use crate::llvm::build::{load_symbol, load_symbol_and_layout, Env, InPlace, Scope}; use crate::llvm::convert::{basic_type_from_layout, collection, get_ptr_type, ptr_int}; use inkwell::builder::Builder; use inkwell::context::Context; use inkwell::types::{BasicTypeEnum, PointerType}; use inkwell::values::{BasicValueEnum, FunctionValue, IntValue, PointerValue, StructValue}; use inkwell::{AddressSpace, IntPredicate}; use roc_module::symbol::Symbol; use roc_mono::layout::{Builtin, Layout, MemoryMode}; /// List.single : a -> List a pub fn list_single<'a, 'ctx, 'env>( env: &Env<'a, 'ctx, 'env>, elem: BasicValueEnum<'ctx>, elem_layout: &Layout<'a>, ) -> BasicValueEnum<'ctx> { let builder = env.builder; let ctx = env.context; // allocate a list of size 1 on the heap let size = ctx.i64_type().const_int(1, false); let ptr = allocate_list(env, elem_layout, size); // Put the element into the list let elem_ptr = unsafe { builder.build_in_bounds_gep( ptr, &[ctx.i64_type().const_int( // 0 as in 0 index of our new list 0 as u64, false, )], "index", ) }; builder.build_store(elem_ptr, elem); let ptr_bytes = env.ptr_bytes; let int_type = ptr_int(ctx, ptr_bytes); let ptr_as_int = builder.build_ptr_to_int(ptr, int_type, "list_cast_ptr"); let struct_type = collection(ctx, ptr_bytes); let len = BasicValueEnum::IntValue(env.ptr_int().const_int(1, false)); let mut struct_val; // Store the pointer struct_val = builder .build_insert_value( struct_type.get_undef(), ptr_as_int, Builtin::WRAPPER_PTR, "insert_ptr", ) .unwrap(); // Store the length struct_val = builder .build_insert_value(struct_val, len, Builtin::WRAPPER_LEN, "insert_len") .unwrap(); // builder.build_bitcast( struct_val.into_struct_value(), collection(ctx, ptr_bytes), "cast_collection", ) } /// List.repeat : Int, elem -> List elem pub fn list_repeat<'a, 'ctx, 'env>( env: &Env<'a, 'ctx, 'env>, parent: FunctionValue<'ctx>, list_len: IntValue<'ctx>, elem: BasicValueEnum<'ctx>, elem_layout: &Layout<'a>, ) -> BasicValueEnum<'ctx> { let builder = env.builder; let ctx = env.context; // list_len > 0 // We have to do a loop below, continuously adding the `elem` // to the output list `List elem` until we have reached the // number of repeats. This `comparison` is used to check // if we need to do any looping; because if we dont, then we // dont need to allocate memory for the index or the check // if index != 0 let comparison = builder.build_int_compare( IntPredicate::UGT, list_len, ctx.i64_type().const_int(0, false), "atleastzero", ); let build_then = || { // Allocate space for the new array that we'll copy into. let list_ptr = allocate_list(env, elem_layout, list_len); // TODO check if malloc returned null; if so, runtime error for OOM! let index_name = "#index"; let start_alloca = builder.build_alloca(ctx.i64_type(), index_name); // Start at the last element in the list. let last_elem_index = builder.build_int_sub( list_len, ctx.i64_type().const_int(1, false), "lastelemindex", ); builder.build_store(start_alloca, last_elem_index); let loop_bb = ctx.append_basic_block(parent, "loop"); builder.build_unconditional_branch(loop_bb); builder.position_at_end(loop_bb); // #index = #index - 1 let curr_index = builder .build_load(start_alloca, index_name) .into_int_value(); let next_index = builder.build_int_sub(curr_index, ctx.i64_type().const_int(1, false), "nextindex"); builder.build_store(start_alloca, next_index); let elem_ptr = unsafe { builder.build_in_bounds_gep(list_ptr, &[curr_index], "load_index") }; // Mutate the new array in-place to change the element. builder.build_store(elem_ptr, elem); // #index != 0 let end_cond = builder.build_int_compare( IntPredicate::NE, ctx.i64_type().const_int(0, false), curr_index, "loopcond", ); let after_bb = ctx.append_basic_block(parent, "afterloop"); builder.build_conditional_branch(end_cond, loop_bb, after_bb); builder.position_at_end(after_bb); let ptr_bytes = env.ptr_bytes; let int_type = ptr_int(ctx, ptr_bytes); let ptr_as_int = builder.build_ptr_to_int(list_ptr, int_type, "list_cast_ptr"); let struct_type = collection(ctx, ptr_bytes); let mut struct_val; // Store the pointer struct_val = builder .build_insert_value( struct_type.get_undef(), ptr_as_int, Builtin::WRAPPER_PTR, "insert_ptr", ) .unwrap(); // Store the length struct_val = builder .build_insert_value(struct_val, list_len, Builtin::WRAPPER_LEN, "insert_len") .unwrap(); builder.build_bitcast( struct_val.into_struct_value(), collection(ctx, ptr_bytes), "cast_collection", ) }; let build_else = || empty_polymorphic_list(env); let struct_type = collection(ctx, env.ptr_bytes); build_basic_phi2( env, parent, comparison, build_then, build_else, BasicTypeEnum::StructType(struct_type), ) } /// List.prepend List elem, elem -> List elem pub fn list_prepend<'a, 'ctx, 'env>( env: &Env<'a, 'ctx, 'env>, original_wrapper: StructValue<'ctx>, elem: BasicValueEnum<'ctx>, elem_layout: &Layout<'a>, ) -> BasicValueEnum<'ctx> { let builder = env.builder; let ctx = env.context; // Load the usize length from the wrapper. let len = list_len(builder, original_wrapper); let elem_type = basic_type_from_layout(env.arena, ctx, elem_layout, env.ptr_bytes); let ptr_type = get_ptr_type(&elem_type, AddressSpace::Generic); let list_ptr = load_list_ptr(builder, original_wrapper, ptr_type); // The output list length, which is the old list length + 1 let new_list_len = env.builder.build_int_add( ctx.i64_type().const_int(1 as u64, false), len, "new_list_length", ); let ptr_bytes = env.ptr_bytes; // Allocate space for the new array that we'll copy into. let elem_type = basic_type_from_layout(env.arena, ctx, elem_layout, env.ptr_bytes); let clone_ptr = builder .build_array_malloc(elem_type, new_list_len, "list_ptr") .unwrap(); let int_type = ptr_int(ctx, ptr_bytes); let ptr_as_int = builder.build_ptr_to_int(clone_ptr, int_type, "list_cast_ptr"); builder.build_store(clone_ptr, elem); let index_1_ptr = unsafe { builder.build_in_bounds_gep( clone_ptr, &[ctx.i64_type().const_int(1 as u64, false)], "load_index", ) }; // Calculate the number of bytes we'll need to allocate. let elem_bytes = env .ptr_int() .const_int(elem_layout.stack_size(env.ptr_bytes) as u64, false); // This is the size of the list coming in, before we have added an element // to the beginning. let list_size = env .builder .build_int_mul(elem_bytes, len, "mul_old_len_by_elem_bytes"); if elem_layout.safe_to_memcpy() { // Copy the bytes from the original array into the new // one we just malloc'd. // // TODO how do we decide when to do the small memcpy vs the normal one? builder.build_memcpy(index_1_ptr, ptr_bytes, list_ptr, ptr_bytes, list_size); } else { panic!("TODO Cranelift currently only knows how to clone list elements that are Copy."); } // Create a fresh wrapper struct for the newly populated array let struct_type = collection(ctx, env.ptr_bytes); let mut struct_val; // Store the pointer struct_val = builder .build_insert_value( struct_type.get_undef(), ptr_as_int, Builtin::WRAPPER_PTR, "insert_ptr", ) .unwrap(); // Store the length struct_val = builder .build_insert_value(struct_val, new_list_len, Builtin::WRAPPER_LEN, "insert_len") .unwrap(); builder.build_bitcast( struct_val.into_struct_value(), collection(ctx, ptr_bytes), "cast_collection", ) } /// List.join : List (List elem) -> List elem pub fn list_join<'a, 'ctx, 'env>( env: &Env<'a, 'ctx, 'env>, parent: FunctionValue<'ctx>, outer_list_wrapper: StructValue<'ctx>, outer_list_layout: &Layout<'a>, ) -> BasicValueEnum<'ctx> { // List.join is implemented as follows: // 1. loop over every list to sum the list lengths // 2. using the sum of all the list lengths, allocate an output list of // that size. // 3. loop over every list, for every list, loop over every element // putting it into the output list match outer_list_layout { // If the input list is empty, or if it is a list of empty lists // then simply return an empty list Layout::Builtin(Builtin::EmptyList) | Layout::Builtin(Builtin::List(_, Layout::Builtin(Builtin::EmptyList))) => empty_list(env), Layout::Builtin(Builtin::List(_, Layout::Builtin(Builtin::List(_, elem_layout)))) => { let inner_list_layout = Layout::Builtin(Builtin::List(MemoryMode::Refcounted, elem_layout)); let builder = env.builder; let ctx = env.context; let elem_type = basic_type_from_layout(env.arena, ctx, elem_layout, env.ptr_bytes); let elem_ptr_type = get_ptr_type(&elem_type, AddressSpace::Generic); let inner_list_type = basic_type_from_layout(env.arena, ctx, &inner_list_layout, env.ptr_bytes); let outer_list_len = list_len(builder, outer_list_wrapper); let outer_list_ptr = { let elem_ptr_type = get_ptr_type(&inner_list_type, AddressSpace::Generic); load_list_ptr(builder, outer_list_wrapper, elem_ptr_type) }; // outer_list_len > 0 // We do this check to avoid allocating memory. If the input // list is empty, then we can just return an empty list. let comparison = list_is_not_empty(builder, ctx, outer_list_len); let build_then = || { let list_len_sum_name = "#listslengthsum"; let list_len_sum_alloca = builder.build_alloca(ctx.i64_type(), list_len_sum_name); builder.build_store(list_len_sum_alloca, ctx.i64_type().const_int(0, false)); // List Sum Loop let sum_loop = |sum_index| { let inner_list_wrapper_ptr = unsafe { builder.build_in_bounds_gep(outer_list_ptr, &[sum_index], "load_index") }; let inner_list = builder.build_load(inner_list_wrapper_ptr, "inner_list"); let inner_list_len = list_len(builder, inner_list.into_struct_value()); let next_list_sum = builder.build_int_add( builder .build_load(list_len_sum_alloca, list_len_sum_name) .into_int_value(), inner_list_len, "nextlistsum", ); builder.build_store(list_len_sum_alloca, next_list_sum); }; incrementing_index_loop( builder, parent, ctx, outer_list_len, "#sum_index", None, sum_loop, ); let final_list_sum = builder .build_load(list_len_sum_alloca, list_len_sum_name) .into_int_value(); let final_list_ptr = builder .build_array_malloc(elem_type, final_list_sum, "final_list_sum") .unwrap(); let dest_elem_ptr_alloca = builder.build_alloca(elem_ptr_type, "dest_elem"); builder.build_store(dest_elem_ptr_alloca, final_list_ptr); // Inner List Loop let inner_list_loop = |index| { let inner_list_wrapper = { let wrapper_ptr = unsafe { builder.build_in_bounds_gep(outer_list_ptr, &[index], "load_index") }; builder .build_load(wrapper_ptr, "inner_list_wrapper") .into_struct_value() }; let inner_list_len = list_len(builder, inner_list_wrapper); // inner_list_len > 0 let inner_list_comparison = list_is_not_empty(builder, ctx, inner_list_len); let inner_list_non_empty_block = ctx.append_basic_block(parent, "inner_list_non_empty"); let after_inner_list_non_empty_block = ctx.append_basic_block(parent, "branchcont"); builder.build_conditional_branch( inner_list_comparison, inner_list_non_empty_block, after_inner_list_non_empty_block, ); builder.position_at_end(inner_list_non_empty_block); // Element Inserting Loop let inner_elem_loop = |inner_index| { let src_elem_ptr = unsafe { let inner_list_ptr = load_list_ptr(builder, inner_list_wrapper, elem_ptr_type); builder.build_in_bounds_gep( inner_list_ptr, &[inner_index], "load_index", ) }; let src_elem = builder.build_load(src_elem_ptr, "get_elem"); // TODO clone src_elem let curr_dest_elem_ptr = builder .build_load(dest_elem_ptr_alloca, "load_dest_elem_ptr") .into_pointer_value(); builder.build_store(curr_dest_elem_ptr, src_elem); let inc_dest_elem_ptr = BasicValueEnum::PointerValue(unsafe { builder.build_in_bounds_gep( curr_dest_elem_ptr, &[env.ptr_int().const_int(1 as u64, false)], "increment_dest_elem", ) }); builder.build_store(dest_elem_ptr_alloca, inc_dest_elem_ptr); }; incrementing_index_loop( builder, parent, ctx, inner_list_len, "#inner_index", None, inner_elem_loop, ); builder.build_unconditional_branch(after_inner_list_non_empty_block); builder.position_at_end(after_inner_list_non_empty_block); }; incrementing_index_loop( builder, parent, ctx, outer_list_len, "#inner_list_index", None, inner_list_loop, ); let ptr_bytes = env.ptr_bytes; let int_type = ptr_int(ctx, ptr_bytes); let ptr_as_int = builder.build_ptr_to_int(final_list_ptr, int_type, "list_cast_ptr"); let struct_type = collection(ctx, ptr_bytes); let mut struct_val; // Store the pointer struct_val = builder .build_insert_value( struct_type.get_undef(), ptr_as_int, Builtin::WRAPPER_PTR, "insert_ptr", ) .unwrap(); // Store the length struct_val = builder .build_insert_value( struct_val, final_list_sum, Builtin::WRAPPER_LEN, "insert_len", ) .unwrap(); builder.build_bitcast( struct_val.into_struct_value(), collection(ctx, ptr_bytes), "cast_collection", ) }; let build_else = || empty_list(env); let struct_type = collection(ctx, env.ptr_bytes); build_basic_phi2( env, parent, comparison, build_then, build_else, BasicTypeEnum::StructType(struct_type), ) } _ => { unreachable!("Invalid List layout for List.join {:?}", outer_list_layout); } } } /// List.reverse : List elem -> List elem pub fn list_reverse<'a, 'ctx, 'env>( env: &Env<'a, 'ctx, 'env>, parent: FunctionValue<'ctx>, scope: &Scope<'a, 'ctx>, list: &Symbol, ) -> BasicValueEnum<'ctx> { let (_, list_layout) = load_symbol_and_layout(env, scope, list); match list_layout { Layout::Builtin(Builtin::EmptyList) => empty_list(env), Layout::Builtin(Builtin::List(_, elem_layout)) => { let wrapper_struct = load_symbol(env, scope, list).into_struct_value(); let builder = env.builder; let ctx = env.context; let len = list_len(builder, wrapper_struct); // list_len > 0 // We do this check to avoid allocating memory. If the input // list is empty, then we can just return an empty list. let comparison = builder.build_int_compare( IntPredicate::UGT, len, ctx.i64_type().const_int(0, false), "greaterthanzero", ); let build_then = || { // Allocate space for the new array that we'll copy into. let elem_type = basic_type_from_layout(env.arena, ctx, elem_layout, env.ptr_bytes); let ptr_type = get_ptr_type(&elem_type, AddressSpace::Generic); let reversed_list_ptr = allocate_list(env, elem_layout, len); // TODO check if malloc returned null; if so, runtime error for OOM! let index_name = "#index"; let start_alloca = builder.build_alloca(ctx.i64_type(), index_name); // Start at the last element in the list. let last_elem_index = builder.build_int_sub(len, ctx.i64_type().const_int(1, false), "lastelemindex"); builder.build_store(start_alloca, last_elem_index); let loop_bb = ctx.append_basic_block(parent, "loop"); builder.build_unconditional_branch(loop_bb); builder.position_at_end(loop_bb); // #index = #index - 1 let curr_index = builder .build_load(start_alloca, index_name) .into_int_value(); let next_index = builder.build_int_sub( curr_index, ctx.i64_type().const_int(1, false), "nextindex", ); builder.build_store(start_alloca, next_index); let list_ptr = load_list_ptr(builder, wrapper_struct, ptr_type); // The pointer to the element in the input list let elem_ptr = unsafe { builder.build_in_bounds_gep(list_ptr, &[curr_index], "load_index") }; // The pointer to the element in the reversed list let reverse_elem_ptr = unsafe { builder.build_in_bounds_gep( reversed_list_ptr, &[builder.build_int_sub( len, builder.build_int_add( curr_index, ctx.i64_type().const_int(1, false), "curr_index_plus_one", ), "next_index", )], "load_index_reversed_list", ) }; let elem = builder.build_load(elem_ptr, "get_elem"); // Mutate the new array in-place to change the element. builder.build_store(reverse_elem_ptr, elem); // #index != 0 let end_cond = builder.build_int_compare( IntPredicate::NE, ctx.i64_type().const_int(0, false), curr_index, "loopcond", ); let after_bb = ctx.append_basic_block(parent, "afterloop"); builder.build_conditional_branch(end_cond, loop_bb, after_bb); builder.position_at_end(after_bb); let ptr_bytes = env.ptr_bytes; let int_type = ptr_int(ctx, ptr_bytes); let ptr_as_int = builder.build_ptr_to_int(reversed_list_ptr, int_type, "list_cast_ptr"); let struct_type = collection(ctx, ptr_bytes); let mut struct_val; // Store the pointer struct_val = builder .build_insert_value( struct_type.get_undef(), ptr_as_int, Builtin::WRAPPER_PTR, "insert_ptr", ) .unwrap(); // Store the length struct_val = builder .build_insert_value(struct_val, len, Builtin::WRAPPER_LEN, "insert_len") .unwrap(); builder.build_bitcast( struct_val.into_struct_value(), collection(ctx, ptr_bytes), "cast_collection", ) }; let build_else = || empty_list(env); let struct_type = collection(ctx, env.ptr_bytes); build_basic_phi2( env, parent, comparison, build_then, build_else, BasicTypeEnum::StructType(struct_type), ) } _ => { unreachable!("Invalid List layout for List.reverse {:?}", list_layout); } } } pub fn list_get_unsafe<'a, 'ctx, 'env>( env: &Env<'a, 'ctx, 'env>, list_layout: &Layout<'a>, elem_index: IntValue<'ctx>, wrapper_struct: StructValue<'ctx>, ) -> BasicValueEnum<'ctx> { let builder = env.builder; match list_layout { Layout::Builtin(Builtin::List(_, elem_layout)) => { let ctx = env.context; let elem_type = basic_type_from_layout(env.arena, ctx, elem_layout, env.ptr_bytes); let ptr_type = get_ptr_type(&elem_type, AddressSpace::Generic); // Load the pointer to the array data let array_data_ptr = load_list_ptr(builder, wrapper_struct, ptr_type); // Assume the bounds have already been checked earlier // (e.g. by List.get or List.first, which wrap List.#getUnsafe) let elem_ptr = unsafe { builder.build_in_bounds_gep(array_data_ptr, &[elem_index], "elem") }; builder.build_load(elem_ptr, "List.get") } _ => { unreachable!( "Invalid List layout for ListGetUnsafe operation: {:?}", list_layout ); } } } /// List.push List elem, elem -> List elem pub fn list_append<'a, 'ctx, 'env>( env: &Env<'a, 'ctx, 'env>, original_wrapper: StructValue<'ctx>, elem: BasicValueEnum<'ctx>, elem_layout: &Layout<'a>, ) -> BasicValueEnum<'ctx> { let builder = env.builder; let ctx = env.context; // Load the usize length from the wrapper. let list_len = list_len(builder, original_wrapper); let elem_type = basic_type_from_layout(env.arena, ctx, elem_layout, env.ptr_bytes); let ptr_type = get_ptr_type(&elem_type, AddressSpace::Generic); let list_ptr = load_list_ptr(builder, original_wrapper, ptr_type); // The output list length, which is the old list length + 1 let new_list_len = env.builder.build_int_add( ctx.i64_type().const_int(1 as u64, false), list_len, "new_list_length", ); let ptr_bytes = env.ptr_bytes; // Calculate the number of bytes we'll need to allocate. let elem_bytes = env .ptr_int() .const_int(elem_layout.stack_size(env.ptr_bytes) as u64, false); // This is the size of the list coming in, before we have added an element // to the end. let list_size = env .builder .build_int_mul(elem_bytes, list_len, "mul_old_len_by_elem_bytes"); // Allocate space for the new array that we'll copy into. let clone_ptr = allocate_list(env, elem_layout, new_list_len); let int_type = ptr_int(ctx, ptr_bytes); let ptr_as_int = builder.build_ptr_to_int(clone_ptr, int_type, "list_cast_ptr"); // TODO check if malloc returned null; if so, runtime error for OOM! if elem_layout.safe_to_memcpy() { // Copy the bytes from the original array into the new // one we just malloc'd. // // TODO how do we decide when to do the small memcpy vs the normal one? builder.build_memcpy(clone_ptr, ptr_bytes, list_ptr, ptr_bytes, list_size); } else { panic!("TODO Cranelift currently only knows how to clone list elements that are Copy."); } // Create a fresh wrapper struct for the newly populated array let struct_type = collection(ctx, env.ptr_bytes); let mut struct_val; // Store the pointer struct_val = builder .build_insert_value( struct_type.get_undef(), ptr_as_int, Builtin::WRAPPER_PTR, "insert_ptr", ) .unwrap(); // Store the length struct_val = builder .build_insert_value(struct_val, new_list_len, Builtin::WRAPPER_LEN, "insert_len") .unwrap(); let elem_ptr = unsafe { builder.build_in_bounds_gep(clone_ptr, &[list_len], "load_index") }; builder.build_store(elem_ptr, elem); builder.build_bitcast( struct_val.into_struct_value(), collection(ctx, ptr_bytes), "cast_collection", ) } /// List.set : List elem, Int, elem -> List elem pub fn list_set<'a, 'ctx, 'env>( parent: FunctionValue<'ctx>, args: &[(BasicValueEnum<'ctx>, &'a Layout<'a>)], env: &Env<'a, 'ctx, 'env>, in_place: InPlace, ) -> BasicValueEnum<'ctx> { let builder = env.builder; debug_assert_eq!(args.len(), 3); let original_wrapper = args[0].0.into_struct_value(); let elem_index = args[1].0.into_int_value(); // Load the usize length from the wrapper. We need it for bounds checking. let list_len = list_len(builder, original_wrapper); // Bounds check: only proceed if index < length. // Otherwise, return the list unaltered. let comparison = bounds_check_comparison(builder, elem_index, list_len); // If the index is in bounds, clone and mutate in place. let build_then = || { let (elem, elem_layout) = args[2]; let ctx = env.context; let elem_type = basic_type_from_layout(env.arena, ctx, elem_layout, env.ptr_bytes); let ptr_type = get_ptr_type(&elem_type, AddressSpace::Generic); let (new_wrapper, array_data_ptr) = match in_place { InPlace::InPlace => ( original_wrapper, load_list_ptr(builder, original_wrapper, ptr_type), ), InPlace::Clone => clone_nonempty_list( env, list_len, load_list_ptr(builder, original_wrapper, ptr_type), elem_layout, ), }; // If we got here, we passed the bounds check, so this is an in-bounds GEP let elem_ptr = unsafe { builder.build_in_bounds_gep(array_data_ptr, &[elem_index], "load_index") }; // Mutate the new array in-place to change the element. builder.build_store(elem_ptr, elem); BasicValueEnum::StructValue(new_wrapper) }; // If the index was out of bounds, return the original list unaltered. let build_else = || BasicValueEnum::StructValue(original_wrapper); let ret_type = original_wrapper.get_type(); build_basic_phi2( env, parent, comparison, build_then, build_else, ret_type.into(), ) } fn bounds_check_comparison<'ctx>( builder: &Builder<'ctx>, elem_index: IntValue<'ctx>, len: IntValue<'ctx>, ) -> IntValue<'ctx> { // Note: Check for index < length as the "true" condition, // to avoid misprediction. (In practice this should usually pass, // and CPUs generally default to predicting that a forward jump // shouldn't be taken; that is, they predict "else" won't be taken.) builder.build_int_compare(IntPredicate::ULT, elem_index, len, "bounds_check") } /// List.len : List elem -> Int pub fn list_len<'ctx>( builder: &Builder<'ctx>, wrapper_struct: StructValue<'ctx>, ) -> IntValue<'ctx> { builder .build_extract_value(wrapper_struct, Builtin::WRAPPER_LEN, "list_len") .unwrap() .into_int_value() } /// List.concat : List elem, List elem -> List elem pub fn list_concat<'a, 'ctx, 'env>( env: &Env<'a, 'ctx, 'env>, scope: &Scope<'a, 'ctx>, parent: FunctionValue<'ctx>, args: &[Symbol], ) -> BasicValueEnum<'ctx> { debug_assert_eq!(args.len(), 2); let builder = env.builder; let ctx = env.context; let (first_list, list_layout) = load_symbol_and_layout(env, scope, &args[0]); let second_list = load_symbol(env, scope, &args[1]); let second_list_wrapper = second_list.into_struct_value(); let second_list_len = list_len(builder, second_list_wrapper); // We only match on the first lists layout // because the first and second input lists // necessarily have the same layout match list_layout { Layout::Builtin(Builtin::EmptyList) => empty_list(env), Layout::Builtin(Builtin::List(_, elem_layout)) => { let first_list_wrapper = first_list.into_struct_value(); let first_list_len = list_len(builder, first_list_wrapper); // first_list_len > 0 // We do this check to avoid allocating memory. If the first input // list is empty, then we can just return the second list cloned let first_list_length_comparison = list_is_not_empty(builder, ctx, first_list_len); let if_first_list_is_empty = || { // second_list_len > 0 // We do this check to avoid allocating memory. If the second input // list is empty, then we can just return the first list cloned let second_list_length_comparison = list_is_not_empty(builder, ctx, second_list_len); let build_second_list_then = || { let elem_type = basic_type_from_layout(env.arena, ctx, elem_layout, env.ptr_bytes); let ptr_type = get_ptr_type(&elem_type, AddressSpace::Generic); let (new_wrapper, _) = clone_nonempty_list( env, second_list_len, load_list_ptr(builder, second_list_wrapper, ptr_type), elem_layout, ); BasicValueEnum::StructValue(new_wrapper) }; let build_second_list_else = || empty_list(env); build_basic_phi2( env, parent, second_list_length_comparison, build_second_list_then, build_second_list_else, BasicTypeEnum::StructType(collection(ctx, env.ptr_bytes)), ) }; let if_first_list_is_not_empty = || { let elem_type = basic_type_from_layout(env.arena, ctx, elem_layout, env.ptr_bytes); let ptr_type = get_ptr_type(&elem_type, AddressSpace::Generic); let if_second_list_is_empty = || { let (new_wrapper, _) = clone_nonempty_list( env, first_list_len, load_list_ptr(builder, first_list_wrapper, ptr_type), elem_layout, ); BasicValueEnum::StructValue(new_wrapper) }; // second_list_len > 0 // We do this check to avoid allocating memory. If the second input // list is empty, then we can just return the first list cloned let second_list_length_comparison = list_is_not_empty(builder, ctx, second_list_len); let if_second_list_is_not_empty = || { let combined_list_len = builder.build_int_add(first_list_len, second_list_len, "add_list_lengths"); let combined_list_ptr = allocate_list(env, elem_layout, combined_list_len); // FIRST LOOP let first_loop = |first_index| { let first_list_ptr = load_list_ptr(builder, first_list_wrapper, ptr_type); // The pointer to the element in the first list let first_list_elem_ptr = unsafe { builder.build_in_bounds_gep( first_list_ptr, &[first_index], "load_index", ) }; // The pointer to the element in the combined list let combined_list_elem_ptr = unsafe { builder.build_in_bounds_gep( combined_list_ptr, &[first_index], "load_index_combined_list", ) }; let first_list_elem = builder.build_load(first_list_elem_ptr, "get_elem"); // Mutate the new array in-place to change the element. builder.build_store(combined_list_elem_ptr, first_list_elem); }; let index_name = "#index"; let index_alloca = incrementing_index_loop( builder, parent, ctx, first_list_len, index_name, None, first_loop, ); // Reset the index variable to 0 builder.build_store(index_alloca, ctx.i64_type().const_int(0, false)); // SECOND LOOP let second_loop = |second_index| { let second_list_ptr = load_list_ptr(builder, second_list_wrapper, ptr_type); // The pointer to the element in the second list let second_list_elem_ptr = unsafe { builder.build_in_bounds_gep( second_list_ptr, &[second_index], "load_index", ) }; // The pointer to the element in the combined list. // Note that the pointer does not start at the index // 0, it starts at the index of first_list_len. In that // sense it is "offset". let offset_combined_list_elem_ptr = unsafe { builder.build_in_bounds_gep( combined_list_ptr, &[first_list_len], "elem", ) }; // The pointer to the element from the second list // in the combined list let combined_list_elem_ptr = unsafe { builder.build_in_bounds_gep( offset_combined_list_elem_ptr, &[second_index], "load_index_combined_list", ) }; let second_list_elem = builder.build_load(second_list_elem_ptr, "get_elem"); // Mutate the new array in-place to change the element. builder.build_store(combined_list_elem_ptr, second_list_elem); }; incrementing_index_loop( builder, parent, ctx, second_list_len, index_name, Some(index_alloca), second_loop, ); let ptr_bytes = env.ptr_bytes; let int_type = ptr_int(ctx, ptr_bytes); let ptr_as_int = builder.build_ptr_to_int(combined_list_ptr, int_type, "list_cast_ptr"); let struct_type = collection(ctx, ptr_bytes); let mut struct_val; // Store the pointer struct_val = builder .build_insert_value( struct_type.get_undef(), ptr_as_int, Builtin::WRAPPER_PTR, "insert_ptr", ) .unwrap(); // Store the length struct_val = builder .build_insert_value( struct_val, combined_list_len, Builtin::WRAPPER_LEN, "insert_len", ) .unwrap(); builder.build_bitcast( struct_val.into_struct_value(), collection(ctx, ptr_bytes), "cast_collection", ) }; build_basic_phi2( env, parent, second_list_length_comparison, if_second_list_is_not_empty, if_second_list_is_empty, BasicTypeEnum::StructType(collection(ctx, env.ptr_bytes)), ) }; build_basic_phi2( env, parent, first_list_length_comparison, if_first_list_is_not_empty, if_first_list_is_empty, BasicTypeEnum::StructType(collection(ctx, env.ptr_bytes)), ) } _ => { unreachable!( "Invalid List layout for first list in List.concat : {:?}", list_layout ); } } } // This helper simulates a basic for loop, where // and index increments up from 0 to some end value fn incrementing_index_loop<'ctx, LoopFn>( builder: &Builder<'ctx>, parent: FunctionValue<'ctx>, ctx: &'ctx Context, end: IntValue<'ctx>, index_name: &str, // allocating memory for an index is costly, so sometimes // we want to reuse an index if multiple loops happen in a // series, such as the case in List.concat. A memory // allocation cab be passed in to be used, and the memory // allocation that _is_ used is the return value. maybe_alloca: Option>, mut loop_fn: LoopFn, ) -> PointerValue<'ctx> where LoopFn: FnMut(IntValue<'ctx>), { let index_alloca = match maybe_alloca { None => builder.build_alloca(ctx.i64_type(), index_name), Some(alloca) => alloca, }; builder.build_store(index_alloca, ctx.i64_type().const_int(0, false)); let loop_bb = ctx.append_basic_block(parent, "loop"); builder.build_unconditional_branch(loop_bb); builder.position_at_end(loop_bb); let curr_index = builder .build_load(index_alloca, index_name) .into_int_value(); let next_index = builder.build_int_add(curr_index, ctx.i64_type().const_int(1, false), "nextindex"); builder.build_store(index_alloca, next_index); // The body of the loop loop_fn(curr_index); // #index < end let loop_end_cond = bounds_check_comparison(builder, next_index, end); let after_loop_bb = ctx.append_basic_block(parent, "after_outer_loop"); builder.build_conditional_branch(loop_end_cond, loop_bb, after_loop_bb); builder.position_at_end(after_loop_bb); index_alloca } fn build_basic_phi2<'a, 'ctx, 'env, PassFn, FailFn>( env: &Env<'a, 'ctx, 'env>, parent: FunctionValue<'ctx>, comparison: IntValue<'ctx>, mut build_pass: PassFn, mut build_fail: FailFn, ret_type: BasicTypeEnum<'ctx>, ) -> BasicValueEnum<'ctx> where PassFn: FnMut() -> BasicValueEnum<'ctx>, FailFn: FnMut() -> BasicValueEnum<'ctx>, { let builder = env.builder; let context = env.context; // build blocks let then_block = context.append_basic_block(parent, "then"); let else_block = context.append_basic_block(parent, "else"); let cont_block = context.append_basic_block(parent, "branchcont"); builder.build_conditional_branch(comparison, then_block, else_block); // build then block builder.position_at_end(then_block); let then_val = build_pass(); builder.build_unconditional_branch(cont_block); let then_block = builder.get_insert_block().unwrap(); // build else block builder.position_at_end(else_block); let else_val = build_fail(); builder.build_unconditional_branch(cont_block); let else_block = builder.get_insert_block().unwrap(); // emit merge block builder.position_at_end(cont_block); let phi = builder.build_phi(ret_type, "branch"); phi.add_incoming(&[(&then_val, then_block), (&else_val, else_block)]); phi.as_basic_value() } pub fn empty_polymorphic_list<'a, 'ctx, 'env>(env: &Env<'a, 'ctx, 'env>) -> BasicValueEnum<'ctx> { let ctx = env.context; let struct_type = collection(ctx, env.ptr_bytes); // The pointer should be null (aka zero) and the length should be zero, // so the whole struct should be a const_zero BasicValueEnum::StructValue(struct_type.const_zero()) } // TODO investigate: does this cause problems when the layout is known? this value is now not refcounted! pub fn empty_list<'a, 'ctx, 'env>(env: &Env<'a, 'ctx, 'env>) -> BasicValueEnum<'ctx> { let ctx = env.context; let struct_type = collection(ctx, env.ptr_bytes); // The pointer should be null (aka zero) and the length should be zero, // so the whole struct should be a const_zero BasicValueEnum::StructValue(struct_type.const_zero()) } fn list_is_not_empty<'ctx>( builder: &Builder<'ctx>, ctx: &'ctx Context, list_len: IntValue<'ctx>, ) -> IntValue<'ctx> { builder.build_int_compare( IntPredicate::UGT, list_len, ctx.i64_type().const_int(0, false), "greaterthanzero", ) } fn load_list_ptr<'ctx>( builder: &Builder<'ctx>, wrapper_struct: StructValue<'ctx>, ptr_type: PointerType<'ctx>, ) -> PointerValue<'ctx> { let ptr_as_int = builder .build_extract_value(wrapper_struct, Builtin::WRAPPER_PTR, "read_list_ptr") .unwrap() .into_int_value(); builder.build_int_to_ptr(ptr_as_int, ptr_type, "list_cast_ptr") } fn clone_nonempty_list<'a, 'ctx, 'env>( env: &Env<'a, 'ctx, 'env>, list_len: IntValue<'ctx>, elems_ptr: PointerValue<'ctx>, elem_layout: &Layout<'_>, ) -> (StructValue<'ctx>, PointerValue<'ctx>) { let builder = env.builder; let ctx = env.context; let ptr_bytes = env.ptr_bytes; // Calculate the number of bytes we'll need to allocate. let elem_bytes = env .ptr_int() .const_int(elem_layout.stack_size(env.ptr_bytes) as u64, false); let size = env .builder .build_int_mul(elem_bytes, list_len, "clone_mul_len_by_elem_bytes"); // Allocate space for the new array that we'll copy into. let clone_ptr = allocate_list(env, elem_layout, list_len); let int_type = ptr_int(ctx, ptr_bytes); let ptr_as_int = builder.build_ptr_to_int(clone_ptr, int_type, "list_cast_ptr"); // TODO check if malloc returned null; if so, runtime error for OOM! // Either memcpy or deep clone the array elements if elem_layout.safe_to_memcpy() { // Copy the bytes from the original array into the new // one we just malloc'd. // // TODO how do we decide when to do the small memcpy vs the normal one? builder.build_memcpy(clone_ptr, ptr_bytes, elems_ptr, ptr_bytes, size); } else { panic!("TODO Cranelift currently only knows how to clone list elements that are Copy."); } // Create a fresh wrapper struct for the newly populated array let struct_type = collection(ctx, env.ptr_bytes); let mut struct_val; // Store the pointer struct_val = builder .build_insert_value( struct_type.get_undef(), ptr_as_int, Builtin::WRAPPER_PTR, "insert_ptr", ) .unwrap(); // Store the length struct_val = builder .build_insert_value(struct_val, list_len, Builtin::WRAPPER_LEN, "insert_len") .unwrap(); let answer = builder .build_bitcast( struct_val.into_struct_value(), collection(ctx, ptr_bytes), "cast_collection", ) .into_struct_value(); (answer, clone_ptr) } pub fn allocate_list<'a, 'ctx, 'env>( env: &Env<'a, 'ctx, 'env>, elem_layout: &Layout<'a>, length: IntValue<'ctx>, ) -> PointerValue<'ctx> { let builder = env.builder; let ctx = env.context; let elem_type = basic_type_from_layout(env.arena, ctx, elem_layout, env.ptr_bytes); let elem_bytes = elem_layout.stack_size(env.ptr_bytes) as u64; let len_type = env.ptr_int(); // bytes per element let bytes_len = len_type.const_int(elem_bytes, false); let offset = (env.ptr_bytes as u64).max(elem_bytes); let ptr = { let len = builder.build_int_mul(bytes_len, length, "data_length"); let len = builder.build_int_add(len, len_type.const_int(offset, false), "add_refcount_space"); env.builder .build_array_malloc(ctx.i8_type(), len, "create_list_ptr") .unwrap() // TODO check if malloc returned null; if so, runtime error for OOM! }; // We must return a pointer to the first element: let ptr_bytes = env.ptr_bytes; let int_type = ptr_int(ctx, ptr_bytes); let ptr_as_int = builder.build_ptr_to_int(ptr, int_type, "list_cast_ptr"); let incremented = builder.build_int_add( ptr_as_int, ctx.i64_type().const_int(offset, false), "increment_list_ptr", ); let ptr_type = get_ptr_type(&elem_type, AddressSpace::Generic); let list_element_ptr = builder.build_int_to_ptr(incremented, ptr_type, "list_cast_ptr"); // subtract ptr_size, to access the refcount let refcount_ptr = builder.build_int_sub( incremented, ctx.i64_type().const_int(env.ptr_bytes as u64, false), "refcount_ptr", ); let refcount_ptr = builder.build_int_to_ptr( refcount_ptr, int_type.ptr_type(AddressSpace::Generic), "make ptr", ); // put our "refcount 0" in the first slot let ref_count_zero = ctx.i64_type().const_int(std::usize::MAX as u64, false); builder.build_store(refcount_ptr, ref_count_zero); list_element_ptr }