use morphic_lib::TypeContext; use morphic_lib::{ BlockExpr, BlockId, CalleeSpecVar, ConstDefBuilder, ConstName, EntryPointName, ExprContext, FuncDef, FuncDefBuilder, FuncName, ModDefBuilder, ModName, ProgramBuilder, Result, TypeDefBuilder, TypeId, TypeName, UpdateModeVar, ValueId, }; use roc_collections::all::{MutMap, MutSet}; use roc_module::low_level::LowLevel; use roc_module::symbol::Symbol; use std::convert::TryFrom; use crate::ir::{ Call, CallType, Expr, HostExposedLayouts, ListLiteralElement, Literal, ModifyRc, OptLevel, Proc, Stmt, }; use crate::layout::{Builtin, Layout, ListLayout, RawFunctionLayout, UnionLayout}; // just using one module for now pub const MOD_APP: ModName = ModName(b"UserApp"); pub const STATIC_STR_NAME: ConstName = ConstName(&Symbol::STR_ALIAS_ANALYSIS_STATIC.to_ne_bytes()); pub const STATIC_LIST_NAME: ConstName = ConstName(b"THIS IS A STATIC LIST"); const ENTRY_POINT_NAME: &[u8] = b"mainForHost"; pub fn func_name_bytes(proc: &Proc) -> [u8; SIZE] { func_name_bytes_help(proc.name, proc.args.iter().map(|x| x.0), proc.ret_layout) } const DEBUG: bool = false; const SIZE: usize = if DEBUG { 50 } else { 16 }; #[derive(Debug, Clone, Copy, Hash)] struct TagUnionId(u64); fn recursive_tag_union_name_bytes(union_layout: &UnionLayout) -> TagUnionId { use std::collections::hash_map::DefaultHasher; use std::hash::Hash; use std::hash::Hasher; let mut hasher = DefaultHasher::new(); union_layout.hash(&mut hasher); TagUnionId(hasher.finish()) } impl TagUnionId { const fn as_bytes(&self) -> [u8; 8] { self.0.to_ne_bytes() } } pub fn func_name_bytes_help<'a, I>( symbol: Symbol, argument_layouts: I, return_layout: Layout<'a>, ) -> [u8; SIZE] where I: Iterator>, { let mut name_bytes = [0u8; SIZE]; use std::collections::hash_map::DefaultHasher; use std::hash::Hash; use std::hash::Hasher; let layout_hash = { let mut hasher = DefaultHasher::new(); for layout in argument_layouts { layout.hash(&mut hasher); } return_layout.hash(&mut hasher); hasher.finish() }; let sbytes = symbol.to_ne_bytes(); let lbytes = layout_hash.to_ne_bytes(); let it = sbytes .iter() .chain(lbytes.iter()) .zip(name_bytes.iter_mut()); for (source, target) in it { *target = *source; } if DEBUG { for (i, c) in (format!("{:?}", symbol)).chars().take(25).enumerate() { name_bytes[25 + i] = c as u8; } } name_bytes } fn bytes_as_ascii(bytes: &[u8]) -> String { use std::fmt::Write; let mut buf = String::new(); for byte in bytes { write!(buf, "{:02X}", byte).unwrap(); } buf } pub fn spec_program<'a, I>( opt_level: OptLevel, entry_point: crate::ir::EntryPoint<'a>, procs: I, ) -> Result where I: Iterator>, { let main_module = { let mut m = ModDefBuilder::new(); // a const that models all static strings let static_str_def = { let mut cbuilder = ConstDefBuilder::new(); let block = cbuilder.add_block(); let cell = cbuilder.add_new_heap_cell(block)?; let value_id = cbuilder.add_make_tuple(block, &[cell])?; let root = BlockExpr(block, value_id); let str_type_id = str_type(&mut cbuilder)?; cbuilder.build(str_type_id, root)? }; m.add_const(STATIC_STR_NAME, static_str_def)?; // a const that models all static lists let static_list_def = { let mut cbuilder = ConstDefBuilder::new(); let block = cbuilder.add_block(); let cell = cbuilder.add_new_heap_cell(block)?; let unit_type = cbuilder.add_tuple_type(&[])?; let bag = cbuilder.add_empty_bag(block, unit_type)?; let value_id = cbuilder.add_make_tuple(block, &[cell, bag])?; let root = BlockExpr(block, value_id); let list_type_id = static_list_type(&mut cbuilder)?; cbuilder.build(list_type_id, root)? }; m.add_const(STATIC_LIST_NAME, static_list_def)?; let mut type_definitions = MutSet::default(); let mut host_exposed_functions = Vec::new(); // all other functions for proc in procs { let bytes = func_name_bytes(proc); let func_name = FuncName(&bytes); if let HostExposedLayouts::HostExposed { aliases, .. } = &proc.host_exposed_layouts { for (_, (symbol, top_level, layout)) in aliases { match layout { RawFunctionLayout::Function(_, _, _) => { let it = top_level.arguments.iter().copied(); let bytes = func_name_bytes_help(*symbol, it, top_level.result); host_exposed_functions.push((bytes, top_level.arguments)); } RawFunctionLayout::ZeroArgumentThunk(_) => { let it = std::iter::once(Layout::Struct(&[])); let bytes = func_name_bytes_help(*symbol, it, top_level.result); host_exposed_functions.push((bytes, top_level.arguments)); } } } } if DEBUG { eprintln!( "{:?}: {:?} with {:?} args", proc.name, bytes_as_ascii(&bytes), (proc.args, proc.ret_layout), ); } let (spec, type_names) = proc_spec(proc)?; type_definitions.extend(type_names); m.add_func(func_name, spec)?; } // the entry point wrapper let roc_main_bytes = func_name_bytes_help( entry_point.symbol, entry_point.layout.arguments.iter().copied(), entry_point.layout.result, ); let roc_main = FuncName(&roc_main_bytes); let entry_point_function = build_entry_point(entry_point.layout, roc_main, &host_exposed_functions)?; let entry_point_name = FuncName(ENTRY_POINT_NAME); m.add_func(entry_point_name, entry_point_function)?; for union_layout in type_definitions { let type_name_bytes = recursive_tag_union_name_bytes(&union_layout).as_bytes(); let type_name = TypeName(&type_name_bytes); let mut builder = TypeDefBuilder::new(); let variant_types = build_variant_types(&mut builder, &union_layout)?; let root_type = if let UnionLayout::NonNullableUnwrapped(_) = union_layout { debug_assert_eq!(variant_types.len(), 1); variant_types[0] } else { builder.add_union_type(&variant_types)? }; let type_def = builder.build(root_type)?; m.add_named_type(type_name, type_def)?; } m.build()? }; let program = { let mut p = ProgramBuilder::new(); p.add_mod(MOD_APP, main_module)?; let entry_point_name = FuncName(ENTRY_POINT_NAME); p.add_entry_point(EntryPointName(ENTRY_POINT_NAME), MOD_APP, entry_point_name)?; p.build()? }; if DEBUG { eprintln!("{}", program.to_source_string()); } match opt_level { OptLevel::Development | OptLevel::Normal => morphic_lib::solve_trivial(program), OptLevel::Optimize => morphic_lib::solve(program), } } /// if you want an "escape hatch" which allows you construct "best-case scenario" values /// of an arbitrary type in much the same way that 'unknown_with' allows you to construct /// "worst-case scenario" values of an arbitrary type, you can use the following terrible hack: /// use 'add_make_union' to construct an instance of variant 0 of a union type 'union {(), your_type}', /// and then use 'add_unwrap_union' to extract variant 1 from the value you just constructed. /// In the current implementation (but not necessarily in future versions), /// I can promise this will effectively give you a value of type 'your_type' /// all of whose heap cells are considered unique and mutable. fn terrible_hack(builder: &mut FuncDefBuilder, block: BlockId, type_id: TypeId) -> Result { let variant_types = vec![builder.add_tuple_type(&[])?, type_id]; let unit = builder.add_make_tuple(block, &[])?; let value = builder.add_make_union(block, &variant_types, 0, unit)?; builder.add_unwrap_union(block, value, 1) } fn build_entry_point( layout: crate::ir::ProcLayout, func_name: FuncName, host_exposed_functions: &[([u8; SIZE], &[Layout])], ) -> Result { let mut builder = FuncDefBuilder::new(); let outer_block = builder.add_block(); let mut cases = Vec::new(); { let block = builder.add_block(); // to the modelling language, the arguments appear out of thin air let argument_type = build_tuple_type(&mut builder, layout.arguments)?; // does not make any assumptions about the input // let argument = builder.add_unknown_with(block, &[], argument_type)?; // assumes the input can be updated in-place let argument = terrible_hack(&mut builder, block, argument_type)?; let name_bytes = [0; 16]; let spec_var = CalleeSpecVar(&name_bytes); let result = builder.add_call(block, spec_var, MOD_APP, func_name, argument)?; // to the modelling language, the result disappears into the void let unit_type = builder.add_tuple_type(&[])?; let unit_value = builder.add_unknown_with(block, &[result], unit_type)?; cases.push(BlockExpr(block, unit_value)); } // add fake calls to host-exposed functions so they are specialized for (name_bytes, layouts) in host_exposed_functions { let host_exposed_func_name = FuncName(name_bytes); if host_exposed_func_name == func_name { continue; } let block = builder.add_block(); let type_id = layout_spec(&mut builder, &Layout::Struct(layouts))?; let argument = builder.add_unknown_with(block, &[], type_id)?; let spec_var = CalleeSpecVar(name_bytes); let result = builder.add_call(block, spec_var, MOD_APP, host_exposed_func_name, argument)?; let unit_type = builder.add_tuple_type(&[])?; let unit_value = builder.add_unknown_with(block, &[result], unit_type)?; cases.push(BlockExpr(block, unit_value)); } let unit_type = builder.add_tuple_type(&[])?; let unit_value = builder.add_choice(outer_block, &cases)?; let root = BlockExpr(outer_block, unit_value); let spec = builder.build(unit_type, unit_type, root)?; Ok(spec) } fn proc_spec<'a>(proc: &Proc<'a>) -> Result<(FuncDef, MutSet>)> { let mut builder = FuncDefBuilder::new(); let mut env = Env::default(); let block = builder.add_block(); // introduce the arguments let mut argument_layouts = Vec::new(); for (i, (layout, symbol)) in proc.args.iter().enumerate() { let value_id = builder.add_get_tuple_field(block, builder.get_argument(), i as u32)?; env.symbols.insert(*symbol, value_id); argument_layouts.push(*layout); } let value_id = stmt_spec(&mut builder, &mut env, block, &proc.ret_layout, &proc.body)?; let root = BlockExpr(block, value_id); let arg_type_id = layout_spec(&mut builder, &Layout::Struct(&argument_layouts))?; let ret_type_id = layout_spec(&mut builder, &proc.ret_layout)?; let spec = builder.build(arg_type_id, ret_type_id, root)?; Ok((spec, env.type_names)) } #[derive(Default)] struct Env<'a> { symbols: MutMap, join_points: MutMap, type_names: MutSet>, } fn stmt_spec<'a>( builder: &mut FuncDefBuilder, env: &mut Env<'a>, block: BlockId, layout: &Layout, stmt: &Stmt<'a>, ) -> Result { use Stmt::*; match stmt { Let(symbol, expr, expr_layout, mut continuation) => { let value_id = expr_spec(builder, env, block, expr_layout, expr)?; env.symbols.insert(*symbol, value_id); let mut queue = vec![symbol]; while let Let(symbol, expr, expr_layout, c) = continuation { let value_id = expr_spec(builder, env, block, expr_layout, expr)?; env.symbols.insert(*symbol, value_id); queue.push(symbol); continuation = c; } let result = stmt_spec(builder, env, block, layout, continuation)?; for symbol in queue { env.symbols.remove(symbol); } Ok(result) } Switch { cond_symbol: _, cond_layout: _, branches, default_branch, ret_layout: _lies, } => { let mut cases = Vec::with_capacity(branches.len() + 1); let it = branches .iter() .map(|(_, _, body)| body) .chain(std::iter::once(default_branch.1)); for branch in it { let block = builder.add_block(); let value_id = stmt_spec(builder, env, block, layout, branch)?; cases.push(BlockExpr(block, value_id)); } builder.add_choice(block, &cases) } Ret(symbol) => Ok(env.symbols[symbol]), Refcounting(modify_rc, continuation) => match modify_rc { ModifyRc::Inc(symbol, _) => { let argument = env.symbols[symbol]; // a recursive touch is never worse for optimizations than a normal touch // and a bit more permissive in its type builder.add_recursive_touch(block, argument)?; stmt_spec(builder, env, block, layout, continuation) } ModifyRc::Dec(symbol) => { let argument = env.symbols[symbol]; builder.add_recursive_touch(block, argument)?; stmt_spec(builder, env, block, layout, continuation) } ModifyRc::DecRef(symbol) => { let argument = env.symbols[symbol]; builder.add_recursive_touch(block, argument)?; stmt_spec(builder, env, block, layout, continuation) } }, Join { id, parameters, body, remainder, } => { let mut type_ids = Vec::new(); for p in parameters.iter() { type_ids.push(layout_spec(builder, &p.layout)?); } let ret_type_id = layout_spec(builder, layout)?; let jp_arg_type_id = builder.add_tuple_type(&type_ids)?; let (jpid, jp_argument) = builder.declare_continuation(block, jp_arg_type_id, ret_type_id)?; // NOTE join point arguments can shadow variables from the outer scope // the ordering of steps here is important // add this ID so both body and remainder can reference it env.join_points.insert(*id, jpid); // first, with the current variable bindings, process the remainder let cont_block = builder.add_block(); let cont_value_id = stmt_spec(builder, env, cont_block, layout, remainder)?; // only then introduce variables bound by the jump point, and process its body let join_body_sub_block = { let jp_body_block = builder.add_block(); // unpack the argument for (i, p) in parameters.iter().enumerate() { let value_id = builder.add_get_tuple_field(jp_body_block, jp_argument, i as u32)?; env.symbols.insert(p.symbol, value_id); } let jp_body_value_id = stmt_spec(builder, env, jp_body_block, layout, body)?; BlockExpr(jp_body_block, jp_body_value_id) }; env.join_points.remove(id); builder.define_continuation(jpid, join_body_sub_block)?; builder.add_sub_block(block, BlockExpr(cont_block, cont_value_id)) } Jump(id, symbols) => { let ret_type_id = layout_spec(builder, layout)?; let argument = build_tuple_value(builder, env, block, symbols)?; let jpid = env.join_points[id]; builder.add_jump(block, jpid, argument, ret_type_id) } RuntimeError(_) => { let type_id = layout_spec(builder, layout)?; builder.add_terminate(block, type_id) } } } fn build_tuple_value( builder: &mut FuncDefBuilder, env: &Env, block: BlockId, symbols: &[Symbol], ) -> Result { let mut value_ids = Vec::new(); for field in symbols.iter() { let value_id = match env.symbols.get(field) { None => panic!( "Symbol {:?} is not defined in environment {:?}", field, &env.symbols ), Some(x) => *x, }; value_ids.push(value_id); } builder.add_make_tuple(block, &value_ids) } #[derive(Clone, Debug, PartialEq)] enum WhenRecursive<'a> { Unreachable, Loop(UnionLayout<'a>), } fn build_recursive_tuple_type( builder: &mut impl TypeContext, layouts: &[Layout], when_recursive: &WhenRecursive, ) -> Result { let mut field_types = Vec::new(); for field in layouts.iter() { field_types.push(layout_spec_help(builder, field, when_recursive)?); } builder.add_tuple_type(&field_types) } fn build_tuple_type(builder: &mut impl TypeContext, layouts: &[Layout]) -> Result { let mut field_types = Vec::new(); for field in layouts.iter() { field_types.push(layout_spec(builder, field)?); } builder.add_tuple_type(&field_types) } fn call_spec( builder: &mut FuncDefBuilder, env: &Env, block: BlockId, layout: &Layout, call: &Call, ) -> Result { use CallType::*; match &call.call_type { ByName { name: symbol, ret_layout, arg_layouts, specialization_id, } => { let array = specialization_id.to_bytes(); let spec_var = CalleeSpecVar(&array); let arg_value_id = build_tuple_value(builder, env, block, call.arguments)?; let it = arg_layouts.iter().copied(); let bytes = func_name_bytes_help(*symbol, it, *ret_layout); let name = FuncName(&bytes); let module = MOD_APP; builder.add_call(block, spec_var, module, name, arg_value_id) } Foreign { foreign_symbol: _, ret_layout, } => { let arguments: Vec<_> = call .arguments .iter() .map(|symbol| env.symbols[symbol]) .collect(); let result_type = layout_spec(builder, ret_layout)?; builder.add_unknown_with(block, &arguments, result_type) } LowLevel { op, update_mode } => lowlevel_spec( builder, env, block, layout, op, *update_mode, call.arguments, ), HigherOrderLowLevel { specialization_id, closure_env_layout, op, arg_layouts, ret_layout, function_name, function_env, .. } => { let array = specialization_id.to_bytes(); let spec_var = CalleeSpecVar(&array); let it = arg_layouts.iter().copied(); let bytes = func_name_bytes_help(*function_name, it, *ret_layout); let name = FuncName(&bytes); let module = MOD_APP; use crate::low_level::HigherOrder::*; match op { DictWalk { xs, state } => { let dict = env.symbols[xs]; let state = env.symbols[state]; let closure_env = env.symbols[function_env]; let bag = builder.add_get_tuple_field(block, dict, DICT_BAG_INDEX)?; let _cell = builder.add_get_tuple_field(block, dict, DICT_CELL_INDEX)?; let first = builder.add_bag_get(block, bag)?; let key = builder.add_get_tuple_field(block, first, 0)?; let val = builder.add_get_tuple_field(block, first, 1)?; let argument = if closure_env_layout.is_none() { builder.add_make_tuple(block, &[state, key, val])? } else { builder.add_make_tuple(block, &[state, key, val, closure_env])? }; builder.add_call(block, spec_var, module, name, argument)?; } ListWalk { xs, state } | ListWalkBackwards { xs, state } | ListWalkUntil { xs, state } => { let list = env.symbols[xs]; let state = env.symbols[state]; let closure_env = env.symbols[function_env]; let bag = builder.add_get_tuple_field(block, list, LIST_BAG_INDEX)?; let _cell = builder.add_get_tuple_field(block, list, LIST_CELL_INDEX)?; let first = builder.add_bag_get(block, bag)?; let argument = if closure_env_layout.is_none() { builder.add_make_tuple(block, &[state, first])? } else { builder.add_make_tuple(block, &[state, first, closure_env])? }; builder.add_call(block, spec_var, module, name, argument)?; } ListMapWithIndex { xs } => { let list = env.symbols[xs]; let closure_env = env.symbols[function_env]; let bag = builder.add_get_tuple_field(block, list, LIST_BAG_INDEX)?; let _cell = builder.add_get_tuple_field(block, list, LIST_CELL_INDEX)?; let first = builder.add_bag_get(block, bag)?; let index = builder.add_make_tuple(block, &[])?; let argument = if closure_env_layout.is_none() { builder.add_make_tuple(block, &[index, first])? } else { builder.add_make_tuple(block, &[index, first, closure_env])? }; builder.add_call(block, spec_var, module, name, argument)?; } ListMap { xs } => { let list = env.symbols[xs]; let closure_env = env.symbols[function_env]; let bag1 = builder.add_get_tuple_field(block, list, LIST_BAG_INDEX)?; let _cell1 = builder.add_get_tuple_field(block, list, LIST_CELL_INDEX)?; let elem1 = builder.add_bag_get(block, bag1)?; let argument = if closure_env_layout.is_none() { builder.add_make_tuple(block, &[elem1])? } else { builder.add_make_tuple(block, &[elem1, closure_env])? }; builder.add_call(block, spec_var, module, name, argument)?; } ListSortWith { xs } => { let list = env.symbols[xs]; let closure_env = env.symbols[function_env]; let bag1 = builder.add_get_tuple_field(block, list, LIST_BAG_INDEX)?; let _cell1 = builder.add_get_tuple_field(block, list, LIST_CELL_INDEX)?; let elem1 = builder.add_bag_get(block, bag1)?; let argument = if closure_env_layout.is_none() { builder.add_make_tuple(block, &[elem1, elem1])? } else { builder.add_make_tuple(block, &[elem1, elem1, closure_env])? }; builder.add_call(block, spec_var, module, name, argument)?; } ListMap2 { xs, ys } => { let list1 = env.symbols[xs]; let list2 = env.symbols[ys]; let closure_env = env.symbols[function_env]; let bag1 = builder.add_get_tuple_field(block, list1, LIST_BAG_INDEX)?; let _cell1 = builder.add_get_tuple_field(block, list1, LIST_CELL_INDEX)?; let elem1 = builder.add_bag_get(block, bag1)?; let bag2 = builder.add_get_tuple_field(block, list2, LIST_BAG_INDEX)?; let _cell2 = builder.add_get_tuple_field(block, list2, LIST_CELL_INDEX)?; let elem2 = builder.add_bag_get(block, bag2)?; let argument = if closure_env_layout.is_none() { builder.add_make_tuple(block, &[elem1, elem2])? } else { builder.add_make_tuple(block, &[elem1, elem2, closure_env])? }; builder.add_call(block, spec_var, module, name, argument)?; } ListMap3 { xs, ys, zs } => { let list1 = env.symbols[xs]; let list2 = env.symbols[ys]; let list3 = env.symbols[zs]; let closure_env = env.symbols[function_env]; let bag1 = builder.add_get_tuple_field(block, list1, LIST_BAG_INDEX)?; let _cell1 = builder.add_get_tuple_field(block, list1, LIST_CELL_INDEX)?; let elem1 = builder.add_bag_get(block, bag1)?; let bag2 = builder.add_get_tuple_field(block, list2, LIST_BAG_INDEX)?; let _cell2 = builder.add_get_tuple_field(block, list2, LIST_CELL_INDEX)?; let elem2 = builder.add_bag_get(block, bag2)?; let bag3 = builder.add_get_tuple_field(block, list3, LIST_BAG_INDEX)?; let _cell3 = builder.add_get_tuple_field(block, list3, LIST_CELL_INDEX)?; let elem3 = builder.add_bag_get(block, bag3)?; let argument = if closure_env_layout.is_none() { builder.add_make_tuple(block, &[elem1, elem2, elem3])? } else { builder.add_make_tuple(block, &[elem1, elem2, elem3, closure_env])? }; builder.add_call(block, spec_var, module, name, argument)?; } ListKeepIf { xs } | ListKeepOks { xs } | ListKeepErrs { xs } => { let list = env.symbols[xs]; let closure_env = env.symbols[function_env]; let bag = builder.add_get_tuple_field(block, list, LIST_BAG_INDEX)?; // let _cell = builder.add_get_tuple_field(block, list, LIST_CELL_INDEX)?; let first = builder.add_bag_get(block, bag)?; let argument = if closure_env_layout.is_none() { builder.add_make_tuple(block, &[first])? } else { builder.add_make_tuple(block, &[first, closure_env])? }; let result = builder.add_call(block, spec_var, module, name, argument)?; let unit = builder.add_tuple_type(&[])?; builder.add_unknown_with(block, &[result], unit)?; } } // TODO overly pessimstic // filter_map because one of the arguments is a function name, which // is not defined in the env let arguments: Vec<_> = call .arguments .iter() .filter_map(|symbol| env.symbols.get(symbol)) .copied() .collect(); let result_type = layout_spec(builder, layout)?; builder.add_unknown_with(block, &arguments, result_type) } } } fn lowlevel_spec( builder: &mut FuncDefBuilder, env: &Env, block: BlockId, layout: &Layout, op: &LowLevel, update_mode: crate::ir::UpdateModeId, arguments: &[Symbol], ) -> Result { use LowLevel::*; let type_id = layout_spec(builder, layout)?; let mode = update_mode.to_bytes(); let update_mode_var = UpdateModeVar(&mode); match op { NumAdd | NumSub => { // NOTE these numeric operations panic (e.g. on overflow) let pass_block = { let block = builder.add_block(); let value = new_num(builder, block)?; BlockExpr(block, value) }; let fail_block = { let block = builder.add_block(); let value = builder.add_terminate(block, type_id)?; BlockExpr(block, value) }; let sub_block = { let block = builder.add_block(); let choice = builder.add_choice(block, &[pass_block, fail_block])?; BlockExpr(block, choice) }; builder.add_sub_block(block, sub_block) } NumToFloat => { // just dream up a unit value builder.add_make_tuple(block, &[]) } Eq | NotEq => { // just dream up a unit value builder.add_make_tuple(block, &[]) } NumLte | NumLt | NumGt | NumGte | NumCompare => { // just dream up a unit value builder.add_make_tuple(block, &[]) } ListLen | DictSize => { // TODO should this touch the heap cell? // just dream up a unit value builder.add_make_tuple(block, &[]) } ListGetUnsafe => { // NOTE the ListGet lowlevel op is only evaluated if the index is in-bounds let list = env.symbols[&arguments[0]]; let bag = builder.add_get_tuple_field(block, list, LIST_BAG_INDEX)?; let cell = builder.add_get_tuple_field(block, list, LIST_CELL_INDEX)?; let _unit = builder.add_touch(block, cell)?; builder.add_bag_get(block, bag) } ListSet => { let list = env.symbols[&arguments[0]]; let to_insert = env.symbols[&arguments[2]]; let bag = builder.add_get_tuple_field(block, list, LIST_BAG_INDEX)?; let cell = builder.add_get_tuple_field(block, list, LIST_CELL_INDEX)?; let _unit = builder.add_update(block, update_mode_var, cell)?; builder.add_bag_insert(block, bag, to_insert)?; let new_cell = builder.add_new_heap_cell(block)?; builder.add_make_tuple(block, &[new_cell, bag]) } ListSwap => { let list = env.symbols[&arguments[0]]; let bag = builder.add_get_tuple_field(block, list, LIST_BAG_INDEX)?; let cell = builder.add_get_tuple_field(block, list, LIST_CELL_INDEX)?; let _unit = builder.add_update(block, update_mode_var, cell)?; let new_cell = builder.add_new_heap_cell(block)?; builder.add_make_tuple(block, &[new_cell, bag]) } ListReverse => { let list = env.symbols[&arguments[0]]; let bag = builder.add_get_tuple_field(block, list, LIST_BAG_INDEX)?; let cell = builder.add_get_tuple_field(block, list, LIST_CELL_INDEX)?; let _unit = builder.add_update(block, update_mode_var, cell)?; let new_cell = builder.add_new_heap_cell(block)?; builder.add_make_tuple(block, &[new_cell, bag]) } ListAppend => { let list = env.symbols[&arguments[0]]; let to_insert = env.symbols[&arguments[1]]; let bag = builder.add_get_tuple_field(block, list, LIST_BAG_INDEX)?; let cell = builder.add_get_tuple_field(block, list, LIST_CELL_INDEX)?; let _unit = builder.add_update(block, update_mode_var, cell)?; // TODO new heap cell builder.add_bag_insert(block, bag, to_insert)?; let new_cell = builder.add_new_heap_cell(block)?; builder.add_make_tuple(block, &[new_cell, bag]) } StrToUtf8 => { let string = env.symbols[&arguments[0]]; let u8_type = builder.add_tuple_type(&[])?; let bag = builder.add_empty_bag(block, u8_type)?; let cell = builder.add_get_tuple_field(block, string, LIST_CELL_INDEX)?; builder.add_make_tuple(block, &[cell, bag]) } StrFromUtf8 => { let list = env.symbols[&arguments[0]]; let cell = builder.add_get_tuple_field(block, list, LIST_CELL_INDEX)?; let string = builder.add_make_tuple(block, &[cell])?; let byte_index = builder.add_make_tuple(block, &[])?; let is_ok = builder.add_make_tuple(block, &[])?; let problem_code = builder.add_make_tuple(block, &[])?; builder.add_make_tuple(block, &[byte_index, string, is_ok, problem_code]) } DictEmpty => { match layout { Layout::Builtin(Builtin::EmptyDict) => { // just make up an element type let type_id = builder.add_tuple_type(&[])?; new_dict(builder, block, type_id, type_id) } Layout::Builtin(Builtin::Dict(key_layout, value_layout)) => { let key_id = layout_spec(builder, key_layout)?; let value_id = layout_spec(builder, value_layout)?; new_dict(builder, block, key_id, value_id) } _ => unreachable!("empty array does not have a list layout"), } } DictGetUnsafe => { // NOTE DictGetUnsafe returns a { flag: Bool, value: v } // when the flag is True, the value is found and defined; // otherwise it is not and `Dict.get` should return `Err ...` let dict = env.symbols[&arguments[0]]; let key = env.symbols[&arguments[1]]; // indicate that we use the key builder.add_recursive_touch(block, key)?; let bag = builder.add_get_tuple_field(block, dict, DICT_BAG_INDEX)?; let cell = builder.add_get_tuple_field(block, dict, DICT_CELL_INDEX)?; let _unit = builder.add_touch(block, cell)?; builder.add_bag_get(block, bag) } DictInsert => { let dict = env.symbols[&arguments[0]]; let key = env.symbols[&arguments[1]]; let value = env.symbols[&arguments[2]]; let key_value = builder.add_make_tuple(block, &[key, value])?; let bag = builder.add_get_tuple_field(block, dict, DICT_BAG_INDEX)?; let cell = builder.add_get_tuple_field(block, dict, DICT_CELL_INDEX)?; let _unit = builder.add_update(block, update_mode_var, cell)?; builder.add_bag_insert(block, bag, key_value)?; let new_cell = builder.add_new_heap_cell(block)?; builder.add_make_tuple(block, &[new_cell, bag]) } _other => { // println!("missing {:?}", _other); // TODO overly pessimstic let arguments: Vec<_> = arguments.iter().map(|symbol| env.symbols[symbol]).collect(); let result_type = layout_spec(builder, layout)?; builder.add_unknown_with(block, &arguments, result_type) } } } fn recursive_tag_variant( builder: &mut impl TypeContext, union_layout: &UnionLayout, fields: &[Layout], ) -> Result { let when_recursive = WhenRecursive::Loop(*union_layout); let data_id = build_recursive_tuple_type(builder, fields, &when_recursive)?; let cell_id = builder.add_heap_cell_type(); builder.add_tuple_type(&[cell_id, data_id]) } fn build_variant_types( builder: &mut impl TypeContext, union_layout: &UnionLayout, ) -> Result> { use UnionLayout::*; let mut result; match union_layout { NonRecursive(tags) => { result = Vec::with_capacity(tags.len()); for tag in tags.iter() { result.push(build_tuple_type(builder, tag)?); } } Recursive(tags) => { result = Vec::with_capacity(tags.len()); for tag in tags.iter() { result.push(recursive_tag_variant(builder, union_layout, tag)?); } } NonNullableUnwrapped(fields) => { result = vec![recursive_tag_variant(builder, union_layout, fields)?]; } NullableWrapped { nullable_id, other_tags: tags, } => { result = Vec::with_capacity(tags.len() + 1); let cutoff = *nullable_id as usize; for tag in tags[..cutoff].iter() { result.push(recursive_tag_variant(builder, union_layout, tag)?); } let unit = builder.add_tuple_type(&[])?; result.push(unit); for tag in tags[cutoff..].iter() { result.push(recursive_tag_variant(builder, union_layout, tag)?); } } NullableUnwrapped { nullable_id, other_fields: fields, } => { let unit = builder.add_tuple_type(&[])?; let other_type = recursive_tag_variant(builder, union_layout, fields)?; if *nullable_id { // nullable_id == 1 result = vec![other_type, unit]; } else { result = vec![unit, other_type]; } } } Ok(result) } #[allow(dead_code)] fn worst_case_type(context: &mut impl TypeContext) -> Result { let cell = context.add_heap_cell_type(); context.add_bag_type(cell) } fn expr_spec<'a>( builder: &mut FuncDefBuilder, env: &mut Env<'a>, block: BlockId, layout: &Layout<'a>, expr: &Expr<'a>, ) -> Result { use Expr::*; match expr { Literal(literal) => literal_spec(builder, block, literal), Call(call) => call_spec(builder, env, block, layout, call), Reuse { tag_layout, tag_name: _, tag_id, arguments, .. } | Tag { tag_layout, tag_name: _, tag_id, arguments, } => { let variant_types = build_variant_types(builder, tag_layout)?; let data_id = build_tuple_value(builder, env, block, arguments)?; let cell_id = builder.add_new_heap_cell(block)?; let value_id = match tag_layout { UnionLayout::NonRecursive(_) => { let value_id = build_tuple_value(builder, env, block, arguments)?; return builder.add_make_union(block, &variant_types, *tag_id as u32, value_id); } UnionLayout::NonNullableUnwrapped(_) => { let value_id = builder.add_make_tuple(block, &[cell_id, data_id])?; let type_name_bytes = recursive_tag_union_name_bytes(tag_layout).as_bytes(); let type_name = TypeName(&type_name_bytes); env.type_names.insert(*tag_layout); return builder.add_make_named(block, MOD_APP, type_name, value_id); } UnionLayout::Recursive(_) => builder.add_make_tuple(block, &[cell_id, data_id])?, UnionLayout::NullableWrapped { nullable_id, .. } => { if *tag_id == *nullable_id as u8 { data_id } else { builder.add_make_tuple(block, &[cell_id, data_id])? } } UnionLayout::NullableUnwrapped { nullable_id, .. } => { if *tag_id == *nullable_id as u8 { data_id } else { builder.add_make_tuple(block, &[cell_id, data_id])? } } }; let union_id = builder.add_make_union(block, &variant_types, *tag_id as u32, value_id)?; let type_name_bytes = recursive_tag_union_name_bytes(tag_layout).as_bytes(); let type_name = TypeName(&type_name_bytes); env.type_names.insert(*tag_layout); builder.add_make_named(block, MOD_APP, type_name, union_id) } Struct(fields) => build_tuple_value(builder, env, block, fields), UnionAtIndex { index, tag_id, structure, union_layout, } => match union_layout { UnionLayout::NonRecursive(_) => { let index = (*index) as u32; let tag_value_id = env.symbols[structure]; let tuple_value_id = builder.add_unwrap_union(block, tag_value_id, *tag_id as u32)?; builder.add_get_tuple_field(block, tuple_value_id, index) } UnionLayout::Recursive(_) | UnionLayout::NullableUnwrapped { .. } | UnionLayout::NullableWrapped { .. } => { let index = (*index) as u32; let tag_value_id = env.symbols[structure]; let type_name_bytes = recursive_tag_union_name_bytes(union_layout).as_bytes(); let type_name = TypeName(&type_name_bytes); let union_id = builder.add_unwrap_named(block, MOD_APP, type_name, tag_value_id)?; let variant_id = builder.add_unwrap_union(block, union_id, *tag_id as u32)?; // we're reading from this value, so touch the heap cell let heap_cell = builder.add_get_tuple_field(block, variant_id, 0)?; builder.add_touch(block, heap_cell)?; let tuple_value_id = builder.add_get_tuple_field(block, variant_id, 1)?; builder.add_get_tuple_field(block, tuple_value_id, index) } UnionLayout::NonNullableUnwrapped { .. } => { let index = (*index) as u32; debug_assert!(*tag_id == 0); let tag_value_id = env.symbols[structure]; let type_name_bytes = recursive_tag_union_name_bytes(union_layout).as_bytes(); let type_name = TypeName(&type_name_bytes); let variant_id = builder.add_unwrap_named(block, MOD_APP, type_name, tag_value_id)?; // we're reading from this value, so touch the heap cell let heap_cell = builder.add_get_tuple_field(block, variant_id, 0)?; builder.add_touch(block, heap_cell)?; let tuple_value_id = builder.add_get_tuple_field(block, variant_id, 1)?; builder.add_get_tuple_field(block, tuple_value_id, index) } }, StructAtIndex { index, structure, .. } => { let value_id = env.symbols[structure]; builder.add_get_tuple_field(block, value_id, *index as u32) } Array { elem_layout, elems } => { let type_id = layout_spec(builder, elem_layout)?; let list = new_list(builder, block, type_id)?; let mut bag = builder.add_get_tuple_field(block, list, LIST_BAG_INDEX)?; let mut all_constants = true; for element in elems.iter() { let value_id = if let ListLiteralElement::Symbol(symbol) = element { all_constants = false; env.symbols[symbol] } else { builder.add_make_tuple(block, &[]).unwrap() }; bag = builder.add_bag_insert(block, bag, value_id)?; } if all_constants { new_static_list(builder, block) } else { let cell = builder.add_new_heap_cell(block)?; builder.add_make_tuple(block, &[cell, bag]) } } EmptyArray => { use ListLayout::*; match ListLayout::try_from(layout) { Ok(EmptyList) => { // just make up an element type let type_id = builder.add_tuple_type(&[])?; new_list(builder, block, type_id) } Ok(List(element_layout)) => { let type_id = layout_spec(builder, element_layout)?; new_list(builder, block, type_id) } Err(()) => unreachable!("empty array does not have a list layout"), } } Reset(symbol) => { let type_id = layout_spec(builder, layout)?; let value_id = env.symbols[symbol]; builder.add_unknown_with(block, &[value_id], type_id) } RuntimeErrorFunction(_) => { let type_id = layout_spec(builder, layout)?; builder.add_terminate(block, type_id) } GetTagId { .. } => builder.add_make_tuple(block, &[]), } } fn literal_spec( builder: &mut FuncDefBuilder, block: BlockId, literal: &Literal, ) -> Result { use Literal::*; match literal { Str(_) => new_static_string(builder, block), Int(_) | Float(_) | Decimal(_) | Bool(_) | Byte(_) => builder.add_make_tuple(block, &[]), } } fn layout_spec(builder: &mut impl TypeContext, layout: &Layout) -> Result { layout_spec_help(builder, layout, &WhenRecursive::Unreachable) } fn layout_spec_help( builder: &mut impl TypeContext, layout: &Layout, when_recursive: &WhenRecursive, ) -> Result { use Layout::*; match layout { Builtin(builtin) => builtin_spec(builder, builtin, when_recursive), Struct(fields) => build_recursive_tuple_type(builder, fields, when_recursive), LambdaSet(lambda_set) => layout_spec_help( builder, &lambda_set.runtime_representation(), when_recursive, ), Union(union_layout) => { let variant_types = build_variant_types(builder, union_layout)?; match union_layout { UnionLayout::NonRecursive(_) => builder.add_union_type(&variant_types), UnionLayout::Recursive(_) | UnionLayout::NullableUnwrapped { .. } | UnionLayout::NullableWrapped { .. } | UnionLayout::NonNullableUnwrapped(_) => { let type_name_bytes = recursive_tag_union_name_bytes(union_layout).as_bytes(); let type_name = TypeName(&type_name_bytes); Ok(builder.add_named_type(MOD_APP, type_name)) } } } RecursivePointer => match when_recursive { WhenRecursive::Unreachable => { unreachable!() } WhenRecursive::Loop(union_layout) => match union_layout { UnionLayout::NonRecursive(_) => unreachable!(), UnionLayout::Recursive(_) | UnionLayout::NullableUnwrapped { .. } | UnionLayout::NullableWrapped { .. } | UnionLayout::NonNullableUnwrapped(_) => { let type_name_bytes = recursive_tag_union_name_bytes(union_layout).as_bytes(); let type_name = TypeName(&type_name_bytes); Ok(builder.add_named_type(MOD_APP, type_name)) } }, }, } } fn builtin_spec( builder: &mut impl TypeContext, builtin: &Builtin, when_recursive: &WhenRecursive, ) -> Result { use Builtin::*; match builtin { Int128 | Int64 | Int32 | Int16 | Int8 | Int1 | Usize => builder.add_tuple_type(&[]), Decimal | Float128 | Float64 | Float32 => builder.add_tuple_type(&[]), Str | EmptyStr => str_type(builder), Dict(key_layout, value_layout) => { let value_type = layout_spec_help(builder, value_layout, when_recursive)?; let key_type = layout_spec_help(builder, key_layout, when_recursive)?; let element_type = builder.add_tuple_type(&[key_type, value_type])?; let cell = builder.add_heap_cell_type(); let bag = builder.add_bag_type(element_type)?; builder.add_tuple_type(&[cell, bag]) } Set(key_layout) => { let value_type = builder.add_tuple_type(&[])?; let key_type = layout_spec_help(builder, key_layout, when_recursive)?; let element_type = builder.add_tuple_type(&[key_type, value_type])?; let cell = builder.add_heap_cell_type(); let bag = builder.add_bag_type(element_type)?; builder.add_tuple_type(&[cell, bag]) } List(element_layout) => { let element_type = layout_spec_help(builder, element_layout, when_recursive)?; let cell = builder.add_heap_cell_type(); let bag = builder.add_bag_type(element_type)?; builder.add_tuple_type(&[cell, bag]) } EmptyList => { // TODO make sure that we consistently treat the EmptyList as a list of unit values let element_type = builder.add_tuple_type(&[])?; let cell = builder.add_heap_cell_type(); let bag = builder.add_bag_type(element_type)?; builder.add_tuple_type(&[cell, bag]) } EmptyDict | EmptySet => { // TODO make sure that we consistently treat the these as a dict of unit values let unit = builder.add_tuple_type(&[])?; let element_type = builder.add_tuple_type(&[unit, unit])?; let cell = builder.add_heap_cell_type(); let bag = builder.add_bag_type(element_type)?; builder.add_tuple_type(&[cell, bag]) } } } fn str_type(builder: &mut TC) -> Result { let cell_id = builder.add_heap_cell_type(); builder.add_tuple_type(&[cell_id]) } fn static_list_type(builder: &mut TC) -> Result { let unit_type = builder.add_tuple_type(&[])?; let cell = builder.add_heap_cell_type(); let bag = builder.add_bag_type(unit_type)?; builder.add_tuple_type(&[cell, bag]) } // const OK_TAG_ID: u8 = 1u8; // const ERR_TAG_ID: u8 = 0u8; const LIST_CELL_INDEX: u32 = 0; const LIST_BAG_INDEX: u32 = 1; const DICT_CELL_INDEX: u32 = LIST_CELL_INDEX; const DICT_BAG_INDEX: u32 = LIST_BAG_INDEX; fn new_list(builder: &mut FuncDefBuilder, block: BlockId, element_type: TypeId) -> Result { let cell = builder.add_new_heap_cell(block)?; let bag = builder.add_empty_bag(block, element_type)?; builder.add_make_tuple(block, &[cell, bag]) } fn new_dict( builder: &mut FuncDefBuilder, block: BlockId, key_type: TypeId, value_type: TypeId, ) -> Result { let cell = builder.add_new_heap_cell(block)?; let element_type = builder.add_tuple_type(&[key_type, value_type])?; let bag = builder.add_empty_bag(block, element_type)?; builder.add_make_tuple(block, &[cell, bag]) } fn new_static_string(builder: &mut FuncDefBuilder, block: BlockId) -> Result { let module = MOD_APP; builder.add_const_ref(block, module, STATIC_STR_NAME) } fn new_static_list(builder: &mut FuncDefBuilder, block: BlockId) -> Result { let module = MOD_APP; builder.add_const_ref(block, module, STATIC_LIST_NAME) } fn new_num(builder: &mut FuncDefBuilder, block: BlockId) -> Result { // we model all our numbers as unit values builder.add_make_tuple(block, &[]) }