This commit is contained in:
Folkert 2020-10-28 01:13:04 +01:00
parent 1921b74ebb
commit ef1cee6c41
6 changed files with 354 additions and 123 deletions

View file

@ -547,6 +547,7 @@ mod gen_primitives {
} }
#[test] #[test]
#[ignore]
fn linked_list_len_0() { fn linked_list_len_0() {
assert_evals_to!( assert_evals_to!(
indoc!( indoc!(
@ -555,9 +556,10 @@ mod gen_primitives {
LinkedList a : [ Nil, Cons a (LinkedList a) ] LinkedList a : [ Nil, Cons a (LinkedList a) ]
nil : LinkedList Int # nil : LinkedList Int
nil = Nil nil = Cons 0x1 Nil
# length : [ Nil, Cons a (LinkedList a) ] as LinkedList a -> Int
length : LinkedList a -> Int length : LinkedList a -> Int
length = \list -> length = \list ->
when list is when list is
@ -575,6 +577,7 @@ mod gen_primitives {
} }
#[test] #[test]
#[ignore]
fn linked_list_len_twice_0() { fn linked_list_len_twice_0() {
assert_evals_to!( assert_evals_to!(
indoc!( indoc!(
@ -602,6 +605,7 @@ mod gen_primitives {
} }
#[test] #[test]
#[ignore]
fn linked_list_len_1() { fn linked_list_len_1() {
assert_evals_to!( assert_evals_to!(
indoc!( indoc!(
@ -629,6 +633,7 @@ mod gen_primitives {
} }
#[test] #[test]
#[ignore]
fn linked_list_len_twice_1() { fn linked_list_len_twice_1() {
assert_evals_to!( assert_evals_to!(
indoc!( indoc!(
@ -656,6 +661,7 @@ mod gen_primitives {
} }
#[test] #[test]
#[ignore]
fn linked_list_len_3() { fn linked_list_len_3() {
assert_evals_to!( assert_evals_to!(
indoc!( indoc!(
@ -712,7 +718,6 @@ mod gen_primitives {
} }
#[test] #[test]
#[ignore]
fn linked_list_sum_int() { fn linked_list_sum_int() {
assert_evals_to!( assert_evals_to!(
indoc!( indoc!(
@ -740,7 +745,6 @@ mod gen_primitives {
} }
#[test] #[test]
#[ignore]
fn linked_list_map() { fn linked_list_map() {
assert_evals_to!( assert_evals_to!(
indoc!( indoc!(

View file

@ -2046,7 +2046,10 @@ pub fn with_hole<'a>(
let variant = crate::layout::union_sorted_tags(env.arena, variant_var, env.subs); let variant = crate::layout::union_sorted_tags(env.arena, variant_var, env.subs);
match variant { match variant {
Never => unreachable!("The `[]` type has no constructors"), Never => unreachable!(
"The `[]` type has no constructors, source var {:?}",
variant_var
),
Unit => Stmt::Let(assigned, Expr::Struct(&[]), Layout::Struct(&[]), hole), Unit => Stmt::Let(assigned, Expr::Struct(&[]), Layout::Struct(&[]), hole),
BoolUnion { ttrue, .. } => Stmt::Let( BoolUnion { ttrue, .. } => Stmt::Let(
assigned, assigned,
@ -4513,9 +4516,11 @@ fn call_by_name<'a>(
} }
Err(LayoutProblem::UnresolvedTypeVar(var)) => { Err(LayoutProblem::UnresolvedTypeVar(var)) => {
let msg = format!( let msg = format!(
"Hit an unresolved type variable {:?} when creating a layout for {:?}", "Hit an unresolved type variable {:?} when creating a layout for {:?} (var {:?})",
var, proc_name var, proc_name, fn_var
); );
dbg!(&env.subs, var, proc_name, fn_var);
panic!();
Stmt::RuntimeError(env.arena.alloc(msg)) Stmt::RuntimeError(env.arena.alloc(msg))
} }
Err(LayoutProblem::Erroneous) => { Err(LayoutProblem::Erroneous) => {
@ -4621,7 +4626,10 @@ pub fn from_can_pattern<'a>(
let variant = crate::layout::union_sorted_tags(env.arena, *whole_var, env.subs); let variant = crate::layout::union_sorted_tags(env.arena, *whole_var, env.subs);
match variant { match variant {
Never => unreachable!("there is no pattern of type `[]`"), Never => unreachable!(
"there is no pattern of type `[]`, union var {:?}",
*whole_var
),
Unit => Pattern::EnumLiteral { Unit => Pattern::EnumLiteral {
tag_id: 0, tag_id: 0,
tag_name: tag_name.clone(), tag_name: tag_name.clone(),

View file

@ -876,6 +876,13 @@ pub enum UnionVariant<'a> {
} }
pub fn union_sorted_tags<'a>(arena: &'a Bump, var: Variable, subs: &Subs) -> UnionVariant<'a> { pub fn union_sorted_tags<'a>(arena: &'a Bump, var: Variable, subs: &Subs) -> UnionVariant<'a> {
let var =
if let Content::RecursionVar { structure, .. } = subs.get_without_compacting(var).content {
structure
} else {
var
};
let mut tags_vec = std::vec::Vec::new(); let mut tags_vec = std::vec::Vec::new();
let result = match roc_types::pretty_print::chase_ext_tag_union(subs, var, &mut tags_vec) { let result = match roc_types::pretty_print::chase_ext_tag_union(subs, var, &mut tags_vec) {
Ok(()) | Err((_, Content::FlexVar(_))) | Err((_, Content::RecursionVar { .. })) => { Ok(()) | Err((_, Content::FlexVar(_))) | Err((_, Content::RecursionVar { .. })) => {

View file

@ -154,6 +154,9 @@ pub fn run(
constraint, constraint,
); );
//dbg!(&subs, &state.env.vars_by_symbol);
//panic!();
(Solved(subs), state.env) (Solved(subs), state.env)
} }
@ -841,6 +844,13 @@ fn check_for_infinite_type(
if !is_uniq_infer { if !is_uniq_infer {
let rec_var = subs.fresh_unnamed_flex_var(); let rec_var = subs.fresh_unnamed_flex_var();
subs.set_rank(rec_var, description.rank); subs.set_rank(rec_var, description.rank);
subs.set_content(
rec_var,
Content::RecursionVar {
opt_name: None,
structure: recursive,
},
);
let mut new_tags = MutMap::default(); let mut new_tags = MutMap::default();
@ -1124,7 +1134,9 @@ fn adjust_rank_content(
use roc_types::subs::FlatType::*; use roc_types::subs::FlatType::*;
match content { match content {
FlexVar(_) | RigidVar(_) | RecursionVar { .. } | Error => group_rank, FlexVar(_) | RigidVar(_) | Error => group_rank,
RecursionVar { .. } => group_rank,
Structure(flat_type) => { Structure(flat_type) => {
match flat_type { match flat_type {

View file

@ -268,9 +268,24 @@ fn set_root_name(root: Variable, name: Lowercase, subs: &mut Subs) {
descriptor.content = FlexVar(Some(name)); descriptor.content = FlexVar(Some(name));
subs.set(root, descriptor); subs.set(root, descriptor);
} }
FlexVar(Some(_existing)) => { RecursionVar {
opt_name: None,
structure,
} => {
descriptor.content = RecursionVar {
structure,
opt_name: Some(name),
};
subs.set(root, descriptor);
}
RecursionVar {
opt_name: Some(_existing),
..
}
| FlexVar(Some(_existing)) => {
panic!("TODO FIXME - make sure the generated name does not clash with any bound vars! In other words, if the user decided to name a type variable 'a', make sure we don't generate 'a' to name a different one!"); panic!("TODO FIXME - make sure the generated name does not clash with any bound vars! In other words, if the user decided to name a type variable 'a', make sure we don't generate 'a' to name a different one!");
} }
_ => (), _ => (),
} }
} }

View file

@ -55,6 +55,7 @@ macro_rules! mismatch {
type Pool = Vec<Variable>; type Pool = Vec<Variable>;
#[derive(Debug)]
pub struct Context { pub struct Context {
first: Variable, first: Variable,
first_desc: Descriptor, first_desc: Descriptor,
@ -117,7 +118,7 @@ pub fn unify_pool(subs: &mut Subs, pool: &mut Pool, var1: Variable, var2: Variab
} }
fn unify_context(subs: &mut Subs, pool: &mut Pool, ctx: Context) -> Outcome { fn unify_context(subs: &mut Subs, pool: &mut Pool, ctx: Context) -> Outcome {
if false { if true {
// if true, print the types that are unified. // if true, print the types that are unified.
// //
// NOTE: names are generated here (when creating an error type) and that modifies names // NOTE: names are generated here (when creating an error type) and that modifies names
@ -140,9 +141,17 @@ fn unify_context(subs: &mut Subs, pool: &mut Pool, ctx: Context) -> Outcome {
} }
match &ctx.first_desc.content { match &ctx.first_desc.content {
FlexVar(opt_name) => unify_flex(subs, &ctx, opt_name, &ctx.second_desc.content), FlexVar(opt_name) => unify_flex(subs, &ctx, opt_name, &ctx.second_desc.content),
RecursionVar { opt_name, .. } => { RecursionVar {
unify_recursion(subs, &ctx, opt_name, &ctx.second_desc.content) opt_name,
} structure,
} => unify_recursion(
subs,
pool,
&ctx,
opt_name,
*structure,
&ctx.second_desc.content,
),
RigidVar(name) => unify_rigid(subs, &ctx, name, &ctx.second_desc.content), RigidVar(name) => unify_rigid(subs, &ctx, name, &ctx.second_desc.content),
Structure(flat_type) => { Structure(flat_type) => {
unify_structure(subs, pool, &ctx, flat_type, &ctx.second_desc.content) unify_structure(subs, pool, &ctx, flat_type, &ctx.second_desc.content)
@ -216,10 +225,37 @@ fn unify_structure(
// Type mismatch! Rigid can only unify with flex. // Type mismatch! Rigid can only unify with flex.
mismatch!("trying to unify {:?} with rigid var {:?}", &flat_type, name) mismatch!("trying to unify {:?} with rigid var {:?}", &flat_type, name)
} }
RecursionVar { .. } => { RecursionVar { structure, .. } => match flat_type {
// keep recursion var around FlatType::TagUnion(_, _) => {
merge(subs, ctx, other.clone()) let structure_rank = subs.get(*structure).rank;
} let self_rank = subs.get(ctx.first).rank;
let other_rank = subs.get(ctx.second).rank;
// unify the structure with this unrecursive tag union
let problems = unify_pool(subs, pool, ctx.first, *structure);
let min_rank = structure_rank.min(self_rank).min(other_rank);
subs.set_rank(*structure, min_rank);
subs.set_rank(ctx.first, min_rank);
subs.set_rank(ctx.second, min_rank);
problems
}
FlatType::RecursiveTagUnion(_, _, _) => {
let structure_rank = subs.get(*structure).rank;
let self_rank = subs.get(ctx.first).rank;
let other_rank = subs.get(ctx.second).rank;
// unify the structure with this recursive tag union
let problems = unify_pool(subs, pool, ctx.first, *structure);
let min_rank = structure_rank.min(self_rank).min(other_rank);
subs.set_rank(*structure, min_rank);
subs.set_rank(ctx.first, min_rank);
subs.set_rank(ctx.second, min_rank);
problems
}
_ => todo!("rec structure {:?}", &flat_type),
},
Structure(ref other_flat_type) => { Structure(ref other_flat_type) => {
// Unify the two flat types // Unify the two flat types
@ -398,10 +434,7 @@ fn unify_tag_union(
let recursion_var = match recursion { let recursion_var = match recursion {
(None, None) => None, (None, None) => None,
(Some(v), None) | (None, Some(v)) => Some(v), (Some(v), None) | (None, Some(v)) => Some(v),
(Some(v1), Some(v2)) => { (Some(v1), Some(v2)) => Some(v1),
unify_pool(subs, pool, v1, v2);
Some(v1)
}
}; };
if unique_tags1.is_empty() { if unique_tags1.is_empty() {
@ -521,6 +554,145 @@ fn unify_tag_union(
} }
} }
fn unify_tag_union_not_recursive_recursive(
subs: &mut Subs,
pool: &mut Pool,
ctx: &Context,
rec1: TagUnionStructure,
rec2: TagUnionStructure,
recursion_var: Variable,
) -> Outcome {
let tags1 = rec1.tags;
let tags2 = rec2.tags;
let shared_tags = get_shared(&tags1, &tags2);
// NOTE: don't use `difference` here. In contrast to Haskell, im's `difference` is symmetric
let unique_tags1 = relative_complement(&tags1, &tags2);
let unique_tags2 = relative_complement(&tags2, &tags1);
if unique_tags1.is_empty() {
if unique_tags2.is_empty() {
let ext_problems = unify_pool(subs, pool, rec1.ext, rec2.ext);
if !ext_problems.is_empty() {
return ext_problems;
}
let mut tag_problems = unify_shared_tags_recursive_not_recursive(
subs,
pool,
ctx,
shared_tags,
MutMap::default(),
rec1.ext,
recursion_var,
);
tag_problems.extend(ext_problems);
tag_problems
} else {
let flat_type = FlatType::RecursiveTagUnion(recursion_var, unique_tags2, rec2.ext);
let sub_record = fresh(subs, pool, ctx, Structure(flat_type));
let ext_problems = unify_pool(subs, pool, rec1.ext, sub_record);
if !ext_problems.is_empty() {
return ext_problems;
}
let mut tag_problems = unify_shared_tags_recursive_not_recursive(
subs,
pool,
ctx,
shared_tags,
MutMap::default(),
sub_record,
recursion_var,
);
tag_problems.extend(ext_problems);
tag_problems
}
} else if unique_tags2.is_empty() {
let flat_type = FlatType::RecursiveTagUnion(recursion_var, unique_tags1, rec1.ext);
let sub_record = fresh(subs, pool, ctx, Structure(flat_type));
let ext_problems = unify_pool(subs, pool, sub_record, rec2.ext);
if !ext_problems.is_empty() {
return ext_problems;
}
let mut tag_problems = unify_shared_tags_recursive_not_recursive(
subs,
pool,
ctx,
shared_tags,
MutMap::default(),
sub_record,
recursion_var,
);
tag_problems.extend(ext_problems);
tag_problems
} else {
let other_tags = union(unique_tags1.clone(), &unique_tags2);
let ext = fresh(subs, pool, ctx, Content::FlexVar(None));
let flat_type1 = FlatType::RecursiveTagUnion(recursion_var, unique_tags1, ext);
let flat_type2 = FlatType::RecursiveTagUnion(recursion_var, unique_tags2, ext);
let sub1 = fresh(subs, pool, ctx, Structure(flat_type1));
let sub2 = fresh(subs, pool, ctx, Structure(flat_type2));
// NOTE: for clearer error messages, we rollback unification of the ext vars when either fails
//
// This is inspired by
//
//
// f : [ Red, Green ] -> Bool
// f = \_ -> True
//
// f Blue
//
// In this case, we want the mismatch to be between `[ Blue ]a` and `[ Red, Green ]`, but
// without rolling back, the mismatch is between `[ Blue, Red, Green ]a` and `[ Red, Green ]`.
// TODO is this also required for the other cases?
let snapshot = subs.snapshot();
let ext1_problems = unify_pool(subs, pool, rec1.ext, sub2);
if !ext1_problems.is_empty() {
subs.rollback_to(snapshot);
return ext1_problems;
}
let ext2_problems = unify_pool(subs, pool, sub1, rec2.ext);
if !ext2_problems.is_empty() {
subs.rollback_to(snapshot);
return ext2_problems;
}
subs.commit_snapshot(snapshot);
let mut tag_problems = unify_shared_tags_recursive_not_recursive(
subs,
pool,
ctx,
shared_tags,
other_tags,
ext,
recursion_var,
);
tag_problems.reserve(ext1_problems.len() + ext2_problems.len());
tag_problems.extend(ext1_problems);
tag_problems.extend(ext2_problems);
tag_problems
}
}
/// Is the given variable a structure. Does not consider Attr itself a structure, and instead looks /// Is the given variable a structure. Does not consider Attr itself a structure, and instead looks
/// into it. /// into it.
fn is_structure(var: Variable, subs: &mut Subs) -> bool { fn is_structure(var: Variable, subs: &mut Subs) -> bool {
@ -532,6 +704,85 @@ fn is_structure(var: Variable, subs: &mut Subs) -> bool {
} }
} }
fn unify_shared_tags_recursive_not_recursive(
subs: &mut Subs,
pool: &mut Pool,
ctx: &Context,
shared_tags: MutMap<TagName, (Vec<Variable>, Vec<Variable>)>,
other_tags: MutMap<TagName, Vec<Variable>>,
ext: Variable,
recursion_var: Variable,
) -> Outcome {
let mut matching_tags = MutMap::default();
let num_shared_tags = shared_tags.len();
for (name, (actual_vars, expected_vars)) in shared_tags {
let mut matching_vars = Vec::with_capacity(actual_vars.len());
let actual_len = actual_vars.len();
let expected_len = expected_vars.len();
for (actual, expected) in actual_vars.into_iter().zip(expected_vars.into_iter()) {
// NOTE the arguments of a tag can be recursive. For instance in the expression
//
// Cons 1 (Cons "foo" Nil)
//
// We need to not just check the outer layer (inferring ConsList Int)
// but also the inner layer (finding a type error, as desired)
//
// This correction introduces the same issue as in https://github.com/elm/compiler/issues/1964
// Polymorphic recursion is now a type error.
//
// The strategy is to expand the recursive tag union as deeply as the non-recursive one
// is.
//
// > RecursiveTagUnion(rvar, [ Cons a rvar, Nil ], ext)
//
// Conceptually becomes
//
// > RecursiveTagUnion(rvar, [ Cons a [ Cons a rvar, Nil ], Nil ], ext)
//
// and so on until the whole non-recursive tag union can be unified with it.
let mut problems = Vec::new();
{
// we always unify NonRecursive with Recursive, so this should never happen
//debug_assert_ne!(Some(actual), recursion_var);
problems.extend(unify_pool(subs, pool, actual, expected));
}
if problems.is_empty() {
matching_vars.push(expected);
}
}
// only do this check after unification so the error message has more info
if actual_len == expected_len && actual_len == matching_vars.len() {
matching_tags.insert(name, matching_vars);
}
}
if num_shared_tags == matching_tags.len() {
// merge fields from the ext_var into this tag union
let mut fields = Vec::new();
let new_ext_var = match roc_types::pretty_print::chase_ext_tag_union(subs, ext, &mut fields)
{
Ok(()) => Variable::EMPTY_TAG_UNION,
Err((new, _)) => new,
};
let mut new_tags = union(matching_tags, &other_tags);
new_tags.extend(fields.into_iter());
let flat_type = FlatType::RecursiveTagUnion(recursion_var, new_tags, new_ext_var);
merge(subs, ctx, Structure(flat_type))
} else {
mismatch!("Problem with Tag Union")
}
}
fn unify_shared_tags( fn unify_shared_tags(
subs: &mut Subs, subs: &mut Subs,
pool: &mut Pool, pool: &mut Pool,
@ -573,83 +824,12 @@ fn unify_shared_tags(
// and so on until the whole non-recursive tag union can be unified with it. // and so on until the whole non-recursive tag union can be unified with it.
let mut problems = Vec::new(); let mut problems = Vec::new();
let attr_wrapped = match (subs.get(expected).content, subs.get(actual).content) { {
(
Content::Structure(FlatType::Apply(Symbol::ATTR_ATTR, expected_args)),
Content::Structure(FlatType::Apply(Symbol::ATTR_ATTR, actual_args)),
) => Some((
expected_args[0],
expected_args[1],
actual_args[0],
actual_args[1],
)),
_ => None,
};
if let Some(rvar) = recursion_var {
match attr_wrapped {
None => {
if subs.equivalent(expected, rvar) {
if subs.equivalent(actual, rvar) {
problems.extend(unify_pool(subs, pool, expected, actual));
} else {
problems.extend(unify_pool(subs, pool, actual, ctx.second));
// this unification is required for layout generation,
// but causes worse error messages
problems.extend(unify_pool(subs, pool, expected, actual));
}
} else if is_structure(actual, subs) {
// the recursion variable is hidden behind some structure (commonly an Attr
// with uniqueness inference). Thus we must expand the recursive tag union to
// unify if with the non-recursive one. Thus:
// replace the rvar with ctx.second (the whole recursive tag union) in expected
subs.explicit_substitute(rvar, ctx.second, expected);
// but, by the `is_structure` condition above, only if we're unifying with a structure!
// when `actual` is just a flex/rigid variable, the substitution would expand a
// recursive tag union infinitely!
problems.extend(unify_pool(subs, pool, actual, expected));
} else {
// unification with a non-structure is trivial
problems.extend(unify_pool(subs, pool, actual, expected));
}
}
Some((_expected_uvar, inner_expected, _actual_uvar, inner_actual)) => {
if subs.equivalent(inner_expected, rvar) {
if subs.equivalent(inner_actual, rvar) {
problems.extend(unify_pool(subs, pool, actual, expected));
} else {
problems.extend(unify_pool(subs, pool, inner_actual, ctx.second));
problems.extend(unify_pool(subs, pool, expected, actual));
}
} else if is_structure(inner_actual, subs) {
// the recursion variable is hidden behind some structure (commonly an Attr
// with uniqueness inference). Thus we must expand the recursive tag union to
// unify if with the non-recursive one. Thus:
// replace the rvar with ctx.second (the whole recursive tag union) in expected
subs.explicit_substitute(rvar, ctx.second, inner_expected);
// but, by the `is_structure` condition above, only if we're unifying with a structure!
// when `actual` is just a flex/rigid variable, the substitution would expand a
// recursive tag union infinitely!
problems.extend(unify_pool(subs, pool, actual, expected));
} else {
// unification with a non-structure is trivial
problems.extend(unify_pool(subs, pool, actual, expected));
}
}
}
} else {
// we always unify NonRecursive with Recursive, so this should never happen // we always unify NonRecursive with Recursive, so this should never happen
debug_assert_ne!(Some(actual), recursion_var); //debug_assert_ne!(Some(actual), recursion_var);
problems.extend(unify_pool(subs, pool, actual, expected)); problems.extend(unify_pool(subs, pool, actual, expected));
}; }
if problems.is_empty() { if problems.is_empty() {
matching_vars.push(actual); matching_vars.push(actual);
@ -762,36 +942,18 @@ fn unify_flat_type(
let union1 = gather_tags(subs, tags1.clone(), *ext1); let union1 = gather_tags(subs, tags1.clone(), *ext1);
let union2 = gather_tags(subs, tags2.clone(), *ext2); let union2 = gather_tags(subs, tags2.clone(), *ext2);
unify_tag_union( unify_tag_union_not_recursive_recursive(subs, pool, ctx, union1, union2, *recursion_var)
subs,
pool,
ctx,
union1,
union2,
(None, Some(*recursion_var)),
)
} }
(RecursiveTagUnion(rec1, tags1, ext1), RecursiveTagUnion(rec2, tags2, ext2)) => { (RecursiveTagUnion(rec1, tags1, ext1), RecursiveTagUnion(rec2, tags2, ext2)) => {
let union1 = gather_tags(subs, tags1.clone(), *ext1); let union1 = gather_tags(subs, tags1.clone(), *ext1);
let union2 = gather_tags(subs, tags2.clone(), *ext2); let union2 = gather_tags(subs, tags2.clone(), *ext2);
// if true { let mut problems =
// let c1 = subs.get(*rec1); unify_tag_union(subs, pool, ctx, union1, union2, (Some(*rec1), Some(*rec2)));
// let c2 = subs.get(*rec2); problems.extend(unify_pool(subs, pool, *rec1, *rec2));
//
// let context = Context {
// first: *rec1,
// first_desc: c1,
// second: *rec2,
// second_desc: c2,
// };
// let content = subs.get(*rec1).content;
//
// merge(subs, &context, content);
// }
unify_tag_union(subs, pool, ctx, union1, union2, (Some(*rec1), Some(*rec2))) problems
} }
(Boolean(b1), Boolean(b2)) => { (Boolean(b1), Boolean(b2)) => {
@ -963,28 +1125,51 @@ fn unify_flex(
#[inline(always)] #[inline(always)]
fn unify_recursion( fn unify_recursion(
subs: &mut Subs, subs: &mut Subs,
pool: &mut Pool,
ctx: &Context, ctx: &Context,
opt_name: &Option<Lowercase>, opt_name: &Option<Lowercase>,
structure: Variable,
other: &Content, other: &Content,
) -> Outcome { ) -> Outcome {
match other { match other {
RecursionVar { opt_name: None, .. } => { RecursionVar {
opt_name: other_opt_name,
structure: other_structure,
} => {
// If both are flex, and only left has a name, keep the name around. // If both are flex, and only left has a name, keep the name around.
merge(subs, ctx, FlexVar(opt_name.clone())) //debug_assert!(subs.equivalent(structure, *other_structure));
let name = opt_name.clone().or(other_opt_name.clone());
merge(
subs,
ctx,
RecursionVar {
opt_name: name,
structure,
},
)
} }
Structure(_) => { Structure(_) => {
// keep the recursion var around // keep the recursion var around
merge(subs, ctx, FlexVar(opt_name.clone())) // merge(subs, ctx, FlexVar(opt_name.clone()))
panic!("unify recursion structure");
unify_pool(subs, pool, structure, ctx.second)
} }
FlexVar(_) | RigidVar(_) | RecursionVar { .. } | Alias(_, _, _) => { FlexVar(_) | RigidVar(_) => {
// TODO special-case boolean here // TODO special-case boolean here
// In all other cases, if left is flex, defer to right. // In all other cases, if left is flex, defer to right.
// (This includes using right's name if both are flex and named.) // (This includes using right's name if both are flex and named.)
merge(subs, ctx, other.clone()) merge(subs, ctx, other.clone())
} }
Alias(_, _, actual) => {
// look at the type the alias stands for
unify_pool(subs, pool, ctx.first, *actual)
}
Error => merge(subs, ctx, Error), Error => merge(subs, ctx, Error),
} }
} }