Merge pull request #3306 from rtfeldman/collect-specialization-lambda-sets-during-unification

Collect specialization lambda sets during unification
This commit is contained in:
Ayaz 2022-06-23 17:53:46 -04:00 committed by GitHub
commit cd1f76aaab
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
5 changed files with 253 additions and 166 deletions

View file

@ -145,6 +145,7 @@ pub fn unify(
vars: _,
must_implement_ability: _,
lambda_sets_to_specialize,
extra_metadata: _,
} => {
let mut pools = Pools::default();

View file

@ -652,7 +652,7 @@ pub fn resolve_ability_specialization(
let signature_var = member_def.signature_var();
instantiate_rigids(subs, signature_var);
let (_vars, must_implement_ability, _lambda_sets_to_specialize) =
let (_vars, must_implement_ability, _lambda_sets_to_specialize, _meta) =
unify(subs, specialization_var, signature_var, Mode::EQ).expect_success(
"If resolving a specialization, the specialization must be known to typecheck.",
);

View file

@ -9,7 +9,7 @@ use roc_can::constraint::{Constraints, Cycle, LetConstraint, OpportunisticResolv
use roc_can::expected::{Expected, PExpected};
use roc_can::expr::PendingDerives;
use roc_collections::all::MutMap;
use roc_collections::{VecMap, VecSet};
use roc_collections::VecSet;
use roc_debug_flags::dbg_do;
#[cfg(debug_assertions)]
use roc_debug_flags::ROC_VERIFY_RIGID_LET_GENERALIZED;
@ -29,7 +29,10 @@ use roc_types::types::{
gather_fields_unsorted_iter, AliasCommon, AliasKind, Category, ErrorType, OptAbleType,
OptAbleVar, PatternCategory, Reason, TypeExtension, Uls,
};
use roc_unify::unify::{unify, Mode, Obligated, Unified::*};
use roc_unify::unify::{
unify, unify_introduced_ability_specialization, Mode, Obligated, SpecializationLsetCollector,
Unified::*,
};
// Type checking system adapted from Elm by Evan Czaplicki, BSD-3-Clause Licensed
// https://github.com/elm/compiler
@ -890,6 +893,7 @@ fn solve(
vars,
must_implement_ability,
lambda_sets_to_specialize,
extra_metadata: _,
} => {
introduce(subs, rank, pools, &vars);
if !must_implement_ability.is_empty() {
@ -944,6 +948,7 @@ fn solve(
// ERROR NOT REPORTED
must_implement_ability: _,
lambda_sets_to_specialize,
extra_metadata: _,
} => {
introduce(subs, rank, pools, &vars);
@ -1002,6 +1007,7 @@ fn solve(
vars,
must_implement_ability,
lambda_sets_to_specialize,
extra_metadata: _,
} => {
introduce(subs, rank, pools, &vars);
if !must_implement_ability.is_empty() {
@ -1081,6 +1087,7 @@ fn solve(
vars,
must_implement_ability,
lambda_sets_to_specialize,
extra_metadata: _,
} => {
introduce(subs, rank, pools, &vars);
if !must_implement_ability.is_empty() {
@ -1245,6 +1252,7 @@ fn solve(
vars,
must_implement_ability,
lambda_sets_to_specialize,
extra_metadata: _,
} => {
introduce(subs, rank, pools, &vars);
if !must_implement_ability.is_empty() {
@ -1351,6 +1359,7 @@ fn solve(
vars,
must_implement_ability,
lambda_sets_to_specialize,
extra_metadata: _,
} => {
subs.commit_snapshot(snapshot);
@ -1602,13 +1611,19 @@ fn check_ability_specialization(
let root_signature_var =
deep_copy_var_in(subs, Rank::toplevel(), pools, root_signature_var, arena);
let snapshot = subs.snapshot();
let unified = unify(subs, symbol_loc_var.value, root_signature_var, Mode::EQ);
let unified = unify_introduced_ability_specialization(
subs,
root_signature_var,
symbol_loc_var.value,
Mode::EQ,
);
match unified {
Success {
vars,
must_implement_ability,
lambda_sets_to_specialize,
lambda_sets_to_specialize: other_lambda_sets_to_specialize,
extra_metadata: SpecializationLsetCollector(specialization_lambda_sets),
} => {
let specialization_type =
type_implementing_specialization(&must_implement_ability, parent_ability);
@ -1620,13 +1635,14 @@ fn check_ability_specialization(
subs.commit_snapshot(snapshot);
introduce(subs, rank, pools, &vars);
let (other_lambda_sets_to_specialize, specialization_lambda_sets) =
find_specialization_lambda_sets(
subs,
opaque,
ability_member,
lambda_sets_to_specialize,
);
let specialization_lambda_sets = specialization_lambda_sets
.into_iter()
.map(|((symbol, region), var)| {
debug_assert_eq!(symbol, ability_member);
(region, var)
})
.collect();
deferred_uls_to_resolve.union(other_lambda_sets_to_specialize);
let specialization_region = symbol_loc_var.region;
@ -1697,7 +1713,7 @@ fn check_ability_specialization(
}
}
Failure(vars, actual_type, expected_type, unimplemented_abilities) => {
Failure(vars, expected_type, actual_type, unimplemented_abilities) => {
subs.commit_snapshot(snapshot);
introduce(subs, rank, pools, &vars);
@ -1726,96 +1742,6 @@ fn check_ability_specialization(
}
}
/// Finds the lambda sets in an ability member specialization.
///
/// Suppose we have
///
/// Default has default : {} -[[] + a:default:1]-> a | a has Default
///
/// A := {}
/// default = \{} -[[closA]]-> @A {}
///
/// Now after solving the `default` specialization we have unified it with the ability signature,
/// yielding
///
/// {} -[[closA] + A:default:1]-> A
///
/// But really, what we want is to only keep around the original lambda sets, and associate
/// `A:default:1` to resolve to the lambda set `[[closA]]`. There might be other unspecialized lambda
/// sets in the lambda sets for this implementation, which we need to account for as well; that is,
/// it may really be `[[closA] + v123:otherAbilityMember:4 + ...]`.
#[inline(always)]
fn find_specialization_lambda_sets(
subs: &mut Subs,
opaque: Symbol,
ability_member: Symbol,
uls: UlsOfVar,
) -> (UlsOfVar, VecMap<u8, Variable>) {
// unspecialized lambda sets that don't belong to our specialization, and should be resolved
// later.
let mut leftover_uls = UlsOfVar::default();
let mut specialization_lambda_sets: VecMap<u8, Variable> = VecMap::with_capacity(uls.len());
for (spec_var, lambda_sets) in uls.drain() {
if !matches!(subs.get_content_without_compacting(spec_var), Content::Alias(name, _, _, AliasKind::Opaque) if *name == opaque)
{
// These lambda sets aren't resolved to the current specialization, they need to be
// solved at a later time.
leftover_uls.extend(spec_var, lambda_sets);
continue;
}
for lambda_set in lambda_sets {
let &LambdaSet {
solved,
recursion_var,
unspecialized,
} = match subs.get_content_without_compacting(lambda_set) {
Content::LambdaSet(lambda_set) => lambda_set,
_ => internal_error!("Not a lambda set"),
};
// Figure out the unspecailized lambda set that corresponds to our specialization
// (`A:default:1` in the example), and those that need to stay part of the lambda set.
let mut split_index_and_region = None;
let uls_slice = subs.get_subs_slice(unspecialized).to_owned();
for (i, &Uls(var, _sym, region)) in uls_slice.iter().enumerate() {
if var == spec_var {
debug_assert!(split_index_and_region.is_none());
debug_assert!(_sym == ability_member, "unspecialized lambda set var is the same as the specialization, but points to a different ability member");
split_index_and_region = Some((i, region));
}
}
let (split_index, specialized_lset_region) =
split_index_and_region.expect("no unspecialization lambda set found");
let (uls_before, uls_after) =
(&uls_slice[0..split_index], &uls_slice[split_index + 1..]);
let new_unspecialized = SubsSlice::extend_new(
&mut subs.unspecialized_lambda_sets,
uls_before.iter().chain(uls_after.iter()).copied(),
);
let new_lambda_set_content = Content::LambdaSet(LambdaSet {
solved,
recursion_var,
unspecialized: new_unspecialized,
});
subs.set_content(lambda_set, new_lambda_set_content);
let old_specialized =
specialization_lambda_sets.insert(specialized_lset_region, lambda_set);
debug_assert!(
old_specialized.is_none(),
"Specialization of lambda set already exists"
);
}
}
(leftover_uls, specialization_lambda_sets)
}
pub fn compact_lambda_sets_of_vars<P: Phase>(
subs: &mut Subs,
arena: &Bump,
@ -1919,7 +1845,13 @@ fn compact_lambda_set<P: Phase>(
let specialized_lambda_set = *specialization
.specialization_lambda_sets
.get(&region)
.expect("lambda set region not resolved");
.unwrap_or_else(|| {
internal_error!(
"lambda set region ({:?}, {}) not resolved",
member,
region
)
});
Spec::Some(specialized_lambda_set)
}
}
@ -1953,7 +1885,7 @@ fn compact_lambda_set<P: Phase>(
subs.set_content(this_lambda_set, partial_compacted_lambda_set);
for other_specialized in specialized_to_unify_with.into_iter() {
let (vars, must_implement_ability, lambda_sets_to_specialize) =
let (vars, must_implement_ability, lambda_sets_to_specialize, _meta) =
unify(subs, this_lambda_set, other_specialized, Mode::EQ)
.expect_success("lambda sets don't unify");

View file

@ -1,4 +1,5 @@
use bitflags::bitflags;
use roc_collections::VecMap;
use roc_debug_flags::dbg_do;
#[cfg(debug_assertions)]
use roc_debug_flags::{ROC_PRINT_MISMATCHES, ROC_PRINT_UNIFICATIONS};
@ -138,28 +139,80 @@ pub struct Context {
mode: Mode,
}
pub trait MetaCollector: Default + std::fmt::Debug {
/// Whether we are performing `member ~ specialization` where `member` is an ability member
/// signature and `specialization` is an ability specialization for a given type. When this is
/// the case, given a lambda set unification like
/// `[[] + a:member:1] ~ [specialization-lambda-set]`, only the specialization lambda set will
/// be kept around, and the record `(member, 1) => specialization-lambda-set` will be
/// associated via [`Self::record_specialization_lambda_set`].
const UNIFYING_SPECIALIZATION: bool;
fn record_specialization_lambda_set(&mut self, member: Symbol, region: u8, var: Variable);
fn union(&mut self, other: Self);
}
#[derive(Default, Debug)]
pub struct NoCollector;
impl MetaCollector for NoCollector {
const UNIFYING_SPECIALIZATION: bool = false;
fn record_specialization_lambda_set(&mut self, _member: Symbol, _region: u8, _var: Variable) {}
fn union(&mut self, _other: Self) {}
}
#[derive(Default, Debug)]
pub struct SpecializationLsetCollector(pub VecMap<(Symbol, u8), Variable>);
impl MetaCollector for SpecializationLsetCollector {
const UNIFYING_SPECIALIZATION: bool = true;
fn record_specialization_lambda_set(&mut self, member: Symbol, region: u8, var: Variable) {
self.0.insert((member, region), var);
}
fn union(&mut self, other: Self) {
for (k, v) in other.0.into_iter() {
let _old = self.0.insert(k, v);
debug_assert!(_old.is_none(), "overwriting known lambda set");
}
}
}
#[derive(Debug)]
pub enum Unified {
pub enum Unified<M: MetaCollector = NoCollector> {
Success {
vars: Pool,
must_implement_ability: MustImplementConstraints,
lambda_sets_to_specialize: UlsOfVar,
/// The vast majority of the time the extra metadata is empty, so we make unification
/// polymorphic over metadata collection to avoid unnecessary memory usage.
extra_metadata: M,
},
Failure(Pool, ErrorType, ErrorType, DoesNotImplementAbility),
BadType(Pool, roc_types::types::Problem),
}
impl Unified {
impl<M: MetaCollector> Unified<M> {
pub fn expect_success(
self,
err_msg: &'static str,
) -> (Pool, MustImplementConstraints, UlsOfVar) {
) -> (Pool, MustImplementConstraints, UlsOfVar, M) {
match self {
Unified::Success {
vars,
must_implement_ability,
lambda_sets_to_specialize,
} => (vars, must_implement_ability, lambda_sets_to_specialize),
extra_metadata,
} => (
vars,
must_implement_ability,
lambda_sets_to_specialize,
extra_metadata,
),
_ => internal_error!("{}", err_msg),
}
}
@ -212,7 +265,7 @@ impl MustImplementConstraints {
}
#[derive(Debug, Default)]
pub struct Outcome {
pub struct Outcome<M: MetaCollector> {
mismatches: Vec<Mismatch>,
/// We defer these checks until the end of a solving phase.
/// NOTE: this vector is almost always empty!
@ -220,25 +273,48 @@ pub struct Outcome {
/// We defer resolution of these lambda sets to the caller of [unify].
/// See also [merge_flex_able_with_concrete].
lambda_sets_to_specialize: UlsOfVar,
extra_metadata: M,
}
impl Outcome {
impl<M: MetaCollector> Outcome<M> {
fn union(&mut self, other: Self) {
self.mismatches.extend(other.mismatches);
self.must_implement_ability
.extend(other.must_implement_ability);
self.lambda_sets_to_specialize
.union(other.lambda_sets_to_specialize);
self.extra_metadata.union(other.extra_metadata);
}
}
#[inline(always)]
pub fn unify(subs: &mut Subs, var1: Variable, var2: Variable, mode: Mode) -> Unified {
unify_help(subs, var1, var2, mode)
}
#[inline(always)]
pub fn unify_introduced_ability_specialization(
subs: &mut Subs,
ability_member_signature: Variable,
specialization_var: Variable,
mode: Mode,
) -> Unified<SpecializationLsetCollector> {
unify_help(subs, ability_member_signature, specialization_var, mode)
}
#[inline(always)]
fn unify_help<M: MetaCollector>(
subs: &mut Subs,
var1: Variable,
var2: Variable,
mode: Mode,
) -> Unified<M> {
let mut vars = Vec::new();
let Outcome {
mismatches,
must_implement_ability,
lambda_sets_to_specialize,
extra_metadata,
} = unify_pool(subs, &mut vars, var1, var2, mode);
if mismatches.is_empty() {
@ -246,6 +322,7 @@ pub fn unify(subs: &mut Subs, var1: Variable, var2: Variable, mode: Mode) -> Uni
vars,
must_implement_ability,
lambda_sets_to_specialize,
extra_metadata,
}
} else {
let error_context = if mismatches.contains(&Mismatch::TypeNotInRange) {
@ -282,13 +359,13 @@ pub fn unify(subs: &mut Subs, var1: Variable, var2: Variable, mode: Mode) -> Uni
}
#[inline(always)]
pub fn unify_pool(
pub fn unify_pool<M: MetaCollector>(
subs: &mut Subs,
pool: &mut Pool,
var1: Variable,
var2: Variable,
mode: Mode,
) -> Outcome {
) -> Outcome<M> {
if subs.equivalent(var1, var2) {
Outcome::default()
} else {
@ -308,7 +385,11 @@ pub fn unify_pool(
/// a tree to stderr.
/// NOTE: Only run this on individual tests! Run on multiple threads, this would clobber each others' output.
#[cfg(debug_assertions)]
fn debug_print_unified_types(subs: &mut Subs, ctx: &Context, opt_outcome: Option<&Outcome>) {
fn debug_print_unified_types<M: MetaCollector>(
subs: &mut Subs,
ctx: &Context,
opt_outcome: Option<&Outcome<M>>,
) {
use roc_types::subs::SubsFmtContent;
static mut UNIFICATION_DEPTH: usize = 0;
@ -358,9 +439,9 @@ fn debug_print_unified_types(subs: &mut Subs, ctx: &Context, opt_outcome: Option
})
}
fn unify_context(subs: &mut Subs, pool: &mut Pool, ctx: Context) -> Outcome {
fn unify_context<M: MetaCollector>(subs: &mut Subs, pool: &mut Pool, ctx: Context) -> Outcome<M> {
#[cfg(debug_assertions)]
debug_print_unified_types(subs, &ctx, None);
debug_print_unified_types::<M>(subs, &ctx, None);
// This #[allow] is needed in release builds, where `result` is no longer used.
#[allow(clippy::let_and_return)]
@ -408,13 +489,13 @@ fn unify_context(subs: &mut Subs, pool: &mut Pool, ctx: Context) -> Outcome {
}
#[inline(always)]
fn unify_ranged_number(
fn unify_ranged_number<M: MetaCollector>(
subs: &mut Subs,
pool: &mut Pool,
ctx: &Context,
real_var: Variable,
range_vars: NumericRange,
) -> Outcome {
) -> Outcome<M> {
let other_content = &ctx.second_desc.content;
let outcome = match other_content {
@ -448,7 +529,11 @@ fn unify_ranged_number(
check_valid_range(subs, ctx.second, range_vars)
}
fn check_valid_range(subs: &mut Subs, var: Variable, range: NumericRange) -> Outcome {
fn check_valid_range<M: MetaCollector>(
subs: &mut Subs,
var: Variable,
range: NumericRange,
) -> Outcome<M> {
let content = subs.get_content_without_compacting(var);
match content {
@ -463,6 +548,7 @@ fn check_valid_range(subs: &mut Subs, var: Variable, range: NumericRange) -> Out
mismatches: vec![Mismatch::TypeNotInRange],
must_implement_ability: Default::default(),
lambda_sets_to_specialize: Default::default(),
extra_metadata: Default::default(),
};
return outcome;
@ -485,7 +571,7 @@ fn check_valid_range(subs: &mut Subs, var: Variable, range: NumericRange) -> Out
#[inline(always)]
#[allow(clippy::too_many_arguments)]
fn unify_two_aliases(
fn unify_two_aliases<M: MetaCollector>(
subs: &mut Subs,
pool: &mut Pool,
ctx: &Context,
@ -496,7 +582,7 @@ fn unify_two_aliases(
other_args: AliasVariables,
other_real_var: Variable,
other_content: &Content,
) -> Outcome {
) -> Outcome<M> {
if args.len() == other_args.len() {
let mut outcome = Outcome::default();
let it = args
@ -534,14 +620,14 @@ fn unify_two_aliases(
// Unifies a structural alias
#[inline(always)]
fn unify_alias(
fn unify_alias<M: MetaCollector>(
subs: &mut Subs,
pool: &mut Pool,
ctx: &Context,
symbol: Symbol,
args: AliasVariables,
real_var: Variable,
) -> Outcome {
) -> Outcome<M> {
let other_content = &ctx.second_desc.content;
let kind = AliasKind::Structural;
@ -588,14 +674,14 @@ fn unify_alias(
}
#[inline(always)]
fn unify_opaque(
fn unify_opaque<M: MetaCollector>(
subs: &mut Subs,
pool: &mut Pool,
ctx: &Context,
symbol: Symbol,
args: AliasVariables,
real_var: Variable,
) -> Outcome {
) -> Outcome<M> {
let other_content = &ctx.second_desc.content;
let kind = AliasKind::Opaque;
@ -655,13 +741,13 @@ fn unify_opaque(
}
#[inline(always)]
fn unify_structure(
fn unify_structure<M: MetaCollector>(
subs: &mut Subs,
pool: &mut Pool,
ctx: &Context,
flat_type: &FlatType,
other: &Content,
) -> Outcome {
) -> Outcome<M> {
match other {
FlexVar(_) => {
// If the other is flex, Structure wins!
@ -793,17 +879,35 @@ fn unify_structure(
}
#[inline(always)]
fn unify_lambda_set(
fn unify_lambda_set<M: MetaCollector>(
subs: &mut Subs,
pool: &mut Pool,
ctx: &Context,
lambda_set: LambdaSet,
other: &Content,
) -> Outcome {
) -> Outcome<M> {
match other {
FlexVar(_) => merge(subs, ctx, Content::LambdaSet(lambda_set)),
FlexVar(_) => {
if M::UNIFYING_SPECIALIZATION {
// TODO: It appears that this can happen in well-typed, reasonable programs, but it's
// open question as to why! See also https://github.com/rtfeldman/roc/issues/3163.
let zero_lambda_set = LambdaSet {
solved: UnionLabels::default(),
recursion_var: OptVariable::NONE,
unspecialized: SubsSlice::default(),
};
extract_specialization_lambda_set(subs, ctx, lambda_set, zero_lambda_set)
} else {
merge(subs, ctx, Content::LambdaSet(lambda_set))
}
}
Content::LambdaSet(other_lambda_set) => {
unify_lambda_set_help(subs, pool, ctx, lambda_set, *other_lambda_set)
if M::UNIFYING_SPECIALIZATION {
extract_specialization_lambda_set(subs, ctx, lambda_set, *other_lambda_set)
} else {
unify_lambda_set_help(subs, pool, ctx, lambda_set, *other_lambda_set)
}
}
RecursionVar { structure, .. } => {
// suppose that the recursion var is a lambda set
@ -818,13 +922,57 @@ fn unify_lambda_set(
}
}
fn unify_lambda_set_help(
fn extract_specialization_lambda_set<M: MetaCollector>(
subs: &mut Subs,
ctx: &Context,
ability_member_proto_lset: LambdaSet,
specialization_lset: LambdaSet,
) -> Outcome<M> {
// We should have the unspecialized ability member lambda set on the left and the
// specialization lambda set on the right. E.g.
//
// [[] + a:toEncoder:1] ~ [[myTypeLset]]
//
// Taking that example, we keep around [[myTypeLset]] in the unification and associate
// (toEncoder, 1) => [[myTypeLset]] in the metadata collector.
let LambdaSet {
solved: member_solved,
recursion_var: member_rec_var,
unspecialized: member_uls_slice,
} = ability_member_proto_lset;
debug_assert!(
member_solved.is_empty(),
"member signature should not have solved lambda sets"
);
debug_assert!(member_rec_var.is_none());
let member_uls = subs.get_subs_slice(member_uls_slice);
debug_assert_eq!(
member_uls.len(),
1,
"member signature lambda sets should contain only one unspecialized lambda set"
);
let Uls(_, member, region) = member_uls[0];
let mut outcome: Outcome<M> = merge(subs, ctx, Content::LambdaSet(specialization_lset));
outcome
.extra_metadata
.record_specialization_lambda_set(member, region, ctx.second);
outcome
}
fn unify_lambda_set_help<M: MetaCollector>(
subs: &mut Subs,
pool: &mut Pool,
ctx: &Context,
lset1: self::LambdaSet,
lset2: self::LambdaSet,
) -> Outcome {
) -> Outcome<M> {
// LambdaSets unify like TagUnions, but can grow unbounded regardless of the extension
// variable.
@ -876,7 +1024,7 @@ fn unify_lambda_set_help(
maybe_mark_union_recursive(subs, var1);
maybe_mark_union_recursive(subs, var2);
let outcome = unify_pool(subs, pool, var1, var2, ctx.mode);
let outcome = unify_pool::<M>(subs, pool, var1, var2, ctx.mode);
if outcome.mismatches.is_empty() {
matching_vars.push(var1);
@ -980,12 +1128,12 @@ fn unify_lambda_set_help(
// resolve these cases here.
//
// See tests labeled "issue_2810" for more examples.
fn fix_tag_union_recursion_variable(
fn fix_tag_union_recursion_variable<M: MetaCollector>(
subs: &mut Subs,
ctx: &Context,
tag_union_promoted_to_recursive: Variable,
recursion_var: &Content,
) -> Outcome {
) -> Outcome<M> {
debug_assert!(matches!(
subs.get_content_without_compacting(tag_union_promoted_to_recursive),
Structure(FlatType::RecursiveTagUnion(..))
@ -1002,7 +1150,7 @@ fn fix_tag_union_recursion_variable(
}
}
fn unify_record(
fn unify_record<M: MetaCollector>(
subs: &mut Subs,
pool: &mut Pool,
ctx: &Context,
@ -1010,7 +1158,7 @@ fn unify_record(
ext1: Variable,
fields2: RecordFields,
ext2: Variable,
) -> Outcome {
) -> Outcome<M> {
let (separate, ext1, ext2) = separate_record_fields(subs, fields1, ext1, fields2, ext2);
let shared_fields = separate.in_both;
@ -1118,14 +1266,14 @@ enum OtherFields {
type SharedFields = Vec<(Lowercase, (RecordField<Variable>, RecordField<Variable>))>;
fn unify_shared_fields(
fn unify_shared_fields<M: MetaCollector>(
subs: &mut Subs,
pool: &mut Pool,
ctx: &Context,
shared_fields: SharedFields,
other_fields: OtherFields,
ext: Variable,
) -> Outcome {
) -> Outcome<M> {
let mut matching_fields = Vec::with_capacity(shared_fields.len());
let num_shared_fields = shared_fields.len();
@ -1375,7 +1523,7 @@ enum Rec {
}
#[allow(clippy::too_many_arguments)]
fn unify_tag_unions(
fn unify_tag_unions<M: MetaCollector>(
subs: &mut Subs,
pool: &mut Pool,
ctx: &Context,
@ -1384,7 +1532,7 @@ fn unify_tag_unions(
tags2: UnionTags,
initial_ext2: Variable,
recursion_var: Rec,
) -> Outcome {
) -> Outcome<M> {
let (separate, mut ext1, ext2) =
separate_union_tags(subs, tags1, initial_ext1, tags2, initial_ext2);
@ -1593,7 +1741,7 @@ fn maybe_mark_union_recursive(subs: &mut Subs, union_var: Variable) {
}
}
fn unify_shared_tags_new(
fn unify_shared_tags_new<M: MetaCollector>(
subs: &mut Subs,
pool: &mut Pool,
ctx: &Context,
@ -1601,7 +1749,7 @@ fn unify_shared_tags_new(
other_tags: OtherTags2,
ext: Variable,
recursion_var: Rec,
) -> Outcome {
) -> Outcome<M> {
let mut matching_tags = Vec::default();
let num_shared_tags = shared_tags.len();
@ -1646,7 +1794,7 @@ fn unify_shared_tags_new(
maybe_mark_union_recursive(subs, actual);
maybe_mark_union_recursive(subs, expected);
let mut outcome = Outcome::default();
let mut outcome = Outcome::<M>::default();
outcome.union(unify_pool(subs, pool, actual, expected, ctx.mode));
@ -1719,13 +1867,13 @@ fn unify_shared_tags_new(
}
}
fn unify_shared_tags_merge_new(
fn unify_shared_tags_merge_new<M: MetaCollector>(
subs: &mut Subs,
ctx: &Context,
new_tags: UnionTags,
new_ext_var: Variable,
recursion_var: Rec,
) -> Outcome {
) -> Outcome<M> {
let flat_type = match recursion_var {
Rec::None => FlatType::TagUnion(new_tags, new_ext_var),
Rec::Left(rec) | Rec::Right(rec) | Rec::Both(rec, _) => {
@ -1738,13 +1886,13 @@ fn unify_shared_tags_merge_new(
}
#[inline(always)]
fn unify_flat_type(
fn unify_flat_type<M: MetaCollector>(
subs: &mut Subs,
pool: &mut Pool,
ctx: &Context,
left: &FlatType,
right: &FlatType,
) -> Outcome {
) -> Outcome<M> {
use roc_types::subs::FlatType::*;
match (left, right) {
@ -1924,12 +2072,12 @@ fn unify_flat_type(
}
}
fn unify_zip_slices(
fn unify_zip_slices<M: MetaCollector>(
subs: &mut Subs,
pool: &mut Pool,
left: SubsSlice<Variable>,
right: SubsSlice<Variable>,
) -> Outcome {
) -> Outcome<M> {
let mut outcome = Outcome::default();
let it = left.into_iter().zip(right.into_iter());
@ -1945,12 +2093,12 @@ fn unify_zip_slices(
}
#[inline(always)]
fn unify_rigid(
fn unify_rigid<M: MetaCollector>(
subs: &mut Subs,
ctx: &Context,
name: &SubsIndex<Lowercase>,
other: &Content,
) -> Outcome {
) -> Outcome<M> {
match other {
FlexVar(_) => {
// If the other is flex, rigid wins!
@ -1985,13 +2133,13 @@ fn unify_rigid(
}
#[inline(always)]
fn unify_rigid_able(
fn unify_rigid_able<M: MetaCollector>(
subs: &mut Subs,
ctx: &Context,
name: &SubsIndex<Lowercase>,
ability: Symbol,
other: &Content,
) -> Outcome {
) -> Outcome<M> {
match other {
FlexVar(_) => {
// If the other is flex, rigid wins!
@ -2034,12 +2182,12 @@ fn unify_rigid_able(
}
#[inline(always)]
fn unify_flex(
fn unify_flex<M: MetaCollector>(
subs: &mut Subs,
ctx: &Context,
opt_name: &Option<SubsIndex<Lowercase>>,
other: &Content,
) -> Outcome {
) -> Outcome<M> {
match other {
FlexVar(other_opt_name) => {
// Prefer using right's name.
@ -2070,13 +2218,13 @@ fn unify_flex(
}
#[inline(always)]
fn unify_flex_able(
fn unify_flex_able<M: MetaCollector>(
subs: &mut Subs,
ctx: &Context,
opt_name: &Option<SubsIndex<Lowercase>>,
ability: Symbol,
other: &Content,
) -> Outcome {
) -> Outcome<M> {
match other {
FlexVar(opt_other_name) => {
// Prefer using right's name.
@ -2147,14 +2295,14 @@ fn unify_flex_able(
}
}
fn merge_flex_able_with_concrete(
fn merge_flex_able_with_concrete<M: MetaCollector>(
subs: &mut Subs,
ctx: &Context,
flex_able_var: Variable,
ability: Symbol,
concrete_content: Content,
concrete_obligation: Obligated,
) -> Outcome {
) -> Outcome<M> {
let mut outcome = merge(subs, ctx, concrete_content);
let must_implement_ability = MustImplementAbility {
typ: concrete_obligation,
@ -2178,14 +2326,14 @@ fn merge_flex_able_with_concrete(
}
#[inline(always)]
fn unify_recursion(
fn unify_recursion<M: MetaCollector>(
subs: &mut Subs,
pool: &mut Pool,
ctx: &Context,
opt_name: &Option<SubsIndex<Lowercase>>,
structure: Variable,
other: &Content,
) -> Outcome {
) -> Outcome<M> {
match other {
RecursionVar {
opt_name: other_opt_name,
@ -2247,6 +2395,8 @@ fn unify_recursion(
),
LambdaSet(..) => {
debug_assert!(!M::UNIFYING_SPECIALIZATION);
// suppose that the recursion var is a lambda set
unify_pool(subs, pool, structure, ctx.second, ctx.mode)
}
@ -2255,7 +2405,7 @@ fn unify_recursion(
}
}
pub fn merge(subs: &mut Subs, ctx: &Context, content: Content) -> Outcome {
pub fn merge<M: MetaCollector>(subs: &mut Subs, ctx: &Context, content: Content) -> Outcome<M> {
let rank = ctx.first_desc.rank.min(ctx.second_desc.rank);
let desc = Descriptor {
content,
@ -2298,7 +2448,7 @@ fn is_recursion_var(subs: &Subs, var: Variable) -> bool {
}
#[allow(clippy::too_many_arguments)]
fn unify_function_or_tag_union_and_func(
fn unify_function_or_tag_union_and_func<M: MetaCollector>(
subs: &mut Subs,
pool: &mut Pool,
ctx: &Context,
@ -2309,7 +2459,7 @@ fn unify_function_or_tag_union_and_func(
function_return: Variable,
function_lambda_set: Variable,
left: bool,
) -> Outcome {
) -> Outcome<M> {
let tag_name = subs[*tag_name_index].clone();
let union_tags = UnionTags::insert_slices_into_subs(subs, [(tag_name, function_arguments)]);