Organized list append code into named closures

This commit is contained in:
Chad Stearns 2020-07-18 21:06:00 -04:00
parent 9881c91e1f
commit dc6f0daeef
2 changed files with 400 additions and 315 deletions

View file

@ -1819,315 +1819,7 @@ fn run_low_level<'a, 'ctx, 'env>(
BasicTypeEnum::StructType(struct_type),
)
}
ListAppend => {
// List.append : List elem, List elem -> List elem
debug_assert_eq!(args.len(), 2);
let (first_list, first_list_layout) = &args[0];
match first_list_layout {
Layout::Builtin(Builtin::EmptyList) => empty_list(env),
Layout::Builtin(Builtin::List(elem_layout)) => {
let first_list_wrapper =
build_expr(env, layout_ids, scope, parent, first_list).into_struct_value();
let builder = env.builder;
let ctx = env.context;
let first_list_len = load_list_len(builder, first_list_wrapper);
// first_list_len > 0
// We do this check to avoid allocating memory. If the first input
// list is empty, then we can just return the second list cloned
let first_list_length_comparison =
list_is_not_empty(builder, ctx, first_list_len);
let build_first_list_then = || {
let (second_list, second_list_layout) = &args[1];
let second_list_wrapper =
build_expr(env, layout_ids, scope, parent, second_list)
.into_struct_value();
let second_list_len = load_list_len(builder, second_list_wrapper);
let elem_type =
basic_type_from_layout(env.arena, ctx, elem_layout, env.ptr_bytes);
let ptr_type = get_ptr_type(&elem_type, AddressSpace::Generic);
let elem_type =
basic_type_from_layout(env.arena, ctx, elem_layout, env.ptr_bytes);
match second_list_layout {
Layout::Builtin(Builtin::EmptyList) => {
let (new_wrapper, _) = clone_nonempty_list(
env,
first_list_len,
load_list_ptr(builder, first_list_wrapper, ptr_type),
elem_layout,
);
BasicValueEnum::StructValue(new_wrapper)
}
Layout::Builtin(Builtin::List(_)) => {
// second_list_len > 0
// We do this check to avoid allocating memory. If the second input
// list is empty, then we can just return the first list cloned
let second_list_length_comparison =
list_is_not_empty(builder, ctx, second_list_len);
let build_second_list_then = || {
let combined_list_len = builder.build_int_add(
first_list_len,
second_list_len,
"add_list_lenghts",
);
let combined_list_ptr = env
.builder
.build_array_malloc(
elem_type,
combined_list_len,
"create_combined_list_ptr",
)
.unwrap();
let index_name = "#index";
// FIRST LOOP
let start_alloca =
builder.build_alloca(ctx.i64_type(), index_name);
let index = ctx.i64_type().const_int(0, false);
builder.build_store(start_alloca, index);
let loop_bb =
ctx.append_basic_block(parent, "first_list_append_loop");
builder.build_unconditional_branch(loop_bb);
builder.position_at_end(loop_bb);
// #index = #index + 1
let curr_index = builder
.build_load(start_alloca, index_name)
.into_int_value();
let next_index = builder.build_int_add(
curr_index,
ctx.i64_type().const_int(1, false),
"nextindex",
);
builder.build_store(start_alloca, next_index);
let list_ptr =
load_list_ptr(builder, first_list_wrapper, ptr_type);
// The pointer to the element in the first list
let first_list_elem_ptr = unsafe {
builder.build_in_bounds_gep(
list_ptr,
&[curr_index],
"load_index",
)
};
// The pointer to the element in the combined list
let combined_list_elem_ptr = unsafe {
builder.build_in_bounds_gep(
combined_list_ptr,
&[curr_index],
"load_index_reversed_list",
)
};
let elem = builder.build_load(first_list_elem_ptr, "get_elem");
// Mutate the new array in-place to change the element.
builder.build_store(combined_list_elem_ptr, elem);
// #index < first_list_len
let loop_end_cond = builder.build_int_compare(
IntPredicate::ULT,
curr_index,
first_list_len,
"loopcond",
);
let after_loop_bb =
ctx.append_basic_block(parent, "after_first_loop");
builder.build_conditional_branch(
loop_end_cond,
loop_bb,
after_loop_bb,
);
builder.position_at_end(after_loop_bb);
// SECOND LOOP
let index = ctx.i64_type().const_int(0, false);
builder.build_store(start_alloca, index);
let second_loop_bb =
ctx.append_basic_block(parent, "first_list_append_loop");
builder.build_unconditional_branch(second_loop_bb);
builder.position_at_end(second_loop_bb);
// #index = #index + 1
let curr_second_index = builder
.build_load(start_alloca, index_name)
.into_int_value();
let next_second_index = builder.build_int_add(
curr_second_index,
ctx.i64_type().const_int(1, false),
"nextindex",
);
builder.build_store(start_alloca, next_second_index);
let second_list_ptr =
load_list_ptr(builder, second_list_wrapper, ptr_type);
// The pointer to the element in the first list
let second_list_elem_ptr = unsafe {
builder.build_in_bounds_gep(
second_list_ptr,
&[curr_second_index],
"load_index",
)
};
let offset_combined_list_elem_ptr = unsafe {
builder.build_in_bounds_gep(
combined_list_ptr,
&[first_list_len],
"elem",
)
};
// The pointer to the element from the second list
// in the combined list
let combined_list_elem_ptr = unsafe {
builder.build_in_bounds_gep(
offset_combined_list_elem_ptr,
&[curr_second_index],
"load_index_reversed_list",
)
};
let elem = builder.build_load(second_list_elem_ptr, "get_elem");
// Mutate the new array in-place to change the element.
builder.build_store(combined_list_elem_ptr, elem);
// #index < first_list_len
let second_loop_end_cond = builder.build_int_compare(
IntPredicate::ULT,
curr_second_index,
second_list_len,
"loopcond",
);
let second_after_loop_bb =
ctx.append_basic_block(parent, "after_first_loop");
builder.build_conditional_branch(
second_loop_end_cond,
second_loop_bb,
second_after_loop_bb,
);
builder.position_at_end(second_after_loop_bb);
// END
let ptr_bytes = env.ptr_bytes;
let int_type = ptr_int(ctx, ptr_bytes);
let ptr_as_int = builder.build_ptr_to_int(
combined_list_ptr,
int_type,
"list_cast_ptr",
);
let struct_type = collection(ctx, ptr_bytes);
let mut struct_val;
// Store the pointer
struct_val = builder
.build_insert_value(
struct_type.get_undef(),
ptr_as_int,
Builtin::WRAPPER_PTR,
"insert_ptr",
)
.unwrap();
// Store the length
struct_val = builder
.build_insert_value(
struct_val,
combined_list_len,
Builtin::WRAPPER_LEN,
"insert_len",
)
.unwrap();
builder.build_bitcast(
struct_val.into_struct_value(),
collection(ctx, ptr_bytes),
"cast_collection",
)
};
let build_second_list_else = || {
let elem_type = basic_type_from_layout(
env.arena,
ctx,
elem_layout,
env.ptr_bytes,
);
let ptr_type = get_ptr_type(&elem_type, AddressSpace::Generic);
let (new_wrapper, _) = clone_nonempty_list(
env,
first_list_len,
load_list_ptr(builder, first_list_wrapper, ptr_type),
elem_layout,
);
BasicValueEnum::StructValue(new_wrapper)
};
build_basic_phi2(
env,
parent,
second_list_length_comparison,
build_second_list_then,
build_second_list_else,
BasicTypeEnum::StructType(collection(ctx, env.ptr_bytes)),
)
}
_ => {
unreachable!(
"Invalid List layout for List.get: {:?}",
first_list_layout
);
}
}
};
build_basic_phi2(
env,
parent,
first_list_length_comparison,
build_first_list_then,
|| empty_list(env),
BasicTypeEnum::StructType(collection(ctx, env.ptr_bytes)),
)
}
_ => {
unreachable!("Invalid List layout for List.get: {:?}", first_list_layout);
}
}
}
ListAppend => list_append(env, layout_ids, scope, parent, args),
ListPush => {
// List.push List elem, elem -> List elem
debug_assert_eq!(args.len(), 2);
@ -2374,6 +2066,380 @@ fn build_int_binop<'a, 'ctx, 'env>(
}
}
fn list_append<'a, 'ctx, 'env>(
env: &Env<'a, 'ctx, 'env>,
layout_ids: &mut LayoutIds<'a>,
scope: &Scope<'a, 'ctx>,
parent: FunctionValue<'ctx>,
args: &[(Expr<'a>, Layout<'a>)],
) -> BasicValueEnum<'ctx> {
// List.append : List elem, List elem -> List elem
debug_assert_eq!(args.len(), 2);
// This implementation is quite long, let me explain what is complicating it. Here are our
// contraints:
//
// constraint 1. lists might be empty because they have tje layout `EmptyList`, or they might
// be empty because they have a `List` layout, but happen to be empty, such as in this code:
//
// list : List Int
// list =
// []
//
// So we have two sources of truth for emptiness.
//
// constraint 2. iterating over a non-empty list involves allocating memory for a index and
// a loop, and allocating memory is costly, so we dont want to even try to iterate over empty
// lists.
//
// Accounting for all the possibilities in the two contraints above gives us 9 code paths:
//
// first list EmptyList List(list) List(list)
// second list where list.length = 0 where list.length > 0
// ---------------------------------------------------------------------
// EmptyList | [] | [] | clone(1st_list) |
// ---------------------------------------------------------------------
// List(list) | [] | [] | clone(1st_list) |
// where list.length = 0 | | | |
// ---------------------------------------------------------------------
// List(list) | clone(2nd_list) | clone(2nd_list) | 2nd_list ++ 1st_list |
// where list.length > 0 | | | |
// ---------------------------------------------------------------------
//
let builder = env.builder;
let ctx = env.context;
let (first_list, first_list_layout) = &args[0];
let (second_list, second_list_layout) = &args[1];
let second_list_wrapper =
build_expr(env, layout_ids, scope, parent, second_list).into_struct_value();
let second_list_len = load_list_len(builder, second_list_wrapper);
let if_first_list_is_empty = || {
match second_list_layout {
Layout::Builtin(Builtin::EmptyList) => empty_list(env),
Layout::Builtin(Builtin::List(elem_layout)) => {
// second_list_len > 0
// We do this check to avoid allocating memory. If the second input
// list is empty, then we can just return the first list cloned
let second_list_length_comparison =
list_is_not_empty(builder, ctx, second_list_len);
let build_second_list_then = || {
let elem_type =
basic_type_from_layout(env.arena, ctx, elem_layout, env.ptr_bytes);
let ptr_type = get_ptr_type(&elem_type, AddressSpace::Generic);
let (new_wrapper, _) = clone_nonempty_list(
env,
second_list_len,
load_list_ptr(builder, second_list_wrapper, ptr_type),
elem_layout,
);
BasicValueEnum::StructValue(new_wrapper)
};
let build_second_list_else = || empty_list(env);
build_basic_phi2(
env,
parent,
second_list_length_comparison,
build_second_list_then,
build_second_list_else,
BasicTypeEnum::StructType(collection(ctx, env.ptr_bytes)),
)
}
_ => {
unreachable!(
"Invalid List layout for second input list of List.append: {:?}",
second_list_layout
);
}
}
};
match first_list_layout {
Layout::Builtin(Builtin::EmptyList) => if_first_list_is_empty(),
Layout::Builtin(Builtin::List(elem_layout)) => {
let first_list_wrapper =
build_expr(env, layout_ids, scope, parent, first_list).into_struct_value();
let first_list_len = load_list_len(builder, first_list_wrapper);
// first_list_len > 0
// We do this check to avoid allocating memory. If the first input
// list is empty, then we can just return the second list cloned
let first_list_length_comparison = list_is_not_empty(builder, ctx, first_list_len);
let if_first_list_is_not_empty = || {
let elem_type = basic_type_from_layout(env.arena, ctx, elem_layout, env.ptr_bytes);
let ptr_type = get_ptr_type(&elem_type, AddressSpace::Generic);
let elem_type = basic_type_from_layout(env.arena, ctx, elem_layout, env.ptr_bytes);
let if_second_list_is_empty = || {
let (new_wrapper, _) = clone_nonempty_list(
env,
first_list_len,
load_list_ptr(builder, first_list_wrapper, ptr_type),
elem_layout,
);
BasicValueEnum::StructValue(new_wrapper)
};
match second_list_layout {
Layout::Builtin(Builtin::EmptyList) => if_second_list_is_empty(),
Layout::Builtin(Builtin::List(_)) => {
// second_list_len > 0
// We do this check to avoid allocating memory. If the second input
// list is empty, then we can just return the first list cloned
let second_list_length_comparison =
list_is_not_empty(builder, ctx, second_list_len);
let build_second_list_then = || {
let combined_list_len = builder.build_int_add(
first_list_len,
second_list_len,
"add_list_lengths",
);
let combined_list_ptr = env
.builder
.build_array_malloc(
elem_type,
combined_list_len,
"create_combined_list_ptr",
)
.unwrap();
let index_name = "#index";
let index_alloca = builder.build_alloca(ctx.i64_type(), index_name);
let first_loop = || {
builder
.build_store(index_alloca, ctx.i64_type().const_int(0, false));
let loop_bb =
ctx.append_basic_block(parent, "first_list_append_loop");
builder.build_unconditional_branch(loop_bb);
builder.position_at_end(loop_bb);
// #index = #index + 1
let curr_index = builder
.build_load(index_alloca, index_name)
.into_int_value();
let next_index = builder.build_int_add(
curr_index,
ctx.i64_type().const_int(1, false),
"nextindex",
);
builder.build_store(index_alloca, next_index);
let first_list_ptr =
load_list_ptr(builder, first_list_wrapper, ptr_type);
// The pointer to the element in the first list
let elem_ptr = unsafe {
builder.build_in_bounds_gep(
first_list_ptr,
&[curr_index],
"load_index",
)
};
// The pointer to the element in the combined list
let combined_list_elem_ptr = unsafe {
builder.build_in_bounds_gep(
combined_list_ptr,
&[curr_index],
"load_index_combined_list",
)
};
let elem = builder.build_load(elem_ptr, "get_elem");
// Mutate the new array in-place to change the element.
builder.build_store(combined_list_elem_ptr, elem);
// #index < first_list_len
let loop_end_cond = builder.build_int_compare(
IntPredicate::ULT,
curr_index,
first_list_len,
"loopcond",
);
let after_loop_bb =
ctx.append_basic_block(parent, "after_first_loop");
builder.build_conditional_branch(
loop_end_cond,
loop_bb,
after_loop_bb,
);
builder.position_at_end(after_loop_bb);
};
let second_loop = || {
builder
.build_store(index_alloca, ctx.i64_type().const_int(0, false));
let loop_bb =
ctx.append_basic_block(parent, "second_list_append_loop");
builder.build_unconditional_branch(loop_bb);
builder.position_at_end(loop_bb);
// #index = #index + 1
let curr_index = builder
.build_load(index_alloca, index_name)
.into_int_value();
let next_index = builder.build_int_add(
curr_index,
ctx.i64_type().const_int(1, false),
"nextindex",
);
builder.build_store(index_alloca, next_index);
let second_list_ptr =
load_list_ptr(builder, second_list_wrapper, ptr_type);
// The pointer to the element in the second list
let second_list_elem_ptr = unsafe {
builder.build_in_bounds_gep(
second_list_ptr,
&[curr_index],
"load_index",
)
};
// The pointer to the element in the combined list.
// Note that the pointer does not start at the index
// 0, it starts at the index of first_list_len.
let combined_list_elem_ptr = unsafe {
builder.build_in_bounds_gep(
combined_list_ptr,
&[first_list_len],
"elem",
)
};
// The pointer to the element from the second list
// in the combined list
let combined_list_elem_ptr = unsafe {
builder.build_in_bounds_gep(
combined_list_elem_ptr,
&[curr_index],
"load_index_combined_list",
)
};
let elem = builder.build_load(second_list_elem_ptr, "get_elem");
// Mutate the new array in-place to change the element.
builder.build_store(combined_list_elem_ptr, elem);
// #index < second_list_len
let loop_end_cond = builder.build_int_compare(
IntPredicate::ULT,
curr_index,
second_list_len,
"loopcond",
);
let after_loop_bb =
ctx.append_basic_block(parent, "after_second_loop");
builder.build_conditional_branch(
loop_end_cond,
loop_bb,
after_loop_bb,
);
builder.position_at_end(after_loop_bb);
};
first_loop();
second_loop();
let ptr_bytes = env.ptr_bytes;
let int_type = ptr_int(ctx, ptr_bytes);
let ptr_as_int = builder.build_ptr_to_int(
combined_list_ptr,
int_type,
"list_cast_ptr",
);
let struct_type = collection(ctx, ptr_bytes);
let mut struct_val;
// Store the pointer
struct_val = builder
.build_insert_value(
struct_type.get_undef(),
ptr_as_int,
Builtin::WRAPPER_PTR,
"insert_ptr",
)
.unwrap();
// Store the length
struct_val = builder
.build_insert_value(
struct_val,
combined_list_len,
Builtin::WRAPPER_LEN,
"insert_len",
)
.unwrap();
builder.build_bitcast(
struct_val.into_struct_value(),
collection(ctx, ptr_bytes),
"cast_collection",
)
};
build_basic_phi2(
env,
parent,
second_list_length_comparison,
build_second_list_then,
if_second_list_is_empty,
BasicTypeEnum::StructType(collection(ctx, env.ptr_bytes)),
)
}
_ => {
unreachable!(
"Invalid List layout for first input list of List.append: {:?}",
first_list_layout
);
}
}
};
build_basic_phi2(
env,
parent,
first_list_length_comparison,
if_first_list_is_not_empty,
if_first_list_is_empty,
BasicTypeEnum::StructType(collection(ctx, env.ptr_bytes)),
)
}
_ => {
unreachable!("Invalid List layout for List.get: {:?}", first_list_layout);
}
}
}
fn build_float_binop<'a, 'ctx, 'env>(
env: &Env<'a, 'ctx, 'env>,
lhs: FloatValue<'ctx>,