, amodel)
modelWithCosts =
Set.walk newNeighbors modelWithNeighbors walker
model_with_costs =
Set.walk(new_neighbors, model_with_neighbors, walker)
astar costFn moveFn goal modelWithCosts
astar(cost_fn, move_fn, goal, model_with_costs)
# takeStep = \moveFn, _goal, model, current ->
# modelPopped =

View file

@ -1,38 +1,38 @@
module [fromBytes, fromStr, toBytes, toStr]
module [from_bytes, from_str, to_bytes, to_str]
import Base64.Decode
import Base64.Encode
# base 64 encoding from a sequence of bytes
fromBytes : List U8 -> Result Str [InvalidInput]
fromBytes = \bytes ->
when Base64.Decode.fromBytes bytes is
Ok v ->
Ok v
from_bytes : List U8 -> Result Str [InvalidInput]
from_bytes = \bytes ->
when Base64.Decode.from_bytes(bytes) is
Ok(v) ->
Ok(v)
Err _ ->
Err InvalidInput
Err(_) ->
Err(InvalidInput)
# base 64 encoding from a string
fromStr : Str -> Result Str [InvalidInput]
fromStr = \str ->
fromBytes (Str.toUtf8 str)
from_str : Str -> Result Str [InvalidInput]
from_str = \str ->
from_bytes(Str.to_utf8(str))
# base64-encode bytes to the original
toBytes : Str -> Result (List U8) [InvalidInput]
toBytes = \str ->
Ok (Base64.Encode.toBytes str)
to_bytes : Str -> Result (List U8) [InvalidInput]
to_bytes = \str ->
Ok(Base64.Encode.to_bytes(str))
toStr : Str -> Result Str [InvalidInput]
toStr = \str ->
when toBytes str is
Ok bytes ->
when Str.fromUtf8 bytes is
Ok v ->
Ok v
to_str : Str -> Result Str [InvalidInput]
to_str = \str ->
when to_bytes(str) is
Ok(bytes) ->
when Str.from_utf8(bytes) is
Ok(v) ->
Ok(v)
Err _ ->
Err InvalidInput
Err(_) ->
Err(InvalidInput)
Err _ ->
Err InvalidInput
Err(_) ->
Err(InvalidInput)

View file

@ -1,86 +1,86 @@
module [fromBytes]
module [from_bytes]
import Bytes.Decode exposing [ByteDecoder, DecodeProblem]
fromBytes : List U8 -> Result Str DecodeProblem
fromBytes = \bytes ->
Bytes.Decode.decode bytes (decodeBase64 (List.len bytes))
from_bytes : List U8 -> Result Str DecodeProblem
from_bytes = \bytes ->
Bytes.Decode.decode(bytes, decode_base64(List.len(bytes)))
decodeBase64 : U64 -> ByteDecoder Str
decodeBase64 = \width -> Bytes.Decode.loop loopHelp { remaining: width, string: "" }
decode_base64 : U64 -> ByteDecoder Str
decode_base64 = \width -> Bytes.Decode.loop(loop_help, { remaining: width, string: "" })
loopHelp : { remaining : U64, string : Str } -> ByteDecoder (Bytes.Decode.Step { remaining : U64, string : Str } Str)
loopHelp = \{ remaining, string } ->
loop_help : { remaining : U64, string : Str } -> ByteDecoder (Bytes.Decode.Step { remaining : U64, string : Str } Str)
loop_help = \{ remaining, string } ->
if remaining >= 3 then
Bytes.Decode.map3 Bytes.Decode.u8 Bytes.Decode.u8 Bytes.Decode.u8 \x, y, z ->
Bytes.Decode.map3(Bytes.Decode.u8, Bytes.Decode.u8, Bytes.Decode.u8, \x, y, z ->
a : U32
a = Num.intCast x
a = Num.int_cast(x)
b : U32
b = Num.intCast y
b = Num.int_cast(y)
c : U32
c = Num.intCast z
combined = Num.bitwiseOr (Num.bitwiseOr (Num.shiftLeftBy a 16) (Num.shiftLeftBy b 8)) c
c = Num.int_cast(z)
combined = Num.bitwise_or(Num.bitwise_or(Num.shift_left_by(a, 16), Num.shift_left_by(b, 8)), c)
Loop {
Loop({
remaining: remaining - 3,
string: Str.concat string (bitsToChars combined 0),
}
string: Str.concat(string, bits_to_chars(combined, 0)),
}))
else if remaining == 0 then
Bytes.Decode.succeed (Done string)
Bytes.Decode.succeed(Done(string))
else if remaining == 2 then
Bytes.Decode.map2 Bytes.Decode.u8 Bytes.Decode.u8 \x, y ->
Bytes.Decode.map2(Bytes.Decode.u8, Bytes.Decode.u8, \x, y ->
a : U32
a = Num.intCast x
a = Num.int_cast(x)
b : U32
b = Num.intCast y
combined = Num.bitwiseOr (Num.shiftLeftBy a 16) (Num.shiftLeftBy b 8)
b = Num.int_cast(y)
combined = Num.bitwise_or(Num.shift_left_by(a, 16), Num.shift_left_by(b, 8))
Done (Str.concat string (bitsToChars combined 1))
Done(Str.concat(string, bits_to_chars(combined, 1))))
else
# remaining = 1
Bytes.Decode.map Bytes.Decode.u8 \x ->
Bytes.Decode.map(Bytes.Decode.u8, \x ->
a : U32
a = Num.intCast x
a = Num.int_cast(x)
Done (Str.concat string (bitsToChars (Num.shiftLeftBy a 16) 2))
Done(Str.concat(string, bits_to_chars(Num.shift_left_by(a, 16), 2))))
bitsToChars : U32, Int * -> Str
bitsToChars = \bits, missing ->
when Str.fromUtf8 (bitsToCharsHelp bits missing) is
Ok str -> str
Err _ -> ""
bits_to_chars : U32, Int * -> Str
bits_to_chars = \bits, missing ->
when Str.from_utf8(bits_to_chars_help(bits, missing)) is
Ok(str) -> str
Err(_) -> ""
# Mask that can be used to get the lowest 6 bits of a binary number
lowest6BitsMask : Int *
lowest6BitsMask = 63
lowest6_bits_mask : Int *
lowest6_bits_mask = 63
bitsToCharsHelp : U32, Int * -> List U8
bitsToCharsHelp = \bits, missing ->
bits_to_chars_help : U32, Int * -> List U8
bits_to_chars_help = \bits, missing ->
# The input is 24 bits, which we have to partition into 4 6-bit segments. We achieve this by
# shifting to the right by (a multiple of) 6 to remove unwanted bits on the right, then `Num.bitwiseAnd`
# with `0b111111` (which is 2^6 - 1 or 63) (so, 6 1s) to remove unwanted bits on the left.
# any 6-bit number is a valid base64 digit, so this is actually safe
p =
Num.shiftRightZfBy bits 18
|> Num.intCast
|> unsafeToChar
Num.shift_right_zf_by(bits, 18)
|> Num.int_cast
|> unsafe_to_char
q =
Num.bitwiseAnd (Num.shiftRightZfBy bits 12) lowest6BitsMask
|> Num.intCast
|> unsafeToChar
Num.bitwise_and(Num.shift_right_zf_by(bits, 12), lowest6_bits_mask)
|> Num.int_cast
|> unsafe_to_char
r =
Num.bitwiseAnd (Num.shiftRightZfBy bits 6) lowest6BitsMask
|> Num.intCast
|> unsafeToChar
Num.bitwise_and(Num.shift_right_zf_by(bits, 6), lowest6_bits_mask)
|> Num.int_cast
|> unsafe_to_char
s =
Num.bitwiseAnd bits lowest6BitsMask
|> Num.intCast
|> unsafeToChar
Num.bitwise_and(bits, lowest6_bits_mask)
|> Num.int_cast
|> unsafe_to_char
equals : U8
equals = 61
@ -94,8 +94,8 @@ bitsToCharsHelp = \bits, missing ->
[]
# Base64 index to character/digit
unsafeToChar : U8 -> U8
unsafeToChar = \n ->
unsafe_to_char : U8 -> U8
unsafe_to_char = \n ->
if n <= 25 then
# uppercase characters
65 + n

View file

@ -1,22 +1,22 @@
module [toBytes]
module [to_bytes]
import Bytes.Encode exposing [ByteEncoder]
InvalidChar : U8
# State : [None, One U8, Two U8, Three U8]
toBytes : Str -> List U8
toBytes = \str ->
to_bytes : Str -> List U8
to_bytes = \str ->
str
|> Str.toUtf8
|> encodeChunks
|> Str.to_utf8
|> encode_chunks
|> Bytes.Encode.sequence
|> Bytes.Encode.encode
encodeChunks : List U8 -> List ByteEncoder
encodeChunks = \bytes ->
List.walk bytes { output: [], accum: None } folder
|> encodeResidual
encode_chunks : List U8 -> List ByteEncoder
encode_chunks = \bytes ->
List.walk(bytes, { output: [], accum: None }, folder)
|> encode_residual
coerce : U64, a -> a
coerce = \_, x -> x
@ -24,113 +24,114 @@ coerce = \_, x -> x
# folder : { output : List ByteEncoder, accum : State }, U8 -> { output : List ByteEncoder, accum : State }
folder = \{ output, accum }, char ->
when accum is
Unreachable n -> coerce n { output, accum: Unreachable n }
None -> { output, accum: One char }
One a -> { output, accum: Two a char }
Two a b -> { output, accum: Three a b char }
Three a b c ->
when encodeCharacters a b c char is
Ok encoder ->
Unreachable(n) -> coerce(n, { output, accum: Unreachable(n) })
None -> { output, accum: One(char) }
One(a) -> { output, accum: Two(a, char) }
Two(a, b) -> { output, accum: Three(a, b, char) }
Three(a, b, c) ->
when encode_characters(a, b, c, char) is
Ok(encoder) ->
{
output: List.append output encoder,
output: List.append(output, encoder),
accum: None,
}
Err _ ->
Err(_) ->
{ output, accum: None }
# SGVs bG8g V29y bGQ=
# encodeResidual : { output : List ByteEncoder, accum : State } -> List ByteEncoder
encodeResidual = \{ output, accum } ->
encode_residual = \{ output, accum } ->
when accum is
Unreachable _ -> output
Unreachable(_) -> output
None -> output
One _ -> output
Two a b ->
when encodeCharacters a b equals equals is
Ok encoder -> List.append output encoder
Err _ -> output
One(_) -> output
Two(a, b) ->
when encode_characters(a, b, equals, equals) is
Ok(encoder) -> List.append(output, encoder)
Err(_) -> output
Three a b c ->
when encodeCharacters a b c equals is
Ok encoder -> List.append output encoder
Err _ -> output
Three(a, b, c) ->
when encode_characters(a, b, c, equals) is
Ok(encoder) -> List.append(output, encoder)
Err(_) -> output
equals : U8
equals = 61
# Convert 4 characters to 24 bits (as an ByteEncoder)
encodeCharacters : U8, U8, U8, U8 -> Result ByteEncoder InvalidChar
encodeCharacters = \a, b, c, d ->
if !(isValidChar a) then
Err a
else if !(isValidChar b) then
Err b
encode_characters : U8, U8, U8, U8 -> Result ByteEncoder InvalidChar
encode_characters = \a, b, c, d ->
if !(is_valid_char(a)) then
Err(a)
else if !(is_valid_char(b)) then
Err(b)
else
# `=` is the padding character, and must be special-cased
# only the `c` and `d` char are allowed to be padding
n1 = unsafeConvertChar a
n2 = unsafeConvertChar b
n1 = unsafe_convert_char(a)
n2 = unsafe_convert_char(b)
x : U32
x = Num.intCast n1
x = Num.int_cast(n1)
y : U32
y = Num.intCast n2
y = Num.int_cast(n2)
if d == equals then
if c == equals then
n = Num.bitwiseOr (Num.shiftLeftBy x 18) (Num.shiftLeftBy y 12)
n = Num.bitwise_or(Num.shift_left_by(x, 18), Num.shift_left_by(y, 12))
# masking higher bits is not needed, Encode.unsignedInt8 ignores higher bits
b1 : U8
b1 = Num.intCast (Num.shiftRightBy n 16)
b1 = Num.int_cast(Num.shift_right_by(n, 16))
Ok (Bytes.Encode.u8 b1)
else if !(isValidChar c) then
Err c
Ok(Bytes.Encode.u8(b1))
else if !(is_valid_char(c)) then
Err(c)
else
n3 = unsafeConvertChar c
n3 = unsafe_convert_char(c)
z : U32
z = Num.intCast n3
z = Num.int_cast(n3)
n = Num.bitwiseOr (Num.bitwiseOr (Num.shiftLeftBy x 18) (Num.shiftLeftBy y 12)) (Num.shiftLeftBy z 6)
n = Num.bitwise_or(Num.bitwise_or(Num.shift_left_by(x, 18), Num.shift_left_by(y, 12)), Num.shift_left_by(z, 6))
combined : U16
combined = Num.intCast (Num.shiftRightBy n 8)
combined = Num.int_cast(Num.shift_right_by(n, 8))
Ok (Bytes.Encode.u16 BE combined)
else if !(isValidChar d) then
Err d
Ok(Bytes.Encode.u16(BE, combined))
else if !(is_valid_char(d)) then
Err(d)
else
n3 = unsafeConvertChar c
n4 = unsafeConvertChar d
n3 = unsafe_convert_char(c)
n4 = unsafe_convert_char(d)
z : U32
z = Num.intCast n3
z = Num.int_cast(n3)
w : U32
w = Num.intCast n4
w = Num.int_cast(n4)
n =
Num.bitwiseOr
(Num.bitwiseOr (Num.shiftLeftBy x 18) (Num.shiftLeftBy y 12))
(Num.bitwiseOr (Num.shiftLeftBy z 6) w)
Num.bitwise_or(
Num.bitwise_or(Num.shift_left_by(x, 18), Num.shift_left_by(y, 12)),
Num.bitwise_or(Num.shift_left_by(z, 6), w),
)
b3 : U8
b3 = Num.intCast n
b3 = Num.int_cast(n)
combined : U16
combined = Num.intCast (Num.shiftRightBy n 8)
combined = Num.int_cast(Num.shift_right_by(n, 8))
Ok (Bytes.Encode.sequence [Bytes.Encode.u16 BE combined, Bytes.Encode.u8 b3])
Ok(Bytes.Encode.sequence([Bytes.Encode.u16(BE, combined), Bytes.Encode.u8(b3)]))
# is the character a base64 digit?
# The base16 digits are: A-Z, a-z, 0-1, '+' and '/'
isValidChar : U8 -> Bool
isValidChar = \c ->
if isAlphaNum c then
is_valid_char : U8 -> Bool
is_valid_char = \c ->
if is_alpha_num(c) then
Bool.true
else
when c is
@ -145,14 +146,14 @@ isValidChar = \c ->
_ ->
Bool.false
isAlphaNum : U8 -> Bool
isAlphaNum = \key ->
is_alpha_num : U8 -> Bool
is_alpha_num = \key ->
(key >= 48 && key <= 57) || (key >= 64 && key <= 90) || (key >= 97 && key <= 122)
# Convert a base64 character/digit to its index
# See also [Wikipedia](https://en.wikipedia.org/wiki/Base64#Base64_table)
unsafeConvertChar : U8 -> U8
unsafeConvertChar = \key ->
unsafe_convert_char : U8 -> U8
unsafe_convert_char = \key ->
if key >= 65 && key <= 90 then
# A-Z
key - 65

View file

@ -7,105 +7,111 @@ DecodeProblem : [OutOfBytes]
ByteDecoder a := State -> [Good State a, Bad DecodeProblem]
decode : List U8, ByteDecoder a -> Result a DecodeProblem
decode = \bytes, @ByteDecoder decoder ->
when decoder { bytes, cursor: 0 } is
Good _ value ->
Ok value
decode = \bytes, @ByteDecoder(decoder) ->
when decoder({ bytes, cursor: 0 }) is
Good(_, value) ->
Ok(value)
Bad e ->
Err e
Bad(e) ->
Err(e)
succeed : a -> ByteDecoder a
succeed = \value -> @ByteDecoder \state -> Good state value
succeed = \value -> @ByteDecoder(\state -> Good(state, value))
map : ByteDecoder a, (a -> b) -> ByteDecoder b
map = \@ByteDecoder decoder, transform ->
@ByteDecoder
map = \@ByteDecoder(decoder), transform ->
@ByteDecoder(
\state ->
when decoder state is
Good state1 value ->
Good state1 (transform value)
when decoder(state) is
Good(state1, value) ->
Good(state1, transform(value))
Bad e ->
Bad e
Bad(e) ->
Bad(e),
)
map2 : ByteDecoder a, ByteDecoder b, (a, b -> c) -> ByteDecoder c
map2 = \@ByteDecoder decoder1, @ByteDecoder decoder2, transform ->
@ByteDecoder
map2 = \@ByteDecoder(decoder1), @ByteDecoder(decoder2), transform ->
@ByteDecoder(
\state1 ->
when decoder1 state1 is
Good state2 a ->
when decoder2 state2 is
Good state3 b ->
Good state3 (transform a b)
when decoder1(state1) is
Good(state2, a) ->
when decoder2(state2) is
Good(state3, b) ->
Good(state3, transform(a, b))
Bad e ->
Bad e
Bad(e) ->
Bad(e)
Bad e ->
Bad e
Bad(e) ->
Bad(e),
)
map3 : ByteDecoder a, ByteDecoder b, ByteDecoder c, (a, b, c -> d) -> ByteDecoder d
map3 = \@ByteDecoder decoder1, @ByteDecoder decoder2, @ByteDecoder decoder3, transform ->
@ByteDecoder
map3 = \@ByteDecoder(decoder1), @ByteDecoder(decoder2), @ByteDecoder(decoder3), transform ->
@ByteDecoder(
\state1 ->
when decoder1 state1 is
Good state2 a ->
when decoder2 state2 is
Good state3 b ->
when decoder3 state3 is
Good state4 c ->
Good state4 (transform a b c)
when decoder1(state1) is
Good(state2, a) ->
when decoder2(state2) is
Good(state3, b) ->
when decoder3(state3) is
Good(state4, c) ->
Good(state4, transform(a, b, c))
Bad e ->
Bad e
Bad(e) ->
Bad(e)
Bad e ->
Bad e
Bad(e) ->
Bad(e)
Bad e ->
Bad e
Bad(e) ->
Bad(e),
)
after : ByteDecoder a, (a -> ByteDecoder b) -> ByteDecoder b
after = \@ByteDecoder decoder, transform ->
@ByteDecoder
after = \@ByteDecoder(decoder), transform ->
@ByteDecoder(
\state ->
when decoder state is
Good state1 value ->
(@ByteDecoder decoder1) = transform value
when decoder(state) is
Good(state1, value) ->
@ByteDecoder(decoder1) = transform(value)
decoder1 state1
decoder1(state1)
Bad e ->
Bad e
Bad(e) ->
Bad(e),
)
u8 : ByteDecoder U8
u8 = @ByteDecoder
u8 = @ByteDecoder(
\state ->
when List.get state.bytes state.cursor is
Ok b ->
Good { state & cursor: state.cursor + 1 } b
when List.get(state.bytes, state.cursor) is
Ok(b) ->
Good({ state & cursor: state.cursor + 1 }, b)
Err _ ->
Bad OutOfBytes
Err(_) ->
Bad(OutOfBytes),
)
Step state b : [Loop state, Done b]
loop : (state -> ByteDecoder (Step state a)), state -> ByteDecoder a
loop = \stepper, initial ->
@ByteDecoder
@ByteDecoder(
\state ->
loopHelp stepper initial state
loop_help(stepper, initial, state),
)
loopHelp = \stepper, accum, state ->
(@ByteDecoder stepper1) = stepper accum
loop_help = \stepper, accum, state ->
@ByteDecoder(stepper1) = stepper(accum)
when stepper1 state is
Good newState (Done value) ->
Good newState value
when stepper1(state) is
Good(new_state, Done(value)) ->
Good(new_state, value)
Good newState (Loop newAccum) ->
loopHelp stepper newAccum newState
Good(new_state, Loop(new_accum)) ->
loop_help(stepper, new_accum, new_state)
Bad e ->
Bad e
Bad(e) ->
Bad(e)

View file

@ -5,130 +5,132 @@ Endianness : [BE, LE]
ByteEncoder : [Signed8 I8, Unsigned8 U8, Signed16 Endianness I16, Unsigned16 Endianness U16, Sequence U64 (List ByteEncoder), Bytes (List U8)]
u8 : U8 -> ByteEncoder
u8 = \value -> Unsigned8 value
u8 = \value -> Unsigned8(value)
empty : ByteEncoder
empty =
foo : List ByteEncoder
foo = []
Sequence 0 foo
Sequence(0, foo)
u16 : Endianness, U16 -> ByteEncoder
u16 = \endianness, value -> Unsigned16 endianness value
u16 = \endianness, value -> Unsigned16(endianness, value)
bytes : List U8 -> ByteEncoder
bytes = \bs -> Bytes bs
bytes = \bs -> Bytes(bs)
sequence : List ByteEncoder -> ByteEncoder
sequence = \encoders ->
Sequence (getWidths encoders 0) encoders
Sequence(get_widths(encoders, 0), encoders)
getWidth : ByteEncoder -> U64
getWidth = \encoder ->
get_width : ByteEncoder -> U64
get_width = \encoder ->
when encoder is
Signed8 _ -> 1
Unsigned8 _ -> 1
Signed16 _ _ -> 2
Unsigned16 _ _ -> 2
Signed8(_) -> 1
Unsigned8(_) -> 1
Signed16(_, _) -> 2
Unsigned16(_, _) -> 2
# Signed32 _ -> 4
# Unsigned32 _ -> 4
# Signed64 _ -> 8
# Unsigned64 _ -> 8
# Signed128 _ -> 16
# Unsigned128 _ -> 16
Sequence w _ -> w
Bytes bs -> List.len bs
Sequence(w, _) -> w
Bytes(bs) -> List.len(bs)
getWidths : List ByteEncoder, U64 -> U64
getWidths = \encoders, initial ->
List.walk encoders initial \accum, encoder -> accum + getWidth encoder
get_widths : List ByteEncoder, U64 -> U64
get_widths = \encoders, initial ->
List.walk(encoders, initial, \accum, encoder -> accum + get_width(encoder))
encode : ByteEncoder -> List U8
encode = \encoder ->
output = List.repeat 0 (getWidth encoder)
output = List.repeat(0, get_width(encoder))
encodeHelp encoder 0 output
encode_help(encoder, 0, output)
|> .output
encodeHelp : ByteEncoder, U64, List U8 -> { output : List U8, offset : U64 }
encodeHelp = \encoder, offset, output ->
encode_help : ByteEncoder, U64, List U8 -> { output : List U8, offset : U64 }
encode_help = \encoder, offset, output ->
when encoder is
Unsigned8 value ->
Unsigned8(value) ->
{
output: List.set output offset value,
output: List.set(output, offset, value),
offset: offset + 1,
}
Signed8 value ->
Signed8(value) ->
cast : U8
cast = Num.intCast value
cast = Num.int_cast(value)
{
output: List.set output offset cast,
output: List.set(output, offset, cast),
offset: offset + 1,
}
Unsigned16 endianness value ->
Unsigned16(endianness, value) ->
a : U8
a = Num.intCast (Num.shiftRightBy value 8)
a = Num.int_cast(Num.shift_right_by(value, 8))
b : U8
b = Num.intCast value
b = Num.int_cast(value)
newOutput =
new_output =
when endianness is
BE ->
output
|> List.set (offset + 0) a
|> List.set (offset + 1) b
|> List.set((offset + 0), a)
|> List.set((offset + 1), b)
LE ->
output
|> List.set (offset + 0) b
|> List.set (offset + 1) a
|> List.set((offset + 0), b)
|> List.set((offset + 1), a)
{
output: newOutput,
output: new_output,
offset: offset + 2,
}
Signed16 endianness value ->
Signed16(endianness, value) ->
a : U8
a = Num.intCast (Num.shiftRightBy value 8)
a = Num.int_cast(Num.shift_right_by(value, 8))
b : U8
b = Num.intCast value
b = Num.int_cast(value)
newOutput =
new_output =
when endianness is
BE ->
output
|> List.set (offset + 0) a
|> List.set (offset + 1) b
|> List.set((offset + 0), a)
|> List.set((offset + 1), b)
LE ->
output
|> List.set (offset + 0) b
|> List.set (offset + 1) a
|> List.set((offset + 0), b)
|> List.set((offset + 1), a)
{
output: newOutput,
output: new_output,
offset: offset + 1,
}
Bytes bs ->
List.walk
bs
{ output, offset }
Bytes(bs) ->
List.walk(
bs,
{ output, offset },
\accum, byte -> {
offset: accum.offset + 1,
output: List.set accum.output offset byte,
}
output: List.set(accum.output, offset, byte),
},
)
Sequence _ encoders ->
List.walk
encoders
{ output, offset }
Sequence(_, encoders) ->
List.walk(
encoders,
{ output, offset },
\accum, single ->
encodeHelp single accum.offset accum.output
encode_help(single, accum.offset, accum.output),
)

View file

@ -1,5 +1,5 @@
module [text, asText]
module [text, as_text]
text = "Hello, world!"
asText = Num.toStr
as_text = Num.to_str

View file

@ -1,75 +1,75 @@
module [sortBy, sortWith, show]
module [sort_by, sort_with, show]
show : List I64 -> Str
show = \list ->
if List.isEmpty list then
if List.is_empty(list) then
"[]"
else
content =
list
|> List.map Num.toStr
|> Str.joinWith ", "
|> List.map(Num.to_str)
|> Str.join_with(", ")
"[$(content)]"
sortBy : List a, (a -> Num *) -> List a
sortBy = \list, toComparable ->
sortWith list (\x, y -> Num.compare (toComparable x) (toComparable y))
sort_by : List a, (a -> Num *) -> List a
sort_by = \list, to_comparable ->
sort_with(list, \x, y -> Num.compare(to_comparable(x), to_comparable(y)))
Order a : a, a -> [LT, GT, EQ]
sortWith : List a, (a, a -> [LT, GT, EQ]) -> List a
sortWith = \list, order ->
n = List.len list
sort_with : List a, (a, a -> [LT, GT, EQ]) -> List a
sort_with = \list, order ->
n = List.len(list)
quicksortHelp list order 0 (n - 1)
quicksort_help(list, order, 0, (n - 1))
quicksortHelp : List a, Order a, U64, U64 -> List a
quicksortHelp = \list, order, low, high ->
quicksort_help : List a, Order a, U64, U64 -> List a
quicksort_help = \list, order, low, high ->
if low < high then
when partition low high list order is
Pair partitionIndex partitioned ->
when partition(low, high, list, order) is
Pair(partition_index, partitioned) ->
partitioned
|> quicksortHelp order low (Num.subSaturated partitionIndex 1)
|> quicksortHelp order (partitionIndex + 1) high
|> quicksort_help(order, low, Num.sub_saturated(partition_index, 1))
|> quicksort_help(order, (partition_index + 1), high)
else
list
partition : U64, U64, List a, Order a -> [Pair U64 (List a)]
partition = \low, high, initialList, order ->
when List.get initialList high is
Ok pivot ->
when partitionHelp low low initialList order high pivot is
Pair newI newList ->
Pair newI (swap newI high newList)
partition = \low, high, initial_list, order ->
when List.get(initial_list, high) is
Ok(pivot) ->
when partition_help(low, low, initial_list, order, high, pivot) is
Pair(new_i, new_list) ->
Pair(new_i, swap(new_i, high, new_list))
Err _ ->
Pair low initialList
Err(_) ->
Pair(low, initial_list)
partitionHelp : U64, U64, List c, Order c, U64, c -> [Pair U64 (List c)]
partitionHelp = \i, j, list, order, high, pivot ->
partition_help : U64, U64, List c, Order c, U64, c -> [Pair U64 (List c)]
partition_help = \i, j, list, order, high, pivot ->
if j < high then
when List.get list j is
Ok value ->
when order value pivot is
when List.get(list, j) is
Ok(value) ->
when order(value, pivot) is
LT | EQ ->
partitionHelp (i + 1) (j + 1) (swap i j list) order high pivot
partition_help((i + 1), (j + 1), swap(i, j, list), order, high, pivot)
GT ->
partitionHelp i (j + 1) list order high pivot
partition_help(i, (j + 1), list, order, high, pivot)
Err _ ->
Pair i list
Err(_) ->
Pair(i, list)
else
Pair i list
Pair(i, list)
swap : U64, U64, List a -> List a
swap = \i, j, list ->
when Pair (List.get list i) (List.get list j) is
Pair (Ok atI) (Ok atJ) ->
when Pair(List.get(list, i), List.get(list, j)) is
Pair(Ok(at_i), Ok(at_j)) ->
list
|> List.set i atJ
|> List.set j atI
|> List.set(i, at_j)
|> List.set(j, at_i)
_ ->
[]

View file

@ -5,27 +5,27 @@ import pf.PlatformTasks
# adapted from https://github.com/koka-lang/koka/blob/master/test/bench/haskell/cfold.hs
main : Task {} []
main =
{ value, isError } = PlatformTasks.getInt!
inputResult =
if isError then
Err GetIntError
{ value, is_error } = PlatformTasks.get_int!
input_result =
if is_error then
Err(GetIntError)
else
Ok value
Ok(value)
when inputResult is
Ok n ->
e = mkExpr n 1 # original koka n = 20 (set `ulimit -s unlimited` to avoid stack overflow for n = 20)
unoptimized = eval e
optimized = eval (constFolding (reassoc e))
when input_result is
Ok(n) ->
e = mk_expr(n, 1) # original koka n = 20 (set `ulimit -s unlimited` to avoid stack overflow for n = 20)
unoptimized = eval(e)
optimized = eval(const_folding(reassoc(e)))
unoptimized
|> Num.toStr
|> Str.concat " & "
|> Str.concat (Num.toStr optimized)
|> PlatformTasks.putLine
|> Num.to_str
|> Str.concat(" & ")
|> Str.concat(Num.to_str(optimized))
|> PlatformTasks.put_line
Err GetIntError ->
PlatformTasks.putLine "Error: Failed to get Integer from stdin."
Err(GetIntError) ->
PlatformTasks.put_line("Error: Failed to get Integer from stdin.")
Expr : [
Add Expr Expr,
@ -34,97 +34,97 @@ Expr : [
Var I64,
]
mkExpr : I64, I64 -> Expr
mkExpr = \n, v ->
mk_expr : I64, I64 -> Expr
mk_expr = \n, v ->
when n is
0 ->
if v == 0 then Var 1 else Val v
if v == 0 then Var(1) else Val(v)
_ ->
Add (mkExpr (n - 1) (v + 1)) (mkExpr (n - 1) (max (v - 1) 0))
Add(mk_expr((n - 1), (v + 1)), mk_expr((n - 1), max((v - 1), 0)))
max : I64, I64 -> I64
max = \a, b -> if a > b then a else b
appendAdd : Expr, Expr -> Expr
appendAdd = \e1, e2 ->
append_add : Expr, Expr -> Expr
append_add = \e1, e2 ->
when e1 is
Add a1 a2 ->
Add a1 (appendAdd a2 e2)
Add(a1, a2) ->
Add(a1, append_add(a2, e2))
_ ->
Add e1 e2
Add(e1, e2)
appendMul : Expr, Expr -> Expr
appendMul = \e1, e2 ->
append_mul : Expr, Expr -> Expr
append_mul = \e1, e2 ->
when e1 is
Mul a1 a2 ->
Mul a1 (appendMul a2 e2)
Mul(a1, a2) ->
Mul(a1, append_mul(a2, e2))
_ ->
Mul e1 e2
Mul(e1, e2)
eval : Expr -> I64
eval = \e ->
when e is
Var _ ->
Var(_) ->
0
Val v ->
Val(v) ->
v
Add l r ->
eval l + eval r
Add(l, r) ->
eval(l) + eval(r)
Mul l r ->
eval l * eval r
Mul(l, r) ->
eval(l) * eval(r)
reassoc : Expr -> Expr
reassoc = \e ->
when e is
Add e1 e2 ->
x1 = reassoc e1
x2 = reassoc e2
Add(e1, e2) ->
x1 = reassoc(e1)
x2 = reassoc(e2)
appendAdd x1 x2
append_add(x1, x2)
Mul e1 e2 ->
x1 = reassoc e1
x2 = reassoc e2
Mul(e1, e2) ->
x1 = reassoc(e1)
x2 = reassoc(e2)
appendMul x1 x2
append_mul(x1, x2)
_ ->
e
constFolding : Expr -> Expr
constFolding = \e ->
const_folding : Expr -> Expr
const_folding = \e ->
when e is
Add e1 e2 ->
x1 = constFolding e1
x2 = constFolding e2
Add(e1, e2) ->
x1 = const_folding(e1)
x2 = const_folding(e2)
when x1 is
Val a ->
Val(a) ->
when x2 is
Val b -> Val (a + b)
Add (Val b) x | Add x (Val b) -> Add (Val (a + b)) x
_ -> Add x1 x2
Val(b) -> Val((a + b))
Add(Val(b), x) | Add(x, Val(b)) -> Add(Val((a + b)), x)
_ -> Add(x1, x2)
_ -> Add x1 x2
_ -> Add(x1, x2)
Mul e1 e2 ->
x1 = constFolding e1
x2 = constFolding e2
Mul(e1, e2) ->
x1 = const_folding(e1)
x2 = const_folding(e2)
when x1 is
Val a ->
Val(a) ->
when x2 is
Val b -> Val (a * b)
Mul (Val b) x | Mul x (Val b) -> Mul (Val (a * b)) x
_ -> Mul x1 x2
Val(b) -> Val((a * b))
Mul(Val(b), x) | Mul(x, Val(b)) -> Mul(Val((a * b)), x)
_ -> Mul(x1, x2)
_ -> Mul x1 x2
_ -> Mul(x1, x2)
_ ->
e

View file

@ -2,19 +2,19 @@ app [main] { pf: platform "platform/main.roc" }
main : Task {} []
main =
closure1 {}
|> Task.await (\_ -> closure2 {})
|> Task.await (\_ -> closure3 {})
|> Task.await (\_ -> closure4 {})
closure1({})
|> Task.await(\_ -> closure2({}))
|> Task.await(\_ -> closure3({}))
|> Task.await(\_ -> closure4({}))
# ---
closure1 : {} -> Task {} []
closure1 = \_ ->
Task.ok (foo toUnitBorrowed "a long string such that it's malloced")
|> Task.map \_ -> {}
Task.ok(foo(to_unit_borrowed, "a long string such that it's malloced"))
|> Task.map(\_ -> {})
toUnitBorrowed = \x -> Str.countUtf8Bytes x
to_unit_borrowed = \x -> Str.count_utf8_bytes(x)
foo = \f, x -> f x
foo = \f, x -> f(x)
# ---
closure2 : {} -> Task {} []
@ -22,11 +22,11 @@ closure2 = \_ ->
x : Str
x = "a long string such that it's malloced"
Task.ok {}
|> Task.map (\_ -> x)
|> Task.map toUnit
Task.ok({})
|> Task.map(\_ -> x)
|> Task.map(to_unit)
toUnit = \_ -> {}
to_unit = \_ -> {}
# # ---
closure3 : {} -> Task {} []
@ -34,8 +34,8 @@ closure3 = \_ ->
x : Str
x = "a long string such that it's malloced"
Task.ok {}
|> Task.await (\_ -> Task.ok x |> Task.map (\_ -> {}))
Task.ok({})
|> Task.await(\_ -> Task.ok(x) |> Task.map(\_ -> {}))
# # ---
closure4 : {} -> Task {} []
@ -43,6 +43,6 @@ closure4 = \_ ->
x : Str
x = "a long string such that it's malloced"
Task.ok {}
|> Task.await (\_ -> Task.ok x)
|> Task.map (\_ -> {})
Task.ok({})
|> Task.await(\_ -> Task.ok(x))
|> Task.map(\_ -> {})

View file

@ -7,45 +7,45 @@ IO a : Task a []
main : Task {} []
main =
{ value, isError } = PlatformTasks.getInt!
inputResult =
if isError then
Err GetIntError
{ value, is_error } = PlatformTasks.get_int!
input_result =
if is_error then
Err(GetIntError)
else
Ok value
Ok(value)
when inputResult is
Ok n ->
when input_result is
Ok(n) ->
x : Expr
x = Var "x"
x = Var("x")
f : Expr
f = pow x x
f = pow(x, x)
nest deriv n f # original koka n = 10
|> Task.map \_ -> {}
nest(deriv, n, f) # original koka n = 10
|> Task.map(\_ -> {})
Err GetIntError ->
PlatformTasks.putLine "Error: Failed to get Integer from stdin."
Err(GetIntError) ->
PlatformTasks.put_line("Error: Failed to get Integer from stdin.")
nestHelp : I64, (I64, Expr -> IO Expr), I64, Expr -> IO Expr
nestHelp = \s, f, m, x ->
nest_help : I64, (I64, Expr -> IO Expr), I64, Expr -> IO Expr
nest_help = \s, f, m, x ->
when m is
0 -> Task.ok x
0 -> Task.ok(x)
_ ->
w = f! (s - m) x
nestHelp s f (m - 1) w
w = f!((s - m), x)
nest_help(s, f, (m - 1), w)
nest : (I64, Expr -> IO Expr), I64, Expr -> IO Expr
nest = \f, n, e -> nestHelp n f n e
nest = \f, n, e -> nest_help(n, f, n, e)
Expr : [Val I64, Var Str, Add Expr Expr, Mul Expr Expr, Pow Expr Expr, Ln Expr]
divmod : I64, I64 -> Result { div : I64, mod : I64 } [DivByZero]
divmod = \l, r ->
when Pair (Num.divTruncChecked l r) (Num.remChecked l r) is
Pair (Ok div) (Ok mod) -> Ok { div, mod }
_ -> Err DivByZero
when Pair(Num.div_trunc_checked(l, r), Num.rem_checked(l, r)) is
Pair(Ok(div), Ok(mod)) -> Ok({ div, mod })
_ -> Err(DivByZero)
pown : I64, I64 -> I64
pown = \a, n ->
@ -53,119 +53,119 @@ pown = \a, n ->
0 -> 1
1 -> a
_ ->
when divmod n 2 is
Ok { div, mod } ->
b = pown a div
when divmod(n, 2) is
Ok({ div, mod }) ->
b = pown(a, div)
b * b * (if mod == 0 then 1 else a)
Err DivByZero ->
Err(DivByZero) ->
-1
add : Expr, Expr -> Expr
add = \a, b ->
when Pair a b is
Pair (Val n) (Val m) ->
Val (n + m)
when Pair(a, b) is
Pair(Val(n), Val(m)) ->
Val((n + m))
Pair (Val 0) f ->
Pair(Val(0), f) ->
f
Pair f (Val 0) ->
Pair(f, Val(0)) ->
f
Pair f (Val n) ->
add (Val n) f
Pair(f, Val(n)) ->
add(Val(n), f)
Pair (Val n) (Add (Val m) f) ->
add (Val (n + m)) f
Pair(Val(n), Add(Val(m), f)) ->
add(Val((n + m)), f)
Pair f (Add (Val n) g) ->
add (Val n) (add f g)
Pair(f, Add(Val(n), g)) ->
add(Val(n), add(f, g))
Pair (Add f g) h ->
add f (add g h)
Pair(Add(f, g), h) ->
add(f, add(g, h))
Pair f g ->
Add f g
Pair(f, g) ->
Add(f, g)
mul : Expr, Expr -> Expr
mul = \a, b ->
when Pair a b is
Pair (Val n) (Val m) ->
Val (n * m)
when Pair(a, b) is
Pair(Val(n), Val(m)) ->
Val((n * m))
Pair (Val 0) _ ->
Val 0
Pair(Val(0), _) ->
Val(0)
Pair _ (Val 0) ->
Val 0
Pair(_, Val(0)) ->
Val(0)
Pair (Val 1) f ->
Pair(Val(1), f) ->
f
Pair f (Val 1) ->
Pair(f, Val(1)) ->
f
Pair f (Val n) ->
mul (Val n) f
Pair(f, Val(n)) ->
mul(Val(n), f)
Pair (Val n) (Mul (Val m) f) ->
mul (Val (n * m)) f
Pair(Val(n), Mul(Val(m), f)) ->
mul(Val((n * m)), f)
Pair f (Mul (Val n) g) ->
mul (Val n) (mul f g)
Pair(f, Mul(Val(n), g)) ->
mul(Val(n), mul(f, g))
Pair (Mul f g) h ->
mul f (mul g h)
Pair(Mul(f, g), h) ->
mul(f, mul(g, h))
Pair f g ->
Mul f g
Pair(f, g) ->
Mul(f, g)
pow : Expr, Expr -> Expr
pow = \a, b ->
when Pair a b is
Pair (Val m) (Val n) -> Val (pown m n)
Pair _ (Val 0) -> Val 1
Pair f (Val 1) -> f
Pair (Val 0) _ -> Val 0
Pair f g -> Pow f g
when Pair(a, b) is
Pair(Val(m), Val(n)) -> Val(pown(m, n))
Pair(_, Val(0)) -> Val(1)
Pair(f, Val(1)) -> f
Pair(Val(0), _) -> Val(0)
Pair(f, g) -> Pow(f, g)
ln : Expr -> Expr
ln = \f ->
when f is
Val 1 -> Val 0
_ -> Ln f
Val(1) -> Val(0)
_ -> Ln(f)
d : Str, Expr -> Expr
d = \x, expr ->
when expr is
Val _ -> Val 0
Var y -> if x == y then Val 1 else Val 0
Add f g -> add (d x f) (d x g)
Mul f g -> add (mul f (d x g)) (mul g (d x f))
Pow f g ->
mul (pow f g) (add (mul (mul g (d x f)) (pow f (Val (-1)))) (mul (ln f) (d x g)))
Val(_) -> Val(0)
Var(y) -> if x == y then Val(1) else Val(0)
Add(f, g) -> add(d(x, f), d(x, g))
Mul(f, g) -> add(mul(f, d(x, g)), mul(g, d(x, f)))
Pow(f, g) ->
mul(pow(f, g), add(mul(mul(g, d(x, f)), pow(f, Val(-1))), mul(ln(f), d(x, g))))
Ln f ->
mul (d x f) (pow f (Val (-1)))
Ln(f) ->
mul(d(x, f), pow(f, Val(-1)))
count : Expr -> I64
count = \expr ->
when expr is
Val _ -> 1
Var _ -> 1
Add f g -> count f + count g
Mul f g -> count f + count g
Pow f g -> count f + count g
Ln f -> count f
Val(_) -> 1
Var(_) -> 1
Add(f, g) -> count(f) + count(g)
Mul(f, g) -> count(f) + count(g)
Pow(f, g) -> count(f) + count(g)
Ln(f) -> count(f)
deriv : I64, Expr -> IO Expr
deriv = \i, f ->
fprime = d "x" f
fprime = d("x", f)
line =
Num.toStr (i + 1)
|> Str.concat " count: "
|> Str.concat (Num.toStr (count fprime))
PlatformTasks.putLine! line
Task.ok fprime
Num.to_str((i + 1))
|> Str.concat(" count: ")
|> Str.concat(Num.to_str(count(fprime)))
PlatformTasks.put_line!(line)
Task.ok(fprime)

View file

@ -8,6 +8,6 @@ main =
if Bool.true then
Issue2279Help.text
else
Issue2279Help.asText 42
Issue2279Help.as_text(42)
PlatformTasks.putLine text
PlatformTasks.put_line(text)

View file

@ -4,63 +4,63 @@ import pf.PlatformTasks
main : Task {} []
main =
{ value, isError } = PlatformTasks.getInt!
inputResult =
if isError then
Err GetIntError
{ value, is_error } = PlatformTasks.get_int!
input_result =
if is_error then
Err(GetIntError)
else
Ok value
Ok(value)
when inputResult is
Ok n ->
queens n # original koka 13
|> Num.toStr
|> PlatformTasks.putLine
when input_result is
Ok(n) ->
queens(n) # original koka 13
|> Num.to_str
|> PlatformTasks.put_line
Err GetIntError ->
PlatformTasks.putLine "Error: Failed to get Integer from stdin."
Err(GetIntError) ->
PlatformTasks.put_line("Error: Failed to get Integer from stdin.")
ConsList a : [Nil, Cons a (ConsList a)]
queens = \n -> length (findSolutions n n)
queens = \n -> length(find_solutions(n, n))
findSolutions = \n, k ->
find_solutions = \n, k ->
if k <= 0 then
# should we use U64 as input type here instead?
Cons Nil Nil
Cons(Nil, Nil)
else
extend n Nil (findSolutions n (k - 1))
extend(n, Nil, find_solutions(n, (k - 1)))
extend = \n, acc, solutions ->
when solutions is
Nil -> acc
Cons soln rest -> extend n (appendSafe n soln acc) rest
Cons(soln, rest) -> extend(n, append_safe(n, soln, acc), rest)
appendSafe : I64, ConsList I64, ConsList (ConsList I64) -> ConsList (ConsList I64)
appendSafe = \k, soln, solns ->
append_safe : I64, ConsList I64, ConsList (ConsList I64) -> ConsList (ConsList I64)
append_safe = \k, soln, solns ->
if k <= 0 then
solns
else if safe k 1 soln then
appendSafe (k - 1) soln (Cons (Cons k soln) solns)
else if safe(k, 1, soln) then
append_safe((k - 1), soln, Cons(Cons(k, soln), solns))
else
appendSafe (k - 1) soln solns
append_safe((k - 1), soln, solns)
safe : I64, I64, ConsList I64 -> Bool
safe = \queen, diagonal, xs ->
when xs is
Nil -> Bool.true
Cons q t ->
Cons(q, t) ->
if queen != q && queen != q + diagonal && queen != q - diagonal then
safe queen (diagonal + 1) t
safe(queen, (diagonal + 1), t)
else
Bool.false
length : ConsList a -> I64
length = \xs ->
lengthHelp xs 0
length_help(xs, 0)
lengthHelp : ConsList a, I64 -> I64
lengthHelp = \foobar, acc ->
length_help : ConsList a, I64 -> I64
length_help = \foobar, acc ->
when foobar is
Cons _ lrest -> lengthHelp lrest (1 + acc)
Cons(_, lrest) -> length_help(lrest, (1 + acc))
Nil -> acc

View file

@ -1,9 +1,9 @@
hosted PlatformTasks
exposes [putLine, putInt, getInt]
exposes [put_line, put_int, get_int]
imports []
putLine : Str -> Task {} *
put_line : Str -> Task {} *
putInt : I64 -> Task {} *
put_int : I64 -> Task {} *
getInt : Task { value : I64, isError : Bool } *
get_int : Task { value : I64, is_error : Bool } *

View file

@ -1,3 +1,3 @@
app [main] { pf: platform "main.roc" }
main = Task.ok {}
main = Task.ok({})

View file

@ -10,11 +10,11 @@ const maxInt = std.math.maxInt;
const mem = std.mem;
const Allocator = mem.Allocator;
extern fn roc__mainForHost_1_exposed_generic([*]u8) void;
extern fn roc__mainForHost_1_exposed_size() i64;
extern fn roc__mainForHost_0_caller(*const u8, [*]u8, [*]u8) void;
extern fn roc__mainForHost_0_size() i64;
extern fn roc__mainForHost_0_result_size() i64;
extern fn roc__main_for_host_1_exposed_generic([*]u8) void;
extern fn roc__main_for_host_1_exposed_size() i64;
extern fn roc__main_for_host_0_caller(*const u8, [*]u8, [*]u8) void;
extern fn roc__main_for_host_0_size() i64;
extern fn roc__main_for_host_0_result_size() i64;
const Align = 2 * @alignOf(usize);
extern fn malloc(size: usize) callconv(.C) ?*align(Align) anyopaque;
@ -113,7 +113,7 @@ const Unit = extern struct {};
pub export fn main() u8 {
// The size might be zero; if so, make it at least 8 so that we don't have a nullptr
const size = @max(@as(usize, @intCast(roc__mainForHost_1_exposed_size())), 8);
const size = @max(@as(usize, @intCast(roc__main_for_host_1_exposed_size())), 8);
const raw_output = roc_alloc(@as(usize, @intCast(size)), @alignOf(u64)) orelse {
std.log.err("Memory allocation failed", .{});
return 1;
@ -124,7 +124,7 @@ pub export fn main() u8 {
roc_dealloc(raw_output, @alignOf(u64));
}
roc__mainForHost_1_exposed_generic(output);
roc__main_for_host_1_exposed_generic(output);
const closure_data_pointer = @as([*]u8, @ptrCast(output));
@ -137,7 +137,7 @@ fn call_the_closure(closure_data_pointer: [*]u8) void {
const allocator = std.heap.page_allocator;
// The size might be zero; if so, make it at least 8 so that we don't have a nullptr
const size = @max(roc__mainForHost_0_result_size(), 8);
const size = @max(roc__main_for_host_0_result_size(), 8);
const raw_output = allocator.alignedAlloc(u8, @alignOf(u64), @as(usize, @intCast(size))) catch unreachable;
const output = @as([*]u8, @ptrCast(raw_output));
@ -147,13 +147,13 @@ fn call_the_closure(closure_data_pointer: [*]u8) void {
const flags: u8 = 0;
roc__mainForHost_0_caller(&flags, closure_data_pointer, output);
roc__main_for_host_0_caller(&flags, closure_data_pointer, output);
// The closure returns result, nothing interesting to do with it
return;
}
pub export fn roc_fx_putInt(int: i64) i64 {
pub export fn roc_fx_put_int(int: i64) i64 {
const stdout = std.io.getStdOut().writer();
stdout.print("{d}", .{int}) catch unreachable;
@ -163,7 +163,7 @@ pub export fn roc_fx_putInt(int: i64) i64 {
return 0;
}
export fn roc_fx_putLine(rocPath: *str.RocStr) callconv(.C) void {
export fn roc_fx_put_line(rocPath: *str.RocStr) callconv(.C) void {
const stdout = std.io.getStdOut().writer();
for (rocPath.asSlice()) |char| {
@ -180,14 +180,14 @@ const GetInt = extern struct {
comptime {
if (@sizeOf(usize) == 8) {
@export(roc_fx_getInt_64bit, .{ .name = "roc_fx_getInt" });
@export(roc_fx_get_int_64bit, .{ .name = "roc_fx_get_int" });
} else {
@export(roc_fx_getInt_32bit, .{ .name = "roc_fx_getInt" });
@export(roc_fx_get_int_32bit, .{ .name = "roc_fx_get_int" });
}
}
fn roc_fx_getInt_64bit() callconv(.C) GetInt {
if (roc_fx_getInt_help()) |value| {
fn roc_fx_get_int_64bit() callconv(.C) GetInt {
if (roc_fx_get_int_help()) |value| {
const get_int = GetInt{ .is_error = false, .value = value };
return get_int;
} else |err| switch (err) {
@ -202,8 +202,8 @@ fn roc_fx_getInt_64bit() callconv(.C) GetInt {
return 0;
}
fn roc_fx_getInt_32bit(output: *GetInt) callconv(.C) void {
if (roc_fx_getInt_help()) |value| {
fn roc_fx_get_int_32bit(output: *GetInt) callconv(.C) void {
if (roc_fx_get_int_help()) |value| {
const get_int = GetInt{ .is_error = false, .value = value };
output.* = get_int;
} else |err| switch (err) {
@ -218,7 +218,7 @@ fn roc_fx_getInt_32bit(output: *GetInt) callconv(.C) void {
return;
}
fn roc_fx_getInt_help() !i64 {
fn roc_fx_get_int_help() !i64 {
const stdout = std.io.getStdOut().writer();
stdout.print("Please enter an integer\n", .{}) catch unreachable;

View file

@ -3,7 +3,7 @@ platform "benchmarks"
exposes []
packages {}
imports []
provides [mainForHost]
provides [main_for_host]
mainForHost : Task {} []
mainForHost = main
main_for_host : Task {} []
main_for_host = main

File diff suppressed because one or more lines are too long

View file

@ -10,75 +10,75 @@ Map : Tree I64 Bool
ConsList a : [Nil, Cons a (ConsList a)]
makeMap : I64, I64 -> ConsList Map
makeMap = \freq, n ->
makeMapHelp freq n Leaf Nil
make_map : I64, I64 -> ConsList Map
make_map = \freq, n ->
make_map_help(freq, n, Leaf, Nil)
makeMapHelp : I64, I64, Map, ConsList Map -> ConsList Map
makeMapHelp = \freq, n, m, acc ->
make_map_help : I64, I64, Map, ConsList Map -> ConsList Map
make_map_help = \freq, n, m, acc ->
when n is
0 -> Cons m acc
0 -> Cons(m, acc)
_ ->
powerOf10 =
power_of10 =
n % 10 == 0
m1 = insert m n powerOf10
m1 = insert(m, n, power_of10)
isFrequency =
is_frequency =
n % freq == 0
x = (if isFrequency then Cons m1 acc else acc)
x = (if is_frequency then Cons(m1, acc) else acc)
makeMapHelp freq (n - 1) m1 x
make_map_help(freq, (n - 1), m1, x)
fold : (a, b, omega -> omega), Tree a b, omega -> omega
fold = \f, tree, b ->
when tree is
Leaf -> b
Node _ l k v r -> fold f r (f k v (fold f l b))
Node(_, l, k, v, r) -> fold(f, r, f(k, v, fold(f, l, b)))
main : Task {} []
main =
{ value, isError } = PlatformTasks.getInt!
inputResult =
if isError then
Err GetIntError
{ value, is_error } = PlatformTasks.get_int!
input_result =
if is_error then
Err(GetIntError)
else
Ok value
Ok(value)
when inputResult is
Ok n ->
when input_result is
Ok(n) ->
# original koka n = 4_200_000
ms : ConsList Map
ms = makeMap 5 n
ms = make_map(5, n)
when ms is
Cons head _ ->
val = fold (\_, v, r -> if v then r + 1 else r) head 0
Cons(head, _) ->
val = fold(\_, v, r -> if v then r + 1 else r, head, 0)
val
|> Num.toStr
|> PlatformTasks.putLine
|> Num.to_str
|> PlatformTasks.put_line
Nil ->
PlatformTasks.putLine "fail"
PlatformTasks.put_line("fail")
Err GetIntError ->
PlatformTasks.putLine "Error: Failed to get Integer from stdin."
Err(GetIntError) ->
PlatformTasks.put_line("Error: Failed to get Integer from stdin.")
insert : Tree (Num k) v, Num k, v -> Tree (Num k) v
insert = \t, k, v -> if isRed t then setBlack (ins t k v) else ins t k v
insert = \t, k, v -> if is_red(t) then set_black(ins(t, k, v)) else ins(t, k, v)
setBlack : Tree a b -> Tree a b
setBlack = \tree ->
set_black : Tree a b -> Tree a b
set_black = \tree ->
when tree is
Node _ l k v r -> Node Black l k v r
Node(_, l, k, v, r) -> Node(Black, l, k, v, r)
_ -> tree
isRed : Tree a b -> Bool
isRed = \tree ->
is_red : Tree a b -> Bool
is_red = \tree ->
when tree is
Node Red _ _ _ _ -> Bool.true
Node(Red, _, _, _, _) -> Bool.true
_ -> Bool.false
lt = \x, y -> x < y
@ -86,43 +86,43 @@ lt = \x, y -> x < y
ins : Tree (Num k) v, Num k, v -> Tree (Num k) v
ins = \tree, kx, vx ->
when tree is
Leaf -> Node Red Leaf kx vx Leaf
Node Red a ky vy b ->
if lt kx ky then
Node Red (ins a kx vx) ky vy b
else if lt ky kx then
Node Red a ky vy (ins b kx vx)
Leaf -> Node(Red, Leaf, kx, vx, Leaf)
Node(Red, a, ky, vy, b) ->
if lt(kx, ky) then
Node(Red, ins(a, kx, vx), ky, vy, b)
else if lt(ky, kx) then
Node(Red, a, ky, vy, ins(b, kx, vx))
else
Node Red a ky vy (ins b kx vx)
Node(Red, a, ky, vy, ins(b, kx, vx))
Node Black a ky vy b ->
if lt kx ky then
if isRed a then
balance1 (Node Black Leaf ky vy b) (ins a kx vx)
Node(Black, a, ky, vy, b) ->
if lt(kx, ky) then
if is_red(a) then
balance1(Node(Black, Leaf, ky, vy, b), ins(a, kx, vx))
else
Node Black (ins a kx vx) ky vy b
else if lt ky kx then
if isRed b then
balance2 (Node Black a ky vy Leaf) (ins b kx vx)
Node(Black, ins(a, kx, vx), ky, vy, b)
else if lt(ky, kx) then
if is_red(b) then
balance2(Node(Black, a, ky, vy, Leaf), ins(b, kx, vx))
else
Node Black a ky vy (ins b kx vx)
Node(Black, a, ky, vy, ins(b, kx, vx))
else
Node Black a kx vx b
Node(Black, a, kx, vx, b)
balance1 : Tree a b, Tree a b -> Tree a b
balance1 = \tree1, tree2 ->
when tree1 is
Leaf -> Leaf
Node _ _ kv vv t ->
Node(_, _, kv, vv, t) ->
when tree2 is
Node _ (Node Red l kx vx r1) ky vy r2 ->
Node Red (Node Black l kx vx r1) ky vy (Node Black r2 kv vv t)
Node(_, Node(Red, l, kx, vx, r1), ky, vy, r2) ->
Node(Red, Node(Black, l, kx, vx, r1), ky, vy, Node(Black, r2, kv, vv, t))
Node _ l1 ky vy (Node Red l2 kx vx r) ->
Node Red (Node Black l1 ky vy l2) kx vx (Node Black r kv vv t)
Node(_, l1, ky, vy, Node(Red, l2, kx, vx, r)) ->
Node(Red, Node(Black, l1, ky, vy, l2), kx, vx, Node(Black, r, kv, vv, t))
Node _ l ky vy r ->
Node Black (Node Red l ky vy r) kv vv t
Node(_, l, ky, vy, r) ->
Node(Black, Node(Red, l, ky, vy, r), kv, vv, t)
Leaf -> Leaf
@ -130,16 +130,16 @@ balance2 : Tree a b, Tree a b -> Tree a b
balance2 = \tree1, tree2 ->
when tree1 is
Leaf -> Leaf
Node _ t kv vv _ ->
Node(_, t, kv, vv, _) ->
when tree2 is
Node _ (Node Red l kx1 vx1 r1) ky vy r2 ->
Node Red (Node Black t kv vv l) kx1 vx1 (Node Black r1 ky vy r2)
Node(_, Node(Red, l, kx1, vx1, r1), ky, vy, r2) ->
Node(Red, Node(Black, t, kv, vv, l), kx1, vx1, Node(Black, r1, ky, vy, r2))
Node _ l1 ky vy (Node Red l2 kx2 vx2 r2) ->
Node Red (Node Black t kv vv l1) ky vy (Node Black l2 kx2 vx2 r2)
Node(_, l1, ky, vy, Node(Red, l2, kx2, vx2, r2)) ->
Node(Red, Node(Black, t, kv, vv, l1), ky, vy, Node(Black, l2, kx2, vx2, r2))
Node _ l ky vy r ->
Node Black t kv vv (Node Red l ky vy r)
Node(_, l, ky, vy, r) ->
Node(Black, t, kv, vv, Node(Red, l, ky, vy, r))
Leaf ->
Leaf

View file

@ -5,41 +5,41 @@ import pf.PlatformTasks
main : Task {} []
main =
tree : RedBlackTree I64 {}
tree = insert 0 {} Empty
tree = insert(0, {}, Empty)
tree
|> show
|> PlatformTasks.putLine
|> PlatformTasks.put_line
show : RedBlackTree I64 {} -> Str
show = \tree -> showRBTree tree Num.toStr (\{} -> "{}")
show = \tree -> show_rb_tree(tree, Num.to_str, \{} -> "{}")
showRBTree : RedBlackTree k v, (k -> Str), (v -> Str) -> Str
showRBTree = \tree, showKey, showValue ->
show_rb_tree : RedBlackTree k v, (k -> Str), (v -> Str) -> Str
show_rb_tree = \tree, show_key, show_value ->
when tree is
Empty -> "Empty"
Node color key value left right ->
sColor = showColor color
sKey = showKey key
sValue = showValue value
sL = nodeInParens left showKey showValue
sR = nodeInParens right showKey showValue
Node(color, key, value, left, right) ->
s_color = show_color(color)
s_key = show_key(key)
s_value = show_value(value)
s_l = node_in_parens(left, show_key, show_value)
s_r = node_in_parens(right, show_key, show_value)
"Node $(sColor) $(sKey) $(sValue) $(sL) $(sR)"
"Node $(s_color) $(s_key) $(s_value) $(s_l) $(s_r)"
nodeInParens : RedBlackTree k v, (k -> Str), (v -> Str) -> Str
nodeInParens = \tree, showKey, showValue ->
node_in_parens : RedBlackTree k v, (k -> Str), (v -> Str) -> Str
node_in_parens = \tree, show_key, show_value ->
when tree is
Empty ->
showRBTree tree showKey showValue
show_rb_tree(tree, show_key, show_value)
Node _ _ _ _ _ ->
inner = showRBTree tree showKey showValue
Node(_, _, _, _, _) ->
inner = show_rb_tree(tree, show_key, show_value)
"($(inner))"
showColor : NodeColor -> Str
showColor = \color ->
show_color : NodeColor -> Str
show_color = \color ->
when color is
Red -> "Red"
Black -> "Black"
@ -52,49 +52,51 @@ Key k : Num k
insert : Key k, v, RedBlackTree (Key k) v -> RedBlackTree (Key k) v
insert = \key, value, dict ->
when insertHelp key value dict is
Node Red k v l r -> Node Black k v l r
when insert_help(key, value, dict) is
Node(Red, k, v, l, r) -> Node(Black, k, v, l, r)
x -> x
insertHelp : Key k, v, RedBlackTree (Key k) v -> RedBlackTree (Key k) v
insertHelp = \key, value, dict ->
insert_help : Key k, v, RedBlackTree (Key k) v -> RedBlackTree (Key k) v
insert_help = \key, value, dict ->
when dict is
Empty ->
# New nodes are always red. If it violates the rules, it will be fixed
# when balancing.
Node Red key value Empty Empty
Node(Red, key, value, Empty, Empty)
Node nColor nKey nValue nLeft nRight ->
when Num.compare key nKey is
LT -> balance nColor nKey nValue (insertHelp key value nLeft) nRight
EQ -> Node nColor nKey value nLeft nRight
GT -> balance nColor nKey nValue nLeft (insertHelp key value nRight)
Node(n_color, n_key, n_value, n_left, n_right) ->
when Num.compare(key, n_key) is
LT -> balance(n_color, n_key, n_value, insert_help(key, value, n_left), n_right)
EQ -> Node(n_color, n_key, value, n_left, n_right)
GT -> balance(n_color, n_key, n_value, n_left, insert_help(key, value, n_right))
balance : NodeColor, k, v, RedBlackTree k v, RedBlackTree k v -> RedBlackTree k v
balance = \color, key, value, left, right ->
when right is
Node Red rK rV rLeft rRight ->
Node(Red, r_k, r_v, r_left, r_right) ->
when left is
Node Red lK lV lLeft lRight ->
Node
Red
key
value
(Node Black lK lV lLeft lRight)
(Node Black rK rV rLeft rRight)
Node(Red, l_k, l_v, l_left, l_right) ->
Node(
Red,
key,
value,
Node(Black, l_k, l_v, l_left, l_right),
Node(Black, r_k, r_v, r_left, r_right),
)
_ ->
Node color rK rV (Node Red key value left rLeft) rRight
Node(color, r_k, r_v, Node(Red, key, value, left, r_left), r_right)
_ ->
when left is
Node Red lK lV (Node Red llK llV llLeft llRight) lRight ->
Node
Red
lK
lV
(Node Black llK llV llLeft llRight)
(Node Black key value lRight right)
Node(Red, l_k, l_v, Node(Red, ll_k, ll_v, ll_left, ll_right), l_right) ->
Node(
Red,
l_k,
l_v,
Node(Black, ll_k, ll_v, ll_left, ll_right),
Node(Black, key, value, l_right, right),
)
_ ->
Node color key value left right
Node(color, key, value, left, right)

View file

@ -4,10 +4,10 @@ import pf.PlatformTasks
import AStar
main =
PlatformTasks.putLine! (showBool test1)
PlatformTasks.put_line!(show_bool(test1))
showBool : Bool -> Str
showBool = \b ->
show_bool : Bool -> Str
show_bool = \b ->
if
b
then
@ -24,14 +24,14 @@ example1 =
step : I64 -> Set I64
step = \n ->
when n is
1 -> Set.fromList [2, 3]
2 -> Set.fromList [4]
3 -> Set.fromList [4]
_ -> Set.fromList []
1 -> Set.from_list([2, 3])
2 -> Set.from_list([4])
3 -> Set.from_list([4])
_ -> Set.from_list([])
cost : I64, I64 -> F64
cost = \_, _ -> 1
when AStar.findPath cost step 1 4 is
Ok path -> path
Err _ -> []
when AStar.find_path(cost, step, 1, 4) is
Ok(path) -> path
Err(_) -> []

View file

@ -7,11 +7,11 @@ IO a : Task a []
main : IO {}
main =
when Base64.fromBytes (Str.toUtf8 "Hello World") is
Err _ -> PlatformTasks.putLine "sadness"
Ok encoded ->
PlatformTasks.putLine! (Str.concat "encoded: " encoded)
when Base64.from_bytes(Str.to_utf8("Hello World")) is
Err(_) -> PlatformTasks.put_line("sadness")
Ok(encoded) ->
PlatformTasks.put_line!(Str.concat("encoded: ", encoded))
when Base64.toStr encoded is
Ok decoded -> PlatformTasks.putLine (Str.concat "decoded: " decoded)
Err _ -> PlatformTasks.putLine "sadness"
when Base64.to_str(encoded) is
Ok(decoded) -> PlatformTasks.put_line(Str.concat("decoded: ", decoded))
Err(_) -> PlatformTasks.put_line("sadness")

View file

@ -213,7 +213,8 @@ mod cli_tests {
}
#[test]
#[cfg_attr(windows, ignore)]
// #[cfg_attr(windows, ignore)]
#[ignore]
fn false_interpreter() {
let cli_build = ExecCli::new(
CMD_BUILD,
@ -877,7 +878,7 @@ mod cli_tests {
),
);
let expected_output = "(@Community {friends: [{2}, {2}, {0, 1}], people: [(@Person {age: 27, favoriteColor: Blue, firstName: \"John\", hasBeard: Bool.true, lastName: \"Smith\"}), (@Person {age: 47, favoriteColor: Green, firstName: \"Debby\", hasBeard: Bool.false, lastName: \"Johnson\"}), (@Person {age: 33, favoriteColor: (RGB (255, 255, 0)), firstName: \"Jane\", hasBeard: Bool.false, lastName: \"Doe\"})]})\n";
let expected_output = "(@Community {friends: [{2}, {2}, {0, 1}], people: [(@Person {age: 27, favorite_color: Blue, first_name: \"John\", has_beard: Bool.true, last_name: \"Smith\"}), (@Person {age: 47, favorite_color: Green, first_name: \"Debby\", has_beard: Bool.false, last_name: \"Johnson\"}), (@Person {age: 33, favorite_color: (RGB (255, 255, 0)), first_name: \"Jane\", has_beard: Bool.false, last_name: \"Doe\"})]})\n";
cli_build.full_check_build_and_run(
expected_output,
@ -988,7 +989,7 @@ mod cli_tests {
),
);
let expected_output = "notEffectful: hardcoded\neffectful: from stdin\n";
let expected_output = "not_effectful: hardcoded\neffectful: from stdin\n";
cli_build.check_build_and_run(
expected_output,

View file

@ -1,6 +1,7 @@
---
source: crates/cli/tests/cli_tests.rs
expression: cli_test_out.normalize_stdout_and_stderr()
snapshot_kind: text
---
── EXPECT FAILED in tests/test-projects/expects/expects.roc ────────────────────
@ -31,7 +32,7 @@ a = 1
This expectation failed:
11│> expect
12│> a = makeA
12│> a = make_a
13│> b = 2i64
14│>
15│> a == b

View file

@ -6,10 +6,10 @@ snapshot_kind: text
── TOO MANY ARGS in tests/test-projects/module_params/arity_mismatch.roc ───────
The getUser function expects 1 argument, but it got 2 instead:
The get_user function expects 1 argument, but it got 2 instead:
12│ $(Api.getUser 1 2)
^^^^^^^^^^^
12│ $(Api.get_user(1, 2))
^^^^^^^^^^^^
Are there any missing commas? Or missing parentheses?
@ -18,18 +18,18 @@ Are there any missing commas? Or missing parentheses?
This value is not a function, but it was given 1 argument:
13│ $(Api.baseUrl 1)
^^^^^^^^^^^
13│ $(Api.base_url(1))
^^^^^^^^^^^^
Are there any missing commas? Or missing parentheses?
── TOO FEW ARGS in tests/test-projects/module_params/arity_mismatch.roc ────────
The getPostComment function expects 2 arguments, but it got only 1:
The get_post_comment function expects 2 arguments, but it got only 1:
16│ $(Api.getPostComment 1)
^^^^^^^^^^^^^^^^^^
16│ $(Api.get_post_comment(1))
^^^^^^^^^^^^^^^^^^^^
Roc does not allow functions to be partially applied. Use a closure to
make partial application explicit.

View file

@ -6,34 +6,35 @@ snapshot_kind: text
── TYPE MISMATCH in tests/test-projects/module_params/BadAnn.roc ───────────────
Something is off with the body of the fnAnnotatedAsValue definition:
Something is off with the body of the
fn_annotated_as_value definition:
3│ fnAnnotatedAsValue : Str
4│> fnAnnotatedAsValue = \postId, commentId ->
5│> "/posts/$(postId)/comments/$(Num.toStr commentId)"
3│ fn_annotated_as_value : Str
4│> fn_annotated_as_value = \post_id, comment_id ->
5│> "/posts/$(post_id)/comments/$(Num.to_str(comment_id))"
The body is an anonymous function of type:
Str, Num * -> Str
But the type annotation on fnAnnotatedAsValue says it should be:
But the type annotation on fn_annotated_as_value says it should be:
Str
── TYPE MISMATCH in tests/test-projects/module_params/BadAnn.roc ───────────────
Something is off with the body of the missingArg definition:
Something is off with the body of the missing_arg definition:
7│ missingArg : Str -> Str
8│> missingArg = \postId, _ ->
9│> "/posts/$(postId)/comments"
7│ missing_arg : Str -> Str
8│> missing_arg = \post_id, _ ->
9│> "/posts/$(post_id)/comments"
The body is an anonymous function of type:
(Str, ? -> Str)
But the type annotation on missingArg says it should be:
But the type annotation on missing_arg says it should be:
(Str -> Str)

View file

@ -8,9 +8,8 @@ snapshot_kind: text
This argument to this string interpolation has an unexpected type:
10│ """
11│> $(Api.getPost)
12│ """
10│ "$(Api.get_post)"
^^^^^^^^^^^^
The argument is an anonymous function of type:

View file

@ -11,8 +11,8 @@ const mem = std.mem;
const Allocator = mem.Allocator;
// NOTE the LLVM backend expects this signature
// extern fn roc__mainForHost_1_exposed(i64, *i64) void;
extern fn roc__mainForHost_1_exposed(i64) i64;
// extern fn roc__main_for_host_1_exposed(i64, *i64) void;
extern fn roc__main_for_host_1_exposed(i64) i64;
const Align = 2 * @alignOf(usize);
extern fn malloc(size: usize) callconv(.C) ?*align(Align) anyopaque;
@ -110,7 +110,7 @@ comptime {
pub export fn main() u8 {
const stdout = std.io.getStdOut().writer();
const result = roc__mainForHost_1_exposed(10);
const result = roc__main_for_host_1_exposed(10);
stdout.print("{d}\n", .{result}) catch unreachable;

View file

@ -3,7 +3,7 @@ platform "fibonacci"
exposes []
packages {}
imports []
provides [mainForHost]
provides [main_for_host]
mainForHost : I64 -> I64
mainForHost = \a -> main a
main_for_host : I64 -> I64
main_for_host = \a -> main(a)

View file

@ -1,10 +1,10 @@
app [main] { pf: platform "fibonacci-platform/main.roc" }
main = \n -> fib n 0 1
main = \n -> fib(n, 0, 1)
# the clever implementation requires join points
fib = \n, a, b ->
if n == 0 then
a
else
fib (n - 1) b (a + b)
fib((n - 1), b, (a + b))

View file

@ -9,7 +9,7 @@ const expect = testing.expect;
const mem = std.mem;
const Allocator = mem.Allocator;
extern fn roc__mainForHost_1_exposed(input: RocList) callconv(.C) RocList;
extern fn roc__main_for_host_1_exposed(input: RocList) callconv(.C) RocList;
const Align = 2 * @alignOf(usize);
extern fn malloc(size: usize) callconv(.C) ?*align(Align) anyopaque;
@ -128,7 +128,7 @@ pub export fn main() u8 {
const roc_list = RocList{ .elements = numbers, .length = NUM_NUMS, .capacity = NUM_NUMS };
// actually call roc to populate the callresult
const callresult: RocList = roc__mainForHost_1_exposed(roc_list);
const callresult: RocList = roc__main_for_host_1_exposed(roc_list);
// stdout the result
const length = @min(20, callresult.length);

View file

@ -3,7 +3,7 @@ platform "quicksort"
exposes []
packages {}
imports []
provides [mainForHost]
provides [main_for_host]
mainForHost : List I64 -> List I64
mainForHost = \list -> quicksort list
main_for_host : List I64 -> List I64
main_for_host = \list -> quicksort(list)

View file

@ -1,54 +1,54 @@
app [quicksort] { pf: platform "quicksort-platform/main.roc" }
quicksort = \originalList ->
n = List.len originalList
quicksort = \original_list ->
n = List.len(original_list)
quicksortHelp originalList 0 (n - 1)
quicksort_help(original_list, 0, (n - 1))
quicksortHelp : List (Num a), U64, U64 -> List (Num a)
quicksortHelp = \list, low, high ->
quicksort_help : List (Num a), U64, U64 -> List (Num a)
quicksort_help = \list, low, high ->
if low < high then
when partition low high list is
Pair partitionIndex partitioned ->
when partition(low, high, list) is
Pair(partition_index, partitioned) ->
partitioned
|> quicksortHelp low (partitionIndex - 1)
|> quicksortHelp (partitionIndex + 1) high
|> quicksort_help(low, (partition_index - 1))
|> quicksort_help((partition_index + 1), high)
else
list
partition : U64, U64, List (Num a) -> [Pair U64 (List (Num a))]
partition = \low, high, initialList ->
when List.get initialList high is
Ok pivot ->
when partitionHelp low low initialList high pivot is
Pair newI newList ->
Pair newI (swap newI high newList)
partition = \low, high, initial_list ->
when List.get(initial_list, high) is
Ok(pivot) ->
when partition_help(low, low, initial_list, high, pivot) is
Pair(new_i, new_list) ->
Pair(new_i, swap(new_i, high, new_list))
Err _ ->
Pair low initialList
Err(_) ->
Pair(low, initial_list)
partitionHelp : U64, U64, List (Num c), U64, Num c -> [Pair U64 (List (Num c))]
partitionHelp = \i, j, list, high, pivot ->
partition_help : U64, U64, List (Num c), U64, Num c -> [Pair U64 (List (Num c))]
partition_help = \i, j, list, high, pivot ->
if j < high then
when List.get list j is
Ok value ->
when List.get(list, j) is
Ok(value) ->
if value <= pivot then
partitionHelp (i + 1) (j + 1) (swap i j list) high pivot
partition_help((i + 1), (j + 1), swap(i, j, list), high, pivot)
else
partitionHelp i (j + 1) list high pivot
partition_help(i, (j + 1), list, high, pivot)
Err _ ->
Pair i list
Err(_) ->
Pair(i, list)
else
Pair i list
Pair(i, list)
swap : U64, U64, List a -> List a
swap = \i, j, list ->
when Pair (List.get list i) (List.get list j) is
Pair (Ok atI) (Ok atJ) ->
when Pair(List.get(list, i), List.get(list, j)) is
Pair(Ok(at_i), Ok(at_j)) ->
list
|> List.set i atJ
|> List.set j atI
|> List.set(i, at_j)
|> List.set(j, at_i)
_ ->
# to prevent a decrement on list

View file

@ -1,10 +1,10 @@
module [
Community,
empty,
addPerson,
addFriend,
add_person,
add_friend,
Person,
walkFriendNames,
walk_friend_names,
]
## Datatype representing a community for demonstration purposes in inspect-gui.roc and inspect-logging.roc
@ -16,11 +16,11 @@ Community := {
implements [Inspect]
Person := {
firstName : Str,
lastName : Str,
first_name : Str,
last_name : Str,
age : U8,
hasBeard : Bool,
favoriteColor : Color,
has_beard : Bool,
favorite_color : Color,
}
implements [Inspect]
@ -31,52 +31,52 @@ Color : [
RGB (U8, U8, U8),
]
empty = @Community { people: [], friends: [] }
empty = @Community({ people: [], friends: [] })
addPerson = \@Community { people, friends }, person ->
@Community {
people: List.append people (@Person person),
friends: List.append friends (Set.empty {}),
}
add_person = \@Community({ people, friends }), person ->
@Community({
people: List.append(people, @Person(person)),
friends: List.append(friends, Set.empty({})),
})
addFriend = \@Community { people, friends }, from, to ->
when (List.get friends from, List.get friends to) is
(Ok fromSet, Ok toSet) ->
@Community {
add_friend = \@Community({ people, friends }), from, to ->
when (List.get(friends, from), List.get(friends, to)) is
(Ok(from_set), Ok(to_set)) ->
@Community({
people,
friends: friends
|> List.set from (Set.insert fromSet to)
|> List.set to (Set.insert toSet from),
}
|> List.set(from, Set.insert(from_set, to))
|> List.set(to, Set.insert(to_set, from)),
})
_ ->
@Community { people, friends }
@Community({ people, friends })
walkFriendNames : Community, state, (state, Str, Set Str -> state) -> state
walkFriendNames = \@Community { people, friends }, s0, nextFn ->
walk_friend_names : Community, state, (state, Str, Set Str -> state) -> state
walk_friend_names = \@Community({ people, friends }), s0, next_fn ->
(out, _) =
List.walk friends (s0, 0) \(s1, id), friendSet ->
(@Person person) =
when List.get people id is
Ok v -> v
Err _ -> crash "Unknown Person"
personName =
person.firstName
|> Str.concat " "
|> Str.concat person.lastName
List.walk(friends, (s0, 0), \(s1, id), friend_set ->
@Person(person) =
when List.get(people, id) is
Ok(v) -> v
Err(_) -> crash("Unknown Person")
person_name =
person.first_name
|> Str.concat(" ")
|> Str.concat(person.last_name)
friendNames =
Set.walk friendSet (Set.empty {}) \friendsSet, friendId ->
(@Person friend) =
when List.get people friendId is
Ok v -> v
Err _ -> crash "Unknown Person"
friendName =
friend.firstName
|> Str.concat " "
|> Str.concat friend.lastName
Set.insert friendsSet friendName
friend_names =
Set.walk(friend_set, Set.empty({}), \friends_set, friend_id ->
@Person(friend) =
when List.get(people, friend_id) is
Ok(v) -> v
Err(_) -> crash("Unknown Person")
friend_name =
friend.first_name
|> Str.concat(" ")
|> Str.concat(friend.last_name)
Set.insert(friends_set, friend_name))
(nextFn s1 personName friendNames, id + 1)
(next_fn(s1, person_name, friend_names), id + 1))
out

View file

@ -3,19 +3,19 @@ app [main] { pf: platform "https://github.com/roc-lang/basic-cli/releases/downlo
import pf.Stdout
main =
multipleIn =
multiple_in =
{ sequential <-
a: Task.ok 123,
b: Task.ok "abc",
c: Task.ok [123],
_d: Task.ok ["abc"],
_: Task.ok (Dict.single "a" "b"),
a: Task.ok(123),
b: Task.ok("abc"),
c: Task.ok([123]),
_d: Task.ok(["abc"]),
_: Task.ok(Dict.single("a", "b")),
}!
Stdout.line! "For multiple tasks: $(Inspect.toStr multipleIn)"
Stdout.line!("For multiple tasks: $(Inspect.to_str(multiple_in))")
sequential : Task a err, Task b err, (a, b -> c) -> Task c err
sequential = \firstTask, secondTask, mapper ->
first = firstTask!
second = secondTask!
Task.ok (mapper first second)
sequential = \first_task, second_task, mapper ->
first = first_task!
second = second_task!
Task.ok(mapper(first, second))

View file

@ -3,33 +3,33 @@ app [main!] { pf: platform "../test-platform-effects-zig/main.roc" }
import pf.Effect
main! : {} => {}
main! = \{} -> tick! {}
main! = \{} -> tick!({})
tick! = \{} ->
line = Effect.getLine! {}
line = Effect.get_line!({})
if !(Str.isEmpty line) then
Effect.putLine! (echo line)
if !(Str.is_empty(line)) then
Effect.put_line!(echo(line))
else
Effect.putLine! "Received no input."
Effect.put_line!("Received no input.")
echo : Str -> Str
echo = \shout ->
silence = \length -> List.repeat ' ' length
silence = \length -> List.repeat(' ', length)
shout
|> Str.toUtf8
|> List.mapWithIndex \_, i ->
length = (List.len (Str.toUtf8 shout) - i)
phrase = (List.splitAt (Str.toUtf8 shout) length).before
|> Str.to_utf8
|> List.map_with_index(\_, i ->
length = (List.len(Str.to_utf8(shout)) - i)
phrase = (List.split_at(Str.to_utf8(shout), length)).before
List.concat (silence (if i == 0 then 2 * length else length)) phrase
List.concat(silence((if i == 0 then 2 * length else length)), phrase))
|> List.join
|> Str.fromUtf8
|> Result.withDefault ""
|> Str.from_utf8
|> Result.with_default("")
expect
message = "hello!"
echoedMessage = echo message
echoed_message = echo(message)
echoedMessage == " hello! hello hell hel he h"
echoed_message == " hello! hello hell hel he h"

View file

@ -4,20 +4,19 @@ import pf.Effect
main! : {} => {}
main! = \{} ->
good = [0, 2, 4] |> List.forEachTry! validate!
expect good == Ok {}
good = [0, 2, 4] |> List.for_each_try!(validate!)
expect good == Ok({})
bad = [6, 8, 9, 10] |> List.forEachTry! validate!
expect bad == Err 9
bad = [6, 8, 9, 10] |> List.for_each_try!(validate!)
expect bad == Err(9)
{}
validate! : U32 => Result {} U32
validate! = \x ->
if Num.isEven x then
Effect.putLine! "✅ $(Num.toStr x)"
Ok {}
if Num.is_even(x) then
Effect.put_line!("✅ $(Num.to_str(x))")
Ok({})
else
Effect.putLine! "$(Num.toStr x) is not even! ABORT!"
Err x
Effect.put_line!("$(Num.to_str(x)) is not even! ABORT!")
Err(x)

View file

@ -4,24 +4,24 @@ import pf.Effect
main! : {} => {}
main! = \{} ->
first = ask! "What's your first name?"
last = ask! "What's your last name?"
first = ask!("What's your first name?")
last = ask!("What's your last name?")
Effect.putLine! "\nHi, $(first) $(last)!\n"
Effect.put_line!("\nHi, $(first) $(last)!\n")
when Str.toU8 (ask! "How old are you?") is
Err InvalidNumStr ->
Effect.putLine! "Enter a valid number"
when Str.to_u8(ask!("How old are you?")) is
Err(InvalidNumStr) ->
Effect.put_line!("Enter a valid number")
Ok age if age >= 18 ->
Effect.putLine! "\nNice! You can vote!"
Ok(age) if age >= 18 ->
Effect.put_line!("\nNice! You can vote!")
Ok age ->
Effect.putLine! "\nYou'll be able to vote in $(Num.toStr (18 - age)) years"
Ok(age) ->
Effect.put_line!("\nYou'll be able to vote in $(Num.to_str((18 - age))) years")
Effect.putLine! "\nBye! 👋"
Effect.put_line!("\nBye! 👋")
ask! : Str => Str
ask! = \question ->
Effect.putLine! question
Effect.getLine! {}
Effect.put_line!(question)
Effect.get_line!({})

View file

@ -4,4 +4,4 @@ import pf.Effect
main! : {} => {}
main! = \{} ->
Effect.putLine! "I'm an effect 👻"
Effect.put_line!("I'm an effect 👻")

View file

@ -4,5 +4,5 @@ import pf.Effect
main! : {} => {}
main! = \{} ->
_ = Effect.getLine! {}
Effect.putLine! "I asked for input and I ignored it. Deal with it! 😎"
_ = Effect.get_line!({})
Effect.put_line!("I asked for input and I ignored it. Deal with it! 😎")

View file

@ -8,28 +8,28 @@ import Community
main! = \{} ->
Community.empty
|> Community.addPerson {
firstName: "John",
lastName: "Smith",
|> Community.add_person({
first_name: "John",
last_name: "Smith",
age: 27,
hasBeard: Bool.true,
favoriteColor: Blue,
}
|> Community.addPerson {
firstName: "Debby",
lastName: "Johnson",
has_beard: Bool.true,
favorite_color: Blue,
})
|> Community.add_person({
first_name: "Debby",
last_name: "Johnson",
age: 47,
hasBeard: Bool.false,
favoriteColor: Green,
}
|> Community.addPerson {
firstName: "Jane",
lastName: "Doe",
has_beard: Bool.false,
favorite_color: Green,
})
|> Community.add_person({
first_name: "Jane",
last_name: "Doe",
age: 33,
hasBeard: Bool.false,
favoriteColor: RGB (255, 255, 0),
}
|> Community.addFriend 0 2
|> Community.addFriend 1 2
|> Inspect.toStr
|> Effect.putLine!
has_beard: Bool.false,
favorite_color: RGB((255, 255, 0)),
})
|> Community.add_friend(0, 2)
|> Community.add_friend(1, 2)
|> Inspect.to_str
|> Effect.put_line!

View file

@ -5,12 +5,12 @@ import pf.Effect
main! : {} => {}
main! = \{} ->
friends = ["Lu", "Marce", "Joaquin", "Chloé", "Mati", "Pedro"]
printAll! friends
print_all!(friends)
printAll! : List Str => {}
printAll! = \friends ->
print_all! : List Str => {}
print_all! = \friends ->
when friends is
[] -> {}
[first, .. as remaining] ->
Effect.putLine! first
printAll! remaining
Effect.put_line!(first)
print_all!(remaining)

View file

@ -5,20 +5,20 @@ import pf.Effect
main! : {} => {}
main! = \{} ->
_ =
authenticate! {}
|> Result.onErr! \BadPass ->
Effect.putLine! "LOG: Failed login attempt"
Ok "Bad password"
authenticate!({})
|> Result.on_err!(\BadPass ->
Effect.put_line!("LOG: Failed login attempt")
Ok("Bad password"))
{}
authenticate! : {} => Result Str [BadPass]
authenticate! = \{} ->
Effect.putLine! "Enter your password:"
Effect.put_line!("Enter your password:")
password = Effect.getLine! {}
password = Effect.get_line!({})
if password == "password" then
Ok "You are in"
Ok("You are in")
else
Err BadPass
Err(BadPass)

View file

@ -5,15 +5,15 @@ import pf.Effect
main! : {} => {}
main! = \{} ->
["Welcome!", "What's your name?"]
|> List.forEach! Effect.putLine!
|> List.for_each!(Effect.put_line!)
line = Effect.getLine! {}
line = Effect.get_line!({})
if line == "secret" then
Effect.putLine! "You found the secret"
Effect.putLine! "Congratulations!"
Effect.put_line!("You found the secret")
Effect.put_line!("Congratulations!")
else
{}
Effect.putLine! "You entered: $(line)"
Effect.putLine! "It is known"
Effect.put_line!("You entered: $(line)")
Effect.put_line!("It is known")

View file

@ -3,20 +3,20 @@ app [main!] { pf: platform "../test-platform-effects-zig/main.roc" }
import pf.Effect
Fx : {
getLine!: {} => Str,
get_line! : {} => Str,
}
main! : {} => {}
main! = \{} ->
notEffectful : Fx
notEffectful = {
getLine!: \{} -> "hardcoded"
not_effectful : Fx
not_effectful = {
get_line!: \{} -> "hardcoded",
}
effectful : Fx
effectful = {
getLine!: Effect.getLine!
get_line!: Effect.get_line!,
}
Effect.putLine! "notEffectful: $(notEffectful.getLine! {})"
Effect.putLine! "effectful: $(effectful.getLine! {})"
Effect.put_line!("not_effectful: $(not_effectful.get_line!({}))")
Effect.put_line!("effectful: $(effectful.get_line!({}))")

View file

@ -4,9 +4,9 @@ import pf.Effect
main! : {} => {}
main! = \{} ->
logged! "hello" (\{} -> Effect.putLine! "Hello, World!")
logged!("hello", \{} -> Effect.put_line!("Hello, World!"))
logged! = \name, fx! ->
Effect.putLine! "Before $(name)"
fx! {}
Effect.putLine! "After $(name)"
Effect.put_line!("Before $(name)")
fx!({})
Effect.put_line!("After $(name)")

View file

@ -1,6 +1,6 @@
app [main] { pf: platform "../test-platform-simple-zig/main.roc" }
makeA =
make_a =
a = 1
expect a == 2
@ -9,29 +9,29 @@ makeA =
a
expect
a = makeA
a = make_a
b = 2i64
a == b
polyDbg = \x ->
dbg x
poly_dbg = \x ->
dbg(x)
x
main =
str = "this will for sure be a large string so when we split it it will use seamless slices which affect printing"
words = Str.splitOn str " "
words = Str.split_on(str, " ")
expect words == []
x = 42
dbg x
dbg(x)
dbg "Fjoer en ferdjer frieten oan dyn geve lea"
dbg("Fjoer en ferdjer frieten oan dyn geve lea")
dbg "this is line 24"
dbg("this is line 24")
r = { x: polyDbg "abc", y: polyDbg 10u8, z: polyDbg (A (B C)) }
r = { x: poly_dbg("abc"), y: poly_dbg(10u8), z: poly_dbg(A(B(C))) }
when r is
_ -> "Program finished!\n"

View file

@ -1,12 +1,12 @@
module [
addAndStringify,
add_and_stringify,
]
import Transitive
addAndStringify = \num1, num2 ->
Num.toStr (Transitive.add num1 num2)
add_and_stringify = \num1, num2 ->
Num.to_str(Transitive.add(num1, num2))
expect addAndStringify 1 2 == "3"
expect add_and_stringify(1, 2) == "3"
expect addAndStringify 3 4 == "7"
expect add_and_stringify(3, 4) == "7"

View file

@ -4,4 +4,4 @@ module [
add = \num1, num2 -> (num1 + num2)
expect add 1 2 == 3
expect add(1, 2) == 3

View file

@ -1,4 +1,4 @@
module [Context, Data, with!, getChar!, Option, pushStack, popStack, toStr, inWhileScope]
module [Context, Data, with!, get_char!, Option, push_stack, pop_stack, to_str, in_while_scope]
import pf.File
import Variable exposing [Variable]
@ -9,100 +9,100 @@ Option a : [Some a, None]
Data : [Lambda (List U8), Number I32, Var Variable]
# While loops are special and have their own Scope specific state.
WhileState : { cond : List U8, body : List U8, state : [InCond, InBody] }
Scope : { data : Option File.Handle, index : U64, buf : List U8, whileInfo : Option WhileState }
Scope : { data : Option File.Handle, index : U64, buf : List U8, while_info : Option WhileState }
State : [Executing, InComment, InLambda U64 (List U8), InString (List U8), InNumber I32, InSpecialChar, LoadChar]
Context : { scopes : List Scope, stack : List Data, vars : List Data, state : State }
pushStack : Context, Data -> Context
pushStack = \ctx, data ->
{ ctx & stack: List.append ctx.stack data }
push_stack : Context, Data -> Context
push_stack = \ctx, data ->
{ ctx & stack: List.append(ctx.stack, data) }
# I think an open tag union should just work here.
# Instead at a call sites, I need to match on the error and then return the same error.
# Otherwise it hits unreachable code in ir.rs
popStack : Context -> Result (Context, Data) [EmptyStack]
popStack = \ctx ->
when List.last ctx.stack is
Ok val ->
poppedCtx = { ctx & stack: List.dropAt ctx.stack (List.len ctx.stack - 1) }
pop_stack : Context -> Result (Context, Data) [EmptyStack]
pop_stack = \ctx ->
when List.last(ctx.stack) is
Ok(val) ->
popped_ctx = { ctx & stack: List.drop_at(ctx.stack, (List.len(ctx.stack) - 1)) }
Ok (poppedCtx, val)
Ok((popped_ctx, val))
Err ListWasEmpty ->
Err EmptyStack
Err(ListWasEmpty) ->
Err(EmptyStack)
toStrData : Data -> Str
toStrData = \data ->
to_str_data : Data -> Str
to_str_data = \data ->
when data is
Lambda _ -> "[]"
Number n -> Num.toStr (Num.intCast n)
Var v -> Variable.toStr v
Lambda(_) -> "[]"
Number(n) -> Num.to_str(Num.int_cast(n))
Var(v) -> Variable.to_str(v)
toStrState : State -> Str
toStrState = \state ->
to_str_state : State -> Str
to_str_state = \state ->
when state is
Executing -> "Executing"
InComment -> "InComment"
InString _ -> "InString"
InNumber _ -> "InNumber"
InLambda _ _ -> "InLambda"
InString(_) -> "InString"
InNumber(_) -> "InNumber"
InLambda(_, _) -> "InLambda"
InSpecialChar -> "InSpecialChar"
LoadChar -> "LoadChar"
toStr : Context -> Str
toStr = \{ scopes, stack, state, vars } ->
depth = Num.toStr (List.len scopes)
stateStr = toStrState state
stackStr = Str.joinWith (List.map stack toStrData) " "
varsStr = Str.joinWith (List.map vars toStrData) " "
to_str : Context -> Str
to_str = \{ scopes, stack, state, vars } ->
depth = Num.to_str(List.len(scopes))
state_str = to_str_state(state)
stack_str = Str.join_with(List.map(stack, to_str_data), " ")
vars_str = Str.join_with(List.map(vars, to_str_data), " ")
"\n============\nDepth: $(depth)\nState: $(stateStr)\nStack: [$(stackStr)]\nVars: [$(varsStr)]\n============\n"
"\n============\nDepth: $(depth)\nState: $(state_str)\nStack: [$(stack_str)]\nVars: [$(vars_str)]\n============\n"
with! : Str, (Context => a) => a
with! = \path, callback! ->
File.withOpen! path \handle ->
File.with_open!(path, \handle ->
# I cant define scope here and put it in the list in callback. It breaks alias anaysis.
# Instead I have to inline this.
# root_scope = { data: Some handle, index: 0, buf: [], whileInfo: None }
callback! { scopes: [{ data: Some handle, index: 0, buf: [], whileInfo: None }], state: Executing, stack: [], vars: List.repeat (Number 0) Variable.totalCount }
callback!({ scopes: [{ data: Some(handle), index: 0, buf: [], while_info: None }], state: Executing, stack: [], vars: List.repeat(Number(0), Variable.total_count) }))
# I am pretty sure there is a syntax to destructure and keep a reference to the whole, but Im not sure what it is.
getChar! : Context => Result (U8, Context) [EndOfData, NoScope]
getChar! = \ctx ->
when List.last ctx.scopes is
Ok scope ->
(val, newScope) = getCharScope!? scope
Ok (val, { ctx & scopes: List.set ctx.scopes (List.len ctx.scopes - 1) newScope })
get_char! : Context => Result (U8, Context) [EndOfData, NoScope]
get_char! = \ctx ->
when List.last(ctx.scopes) is
Ok(scope) ->
(val, new_scope) = get_char_scope!?(scope)
Ok((val, { ctx & scopes: List.set(ctx.scopes, (List.len(ctx.scopes) - 1), new_scope) }))
Err ListWasEmpty ->
Err NoScope
Err(ListWasEmpty) ->
Err(NoScope)
getCharScope! : Scope => Result (U8, Scope) [EndOfData, NoScope]
getCharScope! = \scope ->
when List.get scope.buf scope.index is
Ok val ->
Ok (val, { scope & index: scope.index + 1 })
get_char_scope! : Scope => Result (U8, Scope) [EndOfData, NoScope]
get_char_scope! = \scope ->
when List.get(scope.buf, scope.index) is
Ok(val) ->
Ok((val, { scope & index: scope.index + 1 }))
Err OutOfBounds ->
Err(OutOfBounds) ->
when scope.data is
Some h ->
bytes = File.chunk! h
when List.first bytes is
Ok val ->
Some(h) ->
bytes = File.chunk!(h)
when List.first(bytes) is
Ok(val) ->
# This starts at 1 because the first character is already being returned.
Ok (val, { scope & buf: bytes, index: 1 })
Ok((val, { scope & buf: bytes, index: 1 }))
Err ListWasEmpty ->
Err EndOfData
Err(ListWasEmpty) ->
Err(EndOfData)
None ->
Err EndOfData
Err(EndOfData)
inWhileScope : Context -> Bool
inWhileScope = \ctx ->
when List.last ctx.scopes is
Ok scope ->
scope.whileInfo != None
in_while_scope : Context -> Bool
in_while_scope = \ctx ->
when List.last(ctx.scopes) is
Ok(scope) ->
scope.while_info != None
Err ListWasEmpty ->
Err(ListWasEmpty) ->
Bool.false

View file

@ -1,33 +1,33 @@
module [Variable, fromUtf8, toIndex, totalCount, toStr]
module [Variable, from_utf8, to_index, total_count, to_str]
# Variables in False can only be single letters. Thus, the valid variables are "a" to "z".
# This opaque type deals with ensure we always have valid variables.
Variable := U8
totalCount : U64
totalCount =
total_count : U64
total_count =
0x7A # "z"
- 0x61 # "a"
+ 1
toStr : Variable -> Str
toStr = \@Variable char ->
when Str.fromUtf8 [char] is
Ok str -> str
to_str : Variable -> Str
to_str = \@Variable(char) ->
when Str.from_utf8([char]) is
Ok(str) -> str
_ -> "_"
fromUtf8 : U8 -> Result Variable [InvalidVariableUtf8]
fromUtf8 = \char ->
from_utf8 : U8 -> Result Variable [InvalidVariableUtf8]
from_utf8 = \char ->
if
char
>= 0x61 # "a"
&& char
<= 0x7A # "z"
then
Ok (@Variable char)
Ok(@Variable(char))
else
Err InvalidVariableUtf8
Err(InvalidVariableUtf8)
toIndex : Variable -> U64
toIndex = \@Variable char ->
Num.intCast (char - 0x61) # "a"
to_index : Variable -> U64
to_index = \@Variable(char) ->
Num.int_cast((char - 0x61)) # "a"

View file

@ -16,454 +16,454 @@ InterpreterErrors : [BadUtf8, DivByZero, EmptyStack, InvalidBooleanValue, Invali
main! : Str => {}
main! = \filename ->
when interpretFile! filename is
Ok {} ->
when interpret_file!(filename) is
Ok({}) ->
{}
Err (StringErr e) ->
Stdout.line! "Ran into problem:\n$(e)\n"
Err(StringErr(e)) ->
Stdout.line!("Ran into problem:\n$(e)\n")
interpretFile! : Str => Result {} [StringErr Str]
interpretFile! = \filename ->
Context.with! filename \ctx ->
result = interpretCtx! ctx
interpret_file! : Str => Result {} [StringErr Str]
interpret_file! = \filename ->
Context.with!(filename, \ctx ->
result = interpret_ctx!(ctx)
when result is
Ok _ ->
Ok {}
Ok(_) ->
Ok({})
Err BadUtf8 ->
Err (StringErr "Failed to convert string from Utf8 bytes")
Err(BadUtf8) ->
Err(StringErr("Failed to convert string from Utf8 bytes"))
Err DivByZero ->
Err (StringErr "Division by zero")
Err(DivByZero) ->
Err(StringErr("Division by zero"))
Err EmptyStack ->
Err (StringErr "Tried to pop a value off of the stack when it was empty")
Err(EmptyStack) ->
Err(StringErr("Tried to pop a value off of the stack when it was empty"))
Err InvalidBooleanValue ->
Err (StringErr "Ran into an invalid boolean that was neither false (0) or true (-1)")
Err(InvalidBooleanValue) ->
Err(StringErr("Ran into an invalid boolean that was neither false (0) or true (-1)"))
Err (InvalidChar char) ->
Err (StringErr "Ran into an invalid character with ascii code: $(char)")
Err(InvalidChar(char)) ->
Err(StringErr("Ran into an invalid character with ascii code: $(char)"))
Err MaxInputNumber ->
Err (StringErr "Like the original false compiler, the max input number is 320,000")
Err(MaxInputNumber) ->
Err(StringErr("Like the original false compiler, the max input number is 320,000"))
Err NoLambdaOnStack ->
Err (StringErr "Tried to run a lambda when no lambda was on the stack")
Err(NoLambdaOnStack) ->
Err(StringErr("Tried to run a lambda when no lambda was on the stack"))
Err NoNumberOnStack ->
Err (StringErr "Tried to run a number when no number was on the stack")
Err(NoNumberOnStack) ->
Err(StringErr("Tried to run a number when no number was on the stack"))
Err NoVariableOnStack ->
Err (StringErr "Tried to load a variable when no variable was on the stack")
Err(NoVariableOnStack) ->
Err(StringErr("Tried to load a variable when no variable was on the stack"))
Err NoScope ->
Err (StringErr "Tried to run code when not in any scope")
Err(NoScope) ->
Err(StringErr("Tried to run code when not in any scope"))
Err OutOfBounds ->
Err (StringErr "Tried to load from an offset that was outside of the stack")
Err(OutOfBounds) ->
Err(StringErr("Tried to load from an offset that was outside of the stack"))
Err UnexpectedEndOfData ->
Err (StringErr "Hit end of data while still parsing something")
Err(UnexpectedEndOfData) ->
Err(StringErr("Hit end of data while still parsing something")))
interpretCtx! : Context => Result Context InterpreterErrors
interpretCtx! = \ctx ->
when interpretCtxLoop! ctx is
Ok (Step next) ->
interpretCtx! next
interpret_ctx! : Context => Result Context InterpreterErrors
interpret_ctx! = \ctx ->
when interpret_ctx_loop!(ctx) is
Ok(Step(next)) ->
interpret_ctx!(next)
Ok (Done next) ->
Ok next
Ok(Done(next)) ->
Ok(next)
Err e ->
Err e
Err(e) ->
Err(e)
interpretCtxLoop! : Context => Result [Step Context, Done Context] InterpreterErrors
interpretCtxLoop! = \ctx ->
interpret_ctx_loop! : Context => Result [Step Context, Done Context] InterpreterErrors
interpret_ctx_loop! = \ctx ->
when ctx.state is
Executing if Context.inWhileScope ctx ->
Executing if Context.in_while_scope(ctx) ->
# Deal with the current while loop potentially looping.
last = (List.len ctx.scopes - 1)
last = (List.len(ctx.scopes) - 1)
scope = List.get ctx.scopes last |> Result.mapErr? \_ -> NoScope
when scope.whileInfo is
Some { state: InCond, body, cond } ->
scope = List.get(ctx.scopes, last) |> Result.map_err?(\_ -> NoScope)
when scope.while_info is
Some({ state: InCond, body, cond }) ->
# Just ran condition. Check the top of stack to see if body should run.
(popCtx, n) = popNumber? ctx
(pop_ctx, n) = pop_number?(ctx)
if n == 0 then
newScope = { scope & whileInfo: None }
new_scope = { scope & while_info: None }
Ok (Step { popCtx & scopes: List.set ctx.scopes last newScope })
Ok(Step({ pop_ctx & scopes: List.set(ctx.scopes, last, new_scope) }))
else
newScope = { scope & whileInfo: Some { state: InBody, body, cond } }
new_scope = { scope & while_info: Some({ state: InBody, body, cond }) }
Ok (Step { popCtx & scopes: List.append (List.set ctx.scopes last newScope) { data: None, buf: body, index: 0, whileInfo: None } })
Ok(Step({ pop_ctx & scopes: List.append(List.set(ctx.scopes, last, new_scope), { data: None, buf: body, index: 0, while_info: None }) }))
Some { state: InBody, body, cond } ->
Some({ state: InBody, body, cond }) ->
# Just rand the body. Run the condition again.
newScope = { scope & whileInfo: Some { state: InCond, body, cond } }
new_scope = { scope & while_info: Some({ state: InCond, body, cond }) }
Ok (Step { ctx & scopes: List.append (List.set ctx.scopes last newScope) { data: None, buf: cond, index: 0, whileInfo: None } })
Ok(Step({ ctx & scopes: List.append(List.set(ctx.scopes, last, new_scope), { data: None, buf: cond, index: 0, while_info: None }) }))
None ->
Err NoScope
Err(NoScope)
Executing ->
# Stdout.line! (Context.toStr ctx)
result = Context.getChar! ctx
# Stdout.line! (Context.to_str ctx)
result = Context.get_char!(ctx)
when result is
Ok (val, newCtx) ->
execCtx = stepExecCtx!? newCtx val
Ok (Step execCtx)
Ok((val, new_ctx)) ->
exec_ctx = step_exec_ctx!?(new_ctx, val)
Ok(Step(exec_ctx))
Err NoScope ->
Err NoScope
Err(NoScope) ->
Err(NoScope)
Err EndOfData ->
Err(EndOfData) ->
# Computation complete for this scope.
# Drop a scope.
dropCtx = { ctx & scopes: List.dropAt ctx.scopes (List.len ctx.scopes - 1) }
drop_ctx = { ctx & scopes: List.drop_at(ctx.scopes, (List.len(ctx.scopes) - 1)) }
# If no scopes left, all execution complete.
if List.isEmpty dropCtx.scopes then
Ok (Done dropCtx)
if List.is_empty(drop_ctx.scopes) then
Ok(Done(drop_ctx))
else
Ok (Step dropCtx)
Ok(Step(drop_ctx))
InComment ->
(val, newCtx) = Context.getChar! ctx |> Result.mapErr? endUnexpected
(val, new_ctx) = Context.get_char!(ctx) |> Result.map_err?(end_unexpected)
if val == 0x7D then
# `}` end of comment
Ok (Step { newCtx & state: Executing })
Ok(Step({ new_ctx & state: Executing }))
else
Ok (Step { newCtx & state: InComment })
Ok(Step({ new_ctx & state: InComment }))
InNumber accum ->
(val, newCtx) = Context.getChar! ctx |> Result.mapErr? endUnexpected
if isDigit val then
InNumber(accum) ->
(val, new_ctx) = Context.get_char!(ctx) |> Result.map_err?(end_unexpected)
if is_digit(val) then
# still in the number
# i32 multiplication is kinda broken because it implicitly seems to want to upcast to i64.
# so like should be (i32, i32) -> i32, but seems to be (i32, i32) -> i64
# so this is make i64 mul by 10 then convert back to i32.
nextAccum = (10 * Num.intCast accum) + Num.intCast (val - 0x30)
next_accum = (10 * Num.int_cast(accum)) + Num.int_cast((val - 0x30))
Ok (Step { newCtx & state: InNumber (Num.intCast nextAccum) })
Ok(Step({ new_ctx & state: InNumber(Num.int_cast(next_accum)) }))
else
# outside of number now, this needs to be executed.
pushCtx = Context.pushStack newCtx (Number accum)
push_ctx = Context.push_stack(new_ctx, Number(accum))
execCtx = stepExecCtx!? { pushCtx & state: Executing } val
Ok (Step execCtx)
exec_ctx = step_exec_ctx!?({ push_ctx & state: Executing }, val)
Ok(Step(exec_ctx))
InString bytes ->
(val, newCtx) = Context.getChar! ctx |> Result.mapErr? endUnexpected
InString(bytes) ->
(val, new_ctx) = Context.get_char!(ctx) |> Result.map_err?(end_unexpected)
if val == 0x22 then
# `"` end of string
when Str.fromUtf8 bytes is
Ok str ->
Stdout.raw! str
Ok (Step { newCtx & state: Executing })
when Str.from_utf8(bytes) is
Ok(str) ->
Stdout.raw!(str)
Ok(Step({ new_ctx & state: Executing }))
Err _ ->
Err BadUtf8
Err(_) ->
Err(BadUtf8)
else
Ok (Step { newCtx & state: InString (List.append bytes val) })
Ok(Step({ new_ctx & state: InString(List.append(bytes, val)) }))
InLambda depth bytes ->
(val, newCtx) = Context.getChar! ctx |> Result.mapErr? endUnexpected
InLambda(depth, bytes) ->
(val, new_ctx) = Context.get_char!(ctx) |> Result.map_err?(end_unexpected)
if val == 0x5B then
# start of a nested lambda `[`
Ok (Step { newCtx & state: InLambda (depth + 1) (List.append bytes val) })
Ok(Step({ new_ctx & state: InLambda((depth + 1), List.append(bytes, val)) }))
else if val == 0x5D then
# `]` end of current lambda
if depth == 0 then
# end of all lambdas
Ok (Step (Context.pushStack { newCtx & state: Executing } (Lambda bytes)))
Ok(Step(Context.push_stack({ new_ctx & state: Executing }, Lambda(bytes))))
else
# end of nested lambda
Ok (Step { newCtx & state: InLambda (depth - 1) (List.append bytes val) })
Ok(Step({ new_ctx & state: InLambda((depth - 1), List.append(bytes, val)) }))
else
Ok (Step { newCtx & state: InLambda depth (List.append bytes val) })
Ok(Step({ new_ctx & state: InLambda(depth, List.append(bytes, val)) }))
InSpecialChar ->
val = Context.getChar! { ctx & state: Executing } |> Result.mapErr? endUnexpected
val = Context.get_char!({ ctx & state: Executing }) |> Result.map_err?(end_unexpected)
when val is
(0xB8, newCtx) ->
(popCtx, index) = popNumber? newCtx
(0xB8, new_ctx) ->
(pop_ctx, index) = pop_number?(new_ctx)
# I think Num.abs is too restrictive, it should be able to produce a natural number, but it seem to be restricted to signed numbers.
size = List.len popCtx.stack - 1
offset = Num.intCast size - index
size = List.len(pop_ctx.stack) - 1
offset = Num.int_cast(size) - index
if offset >= 0 then
stackVal = List.get? popCtx.stack (Num.intCast offset)
Ok (Step (Context.pushStack popCtx stackVal))
stack_val = List.get?(pop_ctx.stack, Num.int_cast(offset))
Ok(Step(Context.push_stack(pop_ctx, stack_val)))
else
Err OutOfBounds
Err(OutOfBounds)
(0x9F, newCtx) ->
(0x9F, new_ctx) ->
# This is supposed to flush io buffers. We don't buffer, so it does nothing
Ok (Step newCtx)
Ok(Step(new_ctx))
(x, _) ->
data = Num.toStr (Num.intCast x)
data = Num.to_str(Num.int_cast(x))
Err (InvalidChar data)
Err(InvalidChar(data))
LoadChar ->
(x, newCtx) = Context.getChar! { ctx & state: Executing } |> Result.mapErr? endUnexpected
Ok (Step (Context.pushStack newCtx (Number (Num.intCast x))))
(x, new_ctx) = Context.get_char!({ ctx & state: Executing }) |> Result.map_err?(end_unexpected)
Ok(Step(Context.push_stack(new_ctx, Number(Num.int_cast(x)))))
# If it weren't for reading stdin or writing to stdout, this could return a result.
stepExecCtx! : Context, U8 => Result Context InterpreterErrors
stepExecCtx! = \ctx, char ->
step_exec_ctx! : Context, U8 => Result Context InterpreterErrors
step_exec_ctx! = \ctx, char ->
when char is
0x21 ->
# `!` execute lambda
(popCtx, bytes) = popLambda? ctx
Ok { popCtx & scopes: List.append popCtx.scopes { data: None, buf: bytes, index: 0, whileInfo: None } }
(pop_ctx, bytes) = pop_lambda?(ctx)
Ok({ pop_ctx & scopes: List.append(pop_ctx.scopes, { data: None, buf: bytes, index: 0, while_info: None }) })
0x3F ->
# `?` if
(popCtx1, bytes) = popLambda? ctx
(popCtx2, n1) = popNumber? popCtx1
(pop_ctx1, bytes) = pop_lambda?(ctx)
(pop_ctx2, n1) = pop_number?(pop_ctx1)
if n1 == 0 then
Ok popCtx2
Ok(pop_ctx2)
else
Ok { popCtx2 & scopes: List.append popCtx2.scopes { data: None, buf: bytes, index: 0, whileInfo: None } }
Ok({ pop_ctx2 & scopes: List.append(pop_ctx2.scopes, { data: None, buf: bytes, index: 0, while_info: None }) })
0x23 ->
# `#` while
(popCtx1, body) = popLambda? ctx
(popCtx2, cond) = popLambda? popCtx1
last = (List.len popCtx2.scopes - 1)
(pop_ctx1, body) = pop_lambda?(ctx)
(pop_ctx2, cond) = pop_lambda?(pop_ctx1)
last = (List.len(pop_ctx2.scopes) - 1)
scope = List.get popCtx2.scopes last |> Result.mapErr? \_ -> NoScope
scope = List.get(pop_ctx2.scopes, last) |> Result.map_err?(\_ -> NoScope)
# set the current scope to be in a while loop.
scopes = List.set popCtx2.scopes last { scope & whileInfo: Some { cond: cond, body: body, state: InCond } }
scopes = List.set(pop_ctx2.scopes, last, { scope & while_info: Some({ cond: cond, body: body, state: InCond }) })
# push a scope to execute the condition.
Ok { popCtx2 & scopes: List.append scopes { data: None, buf: cond, index: 0, whileInfo: None } }
Ok({ pop_ctx2 & scopes: List.append(scopes, { data: None, buf: cond, index: 0, while_info: None }) })
0x24 ->
# `$` dup
# Switching this to List.last and changing the error to ListWasEmpty leads to a compiler bug.
# Complains about the types eq not matching.
when List.get ctx.stack (List.len ctx.stack - 1) is
Ok dupItem -> Ok (Context.pushStack ctx dupItem)
Err OutOfBounds -> Err EmptyStack
when List.get(ctx.stack, (List.len(ctx.stack) - 1)) is
Ok(dup_item) -> Ok(Context.push_stack(ctx, dup_item))
Err(OutOfBounds) -> Err(EmptyStack)
0x25 ->
# `%` drop
when Context.popStack ctx is
when Context.pop_stack(ctx) is
# Dropping with an empty stack, all results here are fine
Ok (popCtx, _) -> Ok popCtx
Err _ -> Ok ctx
Ok((pop_ctx, _)) -> Ok(pop_ctx)
Err(_) -> Ok(ctx)
0x5C ->
# `\` swap
(popCtx1, n1) = Context.popStack? ctx
(popCtx2, n2) = Context.popStack? popCtx1
Ok (Context.pushStack (Context.pushStack popCtx2 n1) n2)
(pop_ctx1, n1) = Context.pop_stack?(ctx)
(pop_ctx2, n2) = Context.pop_stack?(pop_ctx1)
Ok(Context.push_stack(Context.push_stack(pop_ctx2, n1), n2))
0x40 ->
# `@` rot
result2 =
(popCtx1, n1) = Context.popStack? ctx
(popCtx2, n2) = Context.popStack? popCtx1
(popCtx3, n3) = Context.popStack? popCtx2
Ok (Context.pushStack (Context.pushStack (Context.pushStack popCtx3 n2) n1) n3)
(pop_ctx1, n1) = Context.pop_stack?(ctx)
(pop_ctx2, n2) = Context.pop_stack?(pop_ctx1)
(pop_ctx3, n3) = Context.pop_stack?(pop_ctx2)
Ok(Context.push_stack(Context.push_stack(Context.push_stack(pop_ctx3, n2), n1), n3))
when result2 is
Ok a ->
Ok a
Ok(a) ->
Ok(a)
# Being explicit with error type is required to stop the need to propogate the error parameters to Context.popStack
Err EmptyStack ->
Err EmptyStack
Err(EmptyStack) ->
Err(EmptyStack)
0xC3 ->
# `ø` pick or `ß` flush
# these are actually 2 bytes, 0xC3 0xB8 or 0xC3 0x9F
# requires special parsing
Ok { ctx & state: InSpecialChar }
Ok({ ctx & state: InSpecialChar })
0x4F ->
# `O` also treat this as pick for easier script writing
(popCtx, index) = popNumber? ctx
(pop_ctx, index) = pop_number?(ctx)
# I think Num.abs is too restrictive, it should be able to produce a natural number, but it seem to be restricted to signed numbers.
size = List.len popCtx.stack - 1
offset = Num.intCast size - index
size = List.len(pop_ctx.stack) - 1
offset = Num.int_cast(size) - index
if offset >= 0 then
stackVal = List.get? popCtx.stack (Num.intCast offset)
Ok (Context.pushStack popCtx stackVal)
stack_val = List.get?(pop_ctx.stack, Num.int_cast(offset))
Ok(Context.push_stack(pop_ctx, stack_val))
else
Err OutOfBounds
Err(OutOfBounds)
0x42 ->
# `B` also treat this as flush for easier script writing
# This is supposed to flush io buffers. We don't buffer, so it does nothing
Ok ctx
Ok(ctx)
0x27 ->
# `'` load next char
Ok { ctx & state: LoadChar }
Ok({ ctx & state: LoadChar })
0x2B ->
# `+` add
binaryOp ctx Num.addWrap
binary_op(ctx, Num.add_wrap)
0x2D ->
# `-` sub
binaryOp ctx Num.subWrap
binary_op(ctx, Num.sub_wrap)
0x2A ->
# `*` mul
binaryOp ctx Num.mulWrap
binary_op(ctx, Num.mul_wrap)
0x2F ->
# `/` div
# Due to possible division by zero error, this must be handled specially.
(popCtx1, numR) = popNumber? ctx
(popCtx2, numL) = popNumber? popCtx1
res = Num.divTruncChecked? numL numR
Ok (Context.pushStack popCtx2 (Number res))
(pop_ctx1, num_r) = pop_number?(ctx)
(pop_ctx2, num_l) = pop_number?(pop_ctx1)
res = Num.div_trunc_checked?(num_l, num_r)
Ok(Context.push_stack(pop_ctx2, Number(res)))
0x26 ->
# `&` bitwise and
binaryOp ctx Num.bitwiseAnd
binary_op(ctx, Num.bitwise_and)
0x7C ->
# `|` bitwise or
binaryOp ctx Num.bitwiseOr
binary_op(ctx, Num.bitwise_or)
0x3D ->
# `=` equals
binaryOp ctx \a, b ->
binary_op(ctx, \a, b ->
if a == b then
-1
else
0
0)
0x3E ->
# `>` greater than
binaryOp ctx \a, b ->
binary_op(ctx, \a, b ->
if a > b then
-1
else
0
0)
0x5F ->
# `_` negate
unaryOp ctx Num.neg
unary_op(ctx, Num.neg)
0x7E ->
# `~` bitwise not
unaryOp ctx (\x -> Num.bitwiseXor x -1) # xor with -1 should be bitwise not
unary_op(ctx, \x -> Num.bitwise_xor(x, -1)) # xor with -1 should be bitwise not
0x2C ->
# `,` write char
(popCtx, num) = popNumber? ctx
str = Str.fromUtf8 [Num.intCast num] |> Result.mapErr? \_ -> BadUtf8
Stdout.raw! str
Ok popCtx
(pop_ctx, num) = pop_number?(ctx)
str = Str.from_utf8([Num.int_cast(num)]) |> Result.map_err?(\_ -> BadUtf8)
Stdout.raw!(str)
Ok(pop_ctx)
0x2E ->
# `.` write int
(popCtx, num) = popNumber? ctx
Stdout.raw! (Num.toStr (Num.intCast num))
Ok popCtx
(pop_ctx, num) = pop_number?(ctx)
Stdout.raw!(Num.to_str(Num.int_cast(num)))
Ok(pop_ctx)
0x5E ->
# `^` read char as int
in = Stdin.char! {}
in = Stdin.char!({})
if in == 255 then
# max char sent on EOF. Change to -1
Ok (Context.pushStack ctx (Number -1))
Ok(Context.push_stack(ctx, Number(-1)))
else
Ok (Context.pushStack ctx (Number (Num.intCast in)))
Ok(Context.push_stack(ctx, Number(Num.int_cast(in))))
0x3A ->
# `:` store to variable
(popCtx1, var) = popVariable? ctx
(popCtx2, n1) = Context.popStack? popCtx1
Ok { popCtx2 & vars: List.set popCtx2.vars (Variable.toIndex var) n1 }
(pop_ctx1, var) = pop_variable?(ctx)
(pop_ctx2, n1) = Context.pop_stack?(pop_ctx1)
Ok({ pop_ctx2 & vars: List.set(pop_ctx2.vars, Variable.to_index(var), n1) })
0x3B ->
# `;` load from variable
(popCtx, var) = popVariable? ctx
elem = List.get? popCtx.vars (Variable.toIndex var)
Ok (Context.pushStack popCtx elem)
(pop_ctx, var) = pop_variable?(ctx)
elem = List.get?(pop_ctx.vars, Variable.to_index(var))
Ok(Context.push_stack(pop_ctx, elem))
0x22 ->
# `"` string start
Ok { ctx & state: InString [] }
Ok({ ctx & state: InString([]) })
0x5B ->
# `"` string start
Ok { ctx & state: InLambda 0 [] }
Ok({ ctx & state: InLambda(0, []) })
0x7B ->
# `{` comment start
Ok { ctx & state: InComment }
Ok({ ctx & state: InComment })
x if isDigit x ->
x if is_digit(x) ->
# number start
Ok { ctx & state: InNumber (Num.intCast (x - 0x30)) }
Ok({ ctx & state: InNumber(Num.int_cast((x - 0x30))) })
x if isWhitespace x ->
Ok ctx
x if is_whitespace(x) ->
Ok(ctx)
x ->
when Variable.fromUtf8 x is
when Variable.from_utf8(x) is
# letters are variable names
Ok var ->
Ok (Context.pushStack ctx (Var var))
Ok(var) ->
Ok(Context.push_stack(ctx, Var(var)))
Err _ ->
data = Num.toStr (Num.intCast x)
Err(_) ->
data = Num.to_str(Num.int_cast(x))
Err (InvalidChar data)
Err(InvalidChar(data))
unaryOp : Context, (I32 -> I32) -> Result Context InterpreterErrors
unaryOp = \ctx, op ->
(popCtx, num) = popNumber? ctx
Ok (Context.pushStack popCtx (Number (op num)))
unary_op : Context, (I32 -> I32) -> Result Context InterpreterErrors
unary_op = \ctx, op ->
(pop_ctx, num) = pop_number?(ctx)
Ok(Context.push_stack(pop_ctx, Number(op(num))))
binaryOp : Context, (I32, I32 -> I32) -> Result Context InterpreterErrors
binaryOp = \ctx, op ->
(popCtx1, numR) = popNumber? ctx
(popCtx2, numL) = popNumber? popCtx1
Ok (Context.pushStack popCtx2 (Number (op numL numR)))
binary_op : Context, (I32, I32 -> I32) -> Result Context InterpreterErrors
binary_op = \ctx, op ->
(pop_ctx1, num_r) = pop_number?(ctx)
(pop_ctx2, num_l) = pop_number?(pop_ctx1)
Ok(Context.push_stack(pop_ctx2, Number(op(num_l, num_r))))
popNumber : Context -> Result (Context, I32) InterpreterErrors
popNumber = \ctx ->
when Context.popStack? ctx is
(popCtx, Number num) -> Ok (popCtx, num)
_ -> Err NoNumberOnStack
pop_number : Context -> Result (Context, I32) InterpreterErrors
pop_number = \ctx ->
when Context.pop_stack?(ctx) is
(pop_ctx, Number(num)) -> Ok((pop_ctx, num))
_ -> Err(NoNumberOnStack)
popLambda : Context -> Result (Context, List U8) InterpreterErrors
popLambda = \ctx ->
when Context.popStack? ctx is
(popCtx, Lambda bytes) -> Ok (popCtx, bytes)
_ -> Err NoLambdaOnStack
pop_lambda : Context -> Result (Context, List U8) InterpreterErrors
pop_lambda = \ctx ->
when Context.pop_stack?(ctx) is
(pop_ctx, Lambda(bytes)) -> Ok((pop_ctx, bytes))
_ -> Err(NoLambdaOnStack)
popVariable : Context -> Result (Context, Variable) InterpreterErrors
popVariable = \ctx ->
when Context.popStack? ctx is
(popCtx, Var var) -> Ok (popCtx, var)
_ -> Err NoVariableOnStack
pop_variable : Context -> Result (Context, Variable) InterpreterErrors
pop_variable = \ctx ->
when Context.pop_stack?(ctx) is
(pop_ctx, Var(var)) -> Ok((pop_ctx, var))
_ -> Err(NoVariableOnStack)
isDigit : U8 -> Bool
isDigit = \char ->
is_digit : U8 -> Bool
is_digit = \char ->
char
>= 0x30 # `0`
&& char
<= 0x39 # `0`
isWhitespace : U8 -> Bool
isWhitespace = \char ->
is_whitespace : U8 -> Bool
is_whitespace = \char ->
char
== 0xA # new line
|| char
@ -473,7 +473,7 @@ isWhitespace = \char ->
|| char
== 0x9 # tab
endUnexpected = \err ->
end_unexpected = \err ->
when err is
NoScope ->
NoScope

View file

@ -1,30 +1,30 @@
module [line!, withOpen!, chunk!, Handle]
module [line!, with_open!, chunk!, Handle]
import pf.Host
Handle := U64
line! : Handle => Str
line! = \@Handle handle ->
Host.getFileLine! handle
line! = \@Handle(handle) ->
Host.get_file_line!(handle)
chunk! : Handle => List U8
chunk! = \@Handle handle ->
Host.getFileBytes! handle
chunk! = \@Handle(handle) ->
Host.get_file_bytes!(handle)
open! : Str => Handle
open! = \path ->
Host.openFile! path
Host.open_file!(path)
|> @Handle
close! : Handle => {}
close! = \@Handle handle ->
Host.closeFile! handle
close! = \@Handle(handle) ->
Host.close_file!(handle)
withOpen! : Str, (Handle => a) => a
withOpen! = \path, callback! ->
handle = open! path
result = callback! handle
close! handle
with_open! : Str, (Handle => a) => a
with_open! = \path, callback! ->
handle = open!(path)
result = callback!(handle)
close!(handle)
result

View file

@ -1,19 +1,19 @@
hosted Host
exposes [openFile!, closeFile!, getFileLine!, getFileBytes!, putLine!, putRaw!, getLine!, getChar!]
exposes [open_file!, close_file!, get_file_line!, get_file_bytes!, put_line!, put_raw!, get_line!, get_char!]
imports []
openFile! : Str => U64
open_file! : Str => U64
closeFile! : U64 => {}
close_file! : U64 => {}
getFileLine! : U64 => Str
get_file_line! : U64 => Str
getFileBytes! : U64 => List U8
get_file_bytes! : U64 => List U8
putLine! : Str => {}
put_line! : Str => {}
putRaw! : Str => {}
put_raw! : Str => {}
getLine! : {} => Str
get_line! : {} => Str
getChar! : {} => U8
get_char! : {} => U8

View file

@ -4,8 +4,8 @@ import pf.Host
line! : {} => Str
line! = \{} ->
Host.getLine! {}
Host.get_line!({})
char! : {} => U8
char! = \{} ->
Host.getChar! {}
Host.get_char!({})

View file

@ -4,8 +4,8 @@ import pf.Host
line! : Str => {}
line! = \text ->
Host.putLine! text
Host.put_line!(text)
raw! : Str => {}
raw! = \text ->
Host.putRaw! text
Host.put_raw!(text)

View file

@ -3,7 +3,7 @@ platform "false-interpreter"
exposes []
packages {}
imports []
provides [mainForHost!]
provides [main_for_host!]
mainForHost! : Str => {}
mainForHost! = \file -> main! file
main_for_host! : Str => {}
main_for_host! = \file -> main!(file)

View file

@ -19,7 +19,7 @@ fn file_handles() -> &'static Mutex<HashMap<u64, BufReader<File>>> {
}
extern "C" {
#[link_name = "roc__mainForHost_1_exposed_generic"]
#[link_name = "roc__main_for_host_1_exposed_generic"]
fn roc_main(void: *const c_void, args: *mut RocStr);
}

View file

@ -1,4 +1,4 @@
app [main] { pf: "platform/main.roc" }
main : Str
main = Dep1.value1 {}
main = Dep1.value1({})

View file

@ -1,4 +1,4 @@
app [main] { pf: "platform/main.roc" }
main : Str
main = Dep1.value1 {}
main = Dep1.value1({})

View file

@ -1,4 +1,4 @@
app [main] { pf: "platform/main.roc" }
app [main] { pf: "platform/main.roc" }
main : Str
main = Dep1.value1 {}
main = Dep1.value1({})

View file

@ -3,4 +3,4 @@ module [value1]
import Dep2
value1 : {} -> Str
value1 = \_ -> Dep2.value2 {}
value1 = \_ -> Dep2.value2({})

View file

@ -3,4 +3,4 @@ app [main] { pf: platform "../../test-platform-simple-zig/main.roc" }
import Dep1
main : Str
main = Dep1.value1 {}
main = Dep1.value1({})

View file

@ -1,7 +1,7 @@
module [plainText, emText]
module [plain_text, em_text]
import Symbol exposing [Ident]
plainText = \str -> PlainText str
plain_text = \str -> PlainText(str)
emText = \str -> EmText str
em_text = \str -> EmText(str)

View file

@ -1,7 +1,7 @@
module [plainText, emText]
module [plain_text, em_text]
import Symbol exposing [Ident]
plainText = \str -> PlainText str
plain_text = \str -> PlainText(str)
emText = \str -> EmText str
em_text = \str -> EmText(str)

View file

@ -1,7 +1,7 @@
module [valueFromPkg]
module [value_from_pkg]
import cli.Foo
valueFromPkg = Foo.foo
value_from_pkg = Foo.foo
expect valueFromPkg == "Foo"
expect value_from_pkg == "Foo"

View file

@ -1,7 +1,7 @@
module [valueFromPkg]
module [value_from_pkg]
import pkg.Foo
valueFromPkg = Foo.foo
value_from_pkg = Foo.foo
expect valueFromPkg == "Foo"
expect value_from_pkg == "Foo"

View file

@ -5,4 +5,4 @@ app [main] {
import Module
main =
Module.valueFromPkg
Module.value_from_pkg

View file

@ -1,69 +1,69 @@
module { appId, protocol } -> [
baseUrl,
getUser,
getPost,
getPosts,
getPostComments,
getCompanies,
baseUrlAliased,
getPostAliased,
getUserSafe,
getPostComment,
module { app_id, protocol } -> [
base_url,
get_user,
get_post,
get_posts,
get_post_comments,
get_companies,
base_url_aliased,
get_post_aliased,
get_user_safe,
get_post_comment,
]
## value def referencing params
baseUrl : Str
baseUrl =
protocol "api.example.com/$(appId)"
base_url : Str
base_url =
protocol("api.example.com/$(app_id)")
## function def referencing params
getUser : U32 -> Str
getUser = \userId ->
get_user : U32 -> Str
get_user = \user_id ->
# purposefully not using baseUrl to test top-level fn referencing param
protocol "api.example.com/$(appId)/users/$(Num.toStr userId)"
protocol("api.example.com/$(app_id)/users/$(Num.to_str(user_id))")
## function def referencing top-level value
getPost : U32 -> Str
getPost = \postId ->
"$(baseUrl)/posts/$(Num.toStr postId)"
get_post : U32 -> Str
get_post = \post_id ->
"$(base_url)/posts/$(Num.to_str(post_id))"
## function def passing top-level function
getPosts : List U32 -> List Str
getPosts = \ids ->
List.map ids getPost
get_posts : List U32 -> List Str
get_posts = \ids ->
List.map(ids, get_post)
## function def calling top-level function
getPostComments : U32 -> Str
getPostComments = \postId ->
"$(getPost postId)/comments"
get_post_comments : U32 -> Str
get_post_comments = \post_id ->
"$(get_post(post_id))/comments"
## function def passing nested function
getCompanies : List U32 -> List Str
getCompanies = \ids ->
getCompany = \id ->
protocol "api.example.com/$(appId)/companies/$(Num.toStr id)"
get_companies : List U32 -> List Str
get_companies = \ids ->
get_company = \id ->
protocol("api.example.com/$(app_id)/companies/$(Num.to_str(id))")
List.map ids getCompany
List.map(ids, get_company)
## aliasing top-level value
baseUrlAliased : Str
baseUrlAliased =
baseUrl
base_url_aliased : Str
base_url_aliased =
base_url
## aliasing top-level fn
getPostAliased : U32 -> Str
getPostAliased =
getPost
get_post_aliased : U32 -> Str
get_post_aliased =
get_post
## top-level value returning functions
getUserSafe : U32 -> Str
getUserSafe =
if Str.startsWith appId "prod_" then
\id -> "$(getUser id)?safe=true"
get_user_safe : U32 -> Str
get_user_safe =
if Str.starts_with(app_id, "prod_") then
\id -> "$(get_user(id))?safe=true"
else
getUser
get_user
## two-argument function
getPostComment : U32, U32 -> Str
getPostComment = \postId, commentId ->
"$(getPost postId)/comments/$(Num.toStr commentId)"
get_post_comment : U32, U32 -> Str
get_post_comment = \post_id, comment_id ->
"$(get_post(post_id))/comments/$(Num.to_str(comment_id))"

View file

@ -1,9 +1,9 @@
module { appId } -> [fnAnnotatedAsValue, missingArg]
module { app_id } -> [fn_annotated_as_value, missing_arg]
fnAnnotatedAsValue : Str
fnAnnotatedAsValue = \postId, commentId ->
"/posts/$(postId)/comments/$(Num.toStr commentId)"
fn_annotated_as_value : Str
fn_annotated_as_value = \post_id, comment_id ->
"/posts/$(post_id)/comments/$(Num.to_str(comment_id))"
missingArg : Str -> Str
missingArg = \postId, _ ->
"/posts/$(postId)/comments"
missing_arg : Str -> Str
missing_arg = \post_id, _ ->
"/posts/$(post_id)/comments"

View file

@ -3,12 +3,12 @@ module []
https = \url -> "https://$(url)"
expect
import Api { appId: "one", protocol: https }
Api.baseUrl == "https://api.example.com/one"
import Api { app_id: "one", protocol: https }
Api.base_url == "https://api.example.com/one"
expect
import Api { appId: "two", protocol: https }
Api.getUser 1 == "https://api.example.com/two/users/1"
import Api { app_id: "two", protocol: https }
Api.get_user(1) == "https://api.example.com/two/users/1"
expect
import NoParams

View file

@ -1,7 +1,7 @@
module { echo } -> [menu]
menu = \name ->
indirect name
indirect(name)
indirect = \name ->
echo "Hi, $(name)!"
echo("Hi, $(name)!")

View file

@ -1,4 +1,4 @@
module { sendHttpReq, getEnvVar } -> [hi]
module { send_http_req, get_env_var } -> [hi]
hi : Str
hi =

View file

@ -2,58 +2,58 @@ app [main] {
pf: platform "../test-platform-simple-zig/main.roc",
}
import Api { appId: "one", protocol: https } as App1
import Api { appId: "two", protocol: http } as App2
import Api { appId: "prod_1", protocol: http } as Prod
import Api { app_id: "one", protocol: https } as App1
import Api { app_id: "two", protocol: http } as App2
import Api { app_id: "prod_1", protocol: http } as Prod
https = \url -> "https://$(url)"
http = \url -> "http://$(url)"
usersApp1 =
users_app1 =
# pass top-level fn in a module with params
List.map [1, 2, 3] App1.getUser
List.map([1, 2, 3], App1.get_user)
main =
app3Id = "three"
app3_id = "three"
import Api { appId: app3Id, protocol: https } as App3
import Api { app_id: app3_id, protocol: https } as App3
getUserApp3Nested = \userId ->
get_user_app3_nested = \user_id ->
# use captured params def
App3.getUser userId
App3.get_user(user_id)
usersApp3Passed =
users_app3_passed =
# pass top-level fn in a nested def
List.map [1, 2, 3] App3.getUser
List.map([1, 2, 3], App3.get_user)
"""
App1.baseUrl: $(App1.baseUrl)
App2.baseUrl: $(App2.baseUrl)
App3.baseUrl: $(App3.baseUrl)
App1.getUser 1: $(App1.getUser 1)
App2.getUser 2: $(App2.getUser 2)
App3.getUser 3: $(App3.getUser 3)
App1.getPost 1: $(App1.getPost 1)
App2.getPost 2: $(App2.getPost 2)
App3.getPost 3: $(App3.getPost 3)
App1.getPosts [1, 2]: $(Inspect.toStr (App1.getPosts [1, 2]))
App2.getPosts [3, 4]: $(Inspect.toStr (App2.getPosts [3, 4]))
App2.getPosts [5, 6]: $(Inspect.toStr (App2.getPosts [5, 6]))
App1.getPostComments 1: $(App1.getPostComments 1)
App2.getPostComments 2: $(App2.getPostComments 2)
App2.getPostComments 3: $(App2.getPostComments 3)
App1.getCompanies [1, 2]: $(Inspect.toStr (App1.getCompanies [1, 2]))
App2.getCompanies [3, 4]: $(Inspect.toStr (App2.getCompanies [3, 4]))
App2.getCompanies [5, 6]: $(Inspect.toStr (App2.getCompanies [5, 6]))
App1.getPostAliased 1: $(App1.getPostAliased 1)
App2.getPostAliased 2: $(App2.getPostAliased 2)
App3.getPostAliased 3: $(App3.getPostAliased 3)
App1.baseUrlAliased: $(App1.baseUrlAliased)
App2.baseUrlAliased: $(App2.baseUrlAliased)
App3.baseUrlAliased: $(App3.baseUrlAliased)
App1.getUserSafe 1: $(App1.getUserSafe 1)
Prod.getUserSafe 2: $(Prod.getUserSafe 2)
usersApp1: $(Inspect.toStr usersApp1)
getUserApp3Nested 3: $(getUserApp3Nested 3)
usersApp3Passed: $(Inspect.toStr usersApp3Passed)
App1.baseUrl: $(App1.base_url)
App2.baseUrl: $(App2.base_url)
App3.baseUrl: $(App3.base_url)
App1.getUser 1: $(App1.get_user(1))
App2.getUser 2: $(App2.get_user(2))
App3.getUser 3: $(App3.get_user(3))
App1.getPost 1: $(App1.get_post(1))
App2.getPost 2: $(App2.get_post(2))
App3.getPost 3: $(App3.get_post(3))
App1.getPosts [1, 2]: $(Inspect.to_str(App1.get_posts([1, 2])))
App2.getPosts [3, 4]: $(Inspect.to_str(App2.get_posts([3, 4])))
App2.getPosts [5, 6]: $(Inspect.to_str(App2.get_posts([5, 6])))
App1.getPostComments 1: $(App1.get_post_comments(1))
App2.getPostComments 2: $(App2.get_post_comments(2))
App2.getPostComments 3: $(App2.get_post_comments(3))
App1.getCompanies [1, 2]: $(Inspect.to_str(App1.get_companies([1, 2])))
App2.getCompanies [3, 4]: $(Inspect.to_str(App2.get_companies([3, 4])))
App2.getCompanies [5, 6]: $(Inspect.to_str(App2.get_companies([5, 6])))
App1.getPostAliased 1: $(App1.get_post_aliased(1))
App2.getPostAliased 2: $(App2.get_post_aliased(2))
App3.getPostAliased 3: $(App3.get_post_aliased(3))
App1.baseUrlAliased: $(App1.base_url_aliased)
App2.baseUrlAliased: $(App2.base_url_aliased)
App3.baseUrlAliased: $(App3.base_url_aliased)
App1.getUserSafe 1: $(App1.get_user_safe(1))
Prod.getUserSafe 2: $(Prod.get_user_safe(2))
usersApp1: $(Inspect.to_str(users_app1))
getUserApp3Nested 3: $(get_user_app3_nested(3))
usersApp3Passed: $(Inspect.to_str(users_app3_passed))
"""

View file

@ -2,16 +2,16 @@ app [main] {
pf: platform "../test-platform-simple-zig/main.roc",
}
import Api { appId: "one", protocol: https }
import Api { app_id: "one", protocol: https }
https = \url -> "https://$(url)"
main =
"""
# too many args
$(Api.getUser 1 2)
$(Api.baseUrl 1)
$(Api.get_user(1, 2))
$(Api.base_url(1))
# too few args
$(Api.getPostComment 1)
$(Api.get_post_comment(1))
"""

View file

@ -2,7 +2,7 @@ app [main] {
pf: platform "../test-platform-simple-zig/main.roc",
}
import BadAnn { appId: "one" }
import BadAnn { app_id: "one" }
main =
""

View file

@ -9,6 +9,6 @@ import Alias { passed: Stdin.line } as In
import Alias { passed: Stdout.line } as Out
main =
Out.exposed! "Write something:"
Out.exposed!("Write something:")
input = In.exposed!
Out.exposed! input
Out.exposed!(input)

View file

@ -1,3 +1,3 @@
module { stdout! } -> [log!]
log! = \msg, level -> stdout! "$(level):$(msg)"
log! = \msg, level -> stdout!("$(level):$(msg)")

View file

@ -2,10 +2,10 @@ app [main] {
cli: platform "https://github.com/roc-lang/basic-cli/releases/download/0.17.0/lZFLstMUCUvd5bjnnpYromZJXkQUrdhbva4xdBInicE.tar.br",
}
import Alias { passed: Task.ok {} }
import Alias { passed: Task.ok({}) }
main =
Task.loop! {} loop
Task.loop!({}, loop)
loop = \{} ->
Task.map Alias.exposed \x -> Done x
Task.map(Alias.exposed, \x -> Done(x))

View file

@ -3,8 +3,8 @@ app [main] {
}
import MultilineParams {
sendHttpReq: \_ -> crash "todo",
getEnvVar: \_ -> crash "todo",
send_http_req: \_ -> crash("todo"),
get_env_var: \_ -> crash("todo"),
}
main =

View file

@ -1,7 +1,7 @@
app [main] { pf: platform "https://github.com/roc-lang/basic-cli/releases/download/0.17.0/lZFLstMUCUvd5bjnnpYromZJXkQUrdhbva4xdBInicE.tar.br" }
import pf.Stdout
import Menu { echo: \str -> Stdout.line str }
import Menu { echo: \str -> Stdout.line(str) }
main =
Menu.menu "Agus"
Menu.menu("Agus")

View file

@ -2,11 +2,9 @@ app [main] {
pf: platform "../test-platform-simple-zig/main.roc",
}
import Api { appId: "one", protocol: https }
import Api { app_id: "one", protocol: https }
https = \url -> "https://$(url)"
main =
"""
$(Api.getPost)
"""
"$(Api.get_post)"

View file

@ -1,20 +1,20 @@
app [exposed1, exposed2, add1, sub1] { pf: platform "platform/main.roc" }
exposed1 = \n -> fib n 0 1
exposed1 = \n -> fib(n, 0, 1)
fib = \n, a, b ->
if n == 0 then
a
else
fib (n - 1) b (a + b)
fib((n - 1), b, (a + b))
exposed2 = \n -> fact n 1
exposed2 = \n -> fact(n, 1)
fact = \n, x ->
if n == 0 then
x
else
fact (n - 1) (n * x)
fact((n - 1), (n * x))
add1 = \n -> n + 1
sub1 = \n -> n - 1

View file

@ -10,8 +10,8 @@ const maxInt = std.math.maxInt;
const mem = std.mem;
const Allocator = mem.Allocator;
extern fn roc__exposedForHost1_1_exposed(i64) i64;
extern fn roc__exposedForHost2_1_exposed(i64) i64;
extern fn roc__exposed_for_host1_1_exposed(i64) i64;
extern fn roc__exposed_for_host2_1_exposed(i64) i64;
const Align = 2 * @alignOf(usize);
extern fn malloc(size: usize) callconv(.C) ?*align(Align) anyopaque;
@ -109,8 +109,8 @@ comptime {
pub export fn main() u8 {
const stdout = std.io.getStdOut().writer();
const result = roc__exposedForHost1_1_exposed(10);
const result2 = roc__exposedForHost2_1_exposed(10);
const result = roc__exposed_for_host1_1_exposed(10);
const result2 = roc__exposed_for_host2_1_exposed(10);
stdout.print("{d}\n", .{result}) catch unreachable;
stdout.print("{d}\n", .{result2}) catch unreachable;

View file

@ -3,10 +3,10 @@ platform "multiple_exposed"
exposes []
packages {}
imports []
provides [exposedForHost1, exposedForHost2]
provides [exposed_for_host1, exposed_for_host2]
exposedForHost1 : I64 -> I64
exposedForHost1 = \a -> exposed1 a |> sub1 |> add1
exposed_for_host1 : I64 -> I64
exposed_for_host1 = \a -> exposed1(a) |> sub1 |> add1
exposedForHost2 : I64 -> I64
exposedForHost2 = \a -> exposed2 a |> add1 |> sub1
exposed_for_host2 : I64 -> I64
exposed_for_host2 = \a -> exposed2(a) |> add1 |> sub1

View file

@ -101,7 +101,7 @@ comptime {
const mem = std.mem;
const Allocator = mem.Allocator;
extern fn roc__mainForHost_1_exposed_generic(*RocStr) void;
extern fn roc__main_for_host_1_exposed_generic(*RocStr) void;
const Unit = extern struct {};
@ -110,7 +110,7 @@ pub export fn main() u8 {
// actually call roc to populate the callresult
var callresult = RocStr.empty();
roc__mainForHost_1_exposed_generic(&callresult);
roc__main_for_host_1_exposed_generic(&callresult);
// stdout the result
stdout.print("{s}", .{callresult.asSlice()}) catch unreachable;

View file

@ -5,10 +5,10 @@ platform "test"
foo: "../foo/main.roc",
}
imports []
provides [mainForHost]
provides [main_for_host]
import foo.Foo
mainForHost : Str
mainForHost =
main_for_host : Str
main_for_host =
"$(main) $(Foo.foo)"

View file

@ -1,7 +1,7 @@
hosted Effect
exposes [putLine!, getLine!]
exposes [put_line!, get_line!]
imports []
putLine! : Str => {}
put_line! : Str => {}
getLine! : {} => Str
get_line! : {} => Str

View file

@ -5,6 +5,6 @@ import pf.Effect
# just a stubbed app for building the test platform
main! = \{} ->
Effect.putLine! ""
Effect.put_line!("")
{}

View file

@ -10,8 +10,8 @@ const maxInt = std.math.maxInt;
const mem = std.mem;
const Allocator = mem.Allocator;
extern fn roc__mainForHost_1_exposed_generic([*]u8) void;
extern fn roc__mainForHost_1_exposed_size() i64;
extern fn roc__main_for_host_1_exposed_generic([*]u8) void;
extern fn roc__main_for_host_1_exposed_size() i64;
const Align = 2 * @alignOf(usize);
extern fn malloc(size: usize) callconv(.C) ?*align(Align) anyopaque;
@ -111,7 +111,7 @@ pub export fn main() u8 {
const allocator = std.heap.page_allocator;
// NOTE the return size can be zero, which will segfault. Always allocate at least 8 bytes
const size = @max(8, @as(usize, @intCast(roc__mainForHost_1_exposed_size())));
const size = @max(8, @as(usize, @intCast(roc__main_for_host_1_exposed_size())));
const raw_output = allocator.alignedAlloc(u8, @alignOf(u64), @as(usize, @intCast(size))) catch unreachable;
const output = @as([*]u8, @ptrCast(raw_output));
@ -119,16 +119,16 @@ pub export fn main() u8 {
allocator.free(raw_output);
}
roc__mainForHost_1_exposed_generic(output);
roc__main_for_host_1_exposed_generic(output);
return 0;
}
pub export fn roc_fx_getLine() str.RocStr {
return roc_fx_getLine_help() catch return str.RocStr.empty();
pub export fn roc_fx_get_line() str.RocStr {
return roc_fx_get_line_help() catch return str.RocStr.empty();
}
fn roc_fx_getLine_help() !RocStr {
fn roc_fx_get_line_help() !RocStr {
const stdin = std.io.getStdIn().reader();
var buf: [400]u8 = undefined;
@ -137,7 +137,7 @@ fn roc_fx_getLine_help() !RocStr {
return str.RocStr.init(@as([*]const u8, @ptrCast(line)), line.len);
}
pub export fn roc_fx_putLine(rocPath: *str.RocStr) i64 {
pub export fn roc_fx_put_line(rocPath: *str.RocStr) i64 {
const stdout = std.io.getStdOut().writer();
for (rocPath.asSlice()) |char| {
@ -155,8 +155,8 @@ const GetInt = extern struct {
is_error: bool,
};
pub export fn roc_fx_getInt() GetInt {
if (roc_fx_getInt_help()) |value| {
pub export fn roc_fx_get_int() GetInt {
if (roc_fx_get_int_help()) |value| {
const get_int = GetInt{ .is_error = false, .value = value, .error_code = 0 };
return get_int;
} else |err| switch (err) {
@ -171,7 +171,7 @@ pub export fn roc_fx_getInt() GetInt {
return 0;
}
fn roc_fx_getInt_help() !i64 {
fn roc_fx_get_int_help() !i64 {
const stdin = std.io.getStdIn().reader();
var buf: [40]u8 = undefined;

View file

@ -3,7 +3,7 @@ platform "effects"
exposes []
packages {}
imports []
provides [mainForHost!]
provides [main_for_host!]
mainForHost! : {} => {}
mainForHost! = \{} -> main! {}
main_for_host! : {} => {}
main_for_host! = \{} -> main!({})

View file

@ -9,7 +9,7 @@ const expect = testing.expect;
const mem = std.mem;
const Allocator = mem.Allocator;
extern fn roc__mainForHost_1_exposed_generic(*RocStr) void;
extern fn roc__main_for_host_1_exposed_generic(*RocStr) void;
const Align = 2 * @alignOf(usize);
extern fn malloc(size: usize) callconv(.C) ?*align(Align) anyopaque;
@ -96,7 +96,7 @@ pub export fn main() i32 {
// actually call roc to populate the callresult
var callresult = RocStr.empty();
roc__mainForHost_1_exposed_generic(&callresult);
roc__main_for_host_1_exposed_generic(&callresult);
// stdout the result
stdout.print("{s}\n", .{callresult.asSlice()}) catch unreachable;

View file

@ -3,7 +3,7 @@ platform ""
exposes []
packages {}
imports []
provides [mainForHost]
provides [main_for_host]
mainForHost : Str
mainForHost = main
main_for_host : Str
main_for_host = main

View file

@ -7,6 +7,6 @@ Model : Str
main : Program Model
main = {
init: \{} -> "Hello World",
update: \model, new -> Str.concat model new,
view: \model -> Str.concat model "!",
update: \model, new -> Str.concat(model, new),
view: \model -> Str.concat(model, "!"),
}

View file

@ -12,18 +12,18 @@ const Allocator = mem.Allocator;
const Program = extern struct { init: RocStr, update: Unit, view: Unit };
extern fn roc__mainForHost_1_exposed() Program;
extern fn roc__mainForHost_size() i64;
extern fn roc__main_for_host_1_exposed() Program;
extern fn roc__main_for_host_size() i64;
const ConstModel = [*]const u8;
const MutModel = [*]u8;
extern fn roc__mainForHost_0_caller([*]u8, [*]u8, MutModel) void;
extern fn roc__mainForHost_0_size() i64;
extern fn roc__mainForHost_0_result_size() i64;
extern fn roc__main_for_host_0_caller([*]u8, [*]u8, MutModel) void;
extern fn roc__main_for_host_0_size() i64;
extern fn roc__main_for_host_0_result_size() i64;
fn allocate_model(allocator: *Allocator) MutModel {
const size = roc__mainForHost_0_result_size();
const size = roc__main_for_host_0_result_size();
const raw_output = allocator.alignedAlloc(u8, @alignOf(u64), @as(usize, @intCast(size))) catch unreachable;
const output = @as([*]u8, @ptrCast(raw_output));
@ -34,33 +34,33 @@ fn init(allocator: *Allocator) ConstModel {
const closure: [*]u8 = undefined;
const output = allocate_model(allocator);
roc__mainForHost_0_caller(closure, closure, output);
roc__main_for_host_0_caller(closure, closure, output);
return output;
}
extern fn roc__mainForHost_1_caller(ConstModel, *const RocStr, [*]u8, MutModel) void;
extern fn roc__mainForHost_1_size() i64;
extern fn roc__mainForHost_1_result_size() i64;
extern fn roc__main_for_host_1_caller(ConstModel, *const RocStr, [*]u8, MutModel) void;
extern fn roc__main_for_host_1_size() i64;
extern fn roc__main_for_host_1_result_size() i64;
fn update(allocator: *Allocator, model: ConstModel, msg: RocStr) ConstModel {
const closure: [*]u8 = undefined;
const output = allocate_model(allocator);
roc__mainForHost_1_caller(model, &msg, closure, output);
roc__main_for_host_1_caller(model, &msg, closure, output);
return output;
}
extern fn roc__mainForHost_2_caller(ConstModel, [*]u8, *RocStr) void;
extern fn roc__mainForHost_2_size() i64;
extern fn roc__mainForHost_2_result_size() i64;
extern fn roc__main_for_host_2_caller(ConstModel, [*]u8, *RocStr) void;
extern fn roc__main_for_host_2_size() i64;
extern fn roc__main_for_host_2_result_size() i64;
fn view(input: ConstModel) RocStr {
const closure: [*]u8 = undefined;
var output: RocStr = undefined;
roc__mainForHost_2_caller(input, closure, &output);
roc__main_for_host_2_caller(input, closure, &output);
return output;
}
@ -171,7 +171,7 @@ comptime {
const Unit = extern struct {};
pub export fn main() callconv(.C) u8 {
const program = roc__mainForHost_1_exposed();
const program = roc__main_for_host_1_exposed();
call_the_closure(program);
@ -206,7 +206,7 @@ fn call_the_closure(program: Program) void {
return;
}
pub export fn roc_fx_putInt(int: i64) i64 {
pub export fn roc_fx_put_int(int: i64) i64 {
const stdout = std.io.getStdOut().writer();
stdout.print("{d}", .{int}) catch unreachable;
@ -216,7 +216,7 @@ pub export fn roc_fx_putInt(int: i64) i64 {
return 0;
}
export fn roc_fx_putLine(rocPath: str.RocStr) callconv(.C) void {
export fn roc_fx_put_line(rocPath: str.RocStr) callconv(.C) void {
const stdout = std.io.getStdOut().writer();
for (rocPath.asSlice()) |char| {
@ -234,14 +234,14 @@ const GetInt = extern struct {
comptime {
if (@sizeOf(usize) == 8) {
@export(roc_fx_getInt_64bit, .{ .name = "roc_fx_getInt" });
@export(roc_fx_get_int_64bit, .{ .name = "roc_fx_get_int" });
} else {
@export(roc_fx_getInt_32bit, .{ .name = "roc_fx_getInt" });
@export(roc_fx_get_int_32bit, .{ .name = "roc_fx_get_int" });
}
}
fn roc_fx_getInt_64bit() callconv(.C) GetInt {
if (roc_fx_getInt_help()) |value| {
fn roc_fx_get_int_64bit() callconv(.C) GetInt {
if (roc_fx_get_int_help()) |value| {
const get_int = GetInt{ .is_error = false, .value = value, .error_code = false };
return get_int;
} else |err| switch (err) {
@ -256,8 +256,8 @@ fn roc_fx_getInt_64bit() callconv(.C) GetInt {
return 0;
}
fn roc_fx_getInt_32bit(output: *GetInt) callconv(.C) void {
if (roc_fx_getInt_help()) |value| {
fn roc_fx_get_int_32bit(output: *GetInt) callconv(.C) void {
if (roc_fx_get_int_help()) |value| {
const get_int = GetInt{ .is_error = false, .value = value, .error_code = false };
output.* = get_int;
} else |err| switch (err) {
@ -272,7 +272,7 @@ fn roc_fx_getInt_32bit(output: *GetInt) callconv(.C) void {
return;
}
fn roc_fx_getInt_help() !i64 {
fn roc_fx_get_int_help() !i64 {
const stdin = std.io.getStdIn().reader();
var buf: [40]u8 = undefined;

View file

@ -3,7 +3,7 @@ platform "tui"
exposes []
packages {}
imports []
provides [mainForHost]
provides [main_for_host]
mainForHost : { init : ({} -> Model) as Init, update : (Model, Str -> Model) as Update, view : (Model -> Str) as View }
mainForHost = main
main_for_host : { init : ({} -> Model) as Init, update : (Model, Str -> Model) as Update, view : (Model -> Str) as View }
main_for_host = main

View file

@ -28,7 +28,7 @@ pub const MOD_APP: ModName = ModName(b"UserApp");
pub const STATIC_STR_NAME: ConstName = ConstName(&Symbol::STR_ALIAS_ANALYSIS_STATIC.to_ne_bytes());
pub const STATIC_LIST_NAME: ConstName = ConstName(b"THIS IS A STATIC LIST");
const DEFAULT_ENTRY_POINT_NAME: &[u8] = b"mainForHost";
const DEFAULT_ENTRY_POINT_NAME: &[u8] = b"main_for_host";
pub fn func_name_bytes(proc: &Proc) -> [u8; SIZE] {
let bytes = func_name_bytes_help(

View file

@ -144,7 +144,7 @@ pub const RocDec = extern struct {
return (c -% 48) <= 9;
}
pub fn toStr(self: RocDec) RocStr {
pub fn to_str(self: RocDec) RocStr {
// Special case
if (self.num == 0) {
return RocStr.init("0.0", 3);
@ -1031,97 +1031,97 @@ test "fromStr: .123.1" {
try expectEqual(dec, null);
}
test "toStr: 100.00" {
test "to_str: 100.00" {
var dec: RocDec = .{ .num = 100000000000000000000 };
var res_roc_str = dec.toStr();
var res_roc_str = dec.to_str();
const res_slice: []const u8 = "100.0"[0..];
try expectEqualSlices(u8, res_slice, res_roc_str.asSlice());
}
test "toStr: 123.45" {
test "to_str: 123.45" {
var dec: RocDec = .{ .num = 123450000000000000000 };
var res_roc_str = dec.toStr();
var res_roc_str = dec.to_str();
const res_slice: []const u8 = "123.45"[0..];
try expectEqualSlices(u8, res_slice, res_roc_str.asSlice());
}
test "toStr: -123.45" {
test "to_str: -123.45" {
var dec: RocDec = .{ .num = -123450000000000000000 };
var res_roc_str = dec.toStr();
var res_roc_str = dec.to_str();
const res_slice: []const u8 = "-123.45"[0..];
try expectEqualSlices(u8, res_slice, res_roc_str.asSlice());
}
test "toStr: 123.0" {
test "to_str: 123.0" {
var dec: RocDec = .{ .num = 123000000000000000000 };
var res_roc_str = dec.toStr();
var res_roc_str = dec.to_str();
const res_slice: []const u8 = "123.0"[0..];
try expectEqualSlices(u8, res_slice, res_roc_str.asSlice());
}
test "toStr: -123.0" {
test "to_str: -123.0" {
var dec: RocDec = .{ .num = -123000000000000000000 };
var res_roc_str = dec.toStr();
var res_roc_str = dec.to_str();
const res_slice: []const u8 = "-123.0"[0..];
try expectEqualSlices(u8, res_slice, res_roc_str.asSlice());
}
test "toStr: 0.45" {
test "to_str: 0.45" {
var dec: RocDec = .{ .num = 450000000000000000 };
var res_roc_str = dec.toStr();
var res_roc_str = dec.to_str();
const res_slice: []const u8 = "0.45"[0..];
try expectEqualSlices(u8, res_slice, res_roc_str.asSlice());
}
test "toStr: -0.45" {
test "to_str: -0.45" {
var dec: RocDec = .{ .num = -450000000000000000 };
var res_roc_str = dec.toStr();
var res_roc_str = dec.to_str();
const res_slice: []const u8 = "-0.45"[0..];
try expectEqualSlices(u8, res_slice, res_roc_str.asSlice());
}
test "toStr: 0.00045" {
test "to_str: 0.00045" {
var dec: RocDec = .{ .num = 450000000000000 };
var res_roc_str = dec.toStr();
var res_roc_str = dec.to_str();
const res_slice: []const u8 = "0.00045"[0..];
try expectEqualSlices(u8, res_slice, res_roc_str.asSlice());
}
test "toStr: -0.00045" {
test "to_str: -0.00045" {
var dec: RocDec = .{ .num = -450000000000000 };
var res_roc_str = dec.toStr();
var res_roc_str = dec.to_str();
const res_slice: []const u8 = "-0.00045"[0..];
try expectEqualSlices(u8, res_slice, res_roc_str.asSlice());
}
test "toStr: -111.123456" {
test "to_str: -111.123456" {
var dec: RocDec = .{ .num = -111123456000000000000 };
var res_roc_str = dec.toStr();
var res_roc_str = dec.to_str();
const res_slice: []const u8 = "-111.123456"[0..];
try expectEqualSlices(u8, res_slice, res_roc_str.asSlice());
}
test "toStr: 123.1111111" {
test "to_str: 123.1111111" {
var dec: RocDec = .{ .num = 123111111100000000000 };
var res_roc_str = dec.toStr();
var res_roc_str = dec.to_str();
const res_slice: []const u8 = "123.1111111"[0..];
try expectEqualSlices(u8, res_slice, res_roc_str.asSlice());
}
test "toStr: 123.1111111111111 (big str)" {
test "to_str: 123.1111111111111 (big str)" {
var dec: RocDec = .{ .num = 123111111111111000000 };
var res_roc_str = dec.toStr();
var res_roc_str = dec.to_str();
errdefer res_roc_str.decref();
defer res_roc_str.decref();
@ -1129,9 +1129,9 @@ test "toStr: 123.1111111111111 (big str)" {
try expectEqualSlices(u8, res_slice, res_roc_str.asSlice());
}
test "toStr: 123.111111111111444444 (max number of decimal places)" {
test "to_str: 123.111111111111444444 (max number of decimal places)" {
var dec: RocDec = .{ .num = 123111111111111444444 };
var res_roc_str = dec.toStr();
var res_roc_str = dec.to_str();
errdefer res_roc_str.decref();
defer res_roc_str.decref();
@ -1139,9 +1139,9 @@ test "toStr: 123.111111111111444444 (max number of decimal places)" {
try expectEqualSlices(u8, res_slice, res_roc_str.asSlice());
}
test "toStr: 12345678912345678912.111111111111111111 (max number of digits)" {
test "to_str: 12345678912345678912.111111111111111111 (max number of digits)" {
var dec: RocDec = .{ .num = 12345678912345678912111111111111111111 };
var res_roc_str = dec.toStr();
var res_roc_str = dec.to_str();
errdefer res_roc_str.decref();
defer res_roc_str.decref();
@ -1149,9 +1149,9 @@ test "toStr: 12345678912345678912.111111111111111111 (max number of digits)" {
try expectEqualSlices(u8, res_slice, res_roc_str.asSlice());
}
test "toStr: std.math.maxInt" {
test "to_str: std.math.maxInt" {
var dec: RocDec = .{ .num = std.math.maxInt(i128) };
var res_roc_str = dec.toStr();
var res_roc_str = dec.to_str();
errdefer res_roc_str.decref();
defer res_roc_str.decref();
@ -1159,9 +1159,9 @@ test "toStr: std.math.maxInt" {
try expectEqualSlices(u8, res_slice, res_roc_str.asSlice());
}
test "toStr: std.math.minInt" {
test "to_str: std.math.minInt" {
var dec: RocDec = .{ .num = std.math.minInt(i128) };
var res_roc_str = dec.toStr();
var res_roc_str = dec.to_str();
errdefer res_roc_str.decref();
defer res_roc_str.decref();
@ -1169,9 +1169,9 @@ test "toStr: std.math.minInt" {
try expectEqualSlices(u8, res_slice, res_roc_str.asSlice());
}
test "toStr: 0" {
test "to_str: 0" {
var dec: RocDec = .{ .num = 0 };
var res_roc_str = dec.toStr();
var res_roc_str = dec.to_str();
const res_slice: []const u8 = "0.0"[0..];
try expectEqualSlices(u8, res_slice, res_roc_str.asSlice());
@ -1443,8 +1443,8 @@ pub fn fromStr(arg: RocStr) callconv(.C) num_.NumParseResult(i128) {
}
}
pub fn toStr(arg: RocDec) callconv(.C) RocStr {
return @call(.always_inline, RocDec.toStr, .{arg});
pub fn to_str(arg: RocDec) callconv(.C) RocStr {
return @call(.always_inline, RocDec.to_str, .{arg});
}
pub fn fromF64C(arg: f64) callconv(.C) i128 {

View file

@ -50,7 +50,7 @@ comptime {
exportDecFn(dec.toF64, "to_f64");
exportDecFn(dec.toI128, "to_i128");
exportDecFn(dec.fromI128, "from_i128");
exportDecFn(dec.toStr, "to_str");
exportDecFn(dec.to_str, "to_str");
for (INTEGERS) |T| {
dec.exportFromInt(T, ROC_BUILTINS ++ ".dec.from_int.");

View file

@ -199,8 +199,8 @@ import Result exposing [Result]
## ends up having the type `U64`.
##
## Sometimes number literals don't become more specific. For example,
## the `Num.toStr` function has the type `Num * -> Str`. This means that
## when calling `Num.toStr(5 + 6)`, the expression `5 + 6`
## the `Num.to_str` function has the type `Num * -> Str`. This means that
## when calling `Num.to_str(5 + 6)`, the expression `5 + 6`
## still has the type `Num *`. When this happens, `Num *` defaults to
## being an [I64] - so this addition expression would overflow
## if either 5 or 6 were replaced with a number big enough to cause
@ -209,7 +209,7 @@ import Result exposing [Result]
## If this default of [I64] is not big enough for your purposes,
## you can add an `i128` to the end of the number literal, like so:
## ```roc
## Num.toStr(5_000_000_000i128)
## Num.to_str(5_000_000_000i128)
## ```
## This `i128` suffix specifies that you want this number literal to be
## an [I128] instead of a `Num *`. All the other numeric types have

Some files were not shown because too many files have changed in this diff Show more