const std = @import("std"); const utils = @import("utils.zig"); const str = @import("str.zig"); const UpdateMode = utils.UpdateMode; const mem = std.mem; const math = std.math; const expect = std.testing.expect; const EqFn = *const fn (?[*]u8, ?[*]u8) callconv(.C) bool; const CompareFn = *const fn (?[*]u8, ?[*]u8, ?[*]u8) callconv(.C) u8; const Opaque = ?[*]u8; const Inc = *const fn (?[*]u8) callconv(.C) void; const IncN = *const fn (?[*]u8, usize) callconv(.C) void; const Dec = *const fn (?[*]u8) callconv(.C) void; const HasTagId = *const fn (u16, ?[*]u8) callconv(.C) extern struct { matched: bool, data: ?[*]u8 }; const SEAMLESS_SLICE_BIT: usize = @as(usize, @bitCast(@as(isize, std.math.minInt(isize)))); pub const RocList = extern struct { bytes: ?[*]u8, length: usize, // For normal lists, contains the capacity. // For seamless slices contains the pointer to the original allocation. // This pointer is to the first element of the original list. // Note we storing an allocation pointer, the pointer must be right shifted by one. capacity_or_alloc_ptr: usize, pub inline fn len(self: RocList) usize { return self.length; } pub fn getCapacity(self: RocList) usize { const list_capacity = self.capacity_or_alloc_ptr; const slice_capacity = self.length; const slice_mask = self.seamlessSliceMask(); const capacity = (list_capacity & ~slice_mask) | (slice_capacity & slice_mask); return capacity; } pub fn isSeamlessSlice(self: RocList) bool { return @as(isize, @bitCast(self.capacity_or_alloc_ptr)) < 0; } // This returns all ones if the list is a seamless slice. // Otherwise, it returns all zeros. // This is done without branching for optimization purposes. pub fn seamlessSliceMask(self: RocList) usize { return @as(usize, @bitCast(@as(isize, @bitCast(self.capacity_or_alloc_ptr)) >> (@bitSizeOf(isize) - 1))); } pub fn isEmpty(self: RocList) bool { return self.len() == 0; } pub fn empty() RocList { return RocList{ .bytes = null, .length = 0, .capacity_or_alloc_ptr = 0 }; } pub fn eql(self: RocList, other: RocList) bool { if (self.len() != other.len()) { return false; } // Their lengths are the same, and one is empty; they're both empty! if (self.isEmpty()) { return true; } var index: usize = 0; const self_bytes = self.bytes orelse unreachable; const other_bytes = other.bytes orelse unreachable; while (index < self.len()) { if (self_bytes[index] != other_bytes[index]) { return false; } index += 1; } return true; } pub fn fromSlice(comptime T: type, slice: []const T) RocList { if (slice.len == 0) { return RocList.empty(); } var list = allocate(@alignOf(T), slice.len, @sizeOf(T)); if (slice.len > 0) { const dest = list.bytes orelse unreachable; const src = @as([*]const u8, @ptrCast(slice.ptr)); const num_bytes = slice.len * @sizeOf(T); @memcpy(dest[0..num_bytes], src[0..num_bytes]); } return list; } // returns a pointer to the original allocation. // This pointer points to the first element of the allocation. // The pointer is to just after the refcount. // For big lists, it just returns their bytes pointer. // For seamless slices, it returns the pointer stored in capacity_or_alloc_ptr. pub fn getAllocationPtr(self: RocList) ?[*]u8 { const list_alloc_ptr = @intFromPtr(self.bytes); const slice_alloc_ptr = self.capacity_or_alloc_ptr << 1; const slice_mask = self.seamlessSliceMask(); const alloc_ptr = (list_alloc_ptr & ~slice_mask) | (slice_alloc_ptr & slice_mask); return @as(?[*]u8, @ptrFromInt(alloc_ptr)); } pub fn decref(self: RocList, alignment: u32) void { // We use the raw capacity to ensure we always decrement the refcount of seamless slices. utils.decref(self.getAllocationPtr(), self.capacity_or_alloc_ptr, alignment); } pub fn elements(self: RocList, comptime T: type) ?[*]T { return @as(?[*]T, @ptrCast(@alignCast(self.bytes))); } pub fn isUnique(self: RocList) bool { return self.refcountMachine() == utils.REFCOUNT_ONE; } fn refcountMachine(self: RocList) usize { if (self.getCapacity() == 0 and !self.isSeamlessSlice()) { // the zero-capacity is Clone, copying it will not leak memory return utils.REFCOUNT_ONE; } const ptr: [*]usize = @as([*]usize, @ptrCast(@alignCast(self.bytes))); return (ptr - 1)[0]; } fn refcountHuman(self: RocList) usize { return self.refcountMachine() - utils.REFCOUNT_ONE + 1; } pub fn makeUniqueExtra(self: RocList, alignment: u32, element_width: usize, update_mode: UpdateMode) RocList { if (update_mode == .InPlace) { return self; } else { return self.makeUnique(alignment, element_width); } } pub fn makeUnique(self: RocList, alignment: u32, element_width: usize) RocList { if (self.isUnique()) { return self; } if (self.isEmpty()) { // Empty is not necessarily unique on it's own. // The list could have capacity and be shared. self.decref(alignment); return RocList.empty(); } // unfortunately, we have to clone var new_list = RocList.allocate(alignment, self.length, element_width); var old_bytes: [*]u8 = @as([*]u8, @ptrCast(self.bytes)); var new_bytes: [*]u8 = @as([*]u8, @ptrCast(new_list.bytes)); const number_of_bytes = self.len() * element_width; @memcpy(new_bytes[0..number_of_bytes], old_bytes[0..number_of_bytes]); // NOTE we fuse an increment of all keys/values with a decrement of the input list. self.decref(alignment); return new_list; } pub fn allocate( alignment: u32, length: usize, element_width: usize, ) RocList { if (length == 0) { return empty(); } const capacity = utils.calculateCapacity(0, length, element_width); const data_bytes = capacity * element_width; return RocList{ .bytes = utils.allocateWithRefcount(data_bytes, alignment), .length = length, .capacity_or_alloc_ptr = capacity, }; } pub fn allocateExact( alignment: u32, length: usize, element_width: usize, ) RocList { if (length == 0) { return empty(); } const data_bytes = length * element_width; return RocList{ .bytes = utils.allocateWithRefcount(data_bytes, alignment), .length = length, .capacity_or_alloc_ptr = length, }; } pub fn reallocate( self: RocList, alignment: u32, new_length: usize, element_width: usize, ) RocList { if (self.bytes) |source_ptr| { if (self.isUnique() and !self.isSeamlessSlice()) { const capacity = self.capacity_or_alloc_ptr; if (capacity >= new_length) { return RocList{ .bytes = self.bytes, .length = new_length, .capacity_or_alloc_ptr = capacity }; } else { const new_capacity = utils.calculateCapacity(capacity, new_length, element_width); const new_source = utils.unsafeReallocate(source_ptr, alignment, capacity, new_capacity, element_width); return RocList{ .bytes = new_source, .length = new_length, .capacity_or_alloc_ptr = new_capacity }; } } return self.reallocateFresh(alignment, new_length, element_width); } return RocList.allocate(alignment, new_length, element_width); } /// reallocate by explicitly making a new allocation and copying elements over fn reallocateFresh( self: RocList, alignment: u32, new_length: usize, element_width: usize, ) RocList { const old_length = self.length; const result = RocList.allocate(alignment, new_length, element_width); // transfer the memory if (self.bytes) |source_ptr| { const dest_ptr = result.bytes orelse unreachable; @memcpy(dest_ptr[0..(old_length * element_width)], source_ptr[0..(old_length * element_width)]); @memset(dest_ptr[(old_length * element_width)..(new_length * element_width)], 0); } self.decref(alignment); return result; } }; const Caller0 = *const fn (?[*]u8, ?[*]u8) callconv(.C) void; const Caller1 = *const fn (?[*]u8, ?[*]u8, ?[*]u8) callconv(.C) void; const Caller2 = *const fn (?[*]u8, ?[*]u8, ?[*]u8, ?[*]u8) callconv(.C) void; const Caller3 = *const fn (?[*]u8, ?[*]u8, ?[*]u8, ?[*]u8, ?[*]u8) callconv(.C) void; const Caller4 = *const fn (?[*]u8, ?[*]u8, ?[*]u8, ?[*]u8, ?[*]u8, ?[*]u8) callconv(.C) void; pub fn listMap( list: RocList, caller: Caller1, data: Opaque, inc_n_data: IncN, data_is_owned: bool, alignment: u32, old_element_width: usize, new_element_width: usize, ) callconv(.C) RocList { if (list.bytes) |source_ptr| { const size = list.len(); var i: usize = 0; const output = RocList.allocate(alignment, size, new_element_width); const target_ptr = output.bytes orelse unreachable; if (data_is_owned) { inc_n_data(data, size); } while (i < size) : (i += 1) { caller(data, source_ptr + (i * old_element_width), target_ptr + (i * new_element_width)); } return output; } else { return RocList.empty(); } } fn decrementTail(list: RocList, start_index: usize, element_width: usize, dec: Dec) void { if (list.bytes) |source| { var i = start_index; while (i < list.len()) : (i += 1) { const element = source + i * element_width; dec(element); } } } pub fn listMap2( list1: RocList, list2: RocList, caller: Caller2, data: Opaque, inc_n_data: IncN, data_is_owned: bool, alignment: u32, a_width: usize, b_width: usize, c_width: usize, dec_a: Dec, dec_b: Dec, ) callconv(.C) RocList { const output_length = @min(list1.len(), list2.len()); // if the lists don't have equal length, we must consume the remaining elements // In this case we consume by (recursively) decrementing the elements decrementTail(list1, output_length, a_width, dec_a); decrementTail(list2, output_length, b_width, dec_b); if (data_is_owned) { inc_n_data(data, output_length); } if (list1.bytes) |source_a| { if (list2.bytes) |source_b| { const output = RocList.allocate(alignment, output_length, c_width); const target_ptr = output.bytes orelse unreachable; var i: usize = 0; while (i < output_length) : (i += 1) { const element_a = source_a + i * a_width; const element_b = source_b + i * b_width; const target = target_ptr + i * c_width; caller(data, element_a, element_b, target); } return output; } else { return RocList.empty(); } } else { return RocList.empty(); } } pub fn listMap3( list1: RocList, list2: RocList, list3: RocList, caller: Caller3, data: Opaque, inc_n_data: IncN, data_is_owned: bool, alignment: u32, a_width: usize, b_width: usize, c_width: usize, d_width: usize, dec_a: Dec, dec_b: Dec, dec_c: Dec, ) callconv(.C) RocList { const smaller_length = @min(list1.len(), list2.len()); const output_length = @min(smaller_length, list3.len()); decrementTail(list1, output_length, a_width, dec_a); decrementTail(list2, output_length, b_width, dec_b); decrementTail(list3, output_length, c_width, dec_c); if (data_is_owned) { inc_n_data(data, output_length); } if (list1.bytes) |source_a| { if (list2.bytes) |source_b| { if (list3.bytes) |source_c| { const output = RocList.allocate(alignment, output_length, d_width); const target_ptr = output.bytes orelse unreachable; var i: usize = 0; while (i < output_length) : (i += 1) { const element_a = source_a + i * a_width; const element_b = source_b + i * b_width; const element_c = source_c + i * c_width; const target = target_ptr + i * d_width; caller(data, element_a, element_b, element_c, target); } return output; } else { return RocList.empty(); } } else { return RocList.empty(); } } else { return RocList.empty(); } } pub fn listMap4( list1: RocList, list2: RocList, list3: RocList, list4: RocList, caller: Caller4, data: Opaque, inc_n_data: IncN, data_is_owned: bool, alignment: u32, a_width: usize, b_width: usize, c_width: usize, d_width: usize, e_width: usize, dec_a: Dec, dec_b: Dec, dec_c: Dec, dec_d: Dec, ) callconv(.C) RocList { const output_length = @min(@min(list1.len(), list2.len()), @min(list3.len(), list4.len())); decrementTail(list1, output_length, a_width, dec_a); decrementTail(list2, output_length, b_width, dec_b); decrementTail(list3, output_length, c_width, dec_c); decrementTail(list4, output_length, d_width, dec_d); if (data_is_owned) { inc_n_data(data, output_length); } if (list1.bytes) |source_a| { if (list2.bytes) |source_b| { if (list3.bytes) |source_c| { if (list4.bytes) |source_d| { const output = RocList.allocate(alignment, output_length, e_width); const target_ptr = output.bytes orelse unreachable; var i: usize = 0; while (i < output_length) : (i += 1) { const element_a = source_a + i * a_width; const element_b = source_b + i * b_width; const element_c = source_c + i * c_width; const element_d = source_d + i * d_width; const target = target_ptr + i * e_width; caller(data, element_a, element_b, element_c, element_d, target); } return output; } else { return RocList.empty(); } } else { return RocList.empty(); } } else { return RocList.empty(); } } else { return RocList.empty(); } } pub fn listWithCapacity( capacity: u64, alignment: u32, element_width: usize, ) callconv(.C) RocList { return listReserve(RocList.empty(), alignment, capacity, element_width, .InPlace); } pub fn listReserve( list: RocList, alignment: u32, spare: u64, element_width: usize, update_mode: UpdateMode, ) callconv(.C) RocList { const original_len = list.len(); const cap = @as(u64, @intCast(list.getCapacity())); const desired_cap = @as(u64, @intCast(original_len)) +| spare; if ((update_mode == .InPlace or list.isUnique()) and cap >= desired_cap) { return list; } else { // Make sure on 32-bit targets we don't accidentally wrap when we cast our U64 desired capacity to U32. const reserve_size: u64 = @min(desired_cap, @as(u64, @intCast(std.math.maxInt(usize)))); var output = list.reallocate(alignment, @as(usize, @intCast(reserve_size)), element_width); output.length = original_len; return output; } } pub fn listReleaseExcessCapacity( list: RocList, alignment: u32, element_width: usize, update_mode: UpdateMode, ) callconv(.C) RocList { const old_length = list.len(); // We use the direct list.capacity_or_alloc_ptr to make sure both that there is no extra capacity and that it isn't a seamless slice. if ((update_mode == .InPlace or list.isUnique()) and list.capacity_or_alloc_ptr == old_length) { return list; } else if (old_length == 0) { list.decref(alignment); return RocList.empty(); } else { var output = RocList.allocateExact(alignment, old_length, element_width); if (list.bytes) |source_ptr| { const dest_ptr = output.bytes orelse unreachable; @memcpy(dest_ptr[0..(old_length * element_width)], source_ptr[0..(old_length * element_width)]); } list.decref(alignment); return output; } } pub fn listAppendUnsafe( list: RocList, element: Opaque, element_width: usize, ) callconv(.C) RocList { const old_length = list.len(); var output = list; output.length += 1; if (output.bytes) |bytes| { if (element) |source| { const target = bytes + old_length * element_width; @memcpy(target[0..element_width], source[0..element_width]); } } return output; } fn listAppend(list: RocList, alignment: u32, element: Opaque, element_width: usize, update_mode: UpdateMode) callconv(.C) RocList { const with_capacity = listReserve(list, alignment, 1, element_width, update_mode); return listAppendUnsafe(with_capacity, element, element_width); } pub fn listPrepend(list: RocList, alignment: u32, element: Opaque, element_width: usize) callconv(.C) RocList { const old_length = list.len(); // TODO: properly wire in update mode. var with_capacity = listReserve(list, alignment, 1, element_width, .Immutable); with_capacity.length += 1; // can't use one memcpy here because source and target overlap if (with_capacity.bytes) |target| { var i: usize = old_length; while (i > 0) { i -= 1; // move the ith element to the (i + 1)th position const to = target + (i + 1) * element_width; const from = target + i * element_width; @memcpy(to[0..element_width], from[0..element_width]); } // finally copy in the new first element if (element) |source| { @memcpy(target[0..element_width], source[0..element_width]); } } return with_capacity; } pub fn listSwap( list: RocList, alignment: u32, element_width: usize, index_1: u64, index_2: u64, update_mode: UpdateMode, ) callconv(.C) RocList { const size = @as(u64, @intCast(list.len())); if (index_1 == index_2 or index_1 >= size or index_2 >= size) { // Either one index was out of bounds, or both indices were the same; just return return list; } const newList = blk: { if (update_mode == .InPlace) { break :blk list; } else { break :blk list.makeUnique(alignment, element_width); } }; const source_ptr = @as([*]u8, @ptrCast(newList.bytes)); swapElements(source_ptr, element_width, @as(usize, // We already verified that both indices are less than the stored list length, // which is usize, so casting them to usize will definitely be lossless. @intCast(index_1)), @as(usize, @intCast(index_2))); return newList; } pub fn listSublist( list: RocList, alignment: u32, element_width: usize, start_u64: u64, len_u64: u64, dec: Dec, ) callconv(.C) RocList { const size = list.len(); if (size == 0 or start_u64 >= @as(u64, @intCast(size))) { // Decrement the reference counts of all elements. if (list.bytes) |source_ptr| { var i: usize = 0; while (i < size) : (i += 1) { const element = source_ptr + i * element_width; dec(element); } } if (list.isUnique()) { var output = list; output.length = 0; return output; } list.decref(alignment); return RocList.empty(); } if (list.bytes) |source_ptr| { // This cast is lossless because we would have early-returned already // if `start_u64` were greater than `size`, and `size` fits in usize. const start: usize = @intCast(start_u64); const drop_start_len = start; // (size - start) can't overflow because we would have early-returned already // if `start` were greater than `size`. const size_minus_start = size - start; // This outer cast to usize is lossless. size, start, and size_minus_start all fit in usize, // and @min guarantees that if `len_u64` gets returned, it's because it was smaller // than something that fit in usize. const keep_len = @as(usize, @intCast(@min(len_u64, @as(u64, @intCast(size_minus_start))))); // This can't overflow because if len > size_minus_start, // then keep_len == size_minus_start and this will be 0. // Alternatively, if len <= size_minus_start, then keep_len will // be equal to len, meaning keep_len <= size_minus_start too, // which in turn means this won't overflow. const drop_end_len = size_minus_start - keep_len; // Decrement the reference counts of elements before `start`. var i: usize = 0; while (i < drop_start_len) : (i += 1) { const element = source_ptr + i * element_width; dec(element); } // Decrement the reference counts of elements after `start + keep_len`. i = 0; while (i < drop_end_len) : (i += 1) { const element = source_ptr + (start + keep_len + i) * element_width; dec(element); } if (start == 0 and list.isUnique()) { var output = list; output.length = keep_len; return output; } else { const list_alloc_ptr = (@intFromPtr(source_ptr) >> 1) | SEAMLESS_SLICE_BIT; const slice_alloc_ptr = list.capacity_or_alloc_ptr; const slice_mask = list.seamlessSliceMask(); const alloc_ptr = (list_alloc_ptr & ~slice_mask) | (slice_alloc_ptr & slice_mask); return RocList{ .bytes = source_ptr + start * element_width, .length = keep_len, .capacity_or_alloc_ptr = alloc_ptr, }; } } return RocList.empty(); } pub fn listDropAt( list: RocList, alignment: u32, element_width: usize, drop_index_u64: u64, dec: Dec, ) callconv(.C) RocList { const size = list.len(); const size_u64 = @as(u64, @intCast(size)); // If droping the first or last element, return a seamless slice. // For simplicity, do this by calling listSublist. // In the future, we can test if it is faster to manually inline the important parts here. if (drop_index_u64 == 0) { return listSublist(list, alignment, element_width, 1, size -| 1, dec); } else if (drop_index_u64 == size_u64 - 1) { // It's fine if (size - 1) wraps on size == 0 here, // because if size is 0 then it's always fine for this branch to be taken; no // matter what drop_index was, we're size == 0, so empty list will always be returned. return listSublist(list, alignment, element_width, 0, size -| 1, dec); } if (list.bytes) |source_ptr| { if (drop_index_u64 >= size_u64) { return list; } // This cast must be lossless, because we would have just early-returned if drop_index // were >= than `size`, and we know `size` fits in usize. const drop_index: usize = @intCast(drop_index_u64); const element = source_ptr + drop_index * element_width; dec(element); // NOTE // we need to return an empty list explicitly, // because we rely on the pointer field being null if the list is empty // which also requires duplicating the utils.decref call to spend the RC token if (size < 2) { list.decref(alignment); return RocList.empty(); } if (list.isUnique()) { var i = drop_index; while (i < size - 1) : (i += 1) { const copy_target = source_ptr + i * element_width; const copy_source = copy_target + element_width; @memcpy(copy_target[0..element_width], copy_source[0..element_width]); } var new_list = list; new_list.length -= 1; return new_list; } const output = RocList.allocate(alignment, size - 1, element_width); const target_ptr = output.bytes orelse unreachable; const head_size = drop_index * element_width; @memcpy(target_ptr[0..head_size], source_ptr[0..head_size]); const tail_target = target_ptr + drop_index * element_width; const tail_source = source_ptr + (drop_index + 1) * element_width; const tail_size = (size - drop_index - 1) * element_width; @memcpy(tail_target[0..tail_size], tail_source[0..tail_size]); list.decref(alignment); return output; } else { return RocList.empty(); } } fn partition(source_ptr: [*]u8, transform: Opaque, wrapper: CompareFn, element_width: usize, low: isize, high: isize) isize { const pivot = source_ptr + (@as(usize, @intCast(high)) * element_width); var i = (low - 1); // Index of smaller element and indicates the right position of pivot found so far var j = low; while (j <= high - 1) : (j += 1) { const current_elem = source_ptr + (@as(usize, @intCast(j)) * element_width); const ordering = wrapper(transform, current_elem, pivot); const order = @as(utils.Ordering, @enumFromInt(ordering)); switch (order) { utils.Ordering.LT => { // the current element is smaller than the pivot; swap it i += 1; swapElements(source_ptr, element_width, @as(usize, @intCast(i)), @as(usize, @intCast(j))); }, utils.Ordering.EQ, utils.Ordering.GT => {}, } } swapElements(source_ptr, element_width, @as(usize, @intCast(i + 1)), @as(usize, @intCast(high))); return (i + 1); } fn quicksort(source_ptr: [*]u8, transform: Opaque, wrapper: CompareFn, element_width: usize, low: isize, high: isize) void { if (low < high) { // partition index const pi = partition(source_ptr, transform, wrapper, element_width, low, high); _ = quicksort(source_ptr, transform, wrapper, element_width, low, pi - 1); // before pi _ = quicksort(source_ptr, transform, wrapper, element_width, pi + 1, high); // after pi } } pub fn listSortWith( input: RocList, caller: CompareFn, data: Opaque, inc_n_data: IncN, data_is_owned: bool, alignment: u32, element_width: usize, ) callconv(.C) RocList { var list = input.makeUnique(alignment, element_width); if (data_is_owned) { inc_n_data(data, list.len()); } if (list.bytes) |source_ptr| { const low = 0; const high: isize = @as(isize, @intCast(list.len())) - 1; quicksort(source_ptr, data, caller, element_width, low, high); } return list; } // SWAP ELEMENTS inline fn swapHelp(width: usize, temporary: [*]u8, ptr1: [*]u8, ptr2: [*]u8) void { @memcpy(temporary[0..width], ptr1[0..width]); @memcpy(ptr1[0..width], ptr2[0..width]); @memcpy(ptr2[0..width], temporary[0..width]); } fn swap(width_initial: usize, p1: [*]u8, p2: [*]u8) void { const threshold: usize = 64; var width = width_initial; var ptr1 = p1; var ptr2 = p2; var buffer_actual: [threshold]u8 = undefined; var buffer: [*]u8 = buffer_actual[0..]; while (true) { if (width < threshold) { swapHelp(width, buffer, ptr1, ptr2); return; } else { swapHelp(threshold, buffer, ptr1, ptr2); ptr1 += threshold; ptr2 += threshold; width -= threshold; } } } fn swapElements(source_ptr: [*]u8, element_width: usize, index_1: usize, index_2: usize) void { var element_at_i = source_ptr + (index_1 * element_width); var element_at_j = source_ptr + (index_2 * element_width); return swap(element_width, element_at_i, element_at_j); } pub fn listConcat(list_a: RocList, list_b: RocList, alignment: u32, element_width: usize) callconv(.C) RocList { // NOTE we always use list_a! because it is owned, we must consume it, and it may have unused capacity if (list_b.isEmpty()) { if (list_a.getCapacity() == 0) { // a could be a seamless slice, so we still need to decref. list_a.decref(alignment); return list_b; } else { // we must consume this list. Even though it has no elements, it could still have capacity list_b.decref(alignment); return list_a; } } else if (list_a.isUnique()) { const total_length: usize = list_a.len() + list_b.len(); const resized_list_a = list_a.reallocate(alignment, total_length, element_width); // These must exist, otherwise, the lists would have been empty. const source_a = resized_list_a.bytes orelse unreachable; const source_b = list_b.bytes orelse unreachable; @memcpy(source_a[(list_a.len() * element_width)..(total_length * element_width)], source_b[0..(list_b.len() * element_width)]); // decrement list b. list_b.decref(alignment); return resized_list_a; } else if (list_b.isUnique()) { const total_length: usize = list_a.len() + list_b.len(); const resized_list_b = list_b.reallocate(alignment, total_length, element_width); // These must exist, otherwise, the lists would have been empty. const source_a = list_a.bytes orelse unreachable; const source_b = resized_list_b.bytes orelse unreachable; // This is a bit special, we need to first copy the elements of list_b to the end, // then copy the elements of list_a to the beginning. // This first call must use mem.copy because the slices might overlap. const byte_count_a = list_a.len() * element_width; const byte_count_b = list_b.len() * element_width; mem.copyBackwards(u8, source_b[byte_count_a .. byte_count_a + byte_count_b], source_b[0..byte_count_b]); @memcpy(source_b[0..byte_count_a], source_a[0..byte_count_a]); // decrement list a. list_a.decref(alignment); return resized_list_b; } const total_length: usize = list_a.len() + list_b.len(); const output = RocList.allocate(alignment, total_length, element_width); // These must exist, otherwise, the lists would have been empty. const target = output.bytes orelse unreachable; const source_a = list_a.bytes orelse unreachable; const source_b = list_b.bytes orelse unreachable; @memcpy(target[0..(list_a.len() * element_width)], source_a[0..(list_a.len() * element_width)]); @memcpy(target[(list_a.len() * element_width)..(total_length * element_width)], source_b[0..(list_b.len() * element_width)]); // decrement list a and b. list_a.decref(alignment); list_b.decref(alignment); return output; } pub fn listReplaceInPlace( list: RocList, index: u64, element: Opaque, element_width: usize, out_element: ?[*]u8, ) callconv(.C) RocList { // INVARIANT: bounds checking happens on the roc side // // at the time of writing, the function is implemented roughly as // `if inBounds then LowLevelListReplace input index item else input` // so we don't do a bounds check here. Hence, the list is also non-empty, // because inserting into an empty list is always out of bounds, // and it's always safe to cast index to usize. return listReplaceInPlaceHelp(list, @as(usize, @intCast(index)), element, element_width, out_element); } pub fn listReplace( list: RocList, alignment: u32, index: u64, element: Opaque, element_width: usize, out_element: ?[*]u8, ) callconv(.C) RocList { // INVARIANT: bounds checking happens on the roc side // // at the time of writing, the function is implemented roughly as // `if inBounds then LowLevelListReplace input index item else input` // so we don't do a bounds check here. Hence, the list is also non-empty, // because inserting into an empty list is always out of bounds, // and it's always safe to cast index to usize. return listReplaceInPlaceHelp(list.makeUnique(alignment, element_width), @as(usize, @intCast(index)), element, element_width, out_element); } inline fn listReplaceInPlaceHelp( list: RocList, index: usize, element: Opaque, element_width: usize, out_element: ?[*]u8, ) RocList { // the element we will replace var element_at_index = (list.bytes orelse unreachable) + (index * element_width); // copy out the old element @memcpy((out_element orelse unreachable)[0..element_width], element_at_index[0..element_width]); // copy in the new element @memcpy(element_at_index[0..element_width], (element orelse unreachable)[0..element_width]); return list; } pub fn listIsUnique( list: RocList, ) callconv(.C) bool { return list.isEmpty() or list.isUnique(); } pub fn listClone( list: RocList, alignment: u32, element_width: usize, ) callconv(.C) RocList { return list.makeUnique(alignment, element_width); } pub fn listCapacity( list: RocList, ) callconv(.C) usize { return list.getCapacity(); } pub fn listAllocationPtr( list: RocList, ) callconv(.C) ?[*]u8 { return list.getAllocationPtr(); } test "listConcat: non-unique with unique overlapping" { var nonUnique = RocList.fromSlice(u8, ([_]u8{1})[0..]); var bytes: [*]u8 = @as([*]u8, @ptrCast(nonUnique.bytes)); const ptr_width = @sizeOf(usize); const refcount_ptr = @as([*]isize, @ptrCast(@as([*]align(ptr_width) u8, @alignCast(bytes)) - ptr_width)); utils.increfRcPtrC(&refcount_ptr[0], 1); defer nonUnique.decref(@sizeOf(u8)); // listConcat will dec the other refcount var unique = RocList.fromSlice(u8, ([_]u8{ 2, 3, 4 })[0..]); defer unique.decref(@sizeOf(u8)); var concatted = listConcat(nonUnique, unique, 1, 1); var wanted = RocList.fromSlice(u8, ([_]u8{ 1, 2, 3, 4 })[0..]); defer wanted.decref(@sizeOf(u8)); try expect(concatted.eql(wanted)); } pub fn listConcatUtf8( list: RocList, string: str.RocStr, ) callconv(.C) RocList { if (string.len() == 0) { return list; } else { const combined_length = list.len() + string.len(); // List U8 has alignment 1 and element_width 1 var result = list.reallocate(1, combined_length, 1); // We just allocated combined_length, which is > 0 because string.len() > 0 var bytes = result.bytes orelse unreachable; @memcpy(bytes[list.len()..combined_length], string.asU8ptr()[0..string.len()]); return result; } } test "listConcatUtf8" { const list = RocList.fromSlice(u8, &[_]u8{ 1, 2, 3, 4 }); defer list.decref(1); const string_bytes = "🐦"; const string = str.RocStr.init(string_bytes, string_bytes.len); defer string.decref(); const ret = listConcatUtf8(list, string); const expected = RocList.fromSlice(u8, &[_]u8{ 1, 2, 3, 4, 240, 159, 144, 166 }); defer expected.decref(1); try expect(ret.eql(expected)); }