use crate::ast::{AssignedField, CommentOrNewline, Def, Expr, Pattern, Spaceable, TypeAnnotation}; use crate::blankspace::{ line_comment, space0_after_e, space0_around_ee, space0_before_e, space0_e, space1_e, spaces_exactly_e, }; use crate::ident::{ident, lowercase_ident, Ident}; use crate::keyword; use crate::parser::{ self, allocated, and_then_with_indent_level, ascii_char, backtrackable, map, newline_char, optional, sep_by1, sep_by1_e, specialize, specialize_ref, then, trailing_sep_by0, word1, word2, EExpr, EInParens, ELambda, EPattern, ERecord, EString, Either, If, List, Number, ParseResult, Parser, State, SyntaxError, Type, When, }; use crate::pattern::loc_closure_param; use crate::type_annotation; use bumpalo::collections::Vec; use bumpalo::Bump; use roc_module::operator::{BinOp, CalledVia, UnaryOp}; use roc_region::all::{Located, Region}; use crate::parser::Progress::{self, *}; pub fn expr<'a>(min_indent: u16) -> impl Parser<'a, Expr<'a>, SyntaxError<'a>> { // Recursive parsers must not directly invoke functions which return (impl Parser), // as this causes rustc to stack overflow. Thus, parse_expr must be a // separate function which recurses by calling itself directly. specialize( |e, _, _| SyntaxError::Expr(e), move |arena, state: State<'a>| parse_expr_help(min_indent, arena, state), ) } fn loc_expr_in_parens_help<'a>( min_indent: u16, ) -> impl Parser<'a, Located>, EInParens<'a>> { move |arena, state| { let (_, loc_expr, state) = loc_expr_in_parens_help_help(min_indent).parse(arena, state)?; Ok(( MadeProgress, Located { region: loc_expr.region, value: Expr::ParensAround(arena.alloc(loc_expr.value)), }, state, )) } } fn loc_expr_in_parens_help_help<'a>( min_indent: u16, ) -> impl Parser<'a, Located>, EInParens<'a>> { between!( word1(b'(', EInParens::Open), space0_around_ee( specialize_ref( EInParens::Expr, loc!(move |arena, state| parse_expr_help(min_indent, arena, state)) ), min_indent, EInParens::Space, EInParens::IndentOpen, EInParens::IndentEnd, ), word1(b')', EInParens::End) ) } fn loc_function_arg_in_parens_etc_help<'a>( min_indent: u16, ) -> impl Parser<'a, Located>, EExpr<'a>> { then( loc!(and!( specialize(EExpr::InParens, loc_expr_in_parens_help(min_indent)), optional(record_field_access_chain()) )), move |arena, state, _progress, loc_parsed| { let Located { region: _, value: (loc_expr, opt_accesses), } = loc_parsed; match opt_accesses { None => Ok((MadeProgress, loc_expr, state)), Some(fields) => Ok(( MadeProgress, expr_in_parens_then_access(arena, loc_expr, fields), state, )), } }, ) } fn loc_expr_in_parens_etc_help<'a>( min_indent: u16, ) -> impl Parser<'a, Located>, EExpr<'a>> { then( loc!(and!( specialize(EExpr::InParens, loc_expr_in_parens_help(min_indent)), and!( one_of![record_field_access_chain(), |a, s| Ok(( NoProgress, Vec::new_in(a), s ))], optional(either!( // There may optionally be function args after the ')' // e.g. ((foo bar) baz) loc_function_args_help(min_indent), // If there aren't any args, there may be a '=' or ':' after it. // // (It's a syntax error to write e.g. `foo bar =` - so if there // were any args, there is definitely no need to parse '=' or ':'!) // // Also, there may be a '.' for field access (e.g. `(foo).bar`), // but we only want to look for that if there weren't any args, // as if there were any args they'd have consumed it anyway // e.g. in `((foo bar) baz.blah)` the `.blah` will be consumed by the `baz` parser and!( space0_e(min_indent, EExpr::Space, EExpr::IndentEquals), equals_with_indent_help() ) )) ) )), move |arena, state, _progress, parsed| helper_help(arena, state, parsed, min_indent), ) } fn record_field_access_chain<'a>() -> impl Parser<'a, Vec<'a, &'a str>, EExpr<'a>> { |arena, state| match record_field_access().parse(arena, state) { Ok((_, initial, state)) => { let mut accesses = Vec::with_capacity_in(1, arena); accesses.push(initial); let mut loop_state = state; loop { match record_field_access().parse(arena, loop_state) { Ok((_, next, state)) => { accesses.push(next); loop_state = state; } Err((MadeProgress, fail, state)) => return Err((MadeProgress, fail, state)), Err((NoProgress, _, state)) => return Ok((MadeProgress, accesses, state)), } } } Err((MadeProgress, fail, state)) => Err((MadeProgress, fail, state)), Err((NoProgress, _, state)) => { Err((NoProgress, EExpr::Access(state.line, state.column), state)) } } } fn record_field_access<'a>() -> impl Parser<'a, &'a str, EExpr<'a>> { specialize( |_, r, c| EExpr::Access(r, c), skip_first!(ascii_char(b'.'), lowercase_ident()), ) } type Extras<'a> = Located<( Located>, ( Vec<'a, &'a str>, Option>>, (&'a [CommentOrNewline<'a>], u16)>>, ), )>; fn helper_help<'a>( arena: &'a Bump, state: State<'a>, loc_expr_with_extras: Extras<'a>, min_indent: u16, ) -> ParseResult<'a, Located>, EExpr<'a>> { // We parse the parenthetical expression *and* the arguments after it // in one region, so that (for example) the region for Apply includes its args. let (mut loc_expr, (accesses, opt_extras)) = loc_expr_with_extras.value; let mut value = loc_expr.value; for field in accesses { // Wrap the previous answer in the new one, so we end up // with a nested Expr. That way, `foo.bar.baz` gets represented // in the AST as if it had been written (foo.bar).baz all along. value = Expr::Access(arena.alloc(value), field); } loc_expr = Located { region: loc_expr.region, value, }; match opt_extras { Some(Either::First(loc_args)) => Ok(( MadeProgress, expr_in_parens_then_arguments(arena, loc_expr, loc_args, loc_expr_with_extras.region), state, )), Some(Either::Second((spaces_before_equals, equals_indent))) => { // '=' after optional spaces expr_in_parens_then_equals_help( min_indent, loc_expr, spaces_before_equals, equals_indent, loc_expr_with_extras.region.start_col, ) .parse(arena, state) } None => Ok((MadeProgress, loc_expr, state)), } } fn expr_in_parens_then_equals_help<'a>( min_indent: u16, loc_expr: Located>, spaces_before_equals: &'a [CommentOrNewline], equals_indent: u16, def_start_col: u16, ) -> impl Parser<'a, Located>, EExpr<'a>> { move |arena, state: State<'a>| { let region = loc_expr.region; // Re-parse the Expr as a Pattern. let pattern = match expr_to_pattern_help(arena, &loc_expr.value) { Ok(valid) => valid, Err(_) => { return Err(( MadeProgress, EExpr::MalformedPattern(state.line, state.column), state, )) } }; // Make sure we don't discard the spaces - might be comments in there! let value = if spaces_before_equals.is_empty() { pattern } else { Pattern::SpaceAfter(arena.alloc(pattern), spaces_before_equals) }; let loc_first_pattern = Located { region, value }; // Continue parsing the expression as a Def. let (_, spaces_after_equals, state) = space0_e(min_indent, EExpr::Space, EExpr::IndentDefBody).parse(arena, state)?; // Use loc_expr_with_extras because we want to include the opening '(' char. let (_, parsed_expr, state) = parse_def_expr_help( min_indent, def_start_col, equals_indent, arena, state, loc_first_pattern, spaces_after_equals, )?; Ok(( MadeProgress, Located { value: parsed_expr, region, }, state, )) } } fn expr_in_parens_then_arguments<'a>( arena: &'a Bump, loc_expr: Located>, loc_args: Vec<'a, Located>>, region: Region, ) -> Located> { let mut allocated_args = Vec::with_capacity_in(loc_args.len(), arena); for loc_arg in loc_args { allocated_args.push(&*arena.alloc(loc_arg)); } Located { region, value: Expr::Apply( arena.alloc(loc_expr), allocated_args.into_bump_slice(), CalledVia::Space, ), } } fn expr_in_parens_then_access<'a>( arena: &'a Bump, loc_expr: Located>, fields: Vec<'a, &'a str>, ) -> Located> { let mut value = loc_expr.value; for field in fields { // Wrap the previous answer in the new one, so we end up // with a nested Expr. That way, `foo.bar.baz` gets represented // in the AST as if it had been written (foo.bar).baz all along. value = Expr::Access(arena.alloc(value), field); } Located { region: loc_expr.region, value, } } fn loc_parse_expr_body_without_operators_help<'a>( min_indent: u16, arena: &'a Bump, state: State<'a>, ) -> ParseResult<'a, Located>, EExpr<'a>> { one_of!( loc_expr_in_parens_etc_help(min_indent), loc!(specialize(EExpr::Str, string_literal_help())), loc!(specialize(EExpr::Number, number_literal_help())), loc!(specialize(EExpr::Lambda, closure_help(min_indent))), loc!(record_literal_help(min_indent)), loc!(specialize(EExpr::List, list_literal_help(min_indent))), loc!(unary_op_help(min_indent)), loc!(specialize(EExpr::When, when::expr_help(min_indent))), loc!(specialize(EExpr::If, if_expr_help(min_indent))), loc!(ident_etc_help(min_indent)), fail_expr_start_e() ) .parse(arena, state) } fn fail_expr_start_e<'a, T>() -> impl Parser<'a, T, EExpr<'a>> where T: 'a, { |_arena, state: State<'a>| Err((NoProgress, EExpr::Start(state.line, state.column), state)) } fn unary_not<'a>() -> impl Parser<'a, (), EExpr<'a>> { move |_arena: &'a Bump, state: State<'a>| { if state.bytes.starts_with(b"!") && state.bytes.get(1) != Some(&b'=') { // don't parse the `!` if it's followed by a `=` Ok(( MadeProgress, (), State { bytes: &state.bytes[1..], column: state.column + 1, ..state }, )) } else { // this is not a negated expression Err((NoProgress, EExpr::UnaryNot(state.line, state.column), state)) } } } fn unary_negate<'a>() -> impl Parser<'a, (), EExpr<'a>> { move |_arena: &'a Bump, state: State<'a>| { // a minus is unary iff // // - it is preceded by whitespace (spaces, newlines, comments) // - it is not followed by whitespace // - it is not followed by a number literal // // The last condition is because of overflow, this would overflow // // Num.negate 125 // // while // // -125 // // is perfectly fine (assuming I8 here). So it is vital the minus is // parses as part of the number literal, and not as a unary minus let followed_by_whitespace = state .bytes .get(1) .map(|c| c.is_ascii_whitespace() || *c == b'#' || c.is_ascii_digit()) .unwrap_or(false); if state.bytes.starts_with(b"-") && !followed_by_whitespace { // the negate is only unary if it is not followed by whitespace Ok(( MadeProgress, (), State { bytes: &state.bytes[1..], column: state.column + 1, ..state }, )) } else { // this is not a negated expression Err((NoProgress, EExpr::UnaryNot(state.line, state.column), state)) } } } /// Unary (!) or (-) /// /// e.g. `!x` or `-x` fn unary_op_help<'a>(min_indent: u16) -> impl Parser<'a, Expr<'a>, EExpr<'a>> { one_of!( map_with_arena!( // must backtrack to distinguish `!x` from `!= y` and!( loc!(unary_not()), loc!(move |arena, state| parse_expr_help(min_indent, arena, state)) ), |arena: &'a Bump, (loc_op, loc_expr): (Located<()>, Located>)| { Expr::UnaryOp(arena.alloc(loc_expr), loc_op.map(|_| UnaryOp::Not)) } ), map_with_arena!( and!( // must backtrack to distinguish `x - 1` from `-1` loc!(unary_negate()), loc!(move |arena, state| parse_expr_help(min_indent, arena, state)) ), |arena: &'a Bump, (loc_op, loc_expr): (Located<()>, Located>)| { Expr::UnaryOp(arena.alloc(loc_expr), loc_op.map(|_| UnaryOp::Negate)) } ) ) } fn parse_expr_help<'a>( min_indent: u16, arena: &'a Bump, state: State<'a>, ) -> ParseResult<'a, Expr<'a>, EExpr<'a>> { let expr_parser = crate::parser::map_with_arena( and!( // First parse the body without operators, then try to parse possible operators after. move |arena, state| loc_parse_expr_body_without_operators_help( min_indent, arena, state ), // Parse the operator, with optional spaces before it. // // Since spaces can only wrap an Expr, not an BinOp, we have to first // parse the spaces and then attach them retroactively to the expression // preceding the operator (the one we parsed before considering operators). optional(and!( and!( space0_e(min_indent, EExpr::Space, EExpr::IndentEnd), loc!(binop_help()) ), // The spaces *after* the operator can be attached directly to // the expression following the operator. space0_before_e( loc!(move |arena, state| parse_expr_help(min_indent, arena, state)), min_indent, EExpr::Space, EExpr::IndentEnd, ) )) ), |arena, (loc_expr1, opt_operator)| match opt_operator { Some(((spaces_before_op, loc_op), loc_expr2)) => { let loc_expr1 = if spaces_before_op.is_empty() { loc_expr1 } else { // Attach the spaces retroactively to the expression preceding the operator. arena .alloc(loc_expr1.value) .with_spaces_after(spaces_before_op, loc_expr1.region) }; let tuple = arena.alloc((loc_expr1, loc_op, loc_expr2)); Expr::BinOp(tuple) } None => loc_expr1.value, }, ); expr_parser.parse(arena, state) } /// If the given Expr would parse the same way as a valid Pattern, convert it. /// Example: (foo) could be either an Expr::Var("foo") or Pattern::Identifier("foo") fn expr_to_pattern_help<'a>(arena: &'a Bump, expr: &Expr<'a>) -> Result, ()> { match expr { Expr::Var { module_name, ident } => { if module_name.is_empty() { Ok(Pattern::Identifier(ident)) } else { Ok(Pattern::QualifiedIdentifier { module_name, ident }) } } Expr::GlobalTag(value) => Ok(Pattern::GlobalTag(value)), Expr::PrivateTag(value) => Ok(Pattern::PrivateTag(value)), Expr::Apply(loc_val, loc_args, _) => { let region = loc_val.region; let value = expr_to_pattern_help(arena, &loc_val.value)?; let val_pattern = arena.alloc(Located { region, value }); let mut arg_patterns = Vec::with_capacity_in(loc_args.len(), arena); for loc_arg in loc_args.iter() { let region = loc_arg.region; let value = expr_to_pattern_help(arena, &loc_arg.value)?; arg_patterns.push(Located { region, value }); } let pattern = Pattern::Apply(val_pattern, arg_patterns.into_bump_slice()); Ok(pattern) } Expr::SpaceBefore(sub_expr, spaces) => Ok(Pattern::SpaceBefore( arena.alloc(expr_to_pattern_help(arena, sub_expr)?), spaces, )), Expr::SpaceAfter(sub_expr, spaces) => Ok(Pattern::SpaceAfter( arena.alloc(expr_to_pattern_help(arena, sub_expr)?), spaces, )), Expr::ParensAround(sub_expr) | Expr::Nested(sub_expr) => { expr_to_pattern_help(arena, sub_expr) } Expr::Record { fields, update: None, final_comments: _, } => { let mut loc_patterns = Vec::with_capacity_in(fields.len(), arena); for loc_assigned_field in fields.iter() { let region = loc_assigned_field.region; let value = assigned_expr_field_to_pattern_help(arena, &loc_assigned_field.value)?; loc_patterns.push(Located { region, value }); } Ok(Pattern::RecordDestructure(loc_patterns.into_bump_slice())) } Expr::Float(string) => Ok(Pattern::FloatLiteral(string)), Expr::Num(string) => Ok(Pattern::NumLiteral(string)), Expr::NonBase10Int { string, base, is_negative, } => Ok(Pattern::NonBase10Literal { string, base: *base, is_negative: *is_negative, }), // These would not have parsed as patterns Expr::AccessorFunction(_) | Expr::Access(_, _) | Expr::List { .. } | Expr::Closure(_, _) | Expr::BinOp(_) | Expr::Defs(_, _) | Expr::If(_, _) | Expr::When(_, _) | Expr::MalformedClosure | Expr::PrecedenceConflict(_, _, _, _) | Expr::Record { update: Some(_), .. } | Expr::UnaryOp(_, _) => Err(()), Expr::Str(string) => Ok(Pattern::StrLiteral(string.clone())), Expr::MalformedIdent(string, _problem) => Ok(Pattern::Malformed(string)), } } /// use for expressions like { x: a + b } fn assigned_expr_field_to_pattern<'a>( arena: &'a Bump, assigned_field: &AssignedField<'a, Expr<'a>>, ) -> Result, ()> { // the assigned fields always store spaces, but this slice is often empty Ok(match assigned_field { AssignedField::RequiredValue(name, spaces, value) => { let pattern = expr_to_pattern_help(arena, &value.value)?; let result = arena.alloc(Located { region: value.region, value: pattern, }); if spaces.is_empty() { Pattern::RequiredField(name.value, result) } else { Pattern::SpaceAfter( arena.alloc(Pattern::RequiredField(name.value, result)), spaces, ) } } AssignedField::OptionalValue(name, spaces, value) => { let result = arena.alloc(Located { region: value.region, value: value.value.clone(), }); if spaces.is_empty() { Pattern::OptionalField(name.value, result) } else { Pattern::SpaceAfter( arena.alloc(Pattern::OptionalField(name.value, result)), spaces, ) } } AssignedField::LabelOnly(name) => Pattern::Identifier(name.value), AssignedField::SpaceBefore(nested, spaces) => Pattern::SpaceBefore( arena.alloc(assigned_expr_field_to_pattern(arena, nested)?), spaces, ), AssignedField::SpaceAfter(nested, spaces) => Pattern::SpaceAfter( arena.alloc(assigned_expr_field_to_pattern(arena, nested)?), spaces, ), AssignedField::Malformed(string) => Pattern::Malformed(string), }) } fn assigned_expr_field_to_pattern_help<'a>( arena: &'a Bump, assigned_field: &AssignedField<'a, Expr<'a>>, ) -> Result, ()> { // the assigned fields always store spaces, but this slice is often empty Ok(match assigned_field { AssignedField::RequiredValue(name, spaces, value) => { let pattern = expr_to_pattern_help(arena, &value.value)?; let result = arena.alloc(Located { region: value.region, value: pattern, }); if spaces.is_empty() { Pattern::RequiredField(name.value, result) } else { Pattern::SpaceAfter( arena.alloc(Pattern::RequiredField(name.value, result)), spaces, ) } } AssignedField::OptionalValue(name, spaces, value) => { let result = arena.alloc(Located { region: value.region, value: value.value.clone(), }); if spaces.is_empty() { Pattern::OptionalField(name.value, result) } else { Pattern::SpaceAfter( arena.alloc(Pattern::OptionalField(name.value, result)), spaces, ) } } AssignedField::LabelOnly(name) => Pattern::Identifier(name.value), AssignedField::SpaceBefore(nested, spaces) => Pattern::SpaceBefore( arena.alloc(assigned_expr_field_to_pattern_help(arena, nested)?), spaces, ), AssignedField::SpaceAfter(nested, spaces) => Pattern::SpaceAfter( arena.alloc(assigned_expr_field_to_pattern_help(arena, nested)?), spaces, ), AssignedField::Malformed(string) => Pattern::Malformed(string), }) } /// A def beginning with a parenthetical pattern, for example: /// /// (UserId userId) = ... /// /// Note: Parenthetical patterns are a shorthand convenience, and may not have type annotations. /// It would be too weird to parse; imagine `(UserId userId) : ...` above `(UserId userId) = ...` /// !!!! THIS IS NOT USED !!!! // fn loc_parenthetical_def<'a>(min_indent: u16) -> impl Parser<'a, Located>> { // move |arena, state| { // let (loc_tuple, state) = loc!(and!( // space0_after( // between!( // ascii_char(b'('), // space0_around(loc_pattern(min_indent), min_indent), // ascii_char(b')') // ), // min_indent, // ), // equals_with_indent() // )) // .parse(arena, state)?; // let region = loc_tuple.region; // let (loc_first_pattern, equals_sign_indent) = loc_tuple.value; // // Continue parsing the expression as a Def. // let (spaces_after_equals, state) = space0(min_indent).parse(arena, state)?; // let (value, state) = parse_def_expr( // region.start_col, // min_indent, // equals_sign_indent, // arena, // state, // loc_first_pattern, // spaces_after_equals, // )?; // Ok((Located { value, region }, state)) // } // } /// The '=' used in a def can't be followed by another '=' (or else it's actually /// an "==") and also it can't be followed by '>' (or else it's actually an "=>") fn equals_for_def_help<'a>() -> impl Parser<'a, (), EExpr<'a>> { |_arena, state: State<'a>| match state.bytes.get(0) { Some(b'=') => match state.bytes.get(1) { Some(b'=') | Some(b'>') => { Err((NoProgress, EExpr::Equals(state.line, state.column), state)) } _ => { let state = state.advance_without_indenting_ee(1, |r, c| { EExpr::Space(parser::BadInputError::LineTooLong, r, c) })?; Ok((MadeProgress, (), state)) } }, _ => Err((NoProgress, EExpr::Equals(state.line, state.column), state)), } } fn parse_defs_help<'a>( min_indent: u16, ) -> impl Parser<'a, Vec<'a, &'a Located>>, EExpr<'a>> { let parse_def = move |arena, state| { let (_, (spaces, def), state) = and!( backtrackable(space0_e(min_indent, EExpr::Space, EExpr::IndentStart)), loc!(def_help(min_indent)) ) .parse(arena, state)?; let result = if spaces.is_empty() { &*arena.alloc(def) } else { &*arena.alloc( arena .alloc(def.value) .with_spaces_before(spaces, def.region), ) }; Ok((MadeProgress, result, state)) }; zero_or_more!(parse_def) } /// A definition, consisting of one of these: /// /// * A type alias using `:` /// * A pattern followed by '=' and then an expression /// * A type annotation /// * A type annotation followed on the next line by a pattern, an `=`, and an expression pub fn def<'a>(min_indent: u16) -> impl Parser<'a, Def<'a>, SyntaxError<'a>> { specialize(|e, _, _| SyntaxError::Expr(e), def_help(min_indent)) } fn def_help<'a>(min_indent: u16) -> impl Parser<'a, Def<'a>, EExpr<'a>> { let indented_more = min_indent + 1; enum DefKind { DefColon, DefEqual, } let def_colon_or_equals = one_of![ map!(equals_for_def_help(), |_| DefKind::DefEqual), map!(word1(b':', EExpr::Colon), |_| DefKind::DefColon) ]; then( // backtrackable because // // i = 0 // i // // on the last line, we parse a pattern `i`, but it's not actually a def, so need to // backtrack and!(backtrackable(pattern_help(min_indent)), def_colon_or_equals), move |arena, state, _progress, (loc_pattern, def_kind)| match def_kind { DefKind::DefColon => { // Spaces after the ':' (at a normal indentation level) and then the type. // The type itself must be indented more than the pattern and ':' let (_, ann_type, state) = specialize( EExpr::Type, space0_before_e( type_annotation::located_help(indented_more), min_indent, Type::TSpace, Type::TIndentStart, ), ) .parse(arena, state)?; // see if there is a definition (assuming the preceding characters were a type // annotation let (_, opt_rest, state) = optional(and!( spaces_then_comment_or_newline_help(), body_at_indent_help(min_indent) )) .parse(arena, state)?; let def = match opt_rest { None => { annotation_or_alias(arena, &loc_pattern.value, loc_pattern.region, ann_type) } Some((opt_comment, (body_pattern, body_expr))) => Def::AnnotatedBody { ann_pattern: arena.alloc(loc_pattern), ann_type: arena.alloc(ann_type), comment: opt_comment, body_pattern: arena.alloc(body_pattern), body_expr: arena.alloc(body_expr), }, }; Ok((MadeProgress, def, state)) } DefKind::DefEqual => { // Spaces after the '=' (at a normal indentation level) and then the expr. // The expr itself must be indented more than the pattern and '=' let (_, body_expr, state) = space0_before_e( loc!(move |arena, state| parse_expr_help(indented_more, arena, state)), min_indent, EExpr::Space, EExpr::IndentStart, ) .parse(arena, state)?; Ok(( MadeProgress, Def::Body(arena.alloc(loc_pattern), arena.alloc(body_expr)), state, )) } }, ) } // PARSER HELPERS fn pattern_help<'a>(min_indent: u16) -> impl Parser<'a, Located>, EExpr<'a>> { specialize_ref( EExpr::Pattern, space0_after_e( loc_closure_param(min_indent), min_indent, EPattern::Space, EPattern::IndentStart, ), ) } fn spaces_then_comment_or_newline_help<'a>() -> impl Parser<'a, Option<&'a str>, EExpr<'a>> { specialize_ref( EExpr::Syntax, skip_first!( zero_or_more!(ascii_char(b' ')), map!( either!(newline_char(), line_comment()), |either_comment_or_newline| match either_comment_or_newline { Either::First(_) => None, Either::Second(comment) => Some(comment), } ) ), ) } type Body<'a> = (Located>, Located>); fn body_at_indent_help<'a>(indent_level: u16) -> impl Parser<'a, Body<'a>, EExpr<'a>> { let indented_more = indent_level + 1; and!( skip_first!(spaces_exactly_e(indent_level), pattern_help(indent_level)), skip_first!( equals_for_def_help(), // Spaces after the '=' (at a normal indentation level) and then the expr. // The expr itself must be indented more than the pattern and '=' space0_before_e( loc!(move |arena, state| parse_expr_help(indented_more, arena, state)), indent_level, EExpr::Space, EExpr::IndentStart, ) ) ) } fn annotation_or_alias<'a>( arena: &'a Bump, pattern: &Pattern<'a>, pattern_region: Region, loc_ann: Located>, ) -> Def<'a> { use crate::ast::Pattern::*; match pattern { // Type aliases initially parse as either global tags // or applied global tags, because they are always uppercase GlobalTag(name) => Def::Alias { name: Located { value: name, region: pattern_region, }, vars: &[], ann: loc_ann, }, Apply( Located { region: pattern_region, value: Pattern::GlobalTag(name), }, loc_vars, ) => Def::Alias { name: Located { value: name, region: *pattern_region, }, vars: loc_vars, ann: loc_ann, }, Apply(_, _) => { Def::NotYetImplemented("TODO gracefully handle invalid Apply in type annotation") } SpaceAfter(value, spaces_before) => Def::SpaceAfter( arena.alloc(annotation_or_alias(arena, value, pattern_region, loc_ann)), spaces_before, ), SpaceBefore(value, spaces_before) => Def::SpaceBefore( arena.alloc(annotation_or_alias(arena, value, pattern_region, loc_ann)), spaces_before, ), Nested(value) => annotation_or_alias(arena, value, pattern_region, loc_ann), PrivateTag(_) => { Def::NotYetImplemented("TODO gracefully handle trying to use a private tag as an annotation.") } QualifiedIdentifier { .. } => { Def::NotYetImplemented("TODO gracefully handle trying to annotate a qualified identifier, e.g. `Foo.bar : ...`") } NumLiteral(_) | NonBase10Literal { .. } | FloatLiteral(_) | StrLiteral(_) => { Def::NotYetImplemented("TODO gracefully handle trying to annotate a litera") } Underscore(_) => { Def::NotYetImplemented("TODO gracefully handle trying to give a type annotation to an undrscore") } Malformed(_) => { Def::NotYetImplemented("TODO translate a malformed pattern into a malformed annotation") } MalformedIdent(_, _) => { Def::NotYetImplemented("TODO translate a malformed pattern into a malformed annotation") } Identifier(ident) => { // This is a regular Annotation Def::Annotation( Located { region: pattern_region, value: Pattern::Identifier(ident), }, loc_ann, ) } RecordDestructure(loc_patterns) => { // This is a record destructure Annotation Def::Annotation( Located { region: pattern_region, value: Pattern::RecordDestructure(loc_patterns), }, loc_ann, ) } RequiredField(_, _) | OptionalField(_, _) => { unreachable!("This should only be possible inside a record destruture."); } } } fn parse_def_expr_help<'a>( min_indent: u16, def_start_col: u16, equals_sign_indent: u16, arena: &'a Bump, state: State<'a>, loc_first_pattern: Located>, spaces_after_equals: &'a [CommentOrNewline<'a>], ) -> ParseResult<'a, Expr<'a>, EExpr<'a>> { if def_start_col < min_indent || equals_sign_indent < def_start_col { Err(( NoProgress, EExpr::IndentDefBody(state.line, state.column), state, )) } else { // Indented more beyond the original indent of the entire def-expr. let indented_more = def_start_col + 1; then( and!( // Parse the body of the first def. It doesn't need any spaces // around it parsed, because both the subsquent defs and the // final body will have space1_before on them. // // It should be indented more than the original, and it will // end when outdented again. loc!(move |arena, state| parse_expr_help(indented_more, arena, state)), and!( // Optionally parse additional defs. parse_defs_help(def_start_col), // Parse the final expression that will be returned. // It should be indented the same amount as the original. space0_before_e( loc!(move |arena, state: State<'a>| { parse_expr_help(def_start_col, arena, state) }), def_start_col, EExpr::Space, EExpr::IndentStart, ) ) ), move |arena, state, progress, (loc_first_body, (mut defs, loc_ret))| { let loc_first_body = if spaces_after_equals.is_empty() { loc_first_body } else { Located { value: Expr::SpaceBefore( arena.alloc(loc_first_body.value), spaces_after_equals, ), region: loc_first_body.region, } }; let def_region = Region::span_across(&loc_first_pattern.region, &loc_first_body.region); let first_def: Def<'a> = // TODO is there some way to eliminate this .clone() here? Def::Body(arena.alloc(loc_first_pattern.clone()), arena.alloc(loc_first_body)); let loc_first_def = Located { value: first_def, region: def_region, }; // for formatting reasons, we must insert the first def first! defs.insert(0, &*arena.alloc(loc_first_def)); Ok(( progress, Expr::Defs(defs.into_bump_slice(), arena.alloc(loc_ret)), state, )) }, ) .parse(arena, state) } } fn parse_def_signature_help<'a>( min_indent: u16, colon_indent: u16, arena: &'a Bump, state: State<'a>, loc_first_pattern: Located>, ) -> ParseResult<'a, Expr<'a>, EExpr<'a>> { let original_indent = state.indent_col; if original_indent < min_indent || colon_indent < original_indent { // `colon_indent < original_indent` because ':' should be same indent or greater Err(( NoProgress, EExpr::IndentDefBody(state.line, state.column), state, )) } else { // Indented more beyond the original indent. let indented_more = original_indent + 1; and!( // Parse the first annotation. It doesn't need any spaces // around it parsed, because both the subsquent defs and the // final body will have space1_before on them. // // It should be indented more than the original, and it will // end when outdented again. and_then_with_indent_level( space0_before_e( specialize(EExpr::Type, type_annotation::located_help(indented_more)), min_indent, EExpr::Space, EExpr::IndentAnnotation ), // The first annotation may be immediately (spaces_then_comment_or_newline()) // followed by a body at the exact same indent_level // leading to an AnnotatedBody in this case |_progress, type_ann, indent_level| map( optional(and!( backtrackable(spaces_then_comment_or_newline_help()), body_at_indent_help(indent_level) )), move |opt_body| (type_ann.clone(), opt_body) ) ), and!( // Optionally parse additional defs. zero_or_more!(backtrackable(allocated(space0_before_e( loc!(specialize_ref(EExpr::Syntax, def(original_indent))), original_indent, EExpr::Space, EExpr::IndentStart, )))), // Parse the final expression that will be returned. // It should be indented the same amount as the original. space0_before_e( loc!(|arena, state| parse_expr_help(original_indent, arena, state)), original_indent, EExpr::Space, EExpr::IndentEnd, ) ) ) .parse(arena, state) .map( move |(progress, ((loc_first_annotation, opt_body), (mut defs, loc_ret)), state)| { let loc_first_def: Located> = match opt_body { None => { let region = Region::span_across( &loc_first_pattern.region, &loc_first_annotation.region, ); Located { value: annotation_or_alias( arena, &loc_first_pattern.value, loc_first_pattern.region, loc_first_annotation, ), region, } } Some((opt_comment, (body_pattern, body_expr))) => { let region = Region::span_across(&loc_first_pattern.region, &body_expr.region); Located { value: Def::AnnotatedBody { ann_pattern: arena.alloc(loc_first_pattern), ann_type: arena.alloc(loc_first_annotation), comment: opt_comment, body_pattern: arena.alloc(body_pattern), body_expr: arena.alloc(body_expr), }, region, } } }; // contrary to defs with an expression body, we must ensure the annotation comes just before its // corresponding definition (the one with the body). defs.insert(0, &*arena.alloc(loc_first_def)); let defs = defs.into_bump_slice(); (progress, Expr::Defs(defs, arena.alloc(loc_ret)), state) }, ) } } fn loc_parse_function_arg_help<'a>( min_indent: u16, arena: &'a Bump, state: State<'a>, ) -> ParseResult<'a, Located>, EExpr<'a>> { one_of!( loc_function_arg_in_parens_etc_help(min_indent), loc!(specialize(EExpr::Str, string_literal_help())), loc!(specialize(EExpr::Number, number_literal_help())), loc!(specialize(EExpr::Lambda, closure_help(min_indent))), loc!(record_literal_help(min_indent)), loc!(specialize(EExpr::List, list_literal_help(min_indent))), loc!(unary_op_help(min_indent)), loc!(specialize(EExpr::When, when::expr_help(min_indent))), loc!(specialize(EExpr::If, if_expr_help(min_indent))), loc!(ident_without_apply_help()) ) .parse(arena, state) } fn closure_help<'a>(min_indent: u16) -> impl Parser<'a, Expr<'a>, ELambda<'a>> { map_with_arena!( skip_first!( // All closures start with a '\' - e.g. (\x -> x + 1) word1(b'\\', ELambda::Start), // Once we see the '\', we're committed to parsing this as a closure. // It may turn out to be malformed, but it is definitely a closure. and!( // Parse the params // Params are comma-separated sep_by1_e( word1(b',', ELambda::Comma), space0_around_ee( specialize(ELambda::Pattern, loc_closure_param(min_indent)), min_indent, ELambda::Space, ELambda::IndentArg, ELambda::IndentArrow ), ELambda::Arg, ), skip_first!( // Parse the -> which separates params from body word2(b'-', b'>', ELambda::Arrow), // Parse the body space0_before_e( specialize_ref( ELambda::Body, loc!(move |arena, state| parse_expr_help(min_indent, arena, state)) ), min_indent, ELambda::Space, ELambda::IndentBody ) ) ) ), |arena: &'a Bump, (params, loc_body)| { let params: Vec<'a, Located>> = params; let params: &'a [Located>] = params.into_bump_slice(); Expr::Closure(params, arena.alloc(loc_body)) } ) } mod when { use super::*; use crate::ast::WhenBranch; /// Parser for when expressions. pub fn expr_help<'a>(min_indent: u16) -> impl Parser<'a, Expr<'a>, When<'a>> { then( and!( when_with_indent(), skip_second!( space0_around_ee( loc!(specialize_ref(When::Condition, move |arena, state| { parse_expr_help(min_indent, arena, state) })), min_indent, When::Space, When::IndentCondition, When::IndentIs, ), parser::keyword_e(keyword::IS, When::Is) ) ), move |arena, state, progress, (case_indent, loc_condition)| { if case_indent < min_indent { return Err(( progress, // TODO maybe pass case_indent here? When::PatternAlignment(5, state.line, state.column), state, )); } // Everything in the branches must be indented at least as much as the case itself. let min_indent = case_indent; let (p1, branches, state) = branches(min_indent).parse(arena, state)?; Ok(( progress.or(p1), Expr::When(arena.alloc(loc_condition), branches.into_bump_slice()), state, )) }, ) } /// Parsing when with indentation. fn when_with_indent<'a>() -> impl Parser<'a, u16, When<'a>> { move |arena, state: State<'a>| { parser::keyword_e(keyword::WHEN, When::When) .parse(arena, state) .map(|(progress, (), state)| (progress, state.indent_col, state)) } } fn branches<'a>(min_indent: u16) -> impl Parser<'a, Vec<'a, &'a WhenBranch<'a>>, When<'a>> { move |arena, state| { let mut branches: Vec<'a, &'a WhenBranch<'a>> = Vec::with_capacity_in(2, arena); // 1. Parse the first branch and get its indentation level. (It must be >= min_indent.) // 2. Parse the other branches. Their indentation levels must be == the first branch's. let (_, (loc_first_patterns, loc_first_guard), state) = branch_alternatives(min_indent).parse(arena, state)?; let loc_first_pattern = loc_first_patterns.first().unwrap(); let original_indent = loc_first_pattern.region.start_col; let indented_more = original_indent + 1; // Parse the first "->" and the expression after it. let (_, loc_first_expr, mut state) = branch_result(indented_more).parse(arena, state)?; // Record this as the first branch, then optionally parse additional branches. branches.push(arena.alloc(WhenBranch { patterns: loc_first_patterns.into_bump_slice(), value: loc_first_expr, guard: loc_first_guard, })); let branch_parser = map!( and!( then( branch_alternatives(min_indent), move |_arena, state, _, (loc_patterns, loc_guard)| { match alternatives_indented_correctly(&loc_patterns, original_indent) { Ok(()) => Ok((MadeProgress, (loc_patterns, loc_guard), state)), Err(indent) => Err(( MadeProgress, When::PatternAlignment(indent, state.line, state.column), state, )), } }, ), branch_result(indented_more) ), |((patterns, guard), expr)| { let patterns: Vec<'a, _> = patterns; WhenBranch { patterns: patterns.into_bump_slice(), value: expr, guard, } } ); while !state.bytes.is_empty() { match branch_parser.parse(arena, state) { Ok((_, next_output, next_state)) => { state = next_state; branches.push(arena.alloc(next_output)); } Err((MadeProgress, problem, old_state)) => { return Err((MadeProgress, problem, old_state)); } Err((NoProgress, _, old_state)) => { state = old_state; break; } } } Ok((MadeProgress, branches, state)) } } /// Parsing alternative patterns in when branches. fn branch_alternatives<'a>( min_indent: u16, ) -> impl Parser<'a, (Vec<'a, Located>>, Option>>), When<'a>> { and!( sep_by1(word1(b'|', When::Bar), |arena, state| { let (_, spaces, state) = backtrackable(space0_e(min_indent, When::Space, When::IndentPattern)) .parse(arena, state)?; let (_, loc_pattern, state) = space0_after_e( specialize(When::Pattern, crate::pattern::loc_pattern_help(min_indent)), min_indent, When::Space, When::IndentPattern, ) .parse(arena, state)?; Ok(( MadeProgress, if spaces.is_empty() { loc_pattern } else { arena .alloc(loc_pattern.value) .with_spaces_before(spaces, loc_pattern.region) }, state, )) }), one_of![ map!( skip_first!( parser::keyword_e(keyword::IF, When::IfToken), // TODO we should require space before the expression but not after space0_around_ee( loc!(specialize_ref(When::IfGuard, move |arena, state| { parse_expr_help(min_indent, arena, state) })), min_indent, When::Space, When::IndentIfGuard, When::IndentArrow, ) ), Some ), |_, s| Ok((NoProgress, None, s)) ] ) } /// Check if alternatives of a when branch are indented correctly. fn alternatives_indented_correctly<'a>( loc_patterns: &'a Vec<'a, Located>>, original_indent: u16, ) -> Result<(), u16> { let (first, rest) = loc_patterns.split_first().unwrap(); let first_indented_correctly = first.region.start_col == original_indent; if first_indented_correctly { for when_pattern in rest.iter() { if when_pattern.region.start_col < original_indent { return Err(original_indent - when_pattern.region.start_col); } } Ok(()) } else { Err(original_indent - first.region.start_col) } } /// Parsing the righthandside of a branch in a when conditional. fn branch_result<'a>(indent: u16) -> impl Parser<'a, Located>, When<'a>> { skip_first!( word2(b'-', b'>', When::Arrow), space0_before_e( specialize_ref( When::Branch, loc!(move |arena, state| parse_expr_help(indent, arena, state)) ), indent, When::Space, When::IndentBranch, ) ) } } fn if_branch<'a>( min_indent: u16, ) -> impl Parser<'a, (Located>, Located>), If<'a>> { move |arena, state| { // NOTE: only parse spaces before the expression let (_, cond, state) = space0_around_ee( specialize_ref( If::Condition, loc!(move |arena, state| parse_expr_help(min_indent, arena, state)), ), min_indent, If::Space, If::IndentCondition, If::IndentThenToken, ) .parse(arena, state) .map_err(|(_, f, s)| (MadeProgress, f, s))?; let (_, _, state) = parser::keyword_e(keyword::THEN, If::Then) .parse(arena, state) .map_err(|(_, f, s)| (MadeProgress, f, s))?; let (_, then_branch, state) = space0_around_ee( specialize_ref( If::ThenBranch, loc!(move |arena, state| parse_expr_help(min_indent, arena, state)), ), min_indent, If::Space, If::IndentThenBranch, If::IndentElseToken, ) .parse(arena, state) .map_err(|(_, f, s)| (MadeProgress, f, s))?; let (_, _, state) = parser::keyword_e(keyword::ELSE, If::Else) .parse(arena, state) .map_err(|(_, f, s)| (MadeProgress, f, s))?; Ok((MadeProgress, (cond, then_branch), state)) } } fn if_expr_help<'a>(min_indent: u16) -> impl Parser<'a, Expr<'a>, If<'a>> { move |arena: &'a Bump, state| { let (_, _, state) = parser::keyword_e(keyword::IF, If::If).parse(arena, state)?; let mut branches = Vec::with_capacity_in(1, arena); let mut loop_state = state; let state_final_else = loop { let (_, (cond, then_branch), state) = if_branch(min_indent).parse(arena, loop_state)?; branches.push((cond, then_branch)); // try to parse another `if` // NOTE this drops spaces between the `else` and the `if` let optional_if = and!( backtrackable(space0_e(min_indent, If::Space, If::IndentIf)), parser::keyword_e(keyword::IF, If::If) ); match optional_if.parse(arena, state) { Err((_, _, state)) => break state, Ok((_, _, state)) => { loop_state = state; continue; } } }; let (_, else_branch, state) = space0_before_e( specialize_ref( If::ElseBranch, loc!(move |arena, state| parse_expr_help(min_indent, arena, state)), ), min_indent, If::Space, If::IndentElseBranch, ) .parse(arena, state_final_else) .map_err(|(_, f, s)| (MadeProgress, f, s))?; let expr = Expr::If(branches.into_bump_slice(), arena.alloc(else_branch)); Ok((MadeProgress, expr, state)) } } /// This is a helper function for parsing function args. /// The rules for (-) are special-cased, and they come up in function args. /// /// They work like this: /// /// x - y # "x minus y" /// x-y # "x minus y" /// x- y # "x minus y" (probably written in a rush) /// x -y # "call x, passing (-y)" /// /// Since operators have higher precedence than function application, /// any time we encounter a '-' it is unary iff it is both preceded by spaces /// and is *not* followed by a whitespace character. #[inline(always)] fn unary_negate_function_arg_help<'a>( min_indent: u16, ) -> impl Parser<'a, Located>, EExpr<'a>> { move |arena, state: State<'a>| { let (_, Located { region, .. }, state) = loc!(unary_negate()).parse(arena, state)?; let loc_op = Located { region, value: UnaryOp::Negate, }; // Continue parsing the function arg as normal. let (_, loc_expr, state) = loc_parse_function_arg_help(min_indent, arena, state)?; let region = Region { start_col: loc_op.region.start_col, start_line: loc_op.region.start_line, end_col: loc_expr.region.end_col, end_line: loc_expr.region.end_line, }; let value = Expr::UnaryOp(arena.alloc(loc_expr), loc_op); let loc_expr = Located { // Start from where the unary op started, // and end where its argument expr ended. // This is relevant in case (for example) // we have an expression involving parens, // for example `-(foo bar)` region, value, }; let value = loc_expr.value; Ok(( MadeProgress, Located { region: loc_expr.region, value, }, state, )) } } fn loc_function_args_help<'a>( min_indent: u16, ) -> impl Parser<'a, Vec<'a, Located>>, EExpr<'a>> { one_or_more_e!( move |arena: &'a Bump, s| { map!( and!( backtrackable(space1_e( min_indent, EExpr::Space, EExpr::IndentStart, EExpr::Start )), one_of!(unary_negate_function_arg_help(min_indent), |a, s| { loc_parse_function_arg_help(min_indent, a, s) }) ), |(spaces, loc_expr): (&'a [_], Located>)| { if spaces.is_empty() { loc_expr } else { arena .alloc(loc_expr.value) .with_spaces_before(spaces, loc_expr.region) } } ) .parse(arena, s) }, EExpr::Start ) } /// When we parse an ident like `foo ` it could be any of these: /// /// 1. A standalone variable with trailing whitespace (e.g. because an operator is next) /// 2. The beginning of a function call (e.g. `foo bar baz`) /// 3. The beginning of a definition (e.g. `foo =`) /// 4. The beginning of a type annotation (e.g. `foo :`) /// 5. A reserved keyword (e.g. `if ` or `case `), meaning we should do something else. fn assign_or_destructure_identifier<'a>() -> impl Parser<'a, Ident<'a>, EExpr<'a>> { crate::ident::parse_ident_help } fn ident_etc_help<'a>(min_indent: u16) -> impl Parser<'a, Expr<'a>, EExpr<'a>> { then( and!( loc!(assign_or_destructure_identifier()), optional(loc_function_args_help(min_indent)) ), move |arena, state, progress, (loc_ident, opt_arguments)| { debug_assert_eq!(progress, MadeProgress); // This appears to be a var, keyword, or function application. match opt_arguments { Some(arguments) => ident_then_args(min_indent, loc_ident, arguments, arena, state), None => ident_then_no_args(min_indent, loc_ident, arena, state), } }, ) } fn ident_then_no_args<'a>( min_indent: u16, loc_ident: Located>, arena: &'a Bump, state: State<'a>, ) -> ParseResult<'a, Expr<'a>, EExpr<'a>> { #[derive(Debug)] enum Next { Equals(u16), Colon(u16), } let parser = optional(and!( backtrackable(space0_e(min_indent, EExpr::Space, EExpr::IndentEquals)), one_of![ map!(equals_with_indent_help(), Next::Equals), map!(colon_with_indent(), Next::Colon), ] )); let (_, next, state) = parser.parse(arena, state)?; // no arguments, that limits the options match next { Some((ident_spaces, Next::Equals(equals_indent))) => { // We got '=' with no args before it let pattern: Pattern<'a> = Pattern::from_ident(arena, loc_ident.value); let value = if ident_spaces.is_empty() { pattern } else { Pattern::SpaceAfter(arena.alloc(pattern), ident_spaces) }; let region = loc_ident.region; let def_start_col = state.indent_col; let loc_pattern = Located { region, value }; // TODO use equals_indent below? let (_, spaces_after_equals, state) = space0_e(min_indent, EExpr::Space, EExpr::IndentDefBody).parse(arena, state)?; let (_, parsed_expr, state) = parse_def_expr_help( min_indent, def_start_col, equals_indent, arena, state, loc_pattern, spaces_after_equals, )?; Ok((MadeProgress, parsed_expr, state)) } Some((ident_spaces, Next::Colon(colon_indent))) => { let pattern = Pattern::from_ident(arena, loc_ident.value); let value = if ident_spaces.is_empty() { pattern } else { Pattern::SpaceAfter(arena.alloc(pattern), ident_spaces) }; let region = loc_ident.region; let loc_pattern = Located { region, value }; parse_def_signature_help(min_indent, colon_indent, arena, state, loc_pattern) } None => { let ident = loc_ident.value.clone(); Ok((MadeProgress, ident_to_expr(arena, ident), state)) } } } fn ident_then_args<'a>( min_indent: u16, loc_ident: Located>, arguments: Vec<'a, Located>>, arena: &'a Bump, state: State<'a>, ) -> ParseResult<'a, Expr<'a>, EExpr<'a>> { debug_assert!(!arguments.is_empty()); #[derive(Debug)] enum Next { Equals(u16), Colon(u16), } let parser = optional(and!( backtrackable(space0_e(min_indent, EExpr::Space, EExpr::IndentEquals)), one_of![ map!(equals_with_indent_help(), Next::Equals), map!(colon_with_indent(), Next::Colon), ] )); let (_, next, state) = parser.parse(arena, state)?; match next { Some((_ident_spaces, Next::Equals(_equals_indent))) => { // We got args with an '=' after them, e.g. `foo a b = ...` This is a syntax error! let region = Region::across_all(arguments.iter().map(|v| &v.region)); let fail = EExpr::ElmStyleFunction(region, state.line, state.column); Err((MadeProgress, fail, state)) } Some((ident_spaces, Next::Colon(colon_indent))) => { let pattern: Pattern<'a> = { let pattern = Pattern::from_ident(arena, loc_ident.value); // Translate the loc_args Exprs into a Pattern::Apply // They are probably type alias variables (e.g. `List a : ...`) let mut arg_patterns = Vec::with_capacity_in(arguments.len(), arena); for loc_arg in arguments { match expr_to_pattern_help(arena, &loc_arg.value) { Ok(arg_pat) => { arg_patterns.push(Located { value: arg_pat, region: loc_arg.region, }); } Err(_malformed) => { return Err(( MadeProgress, EExpr::MalformedPattern(state.line, state.column), state, )); } } } let loc_pattern = Located { region: loc_ident.region, value: pattern, }; Pattern::Apply(arena.alloc(loc_pattern), arg_patterns.into_bump_slice()) }; let region = loc_ident.region; let value = if ident_spaces.is_empty() { pattern } else { Pattern::SpaceAfter(arena.alloc(pattern), ident_spaces) }; let loc_pattern = Located { region, value }; parse_def_signature_help(min_indent, colon_indent, arena, state, loc_pattern) } None => { // We got args and nothing else let loc_expr = Located { region: loc_ident.region, value: ident_to_expr(arena, loc_ident.value), }; let mut allocated_args = Vec::with_capacity_in(arguments.len(), arena); for loc_arg in arguments { allocated_args.push(&*arena.alloc(loc_arg)); } Ok(( MadeProgress, Expr::Apply( arena.alloc(loc_expr), allocated_args.into_bump_slice(), CalledVia::Space, ), state, )) } } } fn ident_without_apply_help<'a>() -> impl Parser<'a, Expr<'a>, EExpr<'a>> { specialize_ref( EExpr::Syntax, then(loc!(ident()), move |arena, state, progress, loc_ident| { Ok((progress, ident_to_expr(arena, loc_ident.value), state)) }), ) } #[allow(dead_code)] fn with_indent<'a, E, T, P>(parser: P) -> impl Parser<'a, u16, E> where P: Parser<'a, T, E>, E: 'a, { move |arena, state: State<'a>| { let indent_col = state.indent_col; let (progress, _, state) = parser.parse(arena, state)?; Ok((progress, indent_col, state)) } } fn equals_with_indent_help<'a>() -> impl Parser<'a, u16, EExpr<'a>> { move |_arena, state: State<'a>| { let indent_col = state.indent_col; let good = state.bytes.starts_with(b"=") && !state.bytes.starts_with(b"=="); if good { match state.advance_without_indenting_e(1, EExpr::Space) { Err(bad) => Err(bad), Ok(good) => Ok((MadeProgress, indent_col, good)), } } else { let equals = EExpr::Equals(state.line, state.column); Err((NoProgress, equals, state)) } } } fn colon_with_indent<'a>() -> impl Parser<'a, u16, EExpr<'a>> { move |_arena, state: State<'a>| { let indent_col = state.indent_col; if let Some(b':') = state.bytes.get(0) { if let Some(b':') = state.bytes.get(1) { let double = EExpr::DoubleColon(state.line, state.column); Err((NoProgress, double, state)) } else { match state.advance_without_indenting_e(1, EExpr::Space) { Err(bad) => Err(bad), Ok(good) => Ok((MadeProgress, indent_col, good)), } } } else { let colon = EExpr::Colon(state.line, state.column); Err((NoProgress, colon, state)) } } } fn comma_with_indent<'a>() -> impl Parser<'a, u16, EExpr<'a>> { move |_arena, state: State<'a>| { let indent_col = state.indent_col; if let Some(b',') = state.bytes.get(0) { match state.advance_without_indenting_e(1, EExpr::Space) { Err(bad) => Err(bad), Ok(good) => Ok((MadeProgress, indent_col, good)), } } else { let colon = EExpr::BackpassComma(state.line, state.column); Err((NoProgress, colon, state)) } } } fn backarrow_with_indent<'a>() -> impl Parser<'a, u16, EExpr<'a>> { move |_arena, state: State<'a>| { let indent_col = state.indent_col; if state.bytes.starts_with(b"<-") { match state.advance_without_indenting_e(2, EExpr::Space) { Err(bad) => Err(bad), Ok(good) => Ok((MadeProgress, indent_col, good)), } } else { let colon = EExpr::BackpassArrow(state.line, state.column); Err((NoProgress, colon, state)) } } } fn ident_to_expr<'a>(arena: &'a Bump, src: Ident<'a>) -> Expr<'a> { match src { Ident::GlobalTag(string) => Expr::GlobalTag(string), Ident::PrivateTag(string) => Expr::PrivateTag(string), Ident::Access { module_name, parts } => { let mut iter = parts.iter(); // The first value in the iterator is the variable name, // e.g. `foo` in `foo.bar.baz` let mut answer = match iter.next() { Some(ident) => Expr::Var { module_name, ident }, None => { panic!("Parsed an Ident::Access with no parts"); } }; // The remaining items in the iterator are record field accesses, // e.g. `bar` in `foo.bar.baz`, followed by `baz` for field in iter { // Wrap the previous answer in the new one, so we end up // with a nested Expr. That way, `foo.bar.baz` gets represented // in the AST as if it had been written (foo.bar).baz all along. answer = Expr::Access(arena.alloc(answer), field); } answer } Ident::AccessorFunction(string) => Expr::AccessorFunction(string), Ident::Malformed(string, problem) => Expr::MalformedIdent(string, problem), } } fn binop_help<'a>() -> impl Parser<'a, BinOp, EExpr<'a>> { macro_rules! binop { ($word1:expr, $op:expr) => { map!( word1($word1, |row, col| EExpr::BinOp($op, row, col)), |_| $op ) }; ($word1:expr, $word2:expr, $op:expr) => { map!( word2($word1, $word2, |row, col| EExpr::BinOp($op, row, col)), |_| $op ) }; } one_of!( // Sorted from highest to lowest predicted usage in practice, // so that successful matches short-circuit as early as possible. // The only exception to this is that operators which begin // with other valid operators (e.g. "<=" begins with "<") must // come before the shorter ones; otherwise, they will never // be reached because the shorter one will pass and consume! binop!(b'|', b'>', BinOp::Pizza), binop!(b'=', b'=', BinOp::Equals), binop!(b'!', b'=', BinOp::NotEquals), binop!(b'&', b'&', BinOp::And), binop!(b'|', b'|', BinOp::Or), binop!(b'+', BinOp::Plus), binop!(b'*', BinOp::Star), binop!(b'-', BinOp::Minus), binop!(b'/', b'/', BinOp::DoubleSlash), binop!(b'/', BinOp::Slash), binop!(b'<', b'=', BinOp::LessThanOrEq), binop!(b'<', BinOp::LessThan), binop!(b'>', b'=', BinOp::GreaterThanOrEq), binop!(b'>', BinOp::GreaterThan), binop!(b'^', BinOp::Caret), binop!(b'%', b'%', BinOp::DoublePercent), binop!(b'%', BinOp::Percent) ) } fn list_literal_help<'a>(min_indent: u16) -> impl Parser<'a, Expr<'a>, List<'a>> { move |arena, state| { let (_, (parsed_elems, final_comments), state) = collection_trailing_sep_e!( word1(b'[', List::Open), specialize_ref(List::Syntax, loc!(expr(min_indent))), word1(b',', List::End), word1(b']', List::End), min_indent, List::Open, List::Space, List::IndentEnd ) .parse(arena, state)?; let mut allocated = Vec::with_capacity_in(parsed_elems.len(), arena); for parsed_elem in parsed_elems { allocated.push(&*arena.alloc(parsed_elem)); } let expr = Expr::List { items: allocated.into_bump_slice(), final_comments, }; Ok((MadeProgress, expr, state)) } } fn record_field_help<'a>( min_indent: u16, ) -> impl Parser<'a, AssignedField<'a, Expr<'a>>, ERecord<'a>> { use AssignedField::*; move |arena, state: State<'a>| { // You must have a field name, e.g. "email" let (progress, loc_label, state) = specialize(|_, r, c| ERecord::Field(r, c), loc!(lowercase_ident())) .parse(arena, state)?; debug_assert_eq!(progress, MadeProgress); let (_, spaces, state) = space0_e(min_indent, ERecord::Space, ERecord::IndentColon).parse(arena, state)?; // Having a value is optional; both `{ email }` and `{ email: blah }` work. // (This is true in both literals and types.) let (_, opt_loc_val, state) = optional(and!( either!( word1(b':', ERecord::Colon), word1(b'?', ERecord::QuestionMark) ), space0_before_e( specialize_ref(ERecord::Syntax, loc!(expr(min_indent))), min_indent, ERecord::Space, ERecord::IndentEnd, ) )) .parse(arena, state)?; let answer = match opt_loc_val { Some((Either::First(_), loc_val)) => { RequiredValue(loc_label, spaces, arena.alloc(loc_val)) } Some((Either::Second(_), loc_val)) => { OptionalValue(loc_label, spaces, arena.alloc(loc_val)) } // If no value was provided, record it as a Var. // Canonicalize will know what to do with a Var later. None => { if !spaces.is_empty() { SpaceAfter(arena.alloc(LabelOnly(loc_label)), spaces) } else { LabelOnly(loc_label) } } }; Ok((MadeProgress, answer, state)) } } fn record_updateable_identifier<'a>() -> impl Parser<'a, Expr<'a>, ERecord<'a>> { specialize( |_, r, c| ERecord::Updateable(r, c), map_with_arena!(ident(), ident_to_expr), ) } fn record_help<'a>( min_indent: u16, ) -> impl Parser< 'a, ( Option>>, Located<( Vec<'a, Located>>>, &'a [CommentOrNewline<'a>], )>, ), ERecord<'a>, > { skip_first!( word1(b'{', ERecord::Open), and!( // You can optionally have an identifier followed by an '&' to // make this a record update, e.g. { Foo.user & username: "blah" }. optional(skip_second!( space0_around_ee( // We wrap the ident in an Expr here, // so that we have a Spaceable value to work with, // and then in canonicalization verify that it's an Expr::Var // (and not e.g. an `Expr::Access`) and extract its string. loc!(record_updateable_identifier()), min_indent, ERecord::Space, ERecord::IndentEnd, ERecord::IndentAmpersand, ), word1(b'&', ERecord::Ampersand) )), loc!(skip_first!( // We specifically allow space characters inside here, so that // `{ }` can be successfully parsed as an empty record, and then // changed by the formatter back into `{}`. zero_or_more!(word1(b' ', ERecord::End)), skip_second!( and!( trailing_sep_by0( word1(b',', ERecord::End), space0_around_ee( loc!(record_field_help(min_indent)), min_indent, ERecord::Space, ERecord::IndentEnd, ERecord::IndentEnd ), ), space0_e(min_indent, ERecord::Space, ERecord::IndentEnd) ), word1(b'}', ERecord::End) ) )) ) ) } fn record_literal_help<'a>(min_indent: u16) -> impl Parser<'a, Expr<'a>, EExpr<'a>> { then( and!( loc!(specialize(EExpr::Record, record_help(min_indent))), optional(and!( space0_e(min_indent, EExpr::Space, EExpr::IndentEquals), either!(equals_with_indent_help(), colon_with_indent()) )) ), move |arena, state, progress, (loc_record, opt_def)| { let (opt_update, loc_assigned_fields_with_comments) = loc_record.value; match opt_def { None => { // This is a record literal, not a destructure. let mut value = Expr::Record { update: opt_update.map(|loc_expr| &*arena.alloc(loc_expr)), fields: loc_assigned_fields_with_comments.value.0.into_bump_slice(), final_comments: loc_assigned_fields_with_comments.value.1, }; // there can be field access, e.g. `{ x : 4 }.x` let (_, accesses, state) = optional(record_field_access_chain()).parse(arena, state)?; if let Some(fields) = accesses { for field in fields { // Wrap the previous answer in the new one, so we end up // with a nested Expr. That way, `foo.bar.baz` gets represented // in the AST as if it had been written (foo.bar).baz all along. value = Expr::Access(arena.alloc(value), field); } } Ok((MadeProgress, value, state)) } Some((spaces_before_equals, Either::First(equals_indent))) => { // This is a record destructure def. let region = loc_assigned_fields_with_comments.region; let assigned_fields = loc_assigned_fields_with_comments.value.0; let mut loc_patterns = Vec::with_capacity_in(assigned_fields.len(), arena); for loc_assigned_field in assigned_fields { let region = loc_assigned_field.region; match assigned_expr_field_to_pattern(arena, &loc_assigned_field.value) { Ok(value) => loc_patterns.push(Located { region, value }), // an Expr became a pattern that should not be. Err(_fail) => { return Err(( progress, EExpr::MalformedPattern(state.line, state.column), state, )) } } } let pattern = Pattern::RecordDestructure(loc_patterns.into_bump_slice()); let value = if spaces_before_equals.is_empty() { pattern } else { Pattern::SpaceAfter(arena.alloc(pattern), spaces_before_equals) }; let loc_pattern = Located { region, value }; let (_, spaces_after_equals, state) = space0_e(min_indent, EExpr::Space, EExpr::IndentDefBody) .parse(arena, state)?; // The def's starting column is the '{' char in the record literal. let def_start_col = loc_record.region.start_col; let (_, parsed_expr, state) = parse_def_expr_help( min_indent, def_start_col, equals_indent, arena, state, loc_pattern, spaces_after_equals, )?; Ok((MadeProgress, parsed_expr, state)) } Some((spaces_before_colon, Either::Second(colon_indent))) => { // This is a record type annotation let region = loc_assigned_fields_with_comments.region; let assigned_fields = loc_assigned_fields_with_comments.value.0; let mut loc_patterns = Vec::with_capacity_in(assigned_fields.len(), arena); for loc_assigned_field in assigned_fields { let region = loc_assigned_field.region; match assigned_expr_field_to_pattern(arena, &loc_assigned_field.value) { Ok(value) => loc_patterns.push(Located { region, value }), // an Expr became a pattern that should not be. Err(_fail) => { return Err(( progress, EExpr::MalformedPattern(state.line, state.column), state, )) } } } let pattern = Pattern::RecordDestructure(loc_patterns.into_bump_slice()); let value = if spaces_before_colon.is_empty() { pattern } else { Pattern::SpaceAfter(arena.alloc(pattern), spaces_before_colon) }; let loc_pattern = Located { region, value }; parse_def_signature_help(min_indent, colon_indent, arena, state, loc_pattern) } } }, ) } fn string_literal_help<'a>() -> impl Parser<'a, Expr<'a>, EString<'a>> { map!(crate::string_literal::parse(), Expr::Str) } fn number_literal_help<'a>() -> impl Parser<'a, Expr<'a>, Number> { map!(crate::number_literal::number_literal(), |literal| { use crate::number_literal::NumLiteral::*; match literal { Num(s) => Expr::Num(s), Float(s) => Expr::Float(s), NonBase10Int { string, base, is_negative, } => Expr::NonBase10Int { string, base, is_negative, }, } }) }