use bumpalo::collections::Vec; use bumpalo::Bump; use roc_collections::all::MutMap; use roc_module::ident::{Lowercase, TagName}; use roc_module::symbol::Symbol; use roc_types::subs::{Content, FlatType, Subs, Variable}; use std::collections::BTreeMap; pub const MAX_ENUM_SIZE: usize = (std::mem::size_of::() * 8) as usize; /// If a (Num *) gets translated to a Layout, this is the numeric type it defaults to. const DEFAULT_NUM_BUILTIN: Builtin<'_> = Builtin::Int64; #[derive(Debug, Clone)] pub enum LayoutProblem { UnresolvedTypeVar, Erroneous, } /// Types for code gen must be monomorphic. No type variables allowed! #[derive(Clone, Debug, PartialEq, Eq, Hash)] pub enum Layout<'a> { Builtin(Builtin<'a>), Struct(&'a [Layout<'a>]), Union(&'a [&'a [Layout<'a>]]), /// A function. The types of its arguments, then the type of its return value. FunctionPointer(&'a [Layout<'a>], &'a Layout<'a>), Pointer(&'a Layout<'a>), } #[derive(Clone, Debug, PartialEq, Eq, Hash)] pub enum Builtin<'a> { Int128, Int64, Int32, Int16, Int8, Int1, Float128, Float64, Float32, Float16, Str, Map(&'a Layout<'a>, &'a Layout<'a>), Set(&'a Layout<'a>), List(&'a Layout<'a>), EmptyStr, EmptyList, EmptyMap, EmptySet, } impl<'a> Layout<'a> { pub fn new( arena: &'a Bump, content: Content, subs: &Subs, pointer_size: u32, ) -> Result { use roc_types::subs::Content::*; eprint!("content: "); match content.dbg(subs) { FlexVar(_) | RigidVar(_) => Err(LayoutProblem::UnresolvedTypeVar), Structure(flat_type) => layout_from_flat_type(arena, flat_type, subs, pointer_size), Alias(Symbol::NUM_INT, args, _) => { debug_assert!(args.is_empty()); Ok(Layout::Builtin(Builtin::Int64)) } Alias(Symbol::NUM_FLOAT, args, _) => { debug_assert!(args.is_empty()); Ok(Layout::Builtin(Builtin::Float64)) } Alias(_, _, var) => Self::new( arena, subs.get_without_compacting(var).content, subs, pointer_size, ), Error => Err(LayoutProblem::Erroneous), } } /// Returns Err(()) if given an error, or Ok(Layout) if given a non-erroneous Structure. /// Panics if given a FlexVar or RigidVar, since those should have been /// monomorphized away already! fn from_var( arena: &'a Bump, var: Variable, subs: &Subs, pointer_size: u32, ) -> Result { let content = subs.get_without_compacting(var).content; Self::new(arena, content, subs, pointer_size) } pub fn safe_to_memcpy(&self) -> bool { use Layout::*; match self { Builtin(builtin) => builtin.safe_to_memcpy(), Struct(fields) => fields .iter() .all(|field_layout| field_layout.safe_to_memcpy()), Union(tags) => tags .iter() .all(|tag_layout| tag_layout.iter().all(|field| field.safe_to_memcpy())), FunctionPointer(_, _) => { // Function pointers are immutable and can always be safely copied true } Pointer(_) => { // We cannot memcpy pointers, because then we would have the same pointer in multiple places! false } } } pub fn stack_size(&self, pointer_size: u32) -> u32 { use Layout::*; match self { Builtin(builtin) => builtin.stack_size(pointer_size), Struct(fields) => { let mut sum = 0; for field_layout in *fields { sum += field_layout.stack_size(pointer_size); } sum } Union(fields) => fields .iter() .map(|tag_layout| { tag_layout .iter() .map(|field| field.stack_size(pointer_size)) .sum() }) .max() .unwrap_or_default(), FunctionPointer(_, _) => pointer_size, Pointer(_) => pointer_size, } } } /// Avoid recomputing Layout from Variable multiple times. #[derive(Default)] pub struct LayoutCache<'a> { layouts: MutMap, LayoutProblem>>, } impl<'a> LayoutCache<'a> { /// Returns Err(()) if given an error, or Ok(Layout) if given a non-erroneous Structure. /// Panics if given a FlexVar or RigidVar, since those should have been /// monomorphized away already! pub fn from_var( &mut self, arena: &'a Bump, var: Variable, subs: &Subs, pointer_size: u32, ) -> Result, LayoutProblem> { // Store things according to the root Variable, to avoid duplicate work. let var = subs.get_root_key_without_compacting(var); self.layouts .entry(var) .or_insert_with(|| { let content = subs.get_without_compacting(var).content; Layout::new(arena, content, subs, pointer_size) }) .clone() } } impl<'a> Builtin<'a> { const I128_SIZE: u32 = std::mem::size_of::() as u32; const I64_SIZE: u32 = std::mem::size_of::() as u32; const I32_SIZE: u32 = std::mem::size_of::() as u32; const I16_SIZE: u32 = std::mem::size_of::() as u32; const I8_SIZE: u32 = std::mem::size_of::() as u32; const I1_SIZE: u32 = std::mem::size_of::() as u32; const F128_SIZE: u32 = 16; const F64_SIZE: u32 = std::mem::size_of::() as u32; const F32_SIZE: u32 = std::mem::size_of::() as u32; const F16_SIZE: u32 = 2; /// Number of machine words in an empty one of these pub const STR_WORDS: u32 = 2; pub const MAP_WORDS: u32 = 6; pub const SET_WORDS: u32 = Builtin::MAP_WORDS; // Set is an alias for Map with {} for value pub const LIST_WORDS: u32 = 2; /// Layout of collection wrapper for List and Str - a struct of (pointer, length). /// /// We choose this layout (with pointer first) because it's how /// Rust slices are laid out, meaning we can cast to/from them for free. pub const WRAPPER_PTR: u32 = 0; pub const WRAPPER_LEN: u32 = 1; pub fn stack_size(&self, pointer_size: u32) -> u32 { use Builtin::*; match self { Int128 => Builtin::I128_SIZE, Int64 => Builtin::I64_SIZE, Int32 => Builtin::I32_SIZE, Int16 => Builtin::I16_SIZE, Int8 => Builtin::I8_SIZE, Int1 => Builtin::I1_SIZE, Float128 => Builtin::F128_SIZE, Float64 => Builtin::F64_SIZE, Float32 => Builtin::F32_SIZE, Float16 => Builtin::F16_SIZE, Str | EmptyStr => Builtin::STR_WORDS * pointer_size, Map(_, _) | EmptyMap => Builtin::MAP_WORDS * pointer_size, Set(_) | EmptySet => Builtin::SET_WORDS * pointer_size, List(_) | EmptyList => Builtin::LIST_WORDS * pointer_size, } } pub fn safe_to_memcpy(&self) -> bool { use Builtin::*; match self { Int128 | Int64 | Int32 | Int16 | Int8 | Int1 | Float128 | Float64 | Float32 | Float16 | EmptyStr | EmptyMap | EmptyList | EmptySet => true, Str | Map(_, _) | Set(_) | List(_) => false, } } } fn layout_from_flat_type<'a>( arena: &'a Bump, flat_type: FlatType, subs: &Subs, pointer_size: u32, ) -> Result, LayoutProblem> { use roc_types::subs::FlatType::*; match flat_type { Apply(symbol, args) => { match symbol { Symbol::NUM_INT => { debug_assert_eq!(args.len(), 0); Ok(Layout::Builtin(Builtin::Int64)) } Symbol::NUM_FLOAT => { debug_assert_eq!(args.len(), 0); Ok(Layout::Builtin(Builtin::Float64)) } Symbol::NUM_NUM | Symbol::NUM_AT_NUM => { // Num.Num should only ever have 1 argument, e.g. Num.Num Int.Integer debug_assert_eq!(args.len(), 1); let var = args.iter().next().unwrap(); let content = subs.get_without_compacting(*var).content; layout_from_num_content(content) } Symbol::STR_STR => Ok(Layout::Builtin(Builtin::Str)), Symbol::LIST_LIST => list_layout_from_elem(arena, subs, args[0], pointer_size), Symbol::ATTR_ATTR => { debug_assert_eq!(args.len(), 2); // The first argument is the uniqueness info; // that doesn't affect layout, so we don't need it here. let wrapped_var = args[1]; // For now, layout is unaffected by uniqueness. // (Incorporating refcounting may change this.) // Unwrap and continue Layout::from_var(arena, wrapped_var, subs, pointer_size) } _ => { panic!("TODO layout_from_flat_type for {:?}", Apply(symbol, args)); } } } Func(args, ret_var) => { let mut fn_args = Vec::with_capacity_in(args.len(), arena); for arg_var in args { let arg_content = subs.get_without_compacting(arg_var).content; fn_args.push(Layout::new(arena, arg_content, subs, pointer_size)?); } let ret_content = subs.get_without_compacting(ret_var).content; let ret = Layout::new(arena, ret_content, subs, pointer_size)?; Ok(Layout::FunctionPointer( fn_args.into_bump_slice(), arena.alloc(ret), )) } Record(fields, ext_var) => { debug_assert!(ext_var_is_empty_record(subs, ext_var)); let btree = fields .into_iter() .collect::>(); let mut layouts = Vec::with_capacity_in(btree.len(), arena); for (_, field_var) in btree { let field_content = subs.get_without_compacting(field_var).content; match Layout::new(arena, field_content, subs, pointer_size) { Ok(layout) => { // Drop any zero-sized fields like {} if layout.stack_size(pointer_size) != 0 { layouts.push(layout); } } Err(_) => { // Invalid field! panic!("TODO gracefully handle record with invalid field.var"); } } } Ok(Layout::Struct(layouts.into_bump_slice())) } TagUnion(tags, ext_var) => { debug_assert!(ext_var_is_empty_tag_union(subs, ext_var)); Ok(layout_from_tag_union(arena, tags, subs, pointer_size)) } RecursiveTagUnion(_, _, _) => { panic!("TODO make Layout for non-empty Tag Union"); } EmptyTagUnion => { panic!("TODO make Layout for empty Tag Union"); } Boolean(_) => { panic!("TODO make Layout for Boolean"); } Erroneous(_) => Err(LayoutProblem::Erroneous), EmptyRecord => Ok(Layout::Struct(&[])), } } pub fn record_fields_btree<'a>( arena: &'a Bump, var: Variable, subs: &Subs, pointer_size: u32, ) -> BTreeMap> { let mut fields_map = MutMap::default(); match roc_types::pretty_print::chase_ext_record(subs, var, &mut fields_map) { Ok(()) | Err((_, Content::FlexVar(_))) => { // collect into btreemap to sort fields_map .into_iter() .map(|(label, var)| { ( label, Layout::from_var(arena, var, subs, pointer_size) .expect("invalid layout from var"), ) }) .collect::>>() } Err(other) => panic!("invalid content in record variable: {:?}", other), } } #[derive(Clone, Debug, PartialEq, Eq, Hash)] pub enum UnionVariant<'a> { Never, Unit, BoolUnion { ttrue: TagName, ffalse: TagName }, ByteUnion(Vec<'a, TagName>), Unwrapped(Vec<'a, Layout<'a>>), Wrapped(Vec<'a, (TagName, &'a [Layout<'a>])>), } pub fn union_sorted_tags<'a>( arena: &'a Bump, var: Variable, subs: &Subs, pointer_size: u32, ) -> UnionVariant<'a> { let mut tags_vec = std::vec::Vec::new(); match roc_types::pretty_print::chase_ext_tag_union(subs, var, &mut tags_vec) { Ok(()) | Err((_, Content::FlexVar(_))) => { union_sorted_tags_help(arena, tags_vec, subs, pointer_size) } Err(other) => panic!("invalid content in tag union variable: {:?}", other), } } fn union_sorted_tags_help<'a>( arena: &'a Bump, mut tags_vec: std::vec::Vec<(TagName, std::vec::Vec)>, subs: &Subs, pointer_size: u32, ) -> UnionVariant<'a> { // sort up front; make sure the ordering stays intact! tags_vec.sort(); match tags_vec.len() { 0 => { // trying to instantiate a type with no values UnionVariant::Never } 1 => { let (tag_name, arguments) = tags_vec.remove(0); // just one tag in the union (but with arguments) can be a struct let mut layouts = Vec::with_capacity_in(tags_vec.len(), arena); // special-case NUM_AT_NUM: if its argument is a FlexVar, make it Int match tag_name { TagName::Private(Symbol::NUM_AT_NUM) => { layouts.push(unwrap_num_tag(subs, arguments[0]).expect("invalid num layout")); } _ => { for var in arguments { match Layout::from_var(arena, var, subs, pointer_size) { Ok(layout) => { // Drop any zero-sized arguments like {} if layout.stack_size(pointer_size) != 0 { layouts.push(layout); } } Err(LayoutProblem::UnresolvedTypeVar) => { // If we encounter an unbound type var (e.g. `Ok *`) // then it's zero-sized; drop the argument. } Err(LayoutProblem::Erroneous) => { // An erroneous type var will code gen to a runtime // error, so we don't need to store any data for it. } } } } } if layouts.is_empty() { UnionVariant::Unit } else { UnionVariant::Unwrapped(layouts) } } num_tags => { // default path let mut answer = Vec::with_capacity_in(tags_vec.len(), arena); let mut has_any_arguments = false; for (tag_name, arguments) in tags_vec { // reserve space for the tag discriminant let mut arg_layouts = Vec::with_capacity_in(arguments.len() + 1, arena); // add the tag discriminant (size currently always hardcoded to i64) arg_layouts.push(Layout::Builtin(Builtin::Int64)); for var in arguments { match Layout::from_var(arena, var, subs, pointer_size) { Ok(layout) => { // Drop any zero-sized arguments like {} if layout.stack_size(pointer_size) != 0 { has_any_arguments = true; arg_layouts.push(layout); } } Err(LayoutProblem::UnresolvedTypeVar) => { // If we encounter an unbound type var (e.g. `Ok *`) // then it's zero-sized; drop the argument. } Err(LayoutProblem::Erroneous) => { // An erroneous type var will code gen to a runtime // error, so we don't need to store any data for it. } } } answer.push((tag_name, arg_layouts.into_bump_slice())); } match num_tags { 2 if !has_any_arguments => { // type can be stored in a boolean // tags_vec is sorted, and answer is sorted the same way let ttrue = answer.remove(1).0; let ffalse = answer.remove(0).0; UnionVariant::BoolUnion { ffalse, ttrue } } 3..=MAX_ENUM_SIZE if !has_any_arguments => { // type can be stored in a byte // needs the sorted tag names to determine the tag_id let mut tag_names = Vec::with_capacity_in(answer.len(), arena); for (tag_name, _) in answer { tag_names.push(tag_name); } UnionVariant::ByteUnion(tag_names) } _ => UnionVariant::Wrapped(answer), } } } } pub fn layout_from_tag_union<'a>( arena: &'a Bump, tags: MutMap>, subs: &Subs, pointer_size: u32, ) -> Layout<'a> { use UnionVariant::*; let tags_vec: std::vec::Vec<_> = tags.into_iter().collect(); if tags_vec[0].0 != TagName::Private(Symbol::NUM_AT_NUM) { let variant = union_sorted_tags_help(arena, tags_vec, subs, pointer_size); match variant { Never => panic!("TODO gracefully handle trying to instantiate Never"), Unit => Layout::Struct(&[]), BoolUnion { .. } => Layout::Builtin(Builtin::Int1), ByteUnion(_) => Layout::Builtin(Builtin::Int8), Unwrapped(field_layouts) => Layout::Struct(field_layouts.into_bump_slice()), Wrapped(tags) => { let mut tag_layouts = Vec::with_capacity_in(tags.len(), arena); for (_, tag_layout) in tags { tag_layouts.push(tag_layout); } Layout::Union(tag_layouts.into_bump_slice()) } } } else { let arguments = &tags_vec[0].1; debug_assert_eq!(arguments.len(), 1); let var = arguments.iter().next().unwrap(); unwrap_num_tag(subs, *var).expect("invalid Num argument") } } #[cfg(debug_assertions)] fn ext_var_is_empty_tag_union(subs: &Subs, ext_var: Variable) -> bool { // the ext_var is empty let mut ext_fields = std::vec::Vec::new(); match roc_types::pretty_print::chase_ext_tag_union(subs, ext_var, &mut ext_fields) { Ok(()) | Err((_, Content::FlexVar(_))) => ext_fields.is_empty(), Err(content) => panic!("invalid content in ext_var: {:?}", content), } } #[cfg(debug_assertions)] fn ext_var_is_empty_record(subs: &Subs, ext_var: Variable) -> bool { // the ext_var is empty let mut ext_fields = MutMap::default(); match roc_types::pretty_print::chase_ext_record(subs, ext_var, &mut ext_fields) { Ok(()) | Err((_, Content::FlexVar(_))) => ext_fields.is_empty(), Err((_, content)) => panic!("invalid content in ext_var: {:?}", content), } } fn layout_from_num_content<'a>(content: Content) -> Result, LayoutProblem> { use roc_types::subs::Content::*; use roc_types::subs::FlatType::*; match content { FlexVar(_) | RigidVar(_) => { // If a Num makes it all the way through type checking with an unbound // type variable, then assume it's a 64-bit integer. // // (e.g. for (5 + 5) assume both 5s are 64-bit integers.) Ok(Layout::Builtin(DEFAULT_NUM_BUILTIN)) } Structure(Apply(symbol, args)) => match symbol { Symbol::NUM_INTEGER => Ok(Layout::Builtin(Builtin::Int64)), Symbol::NUM_FLOATINGPOINT => Ok(Layout::Builtin(Builtin::Float64)), _ => { panic!( "Invalid Num.Num type application: {:?}", Apply(symbol, args) ); } }, Alias(_, _, _) => { todo!("TODO recursively resolve type aliases in num_from_content"); } Structure(_) => { panic!("Invalid Num.Num type application: {:?}", content); } Error => Err(LayoutProblem::Erroneous), } } fn unwrap_num_tag<'a>(subs: &Subs, var: Variable) -> Result, LayoutProblem> { match subs.get_without_compacting(var).content { Content::Structure(flat_type) => match flat_type { FlatType::Apply(Symbol::ATTR_ATTR, args) => { debug_assert_eq!(args.len(), 2); let arg_var = args.get(1).unwrap(); unwrap_num_tag(subs, *arg_var) } _ => { todo!("TODO handle Num.@Num flat_type {:?}", flat_type); } }, Content::Alias(Symbol::NUM_INTEGER, args, _) => { debug_assert!(args.is_empty()); Ok(Layout::Builtin(Builtin::Int64)) } Content::Alias(Symbol::NUM_FLOATINGPOINT, args, _) => { debug_assert!(args.is_empty()); Ok(Layout::Builtin(Builtin::Float64)) } Content::FlexVar(_) | Content::RigidVar(_) => { // If this was still a (Num *) then default to compiling it to i64 Ok(Layout::Builtin(DEFAULT_NUM_BUILTIN)) } other => { todo!("TODO non structure Num.@Num flat_type {:?}", other); } } } pub fn list_layout_from_elem<'a>( arena: &'a Bump, subs: &Subs, var: Variable, pointer_size: u32, ) -> Result, LayoutProblem> { match subs.get_without_compacting(var).content { Content::Structure(FlatType::Apply(Symbol::ATTR_ATTR, args)) => { debug_assert_eq!(args.len(), 2); let arg_var = args.get(1).unwrap(); list_layout_from_elem(arena, subs, *arg_var, pointer_size) } Content::FlexVar(_) | Content::RigidVar(_) => { // If this was still a (List *) then it must have been an empty list Ok(Layout::Builtin(Builtin::EmptyList)) } content => { let elem_layout = Layout::new(arena, content, subs, pointer_size)?; // This is a normal list. Ok(Layout::Builtin(Builtin::List(arena.alloc(elem_layout)))) } } }