Replace solve() with solve::run()

This commit is contained in:
Richard Feldman 2019-12-19 17:43:15 -05:00
parent f6d21d756d
commit fbf5dbdf43
6 changed files with 486 additions and 67 deletions

View file

@ -2,7 +2,7 @@ use crate::can::ident::Lowercase;
use crate::can::symbol::Symbol;
use crate::collections::ImMap;
use crate::region::Located;
use crate::subs::{Content, Descriptor, FlatType, Subs, Variable};
use crate::subs::{Content, Descriptor, FlatType, Mark, Rank, Subs, Variable};
use crate::types::Constraint::{self, *};
use crate::types::Problem;
use crate::types::Type::{self, *};
@ -10,20 +10,100 @@ use crate::unify::{unify, Problems};
type Env = ImMap<Symbol, Variable>;
pub fn solve(
const DEFAULT_POOLS: usize = 8;
#[derive(Clone)]
struct Pools(Vec<Vec<Variable>>);
impl Default for Pools {
fn default() -> Self {
Pools::new(DEFAULT_POOLS)
}
}
impl Pools {
pub fn new(num_pools: usize) -> Self {
let mut pools = Vec::with_capacity(num_pools);
for _ in 0..num_pools {
pools.push(Vec::new());
}
Pools(pools)
}
pub fn get_mut(&mut self, rank: Rank) -> &mut Vec<Variable> {
self.0
.get_mut(rank.into_usize())
.unwrap_or_else(|| panic!("Compiler bug: could not find pool at rank {}", rank))
}
pub fn get(&self, rank: Rank) -> &Vec<Variable> {
self.0
.get(rank.into_usize())
.unwrap_or_else(|| panic!("Compiler bug: could not find pool at rank {}", rank))
}
pub fn iter<'a>(&'a self) -> std::slice::Iter<'a, Vec<Variable>> {
self.0.iter()
}
pub fn split_last(&self) -> (&Vec<Variable>, &[Vec<Variable>]) {
self.0
.split_last()
.unwrap_or_else(|| panic!("Attempted to split_last() on non-empy Pools"))
}
}
struct State {
vars_by_symbol: Env,
mark: Mark,
}
pub fn run(
vars_by_symbol: &Env,
problems: &mut Problems,
subs: &mut Subs,
constraint: &Constraint,
) {
let mut pools = Pools::default();
let state = State {
vars_by_symbol: vars_by_symbol.clone(),
mark: Mark::none().next(),
};
let rank = Rank::outermost();
solve(
vars_by_symbol,
state,
rank,
&mut pools,
problems,
subs,
constraint,
);
}
fn solve(
vars_by_symbol: &Env,
state: State,
rank: Rank,
pools: &mut Pools,
problems: &mut Problems,
subs: &mut Subs,
constraint: &Constraint,
) -> State {
match constraint {
True => (),
True => state,
Eq(typ, expected_type, _region) => {
// TODO use region?
let actual = type_to_var(subs, typ.clone());
let expected = type_to_var(subs, expected_type.clone().get_type());
let vars = unify(subs, problems, actual, expected);
unify(subs, problems, actual, expected);
introduce(subs, rank, pools, &vars);
state
}
Lookup(symbol, expected_type, _region) => {
// TODO use region?
@ -36,29 +116,80 @@ pub fn solve(
)
}));
let expected = type_to_var(subs, expected_type.clone().get_type());
let vars = unify(subs, problems, actual, expected);
unify(subs, problems, actual, expected);
introduce(subs, rank, pools, &vars);
state
}
And(sub_constraints) => {
let mut state = state;
for sub_constraint in sub_constraints.iter() {
solve(vars_by_symbol, problems, subs, sub_constraint);
state = solve(
vars_by_symbol,
state,
rank,
pools,
problems,
subs,
sub_constraint,
);
}
state
}
Pattern(_region, _category, typ, expected) => {
// TODO use region?
let actual = type_to_var(subs, typ.clone());
let expected = type_to_var(subs, expected.clone().get_type());
let vars = unify(subs, problems, actual, expected);
unify(subs, problems, actual, expected);
introduce(subs, rank, pools, &vars);
state
}
Let(let_con) => {
match &let_con.ret_constraint {
True => {
introduce(subs, rank, pools, &let_con.flex_vars);
// If the return expression is guaranteed to solve,
// solve the assignments themselves and move on.
solve(vars_by_symbol, problems, subs, &let_con.defs_constraint)
solve(
vars_by_symbol,
state,
rank,
pools,
problems,
subs,
&let_con.defs_constraint,
)
}
ret_con => {
let rigid_vars = &let_con.rigid_vars;
let flex_vars = &let_con.flex_vars;
// work in the next pool to localize header
let next_rank = rank.next();
let mut next_pools = pools.clone();
// introduce variables
for &var in rigid_vars.iter() {
subs.set_rank(var, next_rank);
}
for &var in flex_vars.iter() {
subs.set_rank(var, next_rank);
}
let pool: &mut Vec<Variable> = next_pools.get_mut(next_rank);
pool.reserve(rigid_vars.len() + flex_vars.len());
pool.extend(rigid_vars.iter());
pool.extend(flex_vars.iter());
// Add a variable for each assignment to the vars_by_symbol.
let mut locals = ImMap::default();
@ -74,8 +205,31 @@ pub fn solve(
);
}
// run solver in next pool
// Solve the assignments' constraints first.
solve(vars_by_symbol, problems, subs, &let_con.defs_constraint);
let new_state = solve(
vars_by_symbol,
state,
next_rank,
&mut next_pools,
problems,
subs,
&let_con.defs_constraint,
);
let young_mark = new_state.mark;
let visit_mark = young_mark.next();
let final_mark = visit_mark.next();
// pop pool
generalize(subs, young_mark, visit_mark, next_rank, &mut next_pools);
next_pools.get_mut(next_rank).clear();
// check that things went well
debug_assert!(rigid_vars
.iter()
.all(|&var| subs.get(var).rank == Rank::none()));
let mut new_vars_by_symbol = vars_by_symbol.clone();
@ -83,13 +237,30 @@ pub fn solve(
new_vars_by_symbol.insert(symbol.clone(), loc_var.value);
}
// Note that this vars_by_symbol is the one returned by the
// previous call to solve()
let temp_state = State {
vars_by_symbol: new_state.vars_by_symbol,
mark: final_mark,
};
// Now solve the body, using the new vars_by_symbol which includes
// the assignments' name-to-variable mappings.
solve(&new_vars_by_symbol, problems, subs, &ret_con);
let new_state = solve(
&new_vars_by_symbol,
temp_state,
rank,
&mut next_pools,
problems,
subs,
&ret_con,
);
for (symbol, loc_var) in locals {
check_for_infinite_type(subs, problems, symbol, loc_var);
}
new_state
}
}
}
@ -193,3 +364,193 @@ fn check_for_infinite_type(
problems.push(problem);
}
}
fn generalize(
subs: &mut Subs,
young_mark: Mark,
visit_mark: Mark,
young_rank: Rank,
pools: &mut Pools,
) {
let young_vars = pools.get(young_rank);
let rank_table = pool_to_rank_table(subs, young_mark, young_rank, young_vars);
// get the ranks right for each entry.
// start at low ranks so that we only have to pass
// over the information once.
for (index, table) in rank_table.iter().enumerate() {
for &var in table.iter() {
adjust_rank(subs, young_mark, visit_mark, Rank::from(index), var);
}
}
let (last_pool, all_but_last_pool) = rank_table.split_last();
// For variables that have rank lowerer than youngRank, register them in
// the appropriate old pool if they are not redundant.
for vars in all_but_last_pool {
for &var in vars {
if !subs.redundant(var) {
let rank = subs.get(var).rank;
pools.get_mut(rank).push(var);
}
}
}
// For variables with rank youngRank
// If rank < youngRank: register in oldPool
// otherwise generalize
for &var in last_pool {
if !subs.redundant(var) {
let mut desc = subs.get(var);
if desc.rank < young_rank {
pools.get_mut(desc.rank).push(var);
} else {
desc.rank = Rank::none();
subs.set(var, desc);
}
}
}
}
fn pool_to_rank_table(
subs: &mut Subs,
young_mark: Mark,
young_rank: Rank,
young_vars: &Vec<Variable>,
) -> Pools {
let mut pools = Pools::new(young_rank.into_usize() + 1);
// Sort the variables into buckets by rank.
for &var in young_vars.iter() {
let rank = subs.get(var).rank;
subs.set_mark(var, young_mark);
pools.get_mut(rank).push(var);
}
pools
}
/// Adjust variable ranks such that ranks never increase as you move deeper.
/// This way the outermost rank is representative of the entire structure.
///
fn adjust_rank(
subs: &mut Subs,
young_mark: Mark,
visit_mark: Mark,
group_rank: Rank,
var: Variable,
) -> Rank {
let mut desc = subs.get(var);
let mark = desc.mark;
if mark == young_mark {
desc.mark = visit_mark;
let content = desc.content.clone();
let mut marked_desc = desc.clone();
// Mark the variable as visited before adjusting content, as it may be cyclic.
subs.set(var, desc);
let max_rank = adjust_rank_content(subs, young_mark, visit_mark, group_rank, content);
marked_desc.rank = max_rank;
subs.set(var, marked_desc);
max_rank
} else if mark == visit_mark {
desc.rank
} else {
let min_rank = desc.rank.min(group_rank);
// TODO from elm-compiler: how can min_rank ever be group_rank?
desc.rank = min_rank;
desc.mark = visit_mark;
subs.set(var, desc);
min_rank
}
}
fn adjust_rank_content(
subs: &mut Subs,
young_mark: Mark,
visit_mark: Mark,
group_rank: Rank,
content: Content,
) -> Rank {
use crate::subs::Content::*;
use crate::subs::FlatType::*;
match content {
FlexVar(_) | RigidVar(_) | Error(_) => group_rank,
Structure(flat_type) => {
match flat_type {
Apply { args, .. } => {
let mut rank = Rank::outermost();
for var in args {
rank = rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
}
rank
}
Func(arg_vars, ret_var) => {
let mut rank = adjust_rank(subs, young_mark, visit_mark, group_rank, ret_var);
for var in arg_vars {
rank = rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
}
rank
}
EmptyRecord => {
// from elm-compiler: THEORY: an empty record never needs to get generalized
Rank::outermost()
}
Record(fields, ext_var) => {
let mut rank = adjust_rank(subs, young_mark, visit_mark, group_rank, ext_var);
for (_, var) in fields {
rank = rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
}
rank
}
Erroneous(_) => group_rank,
}
}
Alias(_, _, args, _) => {
let mut rank = Rank::outermost();
// from elm-compiler: THEORY: anything in the realVar would be outermostRank
for (_, var) in args {
rank = rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
}
rank
}
}
}
fn introduce(subs: &mut Subs, rank: Rank, pools: &mut Pools, vars: &Vec<Variable>) {
let pool: &mut Vec<Variable> = pools.get_mut(rank);
for &var in vars.iter() {
subs.set_rank(var, rank);
}
pool.extend(vars);
}