use crate::ast::{AssignedField, CommentOrNewline, Def, Expr, Pattern, Spaceable, TypeAnnotation}; use crate::blankspace::{ space0_after_e, space0_around_ee, space0_before_e, space0_e, spaces_exactly_e, }; use crate::ident::{lowercase_ident, parse_ident_help, Ident}; use crate::keyword; use crate::parser::{ self, allocated, and_then_with_indent_level, backtrackable, map, optional, sep_by1, sep_by1_e, specialize, specialize_ref, then, trailing_sep_by0, word1, word2, EExpr, EInParens, ELambda, EPattern, ERecord, EString, Either, If, List, Number, ParseResult, Parser, State, SyntaxError, Type, When, }; use crate::pattern::loc_closure_param; use crate::type_annotation; use bumpalo::collections::Vec; use bumpalo::Bump; use roc_module::operator::{BinOp, CalledVia, UnaryOp}; use roc_region::all::{Located, Position, Region}; use crate::parser::Progress::{self, *}; pub fn test_parse_expr<'a>( min_indent: u16, arena: &'a bumpalo::Bump, state: State<'a>, ) -> Result>, EExpr<'a>> { let parser = space0_before_e( move |a, s| parse_expr_help(min_indent, a, s), min_indent, EExpr::Space, EExpr::IndentStart, ); match parser.parse(arena, state) { Ok((_, expression, _)) => Ok(expression), Err((_, fail, _)) => Err(fail), } } // public for testing purposes pub fn expr<'a>(min_indent: u16) -> impl Parser<'a, Expr<'a>, SyntaxError<'a>> { // Recursive parsers must not directly invoke functions which return (impl Parser), // as this causes rustc to stack overflow. Thus, parse_expr must be a // separate function which recurses by calling itself directly. specialize( |e, _, _| SyntaxError::Expr(e), move |arena, state: State<'a>| { parse_expr_help(min_indent, arena, state).map(|(a, b, c)| (a, b.value, c)) }, ) } pub fn expr_help<'a>(min_indent: u16) -> impl Parser<'a, Expr<'a>, EExpr<'a>> { move |arena, state: State<'a>| { parse_expr_help(min_indent, arena, state).map(|(a, b, c)| (a, b.value, c)) } } fn loc_expr_in_parens_help<'a>( min_indent: u16, ) -> impl Parser<'a, Located>, EInParens<'a>> { move |arena, state| { let (_, loc_expr, state) = loc_expr_in_parens_help_help(min_indent).parse(arena, state)?; Ok(( MadeProgress, Located { region: loc_expr.region, value: Expr::ParensAround(arena.alloc(loc_expr.value)), }, state, )) } } fn loc_expr_in_parens_help_help<'a>( min_indent: u16, ) -> impl Parser<'a, Located>, EInParens<'a>> { between!( word1(b'(', EInParens::Open), space0_around_ee( specialize_ref(EInParens::Expr, move |arena, state| parse_expr_help( min_indent, arena, state )), min_indent, EInParens::Space, EInParens::IndentOpen, EInParens::IndentEnd, ), word1(b')', EInParens::End) ) } fn loc_expr_in_parens_etc_help<'a>( min_indent: u16, ) -> impl Parser<'a, Located>, EExpr<'a>> { then( loc!(and!( specialize(EExpr::InParens, loc_expr_in_parens_help(min_indent)), and!( one_of![record_field_access_chain(), |a, s| Ok(( NoProgress, Vec::new_in(a), s ))], // TODO remove the either optional( // There may optionally be function args after the ')' // e.g. ((foo bar) baz) // loc_function_args_help(min_indent), // If there aren't any args, there may be a '=' or ':' after it. // // (It's a syntax error to write e.g. `foo bar =` - so if there // were any args, there is definitely no need to parse '=' or ':'!) // // Also, there may be a '.' for field access (e.g. `(foo).bar`), // but we only want to look for that if there weren't any args, // as if there were any args they'd have consumed it anyway // e.g. in `((foo bar) baz.blah)` the `.blah` will be consumed by the `baz` parser map!( and!( space0_e(min_indent, EExpr::Space, EExpr::IndentEquals), equals_with_indent_help() ), Either::Second ) ) ) )), move |arena, state, _progress, parsed| helper_help(arena, state, parsed, min_indent), ) } fn record_field_access_chain<'a>() -> impl Parser<'a, Vec<'a, &'a str>, EExpr<'a>> { |arena, state| match record_field_access().parse(arena, state) { Ok((_, initial, state)) => { let mut accesses = Vec::with_capacity_in(1, arena); accesses.push(initial); let mut loop_state = state; loop { match record_field_access().parse(arena, loop_state) { Ok((_, next, state)) => { accesses.push(next); loop_state = state; } Err((MadeProgress, fail, state)) => return Err((MadeProgress, fail, state)), Err((NoProgress, _, state)) => return Ok((MadeProgress, accesses, state)), } } } Err((MadeProgress, fail, state)) => Err((MadeProgress, fail, state)), Err((NoProgress, _, state)) => { Err((NoProgress, EExpr::Access(state.line, state.column), state)) } } } fn record_field_access<'a>() -> impl Parser<'a, &'a str, EExpr<'a>> { skip_first!( word1(b'.', EExpr::Access), specialize(|_, r, c| EExpr::Access(r, c), lowercase_ident()) ) } type Extras<'a> = Located<( Located>, ( Vec<'a, &'a str>, Option>>, (&'a [CommentOrNewline<'a>], u16)>>, ), )>; fn helper_help<'a>( arena: &'a Bump, state: State<'a>, loc_expr_with_extras: Extras<'a>, min_indent: u16, ) -> ParseResult<'a, Located>, EExpr<'a>> { // We parse the parenthetical expression *and* the arguments after it // in one region, so that (for example) the region for Apply includes its args. let (mut loc_expr, (accesses, opt_extras)) = loc_expr_with_extras.value; let mut value = loc_expr.value; for field in accesses { // Wrap the previous answer in the new one, so we end up // with a nested Expr. That way, `foo.bar.baz` gets represented // in the AST as if it had been written (foo.bar).baz all along. value = Expr::Access(arena.alloc(value), field); } loc_expr = Located { region: loc_expr.region, value, }; match opt_extras { Some(Either::First(loc_args)) => Ok(( MadeProgress, expr_in_parens_then_arguments(arena, loc_expr, loc_args, loc_expr_with_extras.region), state, )), Some(Either::Second((spaces_before_equals, equals_indent))) => { // '=' after optional spaces expr_in_parens_then_equals_help( min_indent, loc_expr, spaces_before_equals, equals_indent, loc_expr_with_extras.region.start_col, ) .parse(arena, state) } None => Ok((MadeProgress, loc_expr, state)), } } fn expr_in_parens_then_equals_help<'a>( min_indent: u16, loc_expr: Located>, spaces_before_equals: &'a [CommentOrNewline], equals_indent: u16, def_start_col: u16, ) -> impl Parser<'a, Located>, EExpr<'a>> { move |arena, state: State<'a>| { let region = loc_expr.region; // Re-parse the Expr as a Pattern. let pattern = match expr_to_pattern_help(arena, &loc_expr.value) { Ok(valid) => valid, Err(_) => { return Err(( MadeProgress, EExpr::MalformedPattern(state.line, state.column), state, )) } }; // Make sure we don't discard the spaces - might be comments in there! let value = if spaces_before_equals.is_empty() { pattern } else { Pattern::SpaceAfter(arena.alloc(pattern), spaces_before_equals) }; let loc_first_pattern = Located { region, value }; // Continue parsing the expression as a Def. let (_, spaces_after_equals, state) = space0_e(min_indent, EExpr::Space, EExpr::IndentDefBody).parse(arena, state)?; // Use loc_expr_with_extras because we want to include the opening '(' char. let (_, parsed_expr, state) = parse_def_expr_help( min_indent, def_start_col, equals_indent, arena, state, loc_first_pattern, spaces_after_equals, )?; Ok(( MadeProgress, Located { value: parsed_expr, region, }, state, )) } } fn expr_in_parens_then_arguments<'a>( arena: &'a Bump, loc_expr: Located>, loc_args: Vec<'a, Located>>, region: Region, ) -> Located> { let mut allocated_args = Vec::with_capacity_in(loc_args.len(), arena); for loc_arg in loc_args { allocated_args.push(&*arena.alloc(loc_arg)); } Located { region, value: Expr::Apply( arena.alloc(loc_expr), allocated_args.into_bump_slice(), CalledVia::Space, ), } } fn parse_loc_term<'a>( min_indent: u16, arena: &'a Bump, state: State<'a>, ) -> ParseResult<'a, Located>, EExpr<'a>> { one_of!( loc_expr_in_parens_etc_help(min_indent), loc!(specialize(EExpr::Str, string_literal_help())), loc!(specialize(EExpr::Number, number_literal_help())), loc!(specialize(EExpr::Lambda, closure_help(min_indent))), loc!(record_literal_help(min_indent)), loc!(specialize(EExpr::List, list_literal_help(min_indent))), loc!(ident_etc_help(min_indent)) ) .parse(arena, state) } fn parse_loc_term_better<'a>( min_indent: u16, arena: &'a Bump, state: State<'a>, ) -> ParseResult<'a, Located>, EExpr<'a>> { one_of!( loc_expr_in_parens_etc_help(min_indent), loc!(specialize(EExpr::Str, string_literal_help())), loc!(specialize(EExpr::Number, positive_number_literal_help())), loc!(specialize(EExpr::Lambda, closure_help(min_indent))), loc!(record_literal_help(min_indent)), loc!(specialize(EExpr::List, list_literal_help(min_indent))), // loc!(ident_etc_help(min_indent)) loc!(map_with_arena!( assign_or_destructure_identifier(), ident_to_expr )), ) .parse(arena, state) } fn loc_possibly_negative_or_negated_term<'a>( min_indent: u16, ) -> impl Parser<'a, Located>, EExpr<'a>> { one_of![ loc!(map_with_arena!( // slight complication; a unary minus must be part of the number literal for overflow // reasons and!(loc!(unary_negate()), |a, s| parse_loc_term( min_indent, a, s )), |arena: &'a Bump, (loc_op, loc_expr): (Located<_>, _)| { Expr::UnaryOp( arena.alloc(loc_expr), Located::at(loc_op.region, UnaryOp::Negate), ) } )), // this will parse negative numbers, which the unary negate thing up top doesn't (for now) loc!(specialize(EExpr::Number, number_literal_help())), loc!(map_with_arena!( and!(loc!(word1(b'!', EExpr::Start)), |a, s| parse_loc_term( min_indent, a, s )), |arena: &'a Bump, (loc_op, loc_expr): (Located<_>, _)| { Expr::UnaryOp( arena.alloc(loc_expr), Located::at(loc_op.region, UnaryOp::Not), ) } )), |arena, state| { // TODO use parse_loc_term_better parse_loc_term_better(min_indent, arena, state) } ] } fn fail_expr_start_e<'a, T>() -> impl Parser<'a, T, EExpr<'a>> where T: 'a, { |_arena, state: State<'a>| Err((NoProgress, EExpr::Start(state.line, state.column), state)) } fn unary_negate<'a>() -> impl Parser<'a, (), EExpr<'a>> { move |_arena: &'a Bump, state: State<'a>| { // a minus is unary iff // // - it is preceded by whitespace (spaces, newlines, comments) // - it is not followed by whitespace // - it is not followed by a number literal // // The last condition is because of overflow, this would overflow // // Num.negate 125 // // while // // -125 // // is perfectly fine (assuming I8 here). So it is vital the minus is // parses as part of the number literal, and not as a unary minus let followed_by_whitespace = state .bytes .get(1) .map(|c| c.is_ascii_whitespace() || *c == b'#' || c.is_ascii_digit()) .unwrap_or(false); if state.bytes.starts_with(b"-") && !followed_by_whitespace { // the negate is only unary if it is not followed by whitespace Ok(( MadeProgress, (), State { bytes: &state.bytes[1..], column: state.column + 1, ..state }, )) } else { // this is not a negated expression Err((NoProgress, EExpr::UnaryNot(state.line, state.column), state)) } } } fn parse_expr_start<'a>( min_indent: u16, start: Position, arena: &'a Bump, state: State<'a>, ) -> ParseResult<'a, Located>, EExpr<'a>> { one_of![ loc!(specialize(EExpr::If, if_expr_help(min_indent))), loc!(specialize(EExpr::When, when::expr_help(min_indent))), loc!(specialize(EExpr::Lambda, closure_help(min_indent))), loc!(|a, s| parse_expr_operator_chain(min_indent, start, a, s)), fail_expr_start_e() ] .parse(arena, state) } fn parse_expr_operator_chain<'a>( min_indent: u16, start: Position, arena: &'a Bump, state: State<'a>, ) -> ParseResult<'a, Expr<'a>, EExpr<'a>> { let (_, expr, state) = loc_possibly_negative_or_negated_term(min_indent).parse(arena, state)?; let initial = state; let end = state.get_position(); match space0_e(min_indent, EExpr::Space, EExpr::IndentEnd).parse(arena, state) { Err((_, _, state)) => Ok((MadeProgress, expr.value, state)), Ok((_, spaces_before_op, state)) => { let expr_state = ExprState { operators: Vec::new_in(arena), arguments: Vec::new_in(arena), expr, spaces_after: spaces_before_op, initial, end, }; parse_expr_end(min_indent, start, expr_state, arena, state) } } } struct ExprState<'a> { operators: Vec<'a, (Located>, Located)>, arguments: Vec<'a, &'a Located>>, expr: Located>, spaces_after: &'a [CommentOrNewline<'a>], initial: State<'a>, end: Position, } impl<'a> ExprState<'a> { fn consume_spaces(&mut self, arena: &'a Bump) { if !self.spaces_after.is_empty() { if let Some(last) = self.arguments.pop() { let new = last.value.with_spaces_after(self.spaces_after, last.region); self.arguments.push(arena.alloc(new)); } else { let region = self.expr.region; let mut value = Expr::Num(""); std::mem::swap(&mut self.expr.value, &mut value); self.expr = arena .alloc(value) .with_spaces_after(self.spaces_after, region); }; self.spaces_after = &[]; } } fn validate_assignment_or_backpassing( mut self, arena: &'a Bump, loc_op: Located, argument_error: F, ) -> Result>, EExpr<'a>> where F: Fn(Region, Row, Col) -> EExpr<'a>, { if !self.operators.is_empty() { // this `=` or `:` likely occured inline; treat it as an invalid operator let opchar = match loc_op.value { BinOp::Assignment => arena.alloc([b'=']) as &[_], BinOp::Backpassing => arena.alloc([b'<', b'-']) as &[_], _ => unreachable!(), }; let fail = EExpr::BadOperator(opchar, loc_op.region.start_line, loc_op.region.start_col); Err(fail) } else if !self.arguments.is_empty() { let region = Region::across_all(self.arguments.iter().map(|v| &v.region)); Err(argument_error( region, loc_op.region.start_line, loc_op.region.start_col, )) } else { self.consume_spaces(arena); Ok(to_call(arena, self.arguments, self.expr, &[])) } } fn validate_has_type( mut self, arena: &'a Bump, loc_op: Located, ) -> Result<(Located>, Vec<'a, &'a Located>>), EExpr<'a>> { debug_assert_eq!(loc_op.value, BinOp::HasType); if !self.operators.is_empty() { // this `:` likely occured inline; treat it as an invalid operator let opchar = arena.alloc([b':']) as &[_]; let fail = EExpr::BadOperator(opchar, loc_op.region.start_line, loc_op.region.start_col); Err(fail) } else { self.consume_spaces(arena); Ok((self.expr, self.arguments)) } } } #[allow(clippy::unnecessary_wraps)] fn parse_expr_final<'a>( _min_indent: u16, expr_state: ExprState<'a>, arena: &'a Bump, state: State<'a>, ) -> ParseResult<'a, Expr<'a>, EExpr<'a>> { let mut expr = to_call( arena, expr_state.arguments, expr_state.expr, expr_state.spaces_after, ); for (left_arg, op) in expr_state.operators.into_iter().rev() { let region = Region::span_across(&left_arg.region, &expr.region); let new = Expr::BinOp(arena.alloc((left_arg, op, expr))); expr = Located::at(region, new); } Ok((MadeProgress, expr.value, state)) } fn to_call<'a>( arena: &'a Bump, arguments: Vec<'a, &'a Located>>, loc_expr1: Located>, _spaces_before: &'a [CommentOrNewline<'a>], ) -> Located> { if arguments.is_empty() { loc_expr1 } else { let last = arguments.last().map(|x| x.region).unwrap_or_default(); let region = Region::span_across(&loc_expr1.region, &last); let apply = Expr::Apply( arena.alloc(loc_expr1), arguments.into_bump_slice(), CalledVia::Space, ); Located::at(region, apply) } } fn numeric_negate_expression<'a>( arena: &'a Bump, state: State<'a>, loc_op: Located, expr: Located>, spaces: &'a [CommentOrNewline<'a>], ) -> Located> { debug_assert_eq!(state.bytes.get(0), Some(&b'-')); // for overflow reasons, we must make the unary minus part of the number literal. let mut region = expr.region; region.start_col -= 1; let new_expr = match &expr.value { Expr::Num(string) => { let new_string = unsafe { std::str::from_utf8_unchecked(&state.bytes[..string.len() + 1]) }; Expr::Num(new_string) } Expr::Float(string) => { let new_string = unsafe { std::str::from_utf8_unchecked(&state.bytes[..string.len() + 1]) }; Expr::Float(new_string) } Expr::NonBase10Int { string, base, is_negative, } => { let new_string = unsafe { std::str::from_utf8_unchecked(&state.bytes[..string.len() + 1]) }; Expr::NonBase10Int { is_negative: !is_negative, string: new_string, base: *base, } } _ => Expr::UnaryOp( arena.alloc(expr), Located::at(loc_op.region, UnaryOp::Negate), ), }; let new_loc_expr = Located::at(region, new_expr); if spaces.is_empty() { new_loc_expr } else { arena .alloc(new_loc_expr.value) .with_spaces_before(spaces, new_loc_expr.region) } } fn append_body_definition<'a>( arena: &'a Bump, defs: &mut Vec<'a, &'a Located>>, spaces: &'a [CommentOrNewline<'a>], loc_pattern: Located>, loc_def_body: Located>, ) { let region = Region::span_across(&loc_pattern.region, &loc_def_body.region); if spaces.len() <= 1 { let last = defs.pop(); match last { Some(Located { value: Def::Annotation(ann_pattern, ann_type), .. }) => { return append_body_definition_help( arena, defs, region, &[], spaces, loc_pattern, loc_def_body, ann_pattern, ann_type, ); } Some(Located { value: Def::SpaceBefore(Def::Annotation(ann_pattern, ann_type), before_ann_spaces), .. }) => { return append_body_definition_help( arena, defs, region, before_ann_spaces, spaces, loc_pattern, loc_def_body, ann_pattern, ann_type, ); } _ => { defs.extend(last); } } } // the previous and current def can't be joined up let mut loc_def = Located::at( region, Def::Body(arena.alloc(loc_pattern), &*arena.alloc(loc_def_body)), ); if !spaces.is_empty() { loc_def = arena .alloc(loc_def.value) .with_spaces_before(spaces, loc_def.region); } defs.push(arena.alloc(loc_def)); } #[allow(clippy::too_many_arguments)] fn append_body_definition_help<'a>( arena: &'a Bump, defs: &mut Vec<'a, &'a Located>>, region: Region, before_ann_spaces: &'a [CommentOrNewline<'a>], before_body_spaces: &'a [CommentOrNewline<'a>], loc_pattern_body: Located>, loc_def_body: Located>, loc_pattern_ann: &'a Located>, loc_ann: &'a Located>, ) { let comment = match before_body_spaces.get(0) { Some(CommentOrNewline::LineComment(s)) => Some(*s), Some(CommentOrNewline::DocComment(s)) => Some(*s), _ => None, }; let mut loc_def = Located::at( region, Def::AnnotatedBody { ann_pattern: loc_pattern_ann, ann_type: loc_ann, comment, body_pattern: arena.alloc(loc_pattern_body), body_expr: &*arena.alloc(loc_def_body), }, ); if !before_ann_spaces.is_empty() { loc_def = arena .alloc(loc_def.value) .with_spaces_before(before_ann_spaces, loc_def.region); } defs.push(arena.alloc(loc_def)); } fn append_annotation_definition<'a>( arena: &'a Bump, defs: &mut Vec<'a, &'a Located>>, spaces: &'a [CommentOrNewline<'a>], loc_pattern: Located>, loc_ann: Located>, ) { let region = Region::span_across(&loc_pattern.region, &loc_ann.region); // the previous and current def can't be joined up match &loc_pattern.value { Pattern::Apply( Located { value: Pattern::GlobalTag(name), .. }, alias_arguments, ) => append_alias_definition( arena, defs, region, spaces, Located::at(loc_pattern.region, name), alias_arguments, loc_ann, ), Pattern::GlobalTag(name) => append_alias_definition( arena, defs, region, spaces, Located::at(loc_pattern.region, name), &[], loc_ann, ), _ => { let mut loc_def = Located::at(region, Def::Annotation(loc_pattern, loc_ann)); if !spaces.is_empty() { loc_def = arena .alloc(loc_def.value) .with_spaces_before(spaces, loc_def.region); } defs.push(arena.alloc(loc_def)); } } } fn append_alias_definition<'a>( arena: &'a Bump, defs: &mut Vec<'a, &'a Located>>, region: Region, spaces: &'a [CommentOrNewline<'a>], name: Located<&'a str>, pattern_arguments: &'a [Located>], loc_ann: Located>, ) { let def = Def::Alias { name, vars: pattern_arguments, ann: loc_ann, }; let mut loc_def = Located::at(region, def); if !spaces.is_empty() { loc_def = arena .alloc(loc_def.value) .with_spaces_before(spaces, loc_def.region); } defs.push(arena.alloc(loc_def)); } #[derive(Debug)] struct DefState<'a> { defs: Vec<'a, &'a Located>>, spaces_after: &'a [CommentOrNewline<'a>], } fn parse_defs_end<'a>( start: Position, mut def_state: DefState<'a>, arena: &'a Bump, state: State<'a>, ) -> ParseResult<'a, DefState<'a>, EExpr<'a>> { let min_indent = start.col; let initial = state; let state = match space0_e(min_indent, EExpr::Space, EExpr::IndentStart).parse(arena, state) { Err((MadeProgress, _, s)) => { return Err(( MadeProgress, EExpr::DefMissingFinalExpr(s.line, s.column), s, )); } Ok((_, spaces, state)) => { def_state.spaces_after = spaces; state } Err((NoProgress, _, state)) => state, }; match space0_after_e( crate::pattern::loc_pattern_help(min_indent), min_indent, EPattern::Space, EPattern::IndentEnd, ) .parse(arena, state) { Err((_, _, _)) => { // a hacky way to get expression-based error messages. TODO fix this Ok((NoProgress, def_state, initial)) } Ok((_, loc_pattern, state)) => match operator().parse(arena, state) { Ok((_, BinOp::Assignment, state)) => { let parse_def_expr = space0_before_e( move |a, s| parse_expr_help(min_indent + 1, a, s), min_indent, EExpr::Space, EExpr::IndentEnd, ); let (_, loc_def_expr, state) = parse_def_expr.parse(arena, state)?; append_body_definition( arena, &mut def_state.defs, def_state.spaces_after, loc_pattern, loc_def_expr, ); parse_defs_end(start, def_state, arena, state) } Ok((_, BinOp::HasType, state)) => { let (_, ann_type, state) = specialize( EExpr::Type, space0_before_e( type_annotation::located_help(min_indent + 1), min_indent + 1, Type::TSpace, Type::TIndentStart, ), ) .parse(arena, state)?; append_annotation_definition( arena, &mut def_state.defs, def_state.spaces_after, loc_pattern, ann_type, ); parse_defs_end(start, def_state, arena, state) } _ => Ok((MadeProgress, def_state, initial)), }, } } fn parse_defs_expr<'a>( start: Position, def_state: DefState<'a>, arena: &'a Bump, state: State<'a>, ) -> ParseResult<'a, Expr<'a>, EExpr<'a>> { let min_indent = start.col; match parse_defs_end(start, def_state, arena, state) { Err(bad) => Err(bad), Ok((_, def_state, state)) => { // this is no def, because there is no `=` or `:`; parse as an expr let parse_final_expr = space0_before_e( move |a, s| parse_expr_help(min_indent, a, s), min_indent, EExpr::Space, EExpr::IndentEnd, ); match parse_final_expr.parse(arena, state) { Err((_, fail, state)) => { return Err(( MadeProgress, EExpr::DefMissingFinalExpr2(arena.alloc(fail), state.line, state.column), state, )); } Ok((_, loc_ret, state)) => { return Ok(( MadeProgress, Expr::Defs(def_state.defs.into_bump_slice(), arena.alloc(loc_ret)), state, )); } } } } } fn parse_expr_operator<'a>( min_indent: u16, start: Position, mut expr_state: ExprState<'a>, loc_op: Located, arena: &'a Bump, state: State<'a>, ) -> ParseResult<'a, Expr<'a>, EExpr<'a>> { let (_, spaces_after_operator, state) = space0_e(min_indent, EExpr::Space, EExpr::IndentEnd).parse(arena, state)?; // a `-` is unary if it is preceded by a space and not followed by a space let op = loc_op.value; let op_start = loc_op.region.start(); let op_end = loc_op.region.end(); let new_start = state.get_position(); match op { BinOp::Minus if expr_state.end != op_start && op_end == new_start => { // negative terms let (_, negated_expr, state) = parse_loc_term(min_indent, arena, state)?; let new_end = state.get_position(); let arg = numeric_negate_expression( arena, expr_state.initial, loc_op, negated_expr, expr_state.spaces_after, ); expr_state.initial = state; let (spaces, state) = match space0_e(min_indent, EExpr::Space, EExpr::IndentEnd).parse(arena, state) { Err((_, _, state)) => (&[] as &[_], state), Ok((_, spaces, state)) => (spaces, state), }; expr_state.arguments.push(arena.alloc(arg)); expr_state.spaces_after = spaces; expr_state.end = new_end; parse_expr_end(min_indent, start, expr_state, arena, state) } BinOp::Assignment => { let expr_region = expr_state.expr.region; let indented_more = start.col + 1; let call = expr_state .validate_assignment_or_backpassing(arena, loc_op, EExpr::ElmStyleFunction) .map_err(|fail| (MadeProgress, fail, state))?; let (loc_def, state) = { match expr_to_pattern_help(arena, &call.value) { Ok(good) => { let (_, mut ann_type, state) = parse_expr_help(indented_more, arena, state)?; // put the spaces from after the operator in front of the call if !spaces_after_operator.is_empty() { ann_type = arena .alloc(ann_type.value) .with_spaces_before(spaces_after_operator, ann_type.region); } let alias_region = Region::span_across(&call.region, &ann_type.region); let alias = Def::Body( arena.alloc(Located::at(expr_region, good)), arena.alloc(ann_type), ); (&*arena.alloc(Located::at(alias_region, alias)), state) } Err(_) => { // this `=` likely occured inline; treat it as an invalid operator let fail = EExpr::BadOperator( arena.alloc([b'=']), loc_op.region.start_line, loc_op.region.start_col, ); return Err((MadeProgress, fail, state)); } } }; let def_state = DefState { defs: bumpalo::vec![in arena; loc_def], spaces_after: &[], }; parse_defs_expr(start, def_state, arena, state) } BinOp::Backpassing => { let expr_region = expr_state.expr.region; let indented_more = start.col + 1; let call = expr_state .validate_assignment_or_backpassing(arena, loc_op, |_, r, c| { EExpr::BadOperator(&[b'<', b'-'], r, c) }) .map_err(|fail| (MadeProgress, fail, state))?; let (loc_pattern, loc_body, state) = { match expr_to_pattern_help(arena, &call.value) { Ok(good) => { let (_, mut ann_type, state) = parse_expr_help(indented_more, arena, state)?; // put the spaces from after the operator in front of the call if !spaces_after_operator.is_empty() { ann_type = arena .alloc(ann_type.value) .with_spaces_before(spaces_after_operator, ann_type.region); } (Located::at(expr_region, good), ann_type, state) } Err(_) => { // this `=` likely occured inline; treat it as an invalid operator let fail = EExpr::BadOperator( arena.alloc([b'=']), loc_op.region.start_line, loc_op.region.start_col, ); return Err((MadeProgress, fail, state)); } } }; let parse_cont = space0_before_e( move |a, s| parse_expr_help(min_indent, a, s), min_indent, EExpr::Space, EExpr::IndentEnd, ); let (_, loc_cont, state) = parse_cont.parse(arena, state)?; let ret = Expr::Backpassing( arena.alloc([loc_pattern]), arena.alloc(loc_body), arena.alloc(loc_cont), ); Ok((MadeProgress, ret, state)) } BinOp::HasType => { let expr_region = expr_state.expr.region; let indented_more = start.col + 1; let (expr, arguments) = expr_state .validate_has_type(arena, loc_op) .map_err(|fail| (MadeProgress, fail, state))?; let (loc_def, state) = match &expr.value { Expr::GlobalTag(name) => { let mut type_arguments = Vec::with_capacity_in(arguments.len(), arena); for argument in arguments { match expr_to_pattern_help(arena, &argument.value) { Ok(good) => { type_arguments.push(Located::at(argument.region, good)); } Err(_) => panic!(), } } let (_, ann_type, state) = specialize( EExpr::Type, space0_before_e( type_annotation::located_help(indented_more), min_indent, Type::TSpace, Type::TIndentStart, ), ) .parse(arena, state)?; let alias_region = Region::span_across(&expr.region, &ann_type.region); let alias = Def::Alias { name: Located::at(expr.region, name), vars: type_arguments.into_bump_slice(), ann: ann_type, }; (&*arena.alloc(Located::at(alias_region, alias)), state) } _ => { let call = to_call(arena, arguments, expr, spaces_after_operator); match expr_to_pattern_help(arena, &call.value) { Ok(good) => { let (_, mut ann_type, state) = specialize( EExpr::Type, space0_before_e( type_annotation::located_help(indented_more), min_indent, Type::TSpace, Type::TIndentStart, ), ) .parse(arena, state)?; // put the spaces from after the operator in front of the call if !spaces_after_operator.is_empty() { ann_type = arena .alloc(ann_type.value) .with_spaces_before(spaces_after_operator, ann_type.region); } let alias_region = Region::span_across(&call.region, &ann_type.region); let alias = Def::Annotation(Located::at(expr_region, good), ann_type); (&*arena.alloc(Located::at(alias_region, alias)), state) } Err(_) => { // this `:` likely occured inline; treat it as an invalid operator let fail = EExpr::BadOperator( arena.alloc([b':']), loc_op.region.start_line, loc_op.region.start_col, ); return Err((MadeProgress, fail, state)); } } } }; let def_state = DefState { defs: bumpalo::vec![in arena; loc_def], spaces_after: &[], }; parse_defs_expr(start, def_state, arena, state) } _ => match loc_possibly_negative_or_negated_term(min_indent).parse(arena, state) { Err((MadeProgress, f, s)) => Err((MadeProgress, f, s)), Ok((_, mut new_expr, state)) => { let new_end = state.get_position(); expr_state.initial = state; // put the spaces from after the operator in front of the new_expr if !spaces_after_operator.is_empty() { new_expr = arena .alloc(new_expr.value) .with_spaces_before(spaces_after_operator, new_expr.region); } match space0_e(min_indent, EExpr::Space, EExpr::IndentEnd).parse(arena, state) { Err((_, _, state)) => { let args = std::mem::replace(&mut expr_state.arguments, Vec::new_in(arena)); let call = to_call(arena, args, expr_state.expr, &[]); expr_state.operators.push((call, loc_op)); expr_state.expr = new_expr; expr_state.end = new_end; expr_state.spaces_after = &[]; parse_expr_final(min_indent, expr_state, arena, state) } Ok((_, spaces, state)) => { let args = std::mem::replace(&mut expr_state.arguments, Vec::new_in(arena)); let call = to_call(arena, args, expr_state.expr, spaces); expr_state.operators.push((call, loc_op)); expr_state.expr = new_expr; expr_state.end = new_end; expr_state.spaces_after = spaces; // TODO new start? parse_expr_end(min_indent, start, expr_state, arena, state) } } } Err((NoProgress, _, _)) => { todo!() } }, } } fn parse_expr_end<'a>( min_indent: u16, start: Position, mut expr_state: ExprState<'a>, arena: &'a Bump, state: State<'a>, ) -> ParseResult<'a, Expr<'a>, EExpr<'a>> { let parser = skip_first!( crate::blankspace::check_indent(min_indent, EExpr::IndentEnd), move |a, s| parse_loc_term_better(min_indent, a, s) ); match parser.parse(arena, state) { Err((MadeProgress, f, s)) => Err((MadeProgress, f, s)), Ok((_, mut arg, state)) => { let new_end = state.get_position(); // now that we have `function arg1 ... argn`, attach the spaces to the `argn` if !expr_state.spaces_after.is_empty() { arg = arena .alloc(arg.value) .with_spaces_before(expr_state.spaces_after, arg.region); expr_state.spaces_after = &[]; } expr_state.initial = state; match space0_e(min_indent, EExpr::Space, EExpr::IndentEnd).parse(arena, state) { Err((_, _, state)) => { expr_state.arguments.push(arena.alloc(arg)); expr_state.end = new_end; expr_state.spaces_after = &[]; parse_expr_final(min_indent, expr_state, arena, state) } Ok((_, new_spaces, state)) => { expr_state.arguments.push(arena.alloc(arg)); expr_state.end = new_end; expr_state.spaces_after = new_spaces; parse_expr_end(min_indent, start, expr_state, arena, state) } } } Err((NoProgress, _, _)) => { let before_op = state; // try an operator match loc!(operator()).parse(arena, state) { Err((MadeProgress, f, s)) => Err((MadeProgress, f, s)), Ok((_, loc_op, state)) => { expr_state.consume_spaces(arena); expr_state.initial = before_op; parse_expr_operator(min_indent, start, expr_state, loc_op, arena, state) } Err((NoProgress, _, _)) => { // roll back space parsing let state = expr_state.initial; if expr_state.operators.is_empty() { let expr = to_call( arena, expr_state.arguments, expr_state.expr, expr_state.spaces_after, ); Ok((MadeProgress, expr.value, state)) } else { let mut expr = to_call( arena, expr_state.arguments, expr_state.expr, expr_state.spaces_after, ); for (left_arg, op) in expr_state.operators.into_iter().rev() { let region = Region::span_across(&left_arg.region, &expr.region); let new = Expr::BinOp(arena.alloc((left_arg, op, expr))); expr = Located::at(region, new); } Ok((MadeProgress, expr.value, state)) } } } } } } fn parse_expr_help<'a>( min_indent: u16, arena: &'a Bump, state: State<'a>, ) -> ParseResult<'a, Located>, EExpr<'a>> { let start = state.get_position(); parse_expr_start(min_indent, start, arena, state) } /// If the given Expr would parse the same way as a valid Pattern, convert it. /// Example: (foo) could be either an Expr::Var("foo") or Pattern::Identifier("foo") fn expr_to_pattern_help<'a>(arena: &'a Bump, expr: &Expr<'a>) -> Result, ()> { match expr { Expr::Var { module_name, ident } => { if module_name.is_empty() { Ok(Pattern::Identifier(ident)) } else { Ok(Pattern::QualifiedIdentifier { module_name, ident }) } } Expr::GlobalTag(value) => Ok(Pattern::GlobalTag(value)), Expr::PrivateTag(value) => Ok(Pattern::PrivateTag(value)), Expr::Apply(loc_val, loc_args, _) => { let region = loc_val.region; let value = expr_to_pattern_help(arena, &loc_val.value)?; let val_pattern = arena.alloc(Located { region, value }); let mut arg_patterns = Vec::with_capacity_in(loc_args.len(), arena); for loc_arg in loc_args.iter() { let region = loc_arg.region; let value = expr_to_pattern_help(arena, &loc_arg.value)?; arg_patterns.push(Located { region, value }); } let pattern = Pattern::Apply(val_pattern, arg_patterns.into_bump_slice()); Ok(pattern) } Expr::SpaceBefore(sub_expr, spaces) => Ok(Pattern::SpaceBefore( arena.alloc(expr_to_pattern_help(arena, sub_expr)?), spaces, )), Expr::SpaceAfter(sub_expr, spaces) => Ok(Pattern::SpaceAfter( arena.alloc(expr_to_pattern_help(arena, sub_expr)?), spaces, )), Expr::ParensAround(sub_expr) | Expr::Nested(sub_expr) => { expr_to_pattern_help(arena, sub_expr) } Expr::Record { fields, update: None, final_comments: _, } => { let mut loc_patterns = Vec::with_capacity_in(fields.len(), arena); for loc_assigned_field in fields.iter() { let region = loc_assigned_field.region; let value = assigned_expr_field_to_pattern_help(arena, &loc_assigned_field.value)?; loc_patterns.push(Located { region, value }); } Ok(Pattern::RecordDestructure(loc_patterns.into_bump_slice())) } Expr::Float(string) => Ok(Pattern::FloatLiteral(string)), Expr::Num(string) => Ok(Pattern::NumLiteral(string)), Expr::NonBase10Int { string, base, is_negative, } => Ok(Pattern::NonBase10Literal { string, base: *base, is_negative: *is_negative, }), // These would not have parsed as patterns Expr::AccessorFunction(_) | Expr::Access(_, _) | Expr::List { .. } | Expr::Closure(_, _) | Expr::Backpassing(_, _, _) | Expr::BinOp(_) | Expr::Defs(_, _) | Expr::If(_, _) | Expr::When(_, _) | Expr::MalformedClosure | Expr::PrecedenceConflict(_, _, _, _) | Expr::Record { update: Some(_), .. } | Expr::UnaryOp(_, _) => Err(()), Expr::Str(string) => Ok(Pattern::StrLiteral(string.clone())), Expr::MalformedIdent(string, _problem) => Ok(Pattern::Malformed(string)), } } /// use for expressions like { x: a + b } fn assigned_expr_field_to_pattern<'a>( arena: &'a Bump, assigned_field: &AssignedField<'a, Expr<'a>>, ) -> Result, ()> { // the assigned fields always store spaces, but this slice is often empty Ok(match assigned_field { AssignedField::RequiredValue(name, spaces, value) => { let pattern = expr_to_pattern_help(arena, &value.value)?; let result = arena.alloc(Located { region: value.region, value: pattern, }); if spaces.is_empty() { Pattern::RequiredField(name.value, result) } else { Pattern::SpaceAfter( arena.alloc(Pattern::RequiredField(name.value, result)), spaces, ) } } AssignedField::OptionalValue(name, spaces, value) => { let result = arena.alloc(Located { region: value.region, value: value.value.clone(), }); if spaces.is_empty() { Pattern::OptionalField(name.value, result) } else { Pattern::SpaceAfter( arena.alloc(Pattern::OptionalField(name.value, result)), spaces, ) } } AssignedField::LabelOnly(name) => Pattern::Identifier(name.value), AssignedField::SpaceBefore(nested, spaces) => Pattern::SpaceBefore( arena.alloc(assigned_expr_field_to_pattern(arena, nested)?), spaces, ), AssignedField::SpaceAfter(nested, spaces) => Pattern::SpaceAfter( arena.alloc(assigned_expr_field_to_pattern(arena, nested)?), spaces, ), AssignedField::Malformed(string) => Pattern::Malformed(string), }) } fn assigned_expr_field_to_pattern_help<'a>( arena: &'a Bump, assigned_field: &AssignedField<'a, Expr<'a>>, ) -> Result, ()> { // the assigned fields always store spaces, but this slice is often empty Ok(match assigned_field { AssignedField::RequiredValue(name, spaces, value) => { let pattern = expr_to_pattern_help(arena, &value.value)?; let result = arena.alloc(Located { region: value.region, value: pattern, }); if spaces.is_empty() { Pattern::RequiredField(name.value, result) } else { Pattern::SpaceAfter( arena.alloc(Pattern::RequiredField(name.value, result)), spaces, ) } } AssignedField::OptionalValue(name, spaces, value) => { let result = arena.alloc(Located { region: value.region, value: value.value.clone(), }); if spaces.is_empty() { Pattern::OptionalField(name.value, result) } else { Pattern::SpaceAfter( arena.alloc(Pattern::OptionalField(name.value, result)), spaces, ) } } AssignedField::LabelOnly(name) => Pattern::Identifier(name.value), AssignedField::SpaceBefore(nested, spaces) => Pattern::SpaceBefore( arena.alloc(assigned_expr_field_to_pattern_help(arena, nested)?), spaces, ), AssignedField::SpaceAfter(nested, spaces) => Pattern::SpaceAfter( arena.alloc(assigned_expr_field_to_pattern_help(arena, nested)?), spaces, ), AssignedField::Malformed(string) => Pattern::Malformed(string), }) } fn parse_defs_help<'a>( min_indent: u16, ) -> impl Parser<'a, Vec<'a, &'a Located>>, EExpr<'a>> { let parse_def = move |arena, state| { let (_, (spaces, def), state) = and!( backtrackable(space0_e(min_indent, EExpr::Space, EExpr::IndentStart)), loc!(def_help(min_indent)) ) .parse(arena, state)?; let result = if spaces.is_empty() { &*arena.alloc(def) } else { &*arena.alloc( arena .alloc(def.value) .with_spaces_before(spaces, def.region), ) }; Ok((MadeProgress, result, state)) }; zero_or_more!(parse_def) } /// A definition, consisting of one of these: /// /// * A type alias using `:` /// * A pattern followed by '=' and then an expression /// * A type annotation /// * A type annotation followed on the next line by a pattern, an `=`, and an expression pub fn def<'a>(min_indent: u16) -> impl Parser<'a, Def<'a>, SyntaxError<'a>> { specialize(|e, _, _| SyntaxError::Expr(e), def_help(min_indent)) } pub fn def_help_help<'a>(min_indent: u16) -> impl Parser<'a, Vec<'a, Located>>, EExpr<'a>> { move |arena, state: State<'a>| { let def_state = DefState { defs: Vec::new_in(arena), spaces_after: &[], }; let (_, initial_space, state) = space0_e(min_indent, EExpr::Space, EExpr::IndentEnd).parse(arena, state)?; let start = state.get_position(); let (_, def_state, state) = parse_defs_end(start, def_state, arena, state)?; let (_, final_space, state) = space0_e(start.col, EExpr::Space, EExpr::IndentEnd).parse(arena, state)?; let mut output = Vec::with_capacity_in(def_state.defs.len(), arena); if !def_state.defs.is_empty() { let first = 0; let last = def_state.defs.len() - 1; for (i, ref_def) in def_state.defs.into_iter().enumerate() { let mut def = ref_def.clone(); if i == first { def = arena .alloc(def.value) .with_spaces_before(initial_space, def.region) } if i == last { def = arena .alloc(def.value) .with_spaces_after(final_space, def.region) } output.push(def); } } Ok((MadeProgress, output, state)) } } fn def_help<'a>(min_indent: u16) -> impl Parser<'a, Def<'a>, EExpr<'a>> { let indented_more = min_indent + 1; enum DefKind { Colon, Equal, } let def_colon_or_equals = one_of![ map!(equals_with_indent_help(), |_| DefKind::Equal), map!(colon_with_indent(), |_| DefKind::Colon), ]; then( // backtrackable because // // i = 0 // i // // on the last line, we parse a pattern `i`, but it's not actually a def, so need to // backtrack and!(backtrackable(pattern_help(min_indent)), def_colon_or_equals), move |arena, state, _progress, (loc_pattern, def_kind)| match def_kind { DefKind::Colon => { // Spaces after the ':' (at a normal indentation level) and then the type. // The type itself must be indented more than the pattern and ':' let (_, ann_type, state) = specialize( EExpr::Type, space0_before_e( type_annotation::located_help(indented_more), min_indent, Type::TSpace, Type::TIndentStart, ), ) .parse(arena, state)?; // see if there is a definition (assuming the preceding characters were a type // annotation // TODO parse all the spaces, and check if we moved more than >= 1 line down let (_, opt_rest, state) = optional(and!( spaces_till_end_of_line(), body_at_indent_help(min_indent) )) .parse(arena, state)?; let def = match opt_rest { None => { annotation_or_alias(arena, &loc_pattern.value, loc_pattern.region, ann_type) } Some((opt_comment, (body_pattern, body_expr))) => Def::AnnotatedBody { ann_pattern: arena.alloc(loc_pattern), ann_type: arena.alloc(ann_type), comment: opt_comment, body_pattern: arena.alloc(body_pattern), body_expr: arena.alloc(body_expr), }, }; Ok((MadeProgress, def, state)) } DefKind::Equal => { // Spaces after the '=' (at a normal indentation level) and then the expr. // The expr itself must be indented more than the pattern and '=' let (_, body_expr, state) = space0_before_e( move |arena, state| parse_expr_help(indented_more, arena, state), min_indent, EExpr::Space, EExpr::IndentStart, ) .parse(arena, state)?; Ok(( MadeProgress, Def::Body(arena.alloc(loc_pattern), arena.alloc(body_expr)), state, )) } }, ) } // PARSER HELPERS fn pattern_help<'a>(min_indent: u16) -> impl Parser<'a, Located>, EExpr<'a>> { specialize_ref( EExpr::Pattern, space0_after_e( loc_closure_param(min_indent), min_indent, EPattern::Space, EPattern::IndentStart, ), ) } fn spaces_till_end_of_line<'a>() -> impl Parser<'a, Option<&'a str>, EExpr<'a>> { crate::blankspace::spaces_till_end_of_line(|r, c| { EExpr::Space(parser::BadInputError::HasTab, r, c) }) } type Body<'a> = (Located>, Located>); fn body_at_indent_help<'a>(indent_level: u16) -> impl Parser<'a, Body<'a>, EExpr<'a>> { let indented_more = indent_level + 1; and!( skip_first!(spaces_exactly_e(indent_level), pattern_help(indent_level)), skip_first!( equals_with_indent_help(), // Spaces after the '=' (at a normal indentation level) and then the expr. // The expr itself must be indented more than the pattern and '=' space0_before_e( move |arena, state| parse_expr_help(indented_more, arena, state), indent_level, EExpr::Space, EExpr::IndentStart, ) ) ) } fn annotation_or_alias<'a>( arena: &'a Bump, pattern: &Pattern<'a>, pattern_region: Region, loc_ann: Located>, ) -> Def<'a> { use crate::ast::Pattern::*; match pattern { // Type aliases initially parse as either global tags // or applied global tags, because they are always uppercase GlobalTag(name) => Def::Alias { name: Located { value: name, region: pattern_region, }, vars: &[], ann: loc_ann, }, Apply( Located { region: pattern_region, value: Pattern::GlobalTag(name), }, loc_vars, ) => Def::Alias { name: Located { value: name, region: *pattern_region, }, vars: loc_vars, ann: loc_ann, }, Apply(_, _) => { Def::NotYetImplemented("TODO gracefully handle invalid Apply in type annotation") } SpaceAfter(value, spaces_before) => Def::SpaceAfter( arena.alloc(annotation_or_alias(arena, value, pattern_region, loc_ann)), spaces_before, ), SpaceBefore(value, spaces_before) => Def::SpaceBefore( arena.alloc(annotation_or_alias(arena, value, pattern_region, loc_ann)), spaces_before, ), Nested(value) => annotation_or_alias(arena, value, pattern_region, loc_ann), PrivateTag(_) => { Def::NotYetImplemented("TODO gracefully handle trying to use a private tag as an annotation.") } QualifiedIdentifier { .. } => { Def::NotYetImplemented("TODO gracefully handle trying to annotate a qualified identifier, e.g. `Foo.bar : ...`") } NumLiteral(_) | NonBase10Literal { .. } | FloatLiteral(_) | StrLiteral(_) => { Def::NotYetImplemented("TODO gracefully handle trying to annotate a litera") } Underscore(_) => { Def::NotYetImplemented("TODO gracefully handle trying to give a type annotation to an undrscore") } Malformed(_) => { Def::NotYetImplemented("TODO translate a malformed pattern into a malformed annotation") } MalformedIdent(_, _) => { Def::NotYetImplemented("TODO translate a malformed pattern into a malformed annotation") } Identifier(ident) => { // This is a regular Annotation Def::Annotation( Located { region: pattern_region, value: Pattern::Identifier(ident), }, loc_ann, ) } RecordDestructure(loc_patterns) => { // This is a record destructure Annotation Def::Annotation( Located { region: pattern_region, value: Pattern::RecordDestructure(loc_patterns), }, loc_ann, ) } RequiredField(_, _) | OptionalField(_, _) => { unreachable!("This should only be possible inside a record destruture."); } } } fn check_def_indent( min_indent: u16, def_start_column: u16, special_token_indent: u16, state: State, ) -> Result { if def_start_column < min_indent || special_token_indent < def_start_column { Err(( NoProgress, EExpr::IndentDefBody(state.line, state.column), state, )) } else { Ok(state) } } fn parse_def_expr_help<'a>( min_indent: u16, def_start_col: u16, equals_sign_indent: u16, arena: &'a Bump, state: State<'a>, loc_first_pattern: Located>, spaces_after_equals: &'a [CommentOrNewline<'a>], ) -> ParseResult<'a, Expr<'a>, EExpr<'a>> { let state = check_def_indent(min_indent, def_start_col, equals_sign_indent, state)?; // Indented more beyond the original indent of the entire def-expr. let indented_more = def_start_col + 1; then( and!( // Parse the body of the first def. It doesn't need any spaces // around it parsed, because both the subsquent defs and the // final body will have space1_before on them. // // It should be indented more than the original, and it will // end when outdented again. move |arena, state| parse_expr_help(indented_more, arena, state), and!( // Optionally parse additional defs. parse_defs_help(def_start_col), // Parse the final expression that will be returned. // It should be indented the same amount as the original. space0_before_e( move |arena, state: State<'a>| { parse_expr_help(def_start_col, arena, state) }, def_start_col, EExpr::Space, EExpr::IndentStart, ) ) ), move |arena, state, progress, (loc_first_body, (mut defs, loc_ret))| { let loc_first_body = if spaces_after_equals.is_empty() { loc_first_body } else { Located { value: Expr::SpaceBefore( arena.alloc(loc_first_body.value), spaces_after_equals, ), region: loc_first_body.region, } }; let def_region = Region::span_across(&loc_first_pattern.region, &loc_first_body.region); let first_def: Def<'a> = // TODO is there some way to eliminate this .clone() here? Def::Body(arena.alloc(loc_first_pattern.clone()), arena.alloc(loc_first_body)); let loc_first_def = Located { value: first_def, region: def_region, }; // for formatting reasons, we must insert the first def first! defs.insert(0, &*arena.alloc(loc_first_def)); Ok(( progress, Expr::Defs(defs.into_bump_slice(), arena.alloc(loc_ret)), state, )) }, ) .parse(arena, state) } fn parse_backarrow_help<'a>( min_indent: u16, def_start_col: u16, equals_sign_indent: u16, arena: &'a Bump, state: State<'a>, loc_first_pattern: Located>, spaces_after_equals: &'a [CommentOrNewline<'a>], ) -> ParseResult<'a, Expr<'a>, EExpr<'a>> { let state = check_def_indent(min_indent, def_start_col, equals_sign_indent, state)?; // Indented more beyond the original indent of the entire def-expr. let indented_more = def_start_col + 1; then( and!( // Parse the body of the first def. It doesn't need any spaces // around it parsed, because both the subsquent defs and the // final body will have space1_before on them. // // It should be indented more than the original, and it will // end when outdented again. move |arena, state| parse_expr_help(indented_more, arena, state), and!( // Optionally parse additional defs. parse_defs_help(def_start_col), // Parse the final expression that will be returned. // It should be indented the same amount as the original. space0_before_e( move |arena, state: State<'a>| { parse_expr_help(def_start_col, arena, state) }, def_start_col, EExpr::Space, EExpr::IndentStart, ) ) ), move |arena, state, progress, (loc_first_body, (defs, loc_ret))| { let loc_first_body = if spaces_after_equals.is_empty() { loc_first_body } else { Located { value: Expr::SpaceBefore( arena.alloc(loc_first_body.value), spaces_after_equals, ), region: loc_first_body.region, } }; let defs_region = Region::span_across( &defs.get(0).map(|r| r.region).unwrap_or_else(Region::zero), &loc_first_body.region, ); let loc_defs = Located::at( defs_region, Expr::Defs(defs.into_bump_slice(), arena.alloc(loc_ret)), ); Ok(( progress, Expr::Backpassing( arena.alloc([loc_first_pattern.clone()]), arena.alloc(loc_first_body), arena.alloc(loc_defs), ), state, )) }, ) .parse(arena, state) } fn parse_def_signature_help<'a>( min_indent: u16, colon_indent: u16, arena: &'a Bump, state: State<'a>, loc_first_pattern: Located>, ) -> ParseResult<'a, Expr<'a>, EExpr<'a>> { let original_indent = state.indent_col; let state = check_def_indent(min_indent, original_indent, colon_indent, state)?; // Indented more beyond the original indent. let indented_more = original_indent + 1; let parser1 = { // Parse the first annotation. It doesn't need any spaces // around it parsed, because both the subsquent defs and the // final body will have space1_before on them. // // It should be indented more than the original, and it will // end when outdented again. and_then_with_indent_level( space0_before_e( specialize(EExpr::Type, type_annotation::located_help(indented_more)), min_indent, EExpr::Space, EExpr::IndentAnnotation, ), // The first annotation may be immediately (spaces_then_comment_or_newline()) // followed by a body at the exact same indent_level // leading to an AnnotatedBody in this case |_progress, type_ann, indent_level| { map( optional(and!( backtrackable(spaces_till_end_of_line()), body_at_indent_help(indent_level) )), move |opt_body| (type_ann.clone(), opt_body), ) }, ) }; let parser2 = { and!( // Optionally parse additional defs. zero_or_more!(backtrackable(allocated(space0_before_e( loc!(def_help(original_indent)), original_indent, EExpr::Space, EExpr::IndentStart, )))), // Parse the final expression that will be returned. // It should be indented the same amount as the original. space0_before_e( one_of![ |arena, state| parse_expr_help(original_indent, arena, state), loc!(|_, state: State<'a>| Err(( MadeProgress, EExpr::DefMissingFinalExpr(state.line, state.column), state ))), ], original_indent, EExpr::Space, EExpr::IndentEnd, ) ) }; and!(parser1, parser2).parse(arena, state).map( move |(progress, ((loc_first_annotation, opt_body), (mut defs, loc_ret)), state)| { let loc_first_def: Located> = match opt_body { None => { let region = Region::span_across( &loc_first_pattern.region, &loc_first_annotation.region, ); Located { value: annotation_or_alias( arena, &loc_first_pattern.value, loc_first_pattern.region, loc_first_annotation, ), region, } } Some((opt_comment, (body_pattern, body_expr))) => { let region = Region::span_across(&loc_first_pattern.region, &body_expr.region); Located { value: Def::AnnotatedBody { ann_pattern: arena.alloc(loc_first_pattern), ann_type: arena.alloc(loc_first_annotation), comment: opt_comment, body_pattern: arena.alloc(body_pattern), body_expr: arena.alloc(body_expr), }, region, } } }; // contrary to defs with an expression body, we must ensure the annotation comes just before its // corresponding definition (the one with the body). defs.insert(0, &*arena.alloc(loc_first_def)); let defs = defs.into_bump_slice(); (progress, Expr::Defs(defs, arena.alloc(loc_ret)), state) }, ) } fn closure_help<'a>(min_indent: u16) -> impl Parser<'a, Expr<'a>, ELambda<'a>> { map_with_arena!( skip_first!( // All closures start with a '\' - e.g. (\x -> x + 1) word1(b'\\', ELambda::Start), // Once we see the '\', we're committed to parsing this as a closure. // It may turn out to be malformed, but it is definitely a closure. and!( // Parse the params // Params are comma-separated sep_by1_e( word1(b',', ELambda::Comma), space0_around_ee( specialize(ELambda::Pattern, loc_closure_param(min_indent)), min_indent, ELambda::Space, ELambda::IndentArg, ELambda::IndentArrow ), ELambda::Arg, ), skip_first!( // Parse the -> which separates params from body word2(b'-', b'>', ELambda::Arrow), // Parse the body space0_before_e( specialize_ref(ELambda::Body, move |arena, state| parse_expr_help( min_indent, arena, state )), min_indent, ELambda::Space, ELambda::IndentBody ) ) ) ), |arena: &'a Bump, (params, loc_body)| { let params: Vec<'a, Located>> = params; let params: &'a [Located>] = params.into_bump_slice(); Expr::Closure(params, arena.alloc(loc_body)) } ) } mod when { use super::*; use crate::ast::WhenBranch; /// Parser for when expressions. pub fn expr_help<'a>(min_indent: u16) -> impl Parser<'a, Expr<'a>, When<'a>> { then( and!( when_with_indent(), skip_second!( space0_around_ee( specialize_ref(When::Condition, move |arena, state| { parse_expr_help(min_indent, arena, state) }), min_indent, When::Space, When::IndentCondition, When::IndentIs, ), parser::keyword_e(keyword::IS, When::Is) ) ), move |arena, state, progress, (case_indent, loc_condition)| { if case_indent < min_indent { return Err(( progress, // TODO maybe pass case_indent here? When::PatternAlignment(5, state.line, state.column), state, )); } // Everything in the branches must be indented at least as much as the case itself. let min_indent = case_indent; let (p1, branches, state) = branches(min_indent).parse(arena, state)?; Ok(( progress.or(p1), Expr::When(arena.alloc(loc_condition), branches.into_bump_slice()), state, )) }, ) } /// Parsing when with indentation. fn when_with_indent<'a>() -> impl Parser<'a, u16, When<'a>> { move |arena, state: State<'a>| { parser::keyword_e(keyword::WHEN, When::When) .parse(arena, state) .map(|(progress, (), state)| (progress, state.indent_col, state)) } } fn branches<'a>(min_indent: u16) -> impl Parser<'a, Vec<'a, &'a WhenBranch<'a>>, When<'a>> { move |arena, state| { let mut branches: Vec<'a, &'a WhenBranch<'a>> = Vec::with_capacity_in(2, arena); // 1. Parse the first branch and get its indentation level. (It must be >= min_indent.) // 2. Parse the other branches. Their indentation levels must be == the first branch's. let (_, (loc_first_patterns, loc_first_guard), state) = branch_alternatives(min_indent).parse(arena, state)?; let loc_first_pattern = loc_first_patterns.first().unwrap(); let original_indent = loc_first_pattern.region.start_col; let indented_more = original_indent + 1; // Parse the first "->" and the expression after it. let (_, loc_first_expr, mut state) = branch_result(indented_more).parse(arena, state)?; // Record this as the first branch, then optionally parse additional branches. branches.push(arena.alloc(WhenBranch { patterns: loc_first_patterns.into_bump_slice(), value: loc_first_expr, guard: loc_first_guard, })); let branch_parser = map!( and!( then( branch_alternatives(min_indent), move |_arena, state, _, (loc_patterns, loc_guard)| { match alternatives_indented_correctly(&loc_patterns, original_indent) { Ok(()) => Ok((MadeProgress, (loc_patterns, loc_guard), state)), Err(indent) => Err(( MadeProgress, When::PatternAlignment(indent, state.line, state.column), state, )), } }, ), branch_result(indented_more) ), |((patterns, guard), expr)| { let patterns: Vec<'a, _> = patterns; WhenBranch { patterns: patterns.into_bump_slice(), value: expr, guard, } } ); while !state.bytes.is_empty() { match branch_parser.parse(arena, state) { Ok((_, next_output, next_state)) => { state = next_state; branches.push(arena.alloc(next_output)); } Err((MadeProgress, problem, old_state)) => { return Err((MadeProgress, problem, old_state)); } Err((NoProgress, _, old_state)) => { state = old_state; break; } } } Ok((MadeProgress, branches, state)) } } /// Parsing alternative patterns in when branches. fn branch_alternatives<'a>( min_indent: u16, ) -> impl Parser<'a, (Vec<'a, Located>>, Option>>), When<'a>> { and!( sep_by1(word1(b'|', When::Bar), |arena, state| { let (_, spaces, state) = backtrackable(space0_e(min_indent, When::Space, When::IndentPattern)) .parse(arena, state)?; let (_, loc_pattern, state) = space0_after_e( specialize(When::Pattern, crate::pattern::loc_pattern_help(min_indent)), min_indent, When::Space, When::IndentPattern, ) .parse(arena, state)?; Ok(( MadeProgress, if spaces.is_empty() { loc_pattern } else { arena .alloc(loc_pattern.value) .with_spaces_before(spaces, loc_pattern.region) }, state, )) }), one_of![ map!( skip_first!( parser::keyword_e(keyword::IF, When::IfToken), // TODO we should require space before the expression but not after space0_around_ee( specialize_ref(When::IfGuard, move |arena, state| { parse_expr_help(min_indent, arena, state) }), min_indent, When::Space, When::IndentIfGuard, When::IndentArrow, ) ), Some ), |_, s| Ok((NoProgress, None, s)) ] ) } /// Check if alternatives of a when branch are indented correctly. fn alternatives_indented_correctly<'a>( loc_patterns: &'a Vec<'a, Located>>, original_indent: u16, ) -> Result<(), u16> { let (first, rest) = loc_patterns.split_first().unwrap(); let first_indented_correctly = first.region.start_col == original_indent; if first_indented_correctly { for when_pattern in rest.iter() { if when_pattern.region.start_col < original_indent { return Err(original_indent - when_pattern.region.start_col); } } Ok(()) } else { Err(original_indent - first.region.start_col) } } /// Parsing the righthandside of a branch in a when conditional. fn branch_result<'a>(indent: u16) -> impl Parser<'a, Located>, When<'a>> { skip_first!( word2(b'-', b'>', When::Arrow), space0_before_e( specialize_ref(When::Branch, move |arena, state| parse_expr_help( indent, arena, state )), indent, When::Space, When::IndentBranch, ) ) } } fn if_branch<'a>( min_indent: u16, ) -> impl Parser<'a, (Located>, Located>), If<'a>> { move |arena, state| { // NOTE: only parse spaces before the expression let (_, cond, state) = space0_around_ee( specialize_ref(If::Condition, move |arena, state| { parse_expr_help(min_indent, arena, state) }), min_indent, If::Space, If::IndentCondition, If::IndentThenToken, ) .parse(arena, state) .map_err(|(_, f, s)| (MadeProgress, f, s))?; let (_, _, state) = parser::keyword_e(keyword::THEN, If::Then) .parse(arena, state) .map_err(|(_, f, s)| (MadeProgress, f, s))?; let (_, then_branch, state) = space0_around_ee( specialize_ref(If::ThenBranch, move |arena, state| { parse_expr_help(min_indent, arena, state) }), min_indent, If::Space, If::IndentThenBranch, If::IndentElseToken, ) .parse(arena, state) .map_err(|(_, f, s)| (MadeProgress, f, s))?; let (_, _, state) = parser::keyword_e(keyword::ELSE, If::Else) .parse(arena, state) .map_err(|(_, f, s)| (MadeProgress, f, s))?; Ok((MadeProgress, (cond, then_branch), state)) } } fn if_expr_help<'a>(min_indent: u16) -> impl Parser<'a, Expr<'a>, If<'a>> { move |arena: &'a Bump, state| { let (_, _, state) = parser::keyword_e(keyword::IF, If::If).parse(arena, state)?; let mut branches = Vec::with_capacity_in(1, arena); let mut loop_state = state; let state_final_else = loop { let (_, (cond, then_branch), state) = if_branch(min_indent).parse(arena, loop_state)?; branches.push((cond, then_branch)); // try to parse another `if` // NOTE this drops spaces between the `else` and the `if` let optional_if = and!( backtrackable(space0_e(min_indent, If::Space, If::IndentIf)), parser::keyword_e(keyword::IF, If::If) ); match optional_if.parse(arena, state) { Err((_, _, state)) => break state, Ok((_, _, state)) => { loop_state = state; continue; } } }; let (_, else_branch, state) = space0_before_e( specialize_ref(If::ElseBranch, move |arena, state| { parse_expr_help(min_indent, arena, state) }), min_indent, If::Space, If::IndentElseBranch, ) .parse(arena, state_final_else) .map_err(|(_, f, s)| (MadeProgress, f, s))?; let expr = Expr::If(branches.into_bump_slice(), arena.alloc(else_branch)); Ok((MadeProgress, expr, state)) } } /// This is a helper function for parsing function args. /// The rules for (-) are special-cased, and they come up in function args. /// /// They work like this: /// /// x - y # "x minus y" /// x-y # "x minus y" /// x- y # "x minus y" (probably written in a rush) /// x -y # "call x, passing (-y)" /// /// Since operators have higher precedence than function application, /// any time we encounter a '-' it is unary iff it is both preceded by spaces /// and is *not* followed by a whitespace character. /// When we parse an ident like `foo ` it could be any of these: /// /// 1. A standalone variable with trailing whitespace (e.g. because an operator is next) /// 2. The beginning of a function call (e.g. `foo bar baz`) /// 3. The beginning of a definition (e.g. `foo =`) /// 4. The beginning of a type annotation (e.g. `foo :`) /// 5. A reserved keyword (e.g. `if ` or `case `), meaning we should do something else. fn assign_or_destructure_identifier<'a>() -> impl Parser<'a, Ident<'a>, EExpr<'a>> { crate::ident::parse_ident_help } fn ident_etc_help<'a>(min_indent: u16) -> impl Parser<'a, Expr<'a>, EExpr<'a>> { then( and!( loc!(assign_or_destructure_identifier()), // optional(loc_function_args_help(min_indent)) |_, s| Ok((NoProgress, None, s)) ), move |arena, state, progress, (loc_ident, opt_arguments)| { debug_assert_eq!(progress, MadeProgress); // This appears to be a var, keyword, or function application. match opt_arguments { Some(arguments) => ident_then_args(min_indent, loc_ident, arguments, arena, state), None => ident_then_no_args(min_indent, loc_ident, arena, state), } }, ) } fn ident_then_no_args<'a>( min_indent: u16, loc_ident: Located>, arena: &'a Bump, state: State<'a>, ) -> ParseResult<'a, Expr<'a>, EExpr<'a>> { #[derive(Debug)] enum Next { Equals(u16), Colon(u16), Backarrow(u16), } let parser = optional(and!( backtrackable(space0_e(min_indent, EExpr::Space, EExpr::IndentEquals)), one_of![ map!(equals_with_indent_help(), Next::Equals), map!(colon_with_indent(), Next::Colon), map!(backpassing_with_indent(), Next::Backarrow), ] )); let (_, next, state) = parser.parse(arena, state)?; match next { Some((ident_spaces, next)) => { let pattern: Pattern<'a> = Pattern::from_ident(arena, loc_ident.value); let value = if ident_spaces.is_empty() { pattern } else { Pattern::SpaceAfter(arena.alloc(pattern), ident_spaces) }; let region = loc_ident.region; let loc_pattern = Located { region, value }; match next { Next::Equals(equals_indent) => { // We got '=' with no args before it let def_start_col = state.indent_col; // TODO use equals_indent below? let (_, spaces_after_equals, state) = space0_e(min_indent, EExpr::Space, EExpr::IndentDefBody) .parse(arena, state)?; let (_, parsed_expr, state) = parse_def_expr_help( min_indent, def_start_col, equals_indent, arena, state, loc_pattern, spaces_after_equals, )?; Ok((MadeProgress, parsed_expr, state)) } Next::Backarrow(equals_indent) => { // We got '<-' with no args before it let def_start_col = state.indent_col; let (_, spaces_after_equals, state) = space0_e(min_indent, EExpr::Space, EExpr::IndentDefBody) .parse(arena, state)?; let (_, parsed_expr, state) = parse_backarrow_help( min_indent, def_start_col, equals_indent, arena, state, loc_pattern, spaces_after_equals, )?; Ok((MadeProgress, parsed_expr, state)) } Next::Colon(colon_indent) => { parse_def_signature_help(min_indent, colon_indent, arena, state, loc_pattern) } } } None => { let ident = loc_ident.value.clone(); Ok((MadeProgress, ident_to_expr(arena, ident), state)) } } } fn ident_then_args<'a>( min_indent: u16, loc_ident: Located>, arguments: Vec<'a, Located>>, arena: &'a Bump, state: State<'a>, ) -> ParseResult<'a, Expr<'a>, EExpr<'a>> { debug_assert!(!arguments.is_empty()); #[derive(Debug)] enum Next { Equals(u16), Colon(u16), } let parser = optional(and!( backtrackable(space0_e(min_indent, EExpr::Space, EExpr::IndentEquals)), one_of![ map!(equals_with_indent_help(), Next::Equals), map!(colon_with_indent(), Next::Colon), ] )); let (_, next, state) = parser.parse(arena, state)?; match next { Some((_ident_spaces, Next::Equals(_equals_indent))) => { // We got args with an '=' after them, e.g. `foo a b = ...` This is a syntax error! let region = Region::across_all(arguments.iter().map(|v| &v.region)); let fail = EExpr::ElmStyleFunction(region, state.line, state.column); Err((MadeProgress, fail, state)) } Some((ident_spaces, Next::Colon(colon_indent))) => { let pattern: Pattern<'a> = { let pattern = Pattern::from_ident(arena, loc_ident.value); // Translate the loc_args Exprs into a Pattern::Apply // They are probably type alias variables (e.g. `List a : ...`) let mut arg_patterns = Vec::with_capacity_in(arguments.len(), arena); for loc_arg in arguments { match expr_to_pattern_help(arena, &loc_arg.value) { Ok(arg_pat) => { arg_patterns.push(Located { value: arg_pat, region: loc_arg.region, }); } Err(_malformed) => { return Err(( MadeProgress, EExpr::MalformedPattern(state.line, state.column), state, )); } } } let loc_pattern = Located { region: loc_ident.region, value: pattern, }; Pattern::Apply(arena.alloc(loc_pattern), arg_patterns.into_bump_slice()) }; let region = loc_ident.region; let value = if ident_spaces.is_empty() { pattern } else { Pattern::SpaceAfter(arena.alloc(pattern), ident_spaces) }; let loc_pattern = Located { region, value }; parse_def_signature_help(min_indent, colon_indent, arena, state, loc_pattern) } None => { // We got args and nothing else let loc_expr = Located { region: loc_ident.region, value: ident_to_expr(arena, loc_ident.value), }; let mut allocated_args = Vec::with_capacity_in(arguments.len(), arena); for loc_arg in arguments { allocated_args.push(&*arena.alloc(loc_arg)); } Ok(( MadeProgress, Expr::Apply( arena.alloc(loc_expr), allocated_args.into_bump_slice(), CalledVia::Space, ), state, )) } } } #[allow(dead_code)] fn with_indent<'a, E, T, P>(parser: P) -> impl Parser<'a, u16, E> where P: Parser<'a, T, E>, E: 'a, { move |arena, state: State<'a>| { let indent_col = state.indent_col; let (progress, _, state) = parser.parse(arena, state)?; Ok((progress, indent_col, state)) } } fn equals_with_indent_help<'a>() -> impl Parser<'a, u16, EExpr<'a>> { move |_arena, state: State<'a>| { let indent_col = state.indent_col; let good = state.bytes.starts_with(b"=") && !state.bytes.starts_with(b"=="); if good { match state.advance_without_indenting_e(1, EExpr::Space) { Err(bad) => Err(bad), Ok(good) => Ok((MadeProgress, indent_col, good)), } } else { let equals = EExpr::Equals(state.line, state.column); Err((NoProgress, equals, state)) } } } fn colon_with_indent<'a>() -> impl Parser<'a, u16, EExpr<'a>> { move |_arena, state: State<'a>| { let indent_col = state.indent_col; if let Some(b':') = state.bytes.get(0) { if let Some(b':') = state.bytes.get(1) { let double = EExpr::DoubleColon(state.line, state.column); Err((NoProgress, double, state)) } else { match state.advance_without_indenting_e(1, EExpr::Space) { Err(bad) => Err(bad), Ok(good) => Ok((MadeProgress, indent_col, good)), } } } else { let colon = EExpr::Colon(state.line, state.column); Err((NoProgress, colon, state)) } } } fn backpassing_with_indent<'a>() -> impl Parser<'a, u16, EExpr<'a>> { move |_arena, state: State<'a>| { let indent_col = state.indent_col; if state.bytes.starts_with(b"<-") { match state.advance_without_indenting_e(2, EExpr::Space) { Err(bad) => Err(bad), Ok(good) => Ok((MadeProgress, indent_col, good)), } } else { let colon = EExpr::BackpassArrow(state.line, state.column); Err((NoProgress, colon, state)) } } } fn ident_to_expr<'a>(arena: &'a Bump, src: Ident<'a>) -> Expr<'a> { match src { Ident::GlobalTag(string) => Expr::GlobalTag(string), Ident::PrivateTag(string) => Expr::PrivateTag(string), Ident::Access { module_name, parts } => { let mut iter = parts.iter(); // The first value in the iterator is the variable name, // e.g. `foo` in `foo.bar.baz` let mut answer = match iter.next() { Some(ident) => Expr::Var { module_name, ident }, None => { panic!("Parsed an Ident::Access with no parts"); } }; // The remaining items in the iterator are record field accesses, // e.g. `bar` in `foo.bar.baz`, followed by `baz` for field in iter { // Wrap the previous answer in the new one, so we end up // with a nested Expr. That way, `foo.bar.baz` gets represented // in the AST as if it had been written (foo.bar).baz all along. answer = Expr::Access(arena.alloc(answer), field); } answer } Ident::AccessorFunction(string) => Expr::AccessorFunction(string), Ident::Malformed(string, problem) => Expr::MalformedIdent(string, problem), } } fn list_literal_help<'a>(min_indent: u16) -> impl Parser<'a, Expr<'a>, List<'a>> { move |arena, state| { let (_, (parsed_elems, final_comments), state) = collection_trailing_sep_e!( word1(b'[', List::Open), specialize_ref(List::Expr, loc!(expr_help(min_indent))), word1(b',', List::End), word1(b']', List::End), min_indent, List::Open, List::Space, List::IndentEnd ) .parse(arena, state)?; let mut allocated = Vec::with_capacity_in(parsed_elems.len(), arena); for parsed_elem in parsed_elems { allocated.push(&*arena.alloc(parsed_elem)); } let expr = Expr::List { items: allocated.into_bump_slice(), final_comments, }; Ok((MadeProgress, expr, state)) } } fn record_field_help<'a>( min_indent: u16, ) -> impl Parser<'a, AssignedField<'a, Expr<'a>>, ERecord<'a>> { use AssignedField::*; move |arena, state: State<'a>| { // You must have a field name, e.g. "email" let (progress, loc_label, state) = specialize(|_, r, c| ERecord::Field(r, c), loc!(lowercase_ident())) .parse(arena, state)?; debug_assert_eq!(progress, MadeProgress); let (_, spaces, state) = space0_e(min_indent, ERecord::Space, ERecord::IndentColon).parse(arena, state)?; // Having a value is optional; both `{ email }` and `{ email: blah }` work. // (This is true in both literals and types.) let (_, opt_loc_val, state) = optional(and!( either!( word1(b':', ERecord::Colon), word1(b'?', ERecord::QuestionMark) ), space0_before_e( specialize_ref(ERecord::Expr, loc!(expr_help(min_indent))), min_indent, ERecord::Space, ERecord::IndentEnd, ) )) .parse(arena, state)?; let answer = match opt_loc_val { Some((Either::First(_), loc_val)) => { RequiredValue(loc_label, spaces, arena.alloc(loc_val)) } Some((Either::Second(_), loc_val)) => { OptionalValue(loc_label, spaces, arena.alloc(loc_val)) } // If no value was provided, record it as a Var. // Canonicalize will know what to do with a Var later. None => { if !spaces.is_empty() { SpaceAfter(arena.alloc(LabelOnly(loc_label)), spaces) } else { LabelOnly(loc_label) } } }; Ok((MadeProgress, answer, state)) } } fn record_updateable_identifier<'a>() -> impl Parser<'a, Expr<'a>, ERecord<'a>> { specialize( |_, r, c| ERecord::Updateable(r, c), map_with_arena!(parse_ident_help, ident_to_expr), ) } fn record_help<'a>( min_indent: u16, ) -> impl Parser< 'a, ( Option>>, Located<( Vec<'a, Located>>>, &'a [CommentOrNewline<'a>], )>, ), ERecord<'a>, > { skip_first!( word1(b'{', ERecord::Open), and!( // You can optionally have an identifier followed by an '&' to // make this a record update, e.g. { Foo.user & username: "blah" }. optional(skip_second!( space0_around_ee( // We wrap the ident in an Expr here, // so that we have a Spaceable value to work with, // and then in canonicalization verify that it's an Expr::Var // (and not e.g. an `Expr::Access`) and extract its string. loc!(record_updateable_identifier()), min_indent, ERecord::Space, ERecord::IndentEnd, ERecord::IndentAmpersand, ), word1(b'&', ERecord::Ampersand) )), loc!(skip_first!( // We specifically allow space characters inside here, so that // `{ }` can be successfully parsed as an empty record, and then // changed by the formatter back into `{}`. zero_or_more!(word1(b' ', ERecord::End)), skip_second!( and!( trailing_sep_by0( word1(b',', ERecord::End), space0_around_ee( loc!(record_field_help(min_indent)), min_indent, ERecord::Space, ERecord::IndentEnd, ERecord::IndentEnd ), ), space0_e(min_indent, ERecord::Space, ERecord::IndentEnd) ), word1(b'}', ERecord::End) ) )) ) ) } fn record_literal_help<'a>(min_indent: u16) -> impl Parser<'a, Expr<'a>, EExpr<'a>> { then( and!( loc!(specialize(EExpr::Record, record_help(min_indent))), optional(and!( space0_e(min_indent, EExpr::Space, EExpr::IndentEquals), either!(equals_with_indent_help(), colon_with_indent()) )) ), move |arena, state, progress, (loc_record, opt_def)| { let (opt_update, loc_assigned_fields_with_comments) = loc_record.value; match opt_def { None => { // This is a record literal, not a destructure. let mut value = Expr::Record { update: opt_update.map(|loc_expr| &*arena.alloc(loc_expr)), fields: loc_assigned_fields_with_comments.value.0.into_bump_slice(), final_comments: loc_assigned_fields_with_comments.value.1, }; // there can be field access, e.g. `{ x : 4 }.x` let (_, accesses, state) = optional(record_field_access_chain()).parse(arena, state)?; if let Some(fields) = accesses { for field in fields { // Wrap the previous answer in the new one, so we end up // with a nested Expr. That way, `foo.bar.baz` gets represented // in the AST as if it had been written (foo.bar).baz all along. value = Expr::Access(arena.alloc(value), field); } } Ok((MadeProgress, value, state)) } Some((spaces_before_equals, Either::First(equals_indent))) => { // This is a record destructure def. let region = loc_assigned_fields_with_comments.region; let assigned_fields = loc_assigned_fields_with_comments.value.0; let mut loc_patterns = Vec::with_capacity_in(assigned_fields.len(), arena); for loc_assigned_field in assigned_fields { let region = loc_assigned_field.region; match assigned_expr_field_to_pattern(arena, &loc_assigned_field.value) { Ok(value) => loc_patterns.push(Located { region, value }), // an Expr became a pattern that should not be. Err(_fail) => { return Err(( progress, EExpr::MalformedPattern(state.line, state.column), state, )) } } } let pattern = Pattern::RecordDestructure(loc_patterns.into_bump_slice()); let value = if spaces_before_equals.is_empty() { pattern } else { Pattern::SpaceAfter(arena.alloc(pattern), spaces_before_equals) }; let loc_pattern = Located { region, value }; let (_, spaces_after_equals, state) = space0_e(min_indent, EExpr::Space, EExpr::IndentDefBody) .parse(arena, state)?; // The def's starting column is the '{' char in the record literal. let def_start_col = loc_record.region.start_col; let (_, parsed_expr, state) = parse_def_expr_help( min_indent, def_start_col, equals_indent, arena, state, loc_pattern, spaces_after_equals, )?; Ok((MadeProgress, parsed_expr, state)) } Some((spaces_before_colon, Either::Second(colon_indent))) => { // This is a record type annotation let region = loc_assigned_fields_with_comments.region; let assigned_fields = loc_assigned_fields_with_comments.value.0; let mut loc_patterns = Vec::with_capacity_in(assigned_fields.len(), arena); for loc_assigned_field in assigned_fields { let region = loc_assigned_field.region; match assigned_expr_field_to_pattern(arena, &loc_assigned_field.value) { Ok(value) => loc_patterns.push(Located { region, value }), // an Expr became a pattern that should not be. Err(_fail) => { return Err(( progress, EExpr::MalformedPattern(state.line, state.column), state, )) } } } let pattern = Pattern::RecordDestructure(loc_patterns.into_bump_slice()); let value = if spaces_before_colon.is_empty() { pattern } else { Pattern::SpaceAfter(arena.alloc(pattern), spaces_before_colon) }; let loc_pattern = Located { region, value }; parse_def_signature_help(min_indent, colon_indent, arena, state, loc_pattern) } } }, ) } fn string_literal_help<'a>() -> impl Parser<'a, Expr<'a>, EString<'a>> { map!(crate::string_literal::parse(), Expr::Str) } fn positive_number_literal_help<'a>() -> impl Parser<'a, Expr<'a>, Number> { map!( crate::number_literal::positive_number_literal(), |literal| { use crate::number_literal::NumLiteral::*; match literal { Num(s) => Expr::Num(s), Float(s) => Expr::Float(s), NonBase10Int { string, base, is_negative, } => Expr::NonBase10Int { string, base, is_negative, }, } } ) } fn number_literal_help<'a>() -> impl Parser<'a, Expr<'a>, Number> { map!(crate::number_literal::number_literal(), |literal| { use crate::number_literal::NumLiteral::*; match literal { Num(s) => Expr::Num(s), Float(s) => Expr::Float(s), NonBase10Int { string, base, is_negative, } => Expr::NonBase10Int { string, base, is_negative, }, } }) } const BINOP_CHAR_SET: &[u8] = b"+-/*=.<>:&|^?%!"; use crate::parser::{Col, Row}; fn operator<'a>() -> impl Parser<'a, BinOp, EExpr<'a>> { |_, state| operator_help(EExpr::Start, EExpr::BadOperator, state) } #[inline(always)] fn operator_help<'a, F, G, E>( to_expectation: F, to_error: G, mut state: State<'a>, ) -> ParseResult<'a, BinOp, E> where F: Fn(Row, Col) -> E, G: Fn(&'a [u8], Row, Col) -> E, E: 'a, { let chomped = chomp_ops(state.bytes); macro_rules! good { ($op:expr, $width:expr) => {{ state.column += $width; state.bytes = &state.bytes[$width..]; Ok((MadeProgress, $op, state)) }}; } macro_rules! bad_made_progress { ($op:expr) => {{ Err((MadeProgress, to_error($op, state.line, state.column), state)) }}; } match chomped { 0 => Err((NoProgress, to_expectation(state.line, state.column), state)), 1 => { let op = state.bytes[0]; match op { b'+' => good!(BinOp::Plus, 1), b'-' => good!(BinOp::Minus, 1), b'*' => good!(BinOp::Star, 1), b'/' => good!(BinOp::Slash, 1), b'%' => good!(BinOp::Percent, 1), b'^' => good!(BinOp::Caret, 1), b'>' => good!(BinOp::GreaterThan, 1), b'<' => good!(BinOp::LessThan, 1), b'.' => { // a `.` makes no progress, so it does not interfere with `.foo` access(or) Err((NoProgress, to_error(b".", state.line, state.column), state)) } b'=' => good!(BinOp::Assignment, 1), b':' => good!(BinOp::HasType, 1), _ => bad_made_progress!(&state.bytes[0..1]), } } 2 => { let op0 = state.bytes[0]; let op1 = state.bytes[1]; match (op0, op1) { (b'|', b'>') => good!(BinOp::Pizza, 2), (b'=', b'=') => good!(BinOp::Equals, 2), (b'!', b'=') => good!(BinOp::NotEquals, 2), (b'>', b'=') => good!(BinOp::GreaterThanOrEq, 2), (b'<', b'=') => good!(BinOp::LessThanOrEq, 2), (b'&', b'&') => good!(BinOp::And, 2), (b'|', b'|') => good!(BinOp::Or, 2), (b'/', b'/') => good!(BinOp::DoubleSlash, 2), (b'%', b'%') => good!(BinOp::DoublePercent, 2), (b'-', b'>') => { // makes no progress, so it does not interfere with `_ if isGood -> ...` Err((NoProgress, to_error(b"->", state.line, state.column), state)) } (b'<', b'-') => good!(BinOp::Backpassing, 2), _ => bad_made_progress!(&state.bytes[0..2]), } } _ => bad_made_progress!(&state.bytes[0..chomped]), } } fn chomp_ops(bytes: &[u8]) -> usize { let mut chomped = 0; for c in bytes.iter() { if !BINOP_CHAR_SET.contains(c) { return chomped; } chomped += 1; } chomped }