Store declared implementations, both custom and derived, in abilities store

This commit is contained in:
Ayaz Hafiz 2022-07-19 18:23:42 -04:00
parent 6035e45f25
commit e2454f497f
No known key found for this signature in database
GPG key ID: 0E2A37416A25EF58
10 changed files with 249 additions and 171 deletions

View file

@ -4,7 +4,10 @@ use roc_collections::{all::MutMap, VecMap, VecSet};
use roc_error_macros::internal_error;
use roc_module::symbol::{ModuleId, Symbol};
use roc_region::all::Region;
use roc_types::{subs::Variable, types::Type};
use roc_types::{
subs::Variable,
types::{MemberImpl, Type},
};
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct MemberVariables {
@ -68,10 +71,7 @@ impl AbilityMemberData<Resolved> {
}
/// (member, specialization type) -> specialization
pub type SpecializationsMap<Phase> = VecMap<(Symbol, Symbol), MemberSpecialization<Phase>>;
pub type PendingSpecializations = SpecializationsMap<Pending>;
pub type ResolvedSpecializations = SpecializationsMap<Resolved>;
pub type ImplMap = VecMap<(Symbol, Symbol), MemberImpl>;
/// Solved lambda sets for an ability member specialization. For example, if we have
///
@ -86,15 +86,13 @@ pub type SpecializationLambdaSets = VecMap<u8, Variable>;
/// A particular specialization of an ability member.
#[derive(Debug, Clone)]
pub struct MemberSpecialization<Phase: ResolvePhase> {
pub struct MemberSpecializationInfo<Phase: ResolvePhase> {
_phase: std::marker::PhantomData<Phase>,
pub symbol: Symbol,
pub specialization_lambda_sets: SpecializationLambdaSets,
}
impl MemberSpecialization<Resolved> {
impl MemberSpecializationInfo<Resolved> {
pub fn new(symbol: Symbol, specialization_lambda_sets: SpecializationLambdaSets) -> Self {
Self {
_phase: Default::default(),
@ -120,23 +118,26 @@ pub enum SpecializationLambdaSetError {}
pub struct IAbilitiesStore<Phase: ResolvePhase> {
/// Maps an ability to the members defining it.
members_of_ability: MutMap<Symbol, Vec<Symbol>>,
/// Map of symbols that specialize an ability member to the root ability symbol name.
/// For example, in the program
///
/// Hash has hash : a -> U64 | a has Hash
///
/// Id := {} implements [Hash {hash: myHash}]
/// myHash = \@Id n -> n
///
/// We keep the mapping myHash->hash
specialization_to_root: MutMap<Symbol, Symbol>,
/// Information about all members composing abilities.
ability_members: MutMap<Symbol, AbilityMemberData<Phase>>,
/// Map of symbols that specialize an ability member to the root ability symbol name.
/// For example, for the program
/// Hash has hash : a -> U64 | a has Hash
/// ^^^^ gets the symbol "#hash"
/// hash = \@Id n -> n
/// ^^^^ gets the symbol "#hash1"
///
/// We keep the mapping #hash1->#hash
specialization_to_root: MutMap<Symbol, Symbol>,
/// Maps a tuple (member, type) specifying that `type` has an implementation of an ability
/// member `member`, to how that implementation is defined.
declared_implementations: ImplMap,
/// Maps a tuple (member, type) specifying that `type` declares an implementation of an ability
/// member `member`, to the exact symbol that implements the ability.
declared_specializations: SpecializationsMap<Phase>,
/// Information about specialized ability member implementations for a type.
specializations: MutMap<Symbol, MemberSpecializationInfo<Phase>>,
next_specialization_id: NonZeroU32,
@ -148,14 +149,15 @@ pub struct IAbilitiesStore<Phase: ResolvePhase> {
impl<Phase: ResolvePhase> Default for IAbilitiesStore<Phase> {
fn default() -> Self {
Self {
members_of_ability: Default::default(),
ability_members: Default::default(),
specialization_to_root: Default::default(),
declared_specializations: Default::default(),
next_specialization_id:
// Safety: 1 != 0
unsafe { NonZeroU32::new_unchecked(1) },
resolved_specializations: Default::default(),
members_of_ability: Default::default(),
specialization_to_root: Default::default(),
ability_members: Default::default(),
declared_implementations: Default::default(),
specializations: Default::default(),
next_specialization_id:
// Safety: 1 != 0
unsafe { NonZeroU32::new_unchecked(1) },
resolved_specializations: Default::default(),
}
}
}
@ -207,22 +209,45 @@ impl<Phase: ResolvePhase> IAbilitiesStore<Phase> {
&self.ability_members
}
#[inline(always)]
fn register_one_declared_impl(
&mut self,
implementing_type: Symbol,
member: Symbol,
member_impl: MemberImpl,
) {
if let MemberImpl::Impl(specialization_symbol) = member_impl {
self.specialization_to_root
.insert(specialization_symbol, member);
}
self.declared_implementations
.insert((member, implementing_type), member_impl);
}
/// Records the implementations of an ability an opaque type declares to have.
///
/// Calling this function does not validate that the implementations are correctly specializing
/// in their definition, nor does it store type information about the implementations.
///
/// It is expected that during type solving, the owner of the abilities store marks the claimed
/// implementation as either a proper or erroring implementation using
/// [`Self::mark_implementation`].
pub fn register_declared_implementations(
&mut self,
implementing_type: Symbol,
// (ability member, implementation)
implementations: impl IntoIterator<Item = (Symbol, MemberImpl)>,
) {
for (member, member_impl) in implementations.into_iter() {
self.register_one_declared_impl(implementing_type, member, member_impl);
}
}
/// Returns whether a symbol is declared to specialize an ability member.
pub fn is_specialization_name(&self, symbol: Symbol) -> bool {
self.specialization_to_root.contains_key(&symbol)
}
/// Records that the symbol `specializing_symbol` claims to specialize `ability_member`; for
/// example the symbol of `hash : Id -> U64` specializing `hash : a -> U64 | a has Hash`.
pub fn register_specializing_symbol(
&mut self,
specializing_symbol: Symbol,
ability_member: Symbol,
) {
self.specialization_to_root
.insert(specializing_symbol, ability_member);
}
pub fn members_of_ability(&self, ability: Symbol) -> Option<&[Symbol]> {
self.members_of_ability.get(&ability).map(|v| v.as_ref())
}
@ -243,9 +268,10 @@ impl<Phase: ResolvePhase> IAbilitiesStore<Phase> {
let Self {
members_of_ability,
ability_members,
declared_specializations,
declared_implementations,
specializations,
// Covered by `declared_specializations`
// Covered by `declared_implementations`
specialization_to_root: _,
// Taking closure for a new module, so specialization IDs can be fresh
@ -292,12 +318,17 @@ impl<Phase: ResolvePhase> IAbilitiesStore<Phase> {
new.register_ability(ability, imported_member_data);
// Add any specializations of the ability's members we know about.
declared_specializations
declared_implementations
.iter()
.filter(|((member, _), _)| members.contains(member))
.for_each(|(&(member, typ), specialization)| {
new.register_specializing_symbol(specialization.symbol, member);
new.import_specialization(member, typ, specialization);
.for_each(|(&(member, typ), member_impl)| {
new.register_one_declared_impl(typ, member, *member_impl);
if let MemberImpl::Impl(spec_symbol) = member_impl {
if let Some(specialization_info) = specializations.get(spec_symbol) {
new.import_specialization(specialization_info);
}
}
});
}
@ -305,6 +336,12 @@ impl<Phase: ResolvePhase> IAbilitiesStore<Phase> {
}
}
#[derive(Debug)]
pub enum MarkError {
NoDeclaredImpl,
ImplIsNotCustom,
}
impl IAbilitiesStore<Resolved> {
/// Finds the symbol name and ability member definition for a symbol specializing the ability
/// member, if it specializes any.
@ -326,36 +363,59 @@ impl IAbilitiesStore<Resolved> {
self.ability_members.get(&member)
}
/// Returns an iterator over pairs ((ability member, type), specialization) specifying that
/// "ability member" has a "specialization" for type "type".
pub fn iter_specializations(
/// Returns an iterator over pairs ((ability member, type), implementation) specifying that
/// the give type has an implementation of an ability member.
pub fn iter_declared_implementations(
&self,
) -> impl Iterator<Item = ((Symbol, Symbol), &MemberSpecialization<Resolved>)> + '_ {
self.declared_specializations.iter().map(|(k, v)| (*k, v))
) -> impl Iterator<Item = ((Symbol, Symbol), &MemberImpl)> + '_ {
self.declared_implementations.iter().map(|(k, v)| (*k, v))
}
/// Retrieves the specialization of `member` for `typ`, if it exists.
pub fn get_specialization(
&self,
member: Symbol,
typ: Symbol,
) -> Option<&MemberSpecialization<Resolved>> {
self.declared_specializations.get(&(member, typ))
/// Retrieves the declared implementation of `member` for `typ`, if it exists.
pub fn get_implementation(&self, member: Symbol, typ: Symbol) -> Option<&MemberImpl> {
self.declared_implementations.get(&(member, typ))
}
/// Records a specialization of `ability_member` with specialized type `implementing_type`.
/// Entries via this function are considered a source of truth. It must be ensured that a
/// specialization is validated before being registered here.
pub fn register_specialization_for_type(
/// Marks a declared implementation as either properly specializing, or as erroring.
pub fn mark_implementation(
&mut self,
ability_member: Symbol,
implementing_type: Symbol,
specialization: MemberSpecialization<Resolved>,
) {
let old_spec = self
.declared_specializations
.insert((ability_member, implementing_type), specialization);
debug_assert!(old_spec.is_none(), "Replacing existing specialization");
typ: Symbol,
mark: Result<MemberSpecializationInfo<Resolved>, ()>,
) -> Result<(), MarkError> {
match self
.declared_implementations
.get_mut(&(ability_member, typ))
{
Some(member_impl) => match *member_impl {
MemberImpl::Impl(specialization_symbol) => {
debug_assert!(!self.specializations.contains_key(&specialization_symbol));
match mark {
Ok(specialization_info) => {
self.specializations
.insert(specialization_symbol, specialization_info);
}
Err(()) => {
// Mark the member implementation as erroring, so we know to generate a
// runtime error function as appropriate.
*member_impl = MemberImpl::Error;
}
}
Ok(())
}
MemberImpl::Derived | MemberImpl::Error => Err(MarkError::ImplIsNotCustom),
},
None => Err(MarkError::NoDeclaredImpl),
}
}
pub fn specialization_info(
&self,
specialization_symbol: Symbol,
) -> Option<&MemberSpecializationInfo<Resolved>> {
self.specializations.get(&specialization_symbol)
}
pub fn insert_resolved(&mut self, id: SpecializationId, specialization: Symbol) {
@ -376,19 +436,17 @@ impl IAbilitiesStore<Resolved> {
impl IAbilitiesStore<Pending> {
pub fn import_specialization(
&mut self,
ability_member: Symbol,
implementing_type: Symbol,
specialization: &MemberSpecialization<impl ResolvePhase>,
specialization: &MemberSpecializationInfo<impl ResolvePhase>,
) {
let MemberSpecialization {
let MemberSpecializationInfo {
_phase,
symbol,
specialization_lambda_sets,
} = specialization;
let old_spec = self.declared_specializations.insert(
(ability_member, implementing_type),
MemberSpecialization {
let old_spec = self.specializations.insert(
*symbol,
MemberSpecializationInfo {
_phase: Default::default(),
symbol: *symbol,
specialization_lambda_sets: specialization_lambda_sets.clone(),
@ -402,9 +460,10 @@ impl IAbilitiesStore<Pending> {
members_of_ability: other_members_of_ability,
ability_members: mut other_ability_members,
specialization_to_root,
declared_specializations,
declared_implementations,
next_specialization_id,
resolved_specializations,
specializations,
} = other;
for (ability, members) in other_members_of_ability.into_iter() {
@ -425,13 +484,18 @@ impl IAbilitiesStore<Pending> {
debug_assert!(old_root.is_none() || old_root.unwrap() == member);
}
for ((member, typ), specialization) in declared_specializations.into_iter() {
for ((member, typ), impl_) in declared_implementations.into_iter() {
let old_impl = self.declared_implementations.insert((member, typ), impl_);
debug_assert!(old_impl.is_none() || old_impl.unwrap() == impl_);
}
for (symbol, specialization_info) in specializations.into_iter() {
let old_specialization = self
.declared_specializations
.insert((member, typ), specialization.clone());
.specializations
.insert(symbol, specialization_info.clone());
debug_assert!(
old_specialization.is_none()
|| old_specialization.unwrap().symbol == specialization.symbol
|| old_specialization.unwrap().symbol == specialization_info.symbol
);
}
@ -456,9 +520,10 @@ impl IAbilitiesStore<Pending> {
members_of_ability,
ability_members,
specialization_to_root,
declared_specializations,
declared_implementations,
next_specialization_id,
resolved_specializations,
specializations,
} = self;
let ability_members = ability_members
@ -491,24 +556,22 @@ impl IAbilitiesStore<Pending> {
})
.collect();
let declared_specializations = declared_specializations
let specializations = specializations
.into_iter()
.map(
|(
key,
MemberSpecialization {
|(symbol, specialization)| {
let MemberSpecializationInfo {
_phase,
symbol,
symbol: _,
specialization_lambda_sets,
},
)| {
} = specialization;
let symbol_module = symbol.module_id();
// NOTE: this totally assumes we're dealing with subs that belong to an
// individual module, things would be badly broken otherwise
let member_specialization = if symbol_module == my_module {
internal_error!("Ability store may only be pending before module solving, \
so there shouldn't be any known module specializations at this point, but we found one for {:?}", symbol);
// MemberSpecialization::new(symbol, specialization_lambda_sets)
} else {
let specialization_lambda_sets = specialization_lambda_sets
.into_iter()
@ -523,10 +586,11 @@ impl IAbilitiesStore<Pending> {
)
})
.collect();
MemberSpecialization::new(symbol, specialization_lambda_sets)
MemberSpecializationInfo::new(symbol, specialization_lambda_sets)
};
(key, member_specialization)
},
(symbol, member_specialization)
}
)
.collect();
@ -534,9 +598,10 @@ impl IAbilitiesStore<Pending> {
members_of_ability,
ability_members,
specialization_to_root,
declared_specializations,
declared_implementations,
next_specialization_id,
resolved_specializations,
specializations,
}
}
}