Closes#2535
See the referenced issue for longer discussion - here's the synopsis.
Consider this program
```
app "test" provides [ nums ] to "./platform"
alpha = { a: 1, b: 2 }
nums : List U8
nums =
[
alpha.a,
alpha.b,
]
```
Here's its IR:
```
procedure : `#UserApp.alpha` {I64, U8}
procedure = `#UserApp.alpha` ():
let `#UserApp.5` : Builtin(Int(I64)) = 1i64;
let `#UserApp.6` : Builtin(Int(U8)) = 2i64;
let `#UserApp.4` : Struct([Builtin(Int(I64)), Builtin(Int(U8))]) = Struct {`#UserApp.5`, `#UserApp.6`};
ret `#UserApp.4`;
procedure : `#UserApp.nums` List U8
procedure = `#UserApp.nums` ():
let `#UserApp.7` : Struct([Builtin(Int(I64)), Builtin(Int(U8))]) = CallByName `#UserApp.alpha`;
let `#UserApp.1` : Builtin(Int(U8)) = StructAtIndex 1 `#UserApp.7`;
let `#UserApp.3` : Struct([Builtin(Int(I64)), Builtin(Int(U8))]) = CallByName `#UserApp.alpha`;
let `#UserApp.2` : Builtin(Int(U8)) = StructAtIndex 1 `#UserApp.3`;
let `#UserApp.0` : Builtin(List(Builtin(Int(U8)))) = Array [`#UserApp.1`, `#UserApp.2`];
ret `#UserApp.0`;
```
What's happening is that we need to specialize `alpha` twice - once for the
type of a narrowed to a U8, another time for the type of b narrowed to a U8.
We do the specialization for alpha.b first - record fields are sorted by
layout, so we generate a record of type {i64, u8}. But then we go to
specialize alpha.a, but this has the same layout - {i64, u8} - so we reuse
the existing one! So (at least for records), we need to include record field
order associated with the sorted layout fields, so that we don't reuse
monomorphizations like this incorrectly!
Previously we would pass the annotation down as the
type-to-be-monomorphized for, but that would just mean the annotation
would unify with itself. We instead want to use the variable the thunk
is being used as to be the one unified with the thunk's annotation.
Closes#2445Closes#2446
This is a bit.. ugly, or at least seems suboptimal, but I can't think of
a better way to do it currently aside from demanding a uniform
representation, which we probably don't want to do.
Another option is something like the defunctionalization we perform
today, except also capturing potential uses of nested functions in the
closure tag of an encompassing lambda. So for example,
```
f = \x -> \y -> 1
```
would now record a lambdaset with the data `[Test.f
[TypeOfInnerClos1]]`, where `TypeOfInnerClos1` is e.g.
`[Test.f.innerClos1 I8, Test.f.innerClos1 I16]`, symbolizing that the
inner closure may be specialized to take an I8 or I16. Then at the time
that we create the capture set for `f`, we create a tag noting what
specialization should be used for the inner closure, and apply the
current defunctionalization algorithm. So effectively, the type of the
inner closure becomes a capture.
I'm not sure if this is any better, or if it has more problems.
@folkertdev any thoughts?
Closes#2322