roc/crates/compiler/solve/src/solve.rs
Ayaz Hafiz a0461679dd Restrict usages of type variables in non-generalized contexts
Type variables can only be used on functions (and in number literals as
a carve-out for now). In all other cases, a type variable takes on a
single, concrete type based on later usages. This check emits errors
when this is violated.

The implementation is to check the rank of a variable after it could be
generalized. If the variable is not generalized but annotated as a type
variable, emit an error.
2025-01-02 14:26:37 -06:00

2654 lines
104 KiB
Rust

use crate::ability::{
resolve_ability_specialization, type_implementing_specialization, AbilityImplError,
CheckedDerives, ObligationCache, PendingDerivesTable, Resolved,
};
use crate::deep_copy::deep_copy_var_in;
use crate::env::{DerivedEnv, InferenceEnv};
use crate::module::{SolveConfig, Solved};
use crate::pools::Pools;
use crate::specialize::{
compact_lambda_sets_of_vars, AwaitingSpecializations, CompactionResult, SolvePhase,
};
use crate::to_var::{either_type_index_to_var, type_to_var};
use crate::Aliases;
use bumpalo::Bump;
use roc_can::abilities::{AbilitiesStore, MemberSpecializationInfo};
use roc_can::constraint::Constraint::{self, *};
use roc_can::constraint::{
Cycle, FxCallConstraint, FxSuffixConstraint, FxSuffixKind, Generalizable, LetConstraint,
OpportunisticResolve, TryTargetConstraint,
};
use roc_can::expected::{Expected, PExpected};
use roc_can::module::ModuleParams;
use roc_collections::{VecMap, VecSet};
use roc_error_macros::internal_error;
use roc_module::ident::IdentSuffix;
use roc_module::symbol::{ModuleId, Symbol};
use roc_problem::can::CycleEntry;
use roc_region::all::{Loc, Region};
use roc_solve_problem::TypeError;
use roc_solve_schema::UnificationMode;
use roc_types::subs::{
self, Content, ErrorTypeContext, FlatType, GetSubsSlice, Mark, OptVariable, Rank, Subs, TagExt,
UlsOfVar, Variable,
};
use roc_types::types::{Category, Polarity, Reason, RecordField, Type, TypeExtension, Types, Uls};
use roc_unify::unify::{
unify, unify_introduced_ability_specialization, Obligated, SpecializationLsetCollector,
Unified::*,
};
mod scope;
pub use scope::Scope;
// Type checking system adapted from Elm by Evan Czaplicki, BSD-3-Clause Licensed
// https://github.com/elm/compiler
// Thank you, Evan!
// A lot of energy was put into making type inference fast. That means it's pretty intimidating.
//
// Fundamentally, type inference assigns very general types based on syntax, and then tries to
// make all the pieces fit together. For instance when writing
//
// > f x
//
// We know that `f` is a function, and thus must have some type `a -> b`.
// `x` is just a variable, that gets the type `c`
//
// Next comes constraint generation. For `f x` to be well-typed,
// it must be the case that `c = a`, So a constraint `Eq(c, a)` is generated.
// But `Eq` is a bit special: `c` does not need to equal `a` exactly, but they need to be equivalent.
// This allows for instance the use of aliases. `c` could be an alias, and so looks different from
// `a`, but they still represent the same type.
//
// Then we get to solving, which happens in this file.
//
// When we hit an `Eq` constraint, then we check whether the two involved types are in fact
// equivalent using unification, and when they are, we can substitute one for the other.
//
// When all constraints are processed, and no unification errors have occurred, then the program
// is type-correct. Otherwise the errors are reported.
//
// Now, coming back to efficiency, this type checker uses *ranks* to optimize
// The rank tracks the number of let-bindings a variable is "under". Top-level definitions
// have rank 1. A let in a top-level definition gets rank 2, and so on.
//
// This has to do with generalization of type variables. This is described here
//
// http://okmij.org/ftp/ML/generalization.html#levels
//
// The problem is that when doing inference naively, this program would fail to typecheck
//
// f =
// id = \x -> x
//
// { a: id 1, b: id "foo" }
//
// Because `id` is applied to an integer, the type `Int -> Int` is inferred, which then gives a
// type error for `id "foo"`.
//
// Thus instead the inferred type for `id` is generalized (see the `generalize` function) to `a -> a`.
// Ranks are used to limit the number of type variables considered for generalization. Only those inside
// of the let (so those used in inferring the type of `\x -> x`) are considered.
#[derive(Clone)]
struct State {
scope: Scope,
mark: Mark,
}
pub struct RunSolveOutput {
pub solved: Solved<Subs>,
pub scope: Scope,
#[cfg(debug_assertions)]
pub checkmate: Option<roc_checkmate::Collector>,
}
pub fn run(
config: SolveConfig,
problems: &mut Vec<TypeError>,
subs: Subs,
aliases: &mut Aliases,
abilities_store: &mut AbilitiesStore,
) -> RunSolveOutput {
run_help(config, problems, subs, aliases, abilities_store)
}
fn run_help(
config: SolveConfig,
problems: &mut Vec<TypeError>,
mut owned_subs: Subs,
aliases: &mut Aliases,
abilities_store: &mut AbilitiesStore,
) -> RunSolveOutput {
let subs = &mut owned_subs;
let SolveConfig {
home: _,
constraints,
root_constraint,
mut types,
pending_derives,
exposed_by_module,
derived_module,
function_kind,
module_params,
module_params_vars,
host_exposed_symbols,
..
} = config;
let mut pools = Pools::default();
let rank = Rank::toplevel();
let arena = Bump::new();
let mut obligation_cache = ObligationCache::default();
let mut awaiting_specializations = AwaitingSpecializations::default();
let derived_env = DerivedEnv {
derived_module: &derived_module,
exposed_types: exposed_by_module,
};
let mut env = InferenceEnv {
arena: &arena,
constraints,
function_kind,
derived_env: &derived_env,
subs,
pools: &mut pools,
#[cfg(debug_assertions)]
checkmate: config.checkmate,
};
let pending_derives = PendingDerivesTable::new(
&mut env,
&mut types,
aliases,
pending_derives,
problems,
abilities_store,
&mut obligation_cache,
);
let CheckedDerives {
legal_derives: _,
problems: derives_problems,
} = obligation_cache.check_derives(env.subs, abilities_store, pending_derives);
problems.extend(derives_problems);
let state = solve(
&mut env,
types,
rank,
problems,
aliases,
&root_constraint,
abilities_store,
&mut obligation_cache,
&mut awaiting_specializations,
module_params,
module_params_vars,
host_exposed_symbols,
);
RunSolveOutput {
scope: state.scope,
#[cfg(debug_assertions)]
checkmate: env.checkmate,
solved: Solved(owned_subs),
}
}
#[derive(Debug)]
enum Work<'a> {
Constraint {
scope: &'a Scope,
rank: Rank,
constraint: &'a Constraint,
},
CheckForInfiniteTypes(LocalDefVarsVec<(Symbol, Loc<Variable>)>),
CheckSuffixFx(LocalDefVarsVec<(Symbol, Loc<Variable>)>),
/// The ret_con part of a let constraint that introduces rigid and/or flex variables
///
/// These introduced variables must be generalized, hence this variant
/// is more complex than `LetConNoVariables`.
LetConIntroducesVariables {
scope: &'a Scope,
rank: Rank,
let_con: &'a LetConstraint,
/// The variables used to store imported types in the Subs.
/// The `Contents` are copied from the source module, but to
/// mimic `type_to_var`, we must add these variables to `Pools`
/// at the correct rank
pool_variables: &'a [Variable],
},
}
fn solve(
env: &mut InferenceEnv,
mut can_types: Types,
rank: Rank,
problems: &mut Vec<TypeError>,
aliases: &mut Aliases,
constraint: &Constraint,
abilities_store: &mut AbilitiesStore,
obligation_cache: &mut ObligationCache,
awaiting_specializations: &mut AwaitingSpecializations,
module_params: Option<ModuleParams>,
module_params_vars: VecMap<ModuleId, Variable>,
host_exposed_symbols: Option<&VecSet<Symbol>>,
) -> State {
let scope = Scope::new(module_params);
let initial = Work::Constraint {
scope: &scope.clone(),
rank,
constraint,
};
let mut stack = vec![initial];
let mut state = State {
scope,
mark: Mark::NONE.next(),
};
while let Some(work_item) = stack.pop() {
let (scope, rank, constraint) = match work_item {
Work::Constraint {
scope,
rank,
constraint,
} => {
// the default case; actually solve this constraint
(scope, rank, constraint)
}
Work::CheckForInfiniteTypes(def_vars) => {
// after a LetCon, we must check if any of the variables that we introduced
// loop back to themselves after solving the ret_constraint
for (symbol, loc_var) in def_vars.iter() {
check_for_infinite_type(env, problems, *symbol, *loc_var);
}
continue;
}
Work::LetConIntroducesVariables {
scope,
rank,
let_con,
pool_variables,
} => {
// NOTE be extremely careful with shadowing here
let offset = let_con.defs_and_ret_constraint.index();
let ret_constraint = &env.constraints.constraints[offset + 1];
let mark = state.mark;
let saved_scope = state.scope;
let young_mark = mark;
let visit_mark = young_mark.next();
let final_mark = visit_mark.next();
let intro_rank = if let_con.generalizable.0 {
rank.next()
} else {
rank
};
// Add a variable for each def to local_def_vars.
let local_def_vars = LocalDefVarsVec::from_def_types(
env,
intro_rank,
problems,
abilities_store,
obligation_cache,
&mut can_types,
aliases,
let_con.def_types,
);
// If the let-binding can be generalized, introduce all variables at the next rank;
// those that persist at the next rank after rank-adjustment will be generalized.
//
// Otherwise, introduce all variables at the current rank; since none of them will
// end up at the next rank, none will be generalized.
if let_con.generalizable.0 {
env.pools.get_mut(rank.next()).extend(pool_variables);
} else {
env.pools.get_mut(rank).extend(pool_variables);
}
debug_assert_eq!(
// Check that no variable ended up in a higher rank than the next rank.. that
// would mean we generalized one level more than we need to!
{
let offenders = env
.pools
.get(rank.next())
.iter()
.filter(|var| {
env.subs.get_rank(**var).into_usize() > rank.next().into_usize()
})
.collect::<Vec<_>>();
let result = offenders.len();
if result > 0 {
eprintln!("subs = {:?}", &env.subs);
eprintln!("offenders = {:?}", &offenders);
eprintln!("let_con.def_types = {:?}", &let_con.def_types);
}
result
},
0
);
// If the let-binding is eligible for generalization, it was solved at the
// next rank. The variables introduced in the let-binding that are still at
// that rank (intuitively, they did not "escape" into the lower level
// before or after the let-binding) now get to be generalized.
generalize(env, young_mark, visit_mark, rank.next());
debug_assert!(env.pools.get(rank.next()).is_empty(), "variables left over in let-binding scope, but they should all be in a lower scope or generalized now");
let named_variables = &env.constraints[let_con.rigid_vars];
check_named_variables_are_generalized(
env,
problems,
named_variables,
let_con.generalizable,
);
let mut new_scope = scope.clone();
for (symbol, loc_var) in local_def_vars.iter() {
check_ability_specialization(
env,
rank,
abilities_store,
obligation_cache,
awaiting_specializations,
problems,
*symbol,
*loc_var,
);
new_scope.insert_symbol_var_if_vacant(*symbol, loc_var.value);
// At the time of introduction, promote explicitly-effectful symbols.
promote_effectful_symbol(env, FxSuffixKind::Let(*symbol), loc_var.value);
}
// Note that this vars_by_symbol is the one returned by the
// previous call to solve()
let state_for_ret_con = State {
scope: saved_scope,
mark: final_mark,
};
let next_work = [
// Check for infinite types first
Work::CheckForInfiniteTypes(local_def_vars.clone()),
// Now solve the body, using the new vars_by_symbol which includes
// the assignments' name-to-variable mappings.
Work::Constraint {
scope: env.arena.alloc(new_scope),
rank,
constraint: ret_constraint,
},
// Finally, check the suffix fx, after we have solved all types.
Work::CheckSuffixFx(local_def_vars),
];
for work in next_work.into_iter().rev() {
stack.push(work);
}
state = state_for_ret_con;
continue;
}
Work::CheckSuffixFx(local_def_vars) => {
for (symbol, loc_var) in local_def_vars.iter() {
solve_suffix_fx(
env,
problems,
host_exposed_symbols,
FxSuffixKind::Let(*symbol),
loc_var.value,
&loc_var.region,
);
}
continue;
}
};
state = match constraint {
True => state,
SaveTheEnvironment => {
let mut copy = state;
copy.scope = scope.clone();
copy
}
Eq(roc_can::constraint::Eq(type_index, expectation_index, category_index, region)) => {
let category = &env.constraints.categories[category_index.index()];
let actual = either_type_index_to_var(
env,
rank,
problems,
abilities_store,
obligation_cache,
&mut can_types,
aliases,
*type_index,
);
let expectation = &env.constraints.expectations[expectation_index.index()];
let expected = either_type_index_to_var(
env,
rank,
problems,
abilities_store,
obligation_cache,
&mut can_types,
aliases,
*expectation.get_type_ref(),
);
match unify(
&mut env.uenv(),
actual,
expected,
UnificationMode::EQ,
Polarity::OF_VALUE,
) {
Success {
vars,
must_implement_ability,
lambda_sets_to_specialize,
extra_metadata: _,
} => {
env.introduce(rank, &vars);
if !must_implement_ability.is_empty() {
let new_problems = obligation_cache.check_obligations(
env.subs,
abilities_store,
must_implement_ability,
AbilityImplError::BadExpr(*region, category.clone(), actual),
);
problems.extend(new_problems);
}
compact_lambdas_and_check_obligations(
env,
problems,
abilities_store,
obligation_cache,
awaiting_specializations,
lambda_sets_to_specialize,
);
state
}
Failure(vars, actual_type, expected_type, _bad_impls) => {
env.introduce(rank, &vars);
let problem = TypeError::BadExpr(
*region,
category.clone(),
actual_type,
expectation.replace_ref(expected_type),
);
problems.push(problem);
state
}
}
}
Store(source_index, target, _filename, _linenr) => {
// a special version of Eq that is used to store types in the AST.
// IT DOES NOT REPORT ERRORS!
let actual = either_type_index_to_var(
env,
rank,
&mut vec![], // don't report any extra errors
abilities_store,
obligation_cache,
&mut can_types,
aliases,
*source_index,
);
let actual_desc = env.subs.get(actual);
env.subs.union(*target, actual, actual_desc);
state
}
Lookup(symbol, expectation_index, region) => {
match scope.get_var_by_symbol(symbol) {
Some(var) => {
// Deep copy the vars associated with this symbol before unifying them.
// Otherwise, suppose we have this:
//
// identity = \a -> a
//
// x = identity 5
//
// When we call (identity 5), it's important that we not unify
// on identity's original vars. If we do, the type of `identity` will be
// mutated to be `Int -> Int` instead of `a -> `, which would be incorrect;
// the type of `identity` is more general than that!
//
// Instead, we want to unify on a *copy* of its vars. If the copy unifies
// successfully (in this case, to `Int -> Int`), we can use that to
// infer the type of this lookup (in this case, `Int`) without ever
// having mutated the original.
//
// If this Lookup is targeting a value in another module,
// then we copy from that module's Subs into our own. If the value
// is being looked up in this module, then we use our Subs as both
// the source and destination.
let actual = {
let mut solve_env = env.as_solve_env();
let solve_env = &mut solve_env;
deep_copy_var_in(solve_env, rank, var, solve_env.arena)
};
let expectation = &env.constraints.expectations[expectation_index.index()];
let expected = either_type_index_to_var(
env,
rank,
problems,
abilities_store,
obligation_cache,
&mut can_types,
aliases,
*expectation.get_type_ref(),
);
match unify(
&mut env.uenv(),
actual,
expected,
UnificationMode::EQ,
Polarity::OF_VALUE,
) {
Success {
vars,
must_implement_ability,
lambda_sets_to_specialize,
extra_metadata: _,
} => {
env.introduce(rank, &vars);
if !must_implement_ability.is_empty() {
let new_problems = obligation_cache.check_obligations(
env.subs,
abilities_store,
must_implement_ability,
AbilityImplError::BadExpr(
*region,
Category::Lookup(*symbol),
actual,
),
);
problems.extend(new_problems);
}
compact_lambdas_and_check_obligations(
env,
problems,
abilities_store,
obligation_cache,
awaiting_specializations,
lambda_sets_to_specialize,
);
state
}
Failure(vars, actual_type, expected_type, _bad_impls) => {
env.introduce(rank, &vars);
let problem = TypeError::BadExpr(
*region,
Category::Lookup(*symbol),
actual_type,
expectation.replace_ref(expected_type),
);
problems.push(problem);
state
}
}
}
None => {
problems.push(TypeError::UnexposedLookup(*region, *symbol));
state
}
}
}
And(slice) => {
let it = env.constraints.constraints[slice.indices()].iter().rev();
for sub_constraint in it {
stack.push(Work::Constraint {
scope,
rank,
constraint: sub_constraint,
})
}
state
}
Pattern(type_index, expectation_index, category_index, region)
| PatternPresence(type_index, expectation_index, category_index, region) => {
let category = &env.constraints.pattern_categories[category_index.index()];
let actual = either_type_index_to_var(
env,
rank,
problems,
abilities_store,
obligation_cache,
&mut can_types,
aliases,
*type_index,
);
let expectation = &env.constraints.pattern_expectations[expectation_index.index()];
let expected = either_type_index_to_var(
env,
rank,
problems,
abilities_store,
obligation_cache,
&mut can_types,
aliases,
*expectation.get_type_ref(),
);
let mode = match constraint {
PatternPresence(..) => UnificationMode::PRESENT,
_ => UnificationMode::EQ,
};
match unify(
&mut env.uenv(),
actual,
expected,
mode,
Polarity::OF_PATTERN,
) {
Success {
vars,
must_implement_ability,
lambda_sets_to_specialize,
extra_metadata: _,
} => {
env.introduce(rank, &vars);
if !must_implement_ability.is_empty() {
let new_problems = obligation_cache.check_obligations(
env.subs,
abilities_store,
must_implement_ability,
AbilityImplError::BadPattern(*region, category.clone(), actual),
);
problems.extend(new_problems);
}
compact_lambdas_and_check_obligations(
env,
problems,
abilities_store,
obligation_cache,
awaiting_specializations,
lambda_sets_to_specialize,
);
state
}
Failure(vars, actual_type, expected_type, _bad_impls) => {
env.introduce(rank, &vars);
let problem = TypeError::BadPattern(
*region,
category.clone(),
actual_type,
expectation.replace_ref(expected_type),
);
problems.push(problem);
state
}
}
}
FxCall(index) => {
let FxCallConstraint {
call_fx_var,
call_kind,
call_region,
expectation,
} = &env.constraints.fx_call_constraints[index.index()];
let actual_desc = env.subs.get(*call_fx_var);
match (actual_desc.content, expectation) {
(Content::Pure, _) | (Content::FlexVar(_), _) | (Content::Error, _) => state,
(Content::Effectful, None) => {
let problem = TypeError::FxInTopLevel(*call_region, *call_kind);
problems.push(problem);
state
}
(Content::Effectful, Some(expectation)) => {
match env.subs.get_content_without_compacting(expectation.fx_var) {
Content::Effectful | Content::Error => state,
Content::FlexVar(_) => {
env.subs
.union(expectation.fx_var, *call_fx_var, actual_desc);
state
}
Content::Pure => {
let problem = TypeError::FxInPureFunction(
*call_region,
*call_kind,
expectation.ann_region,
);
problems.push(problem);
state
}
expected_content => {
internal_error!(
"CallFx: unexpected content: {:?}",
expected_content
)
}
}
}
actual_content => {
internal_error!("CallFx: unexpected content: {:?}", actual_content)
}
}
}
FxSuffix(constraint_index) => {
let FxSuffixConstraint {
type_index,
kind,
region,
} = &env.constraints.fx_suffix_constraints[constraint_index.index()];
let actual = either_type_index_to_var(
env,
rank,
problems,
abilities_store,
obligation_cache,
&mut can_types,
aliases,
*type_index,
);
solve_suffix_fx(env, problems, host_exposed_symbols, *kind, actual, region);
state
}
ExpectEffectful(variable, reason, region) => {
let content = env.subs.get_content_without_compacting(*variable);
match content {
Content::Pure | Content::FlexVar(_) => {
let problem = TypeError::ExpectedEffectful(*region, *reason);
problems.push(problem);
state
}
Content::Effectful | Content::Error => state,
Content::RigidVar(_)
| Content::FlexAbleVar(_, _)
| Content::RigidAbleVar(_, _)
| Content::RecursionVar { .. }
| Content::LambdaSet(_)
| Content::ErasedLambda
| Content::Structure(_)
| Content::Alias(_, _, _, _)
| Content::RangedNumber(_) => {
internal_error!("ExpectEffectful: unexpected content: {:?}", content)
}
}
}
FlexToPure(variable) => {
let content = env.subs.get_content_without_compacting(*variable);
match content {
Content::FlexVar(_) => {
let desc = env.subs.get(Variable::PURE);
env.subs.union(*variable, Variable::PURE, desc);
state
}
Content::Pure | Content::Effectful | Content::Error => state,
Content::RigidVar(_)
| Content::FlexAbleVar(_, _)
| Content::RigidAbleVar(_, _)
| Content::RecursionVar { .. }
| Content::LambdaSet(_)
| Content::ErasedLambda
| Content::Structure(_)
| Content::Alias(_, _, _, _)
| Content::RangedNumber(_) => {
internal_error!("FlexToPure: unexpected content: {:?}", content)
}
}
}
TryTarget(index) => {
let try_target_constraint = &env.constraints.try_target_constraints[index.index()];
let TryTargetConstraint {
target_type_index,
ok_payload_var,
err_payload_var,
region,
kind,
} = try_target_constraint;
let target_actual = either_type_index_to_var(
env,
rank,
problems,
abilities_store,
obligation_cache,
&mut can_types,
aliases,
*target_type_index,
);
let wanted_result_ty = can_types.from_old_type(&Type::TagUnion(
vec![
("Ok".into(), vec![Type::Variable(*ok_payload_var)]),
("Err".into(), vec![Type::Variable(*err_payload_var)]),
],
TypeExtension::Closed,
));
let wanted_result_var = type_to_var(
env,
rank,
problems,
abilities_store,
obligation_cache,
&mut can_types,
aliases,
wanted_result_ty,
);
match unify(
&mut env.uenv(),
target_actual,
wanted_result_var,
UnificationMode::EQ,
Polarity::OF_VALUE,
) {
Success {
vars,
must_implement_ability,
lambda_sets_to_specialize,
extra_metadata: _,
} => {
env.introduce(rank, &vars);
if !must_implement_ability.is_empty() {
let new_problems = obligation_cache.check_obligations(
env.subs,
abilities_store,
must_implement_ability,
AbilityImplError::BadExpr(
*region,
Category::TryTarget,
target_actual,
),
);
problems.extend(new_problems);
}
compact_lambdas_and_check_obligations(
env,
problems,
abilities_store,
obligation_cache,
awaiting_specializations,
lambda_sets_to_specialize,
);
state
}
Failure(vars, actual_type, _expected_type, _bad_impls) => {
env.introduce(rank, &vars);
let problem = TypeError::InvalidTryTarget(*region, actual_type, *kind);
problems.push(problem);
state
}
}
}
Let(index, pool_slice) => {
let let_con = &env.constraints.let_constraints[index.index()];
let offset = let_con.defs_and_ret_constraint.index();
let defs_constraint = &env.constraints.constraints[offset];
let flex_vars = &env.constraints.variables[let_con.flex_vars.indices()];
let rigid_vars = &env.constraints[let_con.rigid_vars];
let pool_variables = &env.constraints.variables[pool_slice.indices()];
// If the let-binding is generalizable, work at the next rank (which will be
// the rank at which introduced variables will become generalized, if they end up
// staying there); otherwise, stay at the current level.
let binding_rank = if let_con.generalizable.0 {
rank.next()
} else {
rank
};
// determine the next pool
if binding_rank.into_usize() < env.pools.len() {
// Nothing to do, we already accounted for the next rank, no need to
// adjust the pools
} else {
// we should be off by one at this point
debug_assert_eq!(binding_rank.into_usize(), 1 + env.pools.len());
env.pools.extend_to(binding_rank.into_usize());
}
let pool: &mut Vec<Variable> = env.pools.get_mut(binding_rank);
// Introduce the variables of this binding, and extend the pool at our binding
// rank.
for &var in rigid_vars.iter().map(|v| &v.value).chain(flex_vars.iter()) {
env.subs.set_rank(var, binding_rank);
}
pool.reserve(rigid_vars.len() + flex_vars.len());
pool.extend(rigid_vars.iter().map(|v| &v.value));
pool.extend(flex_vars.iter());
// Now, run our binding constraint, generalize, then solve the rest of the
// program.
//
// Items are popped from the stack in reverse order. That means that we'll
// first solve the defs_constraint, and then (eventually) the ret_constraint.
//
// NB: LetCon gets the current scope's env and rank, not the env/rank from after solving the defs_constraint.
// That's because the defs constraints will be solved in next_rank if it is eligible for generalization.
// The LetCon will then generalize variables that are at a higher rank than the rank of the current scope.
stack.push(Work::LetConIntroducesVariables {
scope,
rank,
let_con,
pool_variables,
});
stack.push(Work::Constraint {
scope,
rank: binding_rank,
constraint: defs_constraint,
});
state
}
IsOpenType(type_index) => {
let actual = either_type_index_to_var(
env,
rank,
problems,
abilities_store,
obligation_cache,
&mut can_types,
aliases,
*type_index,
);
open_tag_union(env, actual);
state
}
IncludesTag(index) => {
let includes_tag = &env.constraints.includes_tags[index.index()];
let roc_can::constraint::IncludesTag {
type_index,
tag_name,
types,
pattern_category,
region,
} = includes_tag;
let pattern_category =
&env.constraints.pattern_categories[pattern_category.index()];
let actual = either_type_index_to_var(
env,
rank,
problems,
abilities_store,
obligation_cache,
&mut can_types,
aliases,
*type_index,
);
let payload_types = env.constraints.variables[types.indices()]
.iter()
.map(|v| Type::Variable(*v))
.collect();
let tag_ty = can_types.from_old_type(&Type::TagUnion(
vec![(tag_name.clone(), payload_types)],
TypeExtension::Closed,
));
let includes = type_to_var(
env,
rank,
problems,
abilities_store,
obligation_cache,
&mut can_types,
aliases,
tag_ty,
);
match unify(
&mut env.uenv(),
actual,
includes,
UnificationMode::PRESENT,
Polarity::OF_PATTERN,
) {
Success {
vars,
must_implement_ability,
lambda_sets_to_specialize,
extra_metadata: _,
} => {
env.introduce(rank, &vars);
if !must_implement_ability.is_empty() {
let new_problems = obligation_cache.check_obligations(
env.subs,
abilities_store,
must_implement_ability,
AbilityImplError::BadPattern(
*region,
pattern_category.clone(),
actual,
),
);
problems.extend(new_problems);
}
compact_lambdas_and_check_obligations(
env,
problems,
abilities_store,
obligation_cache,
awaiting_specializations,
lambda_sets_to_specialize,
);
state
}
Failure(vars, actual_type, expected_to_include_type, _bad_impls) => {
env.introduce(rank, &vars);
let problem = TypeError::BadPattern(
*region,
pattern_category.clone(),
expected_to_include_type,
PExpected::NoExpectation(actual_type),
);
problems.push(problem);
state
}
}
}
&Exhaustive(eq, sketched_rows, context, exhaustive_mark) => {
// A few cases:
// 1. Either condition or branch types already have a type error. In this case just
// propagate it.
// 2. Types are correct, but there are redundancies. In this case we want
// exhaustiveness checking to pull those out.
// 3. Condition and branch types are "almost equal", that is one or the other is
// only missing a few more tags. In this case we want to run
// exhaustiveness checking both ways, to see which one is missing tags.
// 4. Condition and branch types aren't "almost equal", this is just a normal type
// error.
let (real_var, real_region, branches_var, category_and_expected) = match eq {
Ok(eq) => {
let roc_can::constraint::Eq(real_var, expected, category, real_region) =
env.constraints.eq[eq.index()];
let expected = &env.constraints.expectations[expected.index()];
(
real_var,
real_region,
*expected.get_type_ref(),
Ok((category, expected)),
)
}
Err(peq) => {
let roc_can::constraint::PatternEq(
real_var,
expected,
category,
real_region,
) = env.constraints.pattern_eq[peq.index()];
let expected = &env.constraints.pattern_expectations[expected.index()];
(
real_var,
real_region,
*expected.get_type_ref(),
Err((category, expected)),
)
}
};
let real_var = either_type_index_to_var(
env,
rank,
problems,
abilities_store,
obligation_cache,
&mut can_types,
aliases,
real_var,
);
let branches_var = either_type_index_to_var(
env,
rank,
problems,
abilities_store,
obligation_cache,
&mut can_types,
aliases,
branches_var,
);
let cond_source_is_likely_positive_value = category_and_expected.is_ok();
let cond_polarity = if cond_source_is_likely_positive_value {
Polarity::OF_VALUE
} else {
Polarity::OF_PATTERN
};
let real_content = env.subs.get_content_without_compacting(real_var);
let branches_content = env.subs.get_content_without_compacting(branches_var);
let already_have_error = matches!(
(real_content, branches_content),
(Content::Error, _) | (_, Content::Error)
);
let snapshot = env.subs.snapshot();
let unify_cond_and_patterns_outcome = unify(
&mut env.uenv(),
branches_var,
real_var,
UnificationMode::EQ,
cond_polarity,
);
let should_check_exhaustiveness;
let has_unification_error =
!matches!(unify_cond_and_patterns_outcome, Success { .. });
match unify_cond_and_patterns_outcome {
Success {
vars,
must_implement_ability,
lambda_sets_to_specialize,
extra_metadata: _,
} => {
env.subs.commit_snapshot(snapshot);
env.introduce(rank, &vars);
problems.extend(obligation_cache.check_obligations(
env.subs,
abilities_store,
must_implement_ability,
AbilityImplError::DoesNotImplement,
));
compact_lambdas_and_check_obligations(
env,
problems,
abilities_store,
obligation_cache,
awaiting_specializations,
lambda_sets_to_specialize,
);
// Case 1: unify error types, but don't check exhaustiveness.
// Case 2: run exhaustiveness to check for redundant branches.
should_check_exhaustiveness = !already_have_error;
}
Failure(..) => {
// Rollback and check for almost-equality.
env.subs.rollback_to(snapshot);
let almost_eq_snapshot = env.subs.snapshot();
// TODO: turn this on for bidirectional exhaustiveness checking
// open_tag_union(subs, real_var);
open_tag_union(env, branches_var);
let almost_eq = matches!(
unify(
&mut env.uenv(),
real_var,
branches_var,
UnificationMode::EQ,
cond_polarity,
),
Success { .. }
);
env.subs.rollback_to(almost_eq_snapshot);
if almost_eq {
// Case 3: almost equal, check exhaustiveness.
should_check_exhaustiveness = true;
} else {
// Case 4: incompatible types, report type error.
// Re-run first failed unification to get the type diff.
match unify(
&mut env.uenv(),
real_var,
branches_var,
UnificationMode::EQ,
cond_polarity,
) {
Failure(vars, actual_type, expected_type, _bad_impls) => {
env.introduce(rank, &vars);
// Figure out the problem - it might be pattern or value
// related.
let problem = match category_and_expected {
Ok((category, expected)) => {
let real_category = env.constraints.categories
[category.index()]
.clone();
TypeError::BadExpr(
real_region,
real_category,
actual_type,
expected.replace_ref(expected_type),
)
}
Err((category, expected)) => {
let real_category = env.constraints.pattern_categories
[category.index()]
.clone();
TypeError::BadPattern(
real_region,
real_category,
expected_type,
expected.replace_ref(actual_type),
)
}
};
problems.push(problem);
should_check_exhaustiveness = false;
}
_ => internal_error!("Must be failure"),
}
}
}
}
let sketched_rows = env.constraints.sketched_rows[sketched_rows.index()].clone();
if should_check_exhaustiveness {
use roc_can::exhaustive::{check, ExhaustiveSummary};
// If the condition type likely comes from an positive-position value (e.g. a
// literal or a return type), rather than an input position, we employ the
// heuristic that the positive-position value would only need to be open if the
// branches of the `when` constrained them as open. To avoid suggesting
// catch-all branches, now mark the condition type as closed, so that we only
// show the variants that explicitly not matched.
//
// We avoid this heuristic if the condition type likely comes from a negative
// position, e.g. a function parameter, since in that case if the condition
// type is open, we definitely want to show the catch-all branch as necessary.
//
// For example:
//
// x : [A, B, C]
//
// when x is
// A -> ..
// B -> ..
//
// This is checked as "almost equal" and hence exhaustiveness-checked with
// [A, B] compared to [A, B, C]*. However, we really want to compare against
// [A, B, C] (notice the closed union), so we optimistically close the
// condition type here.
//
// On the other hand, in a case like
//
// f : [A, B, C]* -> ..
// f = \x -> when x is
// A -> ..
// B -> ..
//
// we want to show `C` and/or `_` as necessary branches, so this heuristic is
// not applied.
//
// In the above case, notice it would not be safe to apply this heuristic if
// `C` was matched as well. Since the positive/negative value determination is
// only an estimate, we also only apply this heursitic in the "almost equal"
// case, when there was in fact a unification error.
//
// TODO: this can likely be removed after remodelling tag extension types
// (#4440).
if cond_source_is_likely_positive_value && has_unification_error {
close_pattern_matched_tag_unions(env.subs, real_var);
}
if let Ok(ExhaustiveSummary {
errors,
exhaustive,
redundancies,
}) = check(env.subs, real_var, sketched_rows, context)
{
// Store information about whether the "when" is exhaustive, and
// which (if any) of its branches are redundant. Codegen may use
// this for branch-fixing and redundant elimination.
if !exhaustive {
exhaustive_mark.set_non_exhaustive(env.subs);
}
for redundant_mark in redundancies {
redundant_mark.set_redundant(env.subs);
}
// Store the errors.
problems.extend(errors.into_iter().map(TypeError::Exhaustive));
} else {
// Otherwise there were type errors deeper in the pattern; we will have
// already reported them.
}
}
state
}
&Resolve(OpportunisticResolve {
specialization_variable,
member,
specialization_id,
}) => {
if let Ok(Resolved::Specialization(specialization)) = resolve_ability_specialization(
env.subs,
abilities_store,
member,
specialization_variable,
) {
abilities_store.insert_resolved(specialization_id, specialization);
}
state
}
CheckCycle(cycle, cycle_mark) => {
let Cycle {
def_names,
expr_regions,
} = &env.constraints.cycles[cycle.index()];
let symbols = &env.constraints.loc_symbols[def_names.indices()];
// If the type of a symbol is not a function, that's an error.
// Roc is strict, so only functions can be mutually recursive.
let any_is_bad = {
use Content::*;
symbols.iter().any(|(s, _)| {
let var = scope.get_var_by_symbol(s).expect("Symbol not solved!");
let (_, underlying_content) = chase_alias_content(env.subs, var);
!matches!(underlying_content, Error | Structure(FlatType::Func(..)))
})
};
if any_is_bad {
// expr regions are stored in loc_symbols (that turned out to be convenient).
// The symbol is just a dummy, and should not be used
let expr_regions = &env.constraints.loc_symbols[expr_regions.indices()];
let cycle = symbols
.iter()
.zip(expr_regions.iter())
.map(|(&(symbol, symbol_region), &(_, expr_region))| CycleEntry {
symbol,
symbol_region,
expr_region,
})
.collect();
problems.push(TypeError::CircularDef(cycle));
cycle_mark.set_illegal(env.subs);
}
state
}
IngestedFile(type_index, file_path, bytes) => {
let actual = either_type_index_to_var(
env,
rank,
problems,
abilities_store,
obligation_cache,
&mut can_types,
aliases,
*type_index,
);
let snapshot = env.subs.snapshot();
if let Success {
vars,
must_implement_ability,
lambda_sets_to_specialize,
extra_metadata: _,
} = unify(
&mut env.uenv(),
actual,
Variable::LIST_U8,
UnificationMode::EQ,
Polarity::OF_VALUE,
) {
// List U8 always valid.
env.introduce(rank, &vars);
debug_assert!(
must_implement_ability.is_empty() && lambda_sets_to_specialize.is_empty(),
"List U8 will never need to implement abilities or specialize lambda sets"
);
state
} else {
env.subs.rollback_to(snapshot);
// We explicitly match on the last unify to get the type in the case it errors.
match unify(
&mut env.uenv(),
actual,
Variable::STR,
UnificationMode::EQ,
Polarity::OF_VALUE,
) {
Success {
vars,
must_implement_ability,
lambda_sets_to_specialize,
extra_metadata: _,
} => {
env.introduce(rank, &vars);
debug_assert!(
must_implement_ability.is_empty() && lambda_sets_to_specialize.is_empty(),
"Str will never need to implement abilities or specialize lambda sets"
);
// Str only valid if valid utf8.
if let Err(err) = std::str::from_utf8(bytes) {
let problem =
TypeError::IngestedFileBadUtf8(file_path.clone(), err);
problems.push(problem);
}
state
}
Failure(vars, actual_type, _, _) => {
env.introduce(rank, &vars);
let problem = TypeError::IngestedFileUnsupportedType(
file_path.clone(),
actual_type,
);
problems.push(problem);
state
}
}
}
}
ImportParams(opt_provided, module_id, region) => {
match (module_params_vars.get(module_id), opt_provided) {
(Some(expected_og), Some(provided)) => {
let actual = either_type_index_to_var(
env,
rank,
problems,
abilities_store,
obligation_cache,
&mut can_types,
aliases,
*provided,
);
let expected = {
// Similar to Lookup, we need to unify on a copy of the module params variable
// Otherwise, this import might make it less general than it really is
let mut solve_env = env.as_solve_env();
let solve_env = &mut solve_env;
deep_copy_var_in(solve_env, rank, *expected_og, solve_env.arena)
};
match unify(
&mut env.uenv(),
actual,
expected,
UnificationMode::EQ,
Polarity::OF_VALUE,
) {
Success {
vars,
must_implement_ability,
lambda_sets_to_specialize,
extra_metadata: _,
} => {
env.introduce(rank, &vars);
problems.extend(obligation_cache.check_obligations(
env.subs,
abilities_store,
must_implement_ability,
AbilityImplError::DoesNotImplement,
));
compact_lambdas_and_check_obligations(
env,
problems,
abilities_store,
obligation_cache,
awaiting_specializations,
lambda_sets_to_specialize,
);
state
}
Failure(vars, actual_type, expected_type, _) => {
env.introduce(rank, &vars);
problems.push(TypeError::ModuleParamsMismatch(
*region,
*module_id,
actual_type,
expected_type,
));
state
}
}
}
(Some(expected), None) => {
let expected_type = env.uenv().var_to_error_type(*expected, Polarity::Neg);
problems.push(TypeError::MissingModuleParams(
*region,
*module_id,
expected_type,
));
state
}
(None, Some(_)) => {
problems.push(TypeError::UnexpectedModuleParams(*region, *module_id));
state
}
(None, None) => state,
}
}
};
}
state
}
fn check_named_variables_are_generalized(
env: &mut InferenceEnv<'_>,
problems: &mut Vec<TypeError>,
named_variables: &[Loc<Variable>],
generalizable: Generalizable,
) {
for loc_var in named_variables {
let is_generalized = env.subs.get_rank(loc_var.value) == Rank::GENERALIZED;
if !is_generalized {
// TODO: should be OF_PATTERN if on the LHS of a function, otherwise OF_VALUE.
let polarity = Polarity::OF_VALUE;
let ctx = ErrorTypeContext::NON_GENERALIZED_AS_INFERRED;
let error_type = env
.subs
.var_to_error_type_contextual(loc_var.value, ctx, polarity);
problems.push(TypeError::TypeIsNotGeneralized(
loc_var.region,
error_type,
generalizable,
));
}
}
}
fn solve_suffix_fx(
env: &mut InferenceEnv<'_>,
problems: &mut Vec<TypeError>,
host_exposed_symbols: Option<&VecSet<Symbol>>,
kind: FxSuffixKind,
variable: Variable,
region: &Region,
) {
match kind.suffix() {
IdentSuffix::None => {
if let Content::Structure(FlatType::Func(_, _, _, fx)) =
env.subs.get_content_without_compacting(variable)
{
let fx = *fx;
match env.subs.get_content_without_compacting(fx) {
Content::Effectful => {
problems.push(TypeError::UnsuffixedEffectfulFunction(*region, kind));
}
Content::FlexVar(_) => {
env.subs.set_content(fx, Content::Pure);
}
_ => {}
}
}
}
IdentSuffix::Bang => match env.subs.get_content_without_compacting(variable) {
Content::Structure(FlatType::Func(_, _, _, fx)) => {
let fx = *fx;
match env.subs.get_content_without_compacting(fx) {
Content::Pure => {
match (kind.symbol(), host_exposed_symbols) {
(Some(sym), Some(host_exposed)) if host_exposed.contains(sym) => {
// If exposed to the platform, it's allowed to be suffixed but pure
// The platform might require a `main!` function that could perform
// effects, but that's not a requirement.
}
_ => {
problems.push(TypeError::SuffixedPureFunction(*region, kind));
}
}
}
Content::FlexVar(_) => {
env.subs.set_content(fx, Content::Effectful);
}
_ => {}
}
}
Content::FlexVar(_) => {
env.subs
.set_content(variable, Content::Structure(FlatType::EffectfulFunc));
}
_ => {}
},
}
}
fn promote_effectful_symbol(env: &mut InferenceEnv<'_>, kind: FxSuffixKind, variable: Variable) {
if kind.suffix() != IdentSuffix::Bang {
return;
}
if !matches!(
env.subs.get_content_without_compacting(variable),
Content::FlexVar(_)
) {
return;
}
env.subs
.set_content(variable, Content::Structure(FlatType::EffectfulFunc));
}
fn chase_alias_content(subs: &Subs, mut var: Variable) -> (Variable, &Content) {
loop {
match subs.get_content_without_compacting(var) {
Content::Alias(_, _, real_var, _) => {
var = *real_var;
}
content => return (var, content),
}
}
}
fn compact_lambdas_and_check_obligations(
env: &mut InferenceEnv,
problems: &mut Vec<TypeError>,
abilities_store: &mut AbilitiesStore,
obligation_cache: &mut ObligationCache,
awaiting_specialization: &mut AwaitingSpecializations,
lambda_sets_to_specialize: UlsOfVar,
) {
let CompactionResult {
obligations,
awaiting_specialization: new_awaiting,
} = compact_lambda_sets_of_vars(
&mut env.as_solve_env(),
lambda_sets_to_specialize,
&SolvePhase { abilities_store },
);
problems.extend(obligation_cache.check_obligations(
env.subs,
abilities_store,
obligations,
AbilityImplError::DoesNotImplement,
));
awaiting_specialization.union(new_awaiting);
}
fn open_tag_union(env: &mut InferenceEnv, var: Variable) {
let mut stack = vec![var];
while let Some(var) = stack.pop() {
use {Content::*, FlatType::*};
let desc = env.subs.get(var);
match desc.content {
Structure(TagUnion(tags, ext)) => {
if let Structure(EmptyTagUnion) = env.subs.get_content_without_compacting(ext.var())
{
let new_ext_var = env.register(desc.rank, Content::FlexVar(None));
let new_union = Structure(TagUnion(tags, TagExt::Any(new_ext_var)));
env.subs.set_content(var, new_union);
}
// Also open up all nested tag unions.
let all_vars = tags.variables().into_iter();
stack.extend(
all_vars
.flat_map(|slice| env.subs[slice])
.map(|var| env.subs[var]),
);
}
Structure(Record(fields, _)) => {
// Open up all nested tag unions.
stack.extend(env.subs.get_subs_slice(fields.variables()));
}
Structure(Tuple(elems, _)) => {
// Open up all nested tag unions.
stack.extend(env.subs.get_subs_slice(elems.variables()));
}
Structure(Apply(Symbol::LIST_LIST, args)) => {
// Open up nested tag unions.
stack.extend(env.subs.get_subs_slice(args));
}
_ => {
// Everything else is not a structural type that can be opened
// (i.e. cannot be matched in a pattern-match)
}
}
// Today, an "open" constraint doesn't affect any types
// other than tag unions. Recursive tag unions are constructed
// at a later time (during occurs checks after tag unions are
// resolved), so that's not handled here either.
}
}
/// Optimistically closes the positive type of a value matched in a `when` statement, to produce
/// better exhaustiveness error messages.
///
/// This should only be applied if it's already known that a `when` expression is not exhaustive.
///
/// See [Constraint::Exhaustive].
fn close_pattern_matched_tag_unions(subs: &mut Subs, var: Variable) {
let mut stack = vec![var];
while let Some(var) = stack.pop() {
use {Content::*, FlatType::*};
let desc = subs.get(var);
match desc.content {
Structure(TagUnion(tags, mut ext)) => {
// Close the extension, chasing it as far as it goes.
loop {
match subs.get_content_without_compacting(ext.var()) {
Structure(FlatType::EmptyTagUnion) => {
break;
}
FlexVar(..) | FlexAbleVar(..) => {
subs.set_content_unchecked(
ext.var(),
Structure(FlatType::EmptyTagUnion),
);
break;
}
RigidVar(..) | RigidAbleVar(..) => {
// Don't touch rigids, they tell us more information than the heuristic
// of closing tag unions does for better exhaustiveness checking does.
break;
}
Structure(FlatType::TagUnion(_, deep_ext))
| Structure(FlatType::RecursiveTagUnion(_, _, deep_ext))
| Structure(FlatType::FunctionOrTagUnion(_, _, deep_ext)) => {
ext = *deep_ext;
}
other => internal_error!(
"not a tag union: {:?}",
roc_types::subs::SubsFmtContent(other, subs)
),
}
}
// Also open up all nested tag unions.
let all_vars = tags.variables().into_iter();
stack.extend(all_vars.flat_map(|slice| subs[slice]).map(|var| subs[var]));
}
Structure(Record(fields, _)) => {
// Close up all nested tag unions.
stack.extend(subs.get_subs_slice(fields.variables()));
}
Structure(Apply(Symbol::LIST_LIST, args)) => {
// Close up nested tag unions.
stack.extend(subs.get_subs_slice(args));
}
Alias(_, _, real_var, _) => {
stack.push(real_var);
}
_ => {
// Everything else is not a type that can be opened/matched in a pattern match.
}
}
// Recursive tag unions are constructed at a later time
// (during occurs checks after tag unions are resolved),
// so that's not handled here.
}
}
/// If a symbol claims to specialize an ability member, check that its solved type in fact
/// does specialize the ability, and record the specialization.
// Aggressive but necessary - there aren't many usages.
#[inline(always)]
fn check_ability_specialization(
env: &mut InferenceEnv,
rank: Rank,
abilities_store: &mut AbilitiesStore,
obligation_cache: &mut ObligationCache,
awaiting_specializations: &mut AwaitingSpecializations,
problems: &mut Vec<TypeError>,
symbol: Symbol,
symbol_loc_var: Loc<Variable>,
) {
// If the symbol specializes an ability member, we need to make sure that the
// inferred type for the specialization actually aligns with the expected
// implementation.
if let Some((impl_key, root_data)) = abilities_store.impl_key_and_def(symbol) {
let ability_member = impl_key.ability_member;
let root_signature_var = root_data.signature_var();
let parent_ability = root_data.parent_ability;
// Check if they unify - if they don't, then the claimed specialization isn't really one,
// and that's a type error!
// This also fixes any latent type variables that need to be specialized to exactly what
// the ability signature expects.
// We need to freshly instantiate the root signature so that all unifications are reflected
// in the specialization type, but not the original signature type.
let root_signature_var = {
let mut solve_env = env.as_solve_env();
let solve_env = &mut solve_env;
deep_copy_var_in(
solve_env,
Rank::toplevel(),
root_signature_var,
solve_env.arena,
)
};
let snapshot = env.subs.snapshot();
let unified = unify_introduced_ability_specialization(
&mut env.uenv(),
root_signature_var,
symbol_loc_var.value,
UnificationMode::EQ,
);
let resolved_mark = match unified {
Success {
vars,
must_implement_ability,
lambda_sets_to_specialize,
extra_metadata: SpecializationLsetCollector(specialization_lambda_sets),
} => {
let specialization_type =
type_implementing_specialization(&must_implement_ability, parent_ability);
match specialization_type {
Some(Obligated::Opaque(opaque)) => {
// This is a specialization for an opaque - but is it the opaque the
// specialization was claimed to be for?
if opaque == impl_key.opaque {
// It was! All is good.
env.subs.commit_snapshot(snapshot);
env.introduce(rank, &vars);
let specialization_lambda_sets = specialization_lambda_sets
.into_iter()
.map(|((symbol, region), var)| {
debug_assert_eq!(symbol, ability_member);
(region, var)
})
.collect();
compact_lambdas_and_check_obligations(
env,
problems,
abilities_store,
obligation_cache,
awaiting_specializations,
lambda_sets_to_specialize,
);
let specialization =
MemberSpecializationInfo::new(symbol, specialization_lambda_sets);
Ok(specialization)
} else {
// This def is not specialized for the claimed opaque type, that's an
// error.
// Commit so that the bad signature and its error persists in subs.
env.subs.commit_snapshot(snapshot);
let _typ = env
.subs
.var_to_error_type(symbol_loc_var.value, Polarity::OF_VALUE);
let problem = TypeError::WrongSpecialization {
region: symbol_loc_var.region,
ability_member: impl_key.ability_member,
expected_opaque: impl_key.opaque,
found_opaque: opaque,
};
problems.push(problem);
Err(())
}
}
Some(Obligated::Adhoc(var)) => {
// This is a specialization of a structural type - never allowed.
// Commit so that `var` persists in subs.
env.subs.commit_snapshot(snapshot);
let typ = env.subs.var_to_error_type(var, Polarity::OF_VALUE);
let problem = TypeError::StructuralSpecialization {
region: symbol_loc_var.region,
typ,
ability: parent_ability,
member: ability_member,
};
problems.push(problem);
Err(())
}
None => {
// This can happen when every ability constriant on a type variable went
// through only another type variable. That means this def is not specialized
// for one concrete type, and especially not our opaque - we won't admit this currently.
// Rollback the snapshot so we unlink the root signature with the specialization,
// so we can have two separate error types.
env.subs.rollback_to(snapshot);
let expected_type = env
.subs
.var_to_error_type(root_signature_var, Polarity::OF_VALUE);
let actual_type = env
.subs
.var_to_error_type(symbol_loc_var.value, Polarity::OF_VALUE);
let reason = Reason::GeneralizedAbilityMemberSpecialization {
member_name: ability_member,
def_region: root_data.region,
};
let problem = TypeError::BadExpr(
symbol_loc_var.region,
Category::AbilityMemberSpecialization(ability_member),
actual_type,
Expected::ForReason(reason, expected_type, symbol_loc_var.region),
);
problems.push(problem);
Err(())
}
}
}
Failure(vars, expected_type, actual_type, unimplemented_abilities) => {
env.subs.commit_snapshot(snapshot);
env.introduce(rank, &vars);
let reason = Reason::InvalidAbilityMemberSpecialization {
member_name: ability_member,
def_region: root_data.region,
unimplemented_abilities,
};
let problem = TypeError::BadExpr(
symbol_loc_var.region,
Category::AbilityMemberSpecialization(ability_member),
actual_type,
Expected::ForReason(reason, expected_type, symbol_loc_var.region),
);
problems.push(problem);
Err(())
}
};
abilities_store
.mark_implementation(impl_key, resolved_mark)
.expect("marked as a custom implementation, but not recorded as such");
// Get the lambda sets that are ready for specialization because this ability member
// specialization was resolved, and compact them.
let new_lambda_sets_to_specialize =
awaiting_specializations.remove_for_specialized(env.subs, impl_key);
compact_lambdas_and_check_obligations(
env,
problems,
abilities_store,
obligation_cache,
awaiting_specializations,
new_lambda_sets_to_specialize,
);
debug_assert!(
!awaiting_specializations.waiting_for(impl_key),
"still have lambda sets waiting for {impl_key:?}, but it was just resolved"
);
}
}
#[derive(Debug, Clone)]
enum LocalDefVarsVec<T> {
Stack(arrayvec::ArrayVec<T, 32>),
Heap(Vec<T>),
}
impl<T> LocalDefVarsVec<T> {
#[inline(always)]
fn with_length(length: usize) -> Self {
if length <= 32 {
Self::Stack(Default::default())
} else {
Self::Heap(Default::default())
}
}
fn push(&mut self, element: T) {
match self {
LocalDefVarsVec::Stack(vec) => vec.push(element),
LocalDefVarsVec::Heap(vec) => vec.push(element),
}
}
fn iter(&self) -> impl Iterator<Item = &T> {
match self {
LocalDefVarsVec::Stack(vec) => vec.iter(),
LocalDefVarsVec::Heap(vec) => vec.iter(),
}
}
}
impl LocalDefVarsVec<(Symbol, Loc<Variable>)> {
fn from_def_types(
env: &mut InferenceEnv,
rank: Rank,
problems: &mut Vec<TypeError>,
abilities_store: &mut AbilitiesStore,
obligation_cache: &mut ObligationCache,
types: &mut Types,
aliases: &mut Aliases,
def_types_slice: roc_can::constraint::DefTypes,
) -> Self {
let type_indices_slice = &env.constraints.type_slices[def_types_slice.types.indices()];
let loc_symbols_slice = &env.constraints.loc_symbols[def_types_slice.loc_symbols.indices()];
let mut local_def_vars = Self::with_length(type_indices_slice.len());
for (&(symbol, region), typ_index) in (loc_symbols_slice.iter()).zip(type_indices_slice) {
let var = either_type_index_to_var(
env,
rank,
problems,
abilities_store,
obligation_cache,
types,
aliases,
*typ_index,
);
local_def_vars.push((symbol, Loc { value: var, region }));
}
local_def_vars
}
}
fn check_for_infinite_type(
env: &mut InferenceEnv,
problems: &mut Vec<TypeError>,
symbol: Symbol,
loc_var: Loc<Variable>,
) {
let var = loc_var.value;
'next_occurs_check: while let Err((_, chain)) = env.subs.occurs(var) {
// walk the chain till we find a tag union or lambda set, starting from the variable that
// occurred recursively, which is always at the end of the chain.
for &var in chain.iter().rev() {
match *env.subs.get_content_without_compacting(var) {
Content::Structure(FlatType::TagUnion(tags, ext_var)) => {
let rec_var = env.subs.mark_tag_union_recursive(var, tags, ext_var);
env.register_existing_var(rec_var);
continue 'next_occurs_check;
}
Content::LambdaSet(subs::LambdaSet {
solved,
recursion_var: OptVariable::NONE,
unspecialized,
ambient_function: ambient_function_var,
}) => {
let rec_var = env.subs.mark_lambda_set_recursive(
var,
solved,
unspecialized,
ambient_function_var,
);
env.register_existing_var(rec_var);
continue 'next_occurs_check;
}
_ => { /* fall through */ }
}
}
circular_error(env.subs, problems, symbol, &loc_var);
}
}
fn circular_error(
subs: &mut Subs,
problems: &mut Vec<TypeError>,
symbol: Symbol,
loc_var: &Loc<Variable>,
) {
let var = loc_var.value;
let error_type = subs.var_to_error_type(var, Polarity::OF_VALUE);
let problem = TypeError::CircularType(loc_var.region, symbol, error_type);
subs.set_content(var, Content::Error);
problems.push(problem);
}
/// Generalizes variables at the `young_rank`, which did not escape a let-binding
/// into a lower scope.
///
/// Ensures that variables introduced at the `young_rank`, but that should be
/// stuck at a lower level, are marked at that level and not generalized at the
/// present `young_rank`. See [adjust_rank].
fn generalize(env: &mut InferenceEnv, young_mark: Mark, visit_mark: Mark, young_rank: Rank) {
let subs = &mut env.subs;
let pools = &mut env.pools;
let young_vars = std::mem::take(pools.get_mut(young_rank));
let rank_table = pool_to_rank_table(subs, young_mark, young_rank, young_vars);
// Get the ranks right for each entry.
// Start at low ranks so we only have to pass over the information once.
for (index, table) in rank_table.iter().enumerate() {
for &var in table.iter() {
adjust_rank(subs, young_mark, visit_mark, Rank::from(index), var);
}
}
let (mut last_pool, all_but_last_pool) = rank_table.split_last();
// For variables that have rank lowerer than young_rank, register them in
// the appropriate old pool if they are not redundant.
for vars in all_but_last_pool {
for var in vars {
let rank = subs.get_rank(var);
pools.get_mut(rank).push(var);
}
}
// For variables with rank young_rank, if rank < young_rank: register in old pool,
// otherwise generalize
for var in last_pool.drain(..) {
let desc_rank = subs.get_rank(var);
if desc_rank < young_rank {
pools.get_mut(desc_rank).push(var);
} else {
subs.set_rank(var, Rank::GENERALIZED);
}
}
// re-use the last_vector (which likely has a good capacity for future runs)
debug_assert!(last_pool.is_empty());
*pools.get_mut(young_rank) = last_pool;
}
/// Sort the variables into buckets by rank.
#[inline]
fn pool_to_rank_table(
subs: &mut Subs,
young_mark: Mark,
young_rank: Rank,
mut young_vars: Vec<Variable>,
) -> Pools {
let mut pools = Pools::new(young_rank.into_usize() + 1);
// the vast majority of young variables have young_rank
let mut i = 0;
while i < young_vars.len() {
let var = subs.get_root_key(young_vars[i]);
subs.set_mark_unchecked(var, young_mark);
let rank = subs.get_rank_unchecked(var);
if rank != young_rank {
debug_assert!(rank.into_usize() < young_rank.into_usize() + 1);
pools.get_mut(rank).push(var);
// swap an element in; don't increment i
young_vars.swap_remove(i);
} else {
i += 1;
}
}
std::mem::swap(pools.get_mut(young_rank), &mut young_vars);
pools
}
/// Adjust variable ranks such that ranks never increase as you move deeper.
/// This way the outermost rank is representative of the entire structure.
///
/// This procedure also catches type variables at a given rank that contain types at a higher rank.
/// In such cases, the contained types must be lowered to the rank of the outer type. This is
/// critical for soundness of the type inference; for example consider
///
/// ```ignore(illustrative)
/// \f -> # rank=1
/// g = \x -> f x # rank=2
/// g
/// ```
///
/// say that during the solving of the outer body at rank 1 we conditionally give `f` the type
/// `a -> b (rank=1)`. Without rank-adjustment, the type of `g` would be solved as `c -> d (rank=2)` for
/// some `c ~ a`, `d ~ b`, and hence would be generalized to the function `c -> d`, even though `c`
/// and `d` are individually at rank 1 after unfication with `a` and `b` respectively.
/// This is incorrect; the whole of `c -> d` must lie at rank 1, and only be generalized at the
/// level that `f` is introduced.
fn adjust_rank(
subs: &mut Subs,
young_mark: Mark,
visit_mark: Mark,
group_rank: Rank,
var: Variable,
) -> Rank {
let var = subs.get_root_key(var);
let desc_rank = subs.get_rank_unchecked(var);
let desc_mark = subs.get_mark_unchecked(var);
if desc_mark == young_mark {
let content = *subs.get_content_unchecked(var);
// Mark the variable as visited before adjusting content, as it may be cyclic.
subs.set_mark_unchecked(var, visit_mark);
// Adjust the nested types' ranks, making sure that no nested unbound type variable is at a
// higher rank than the group rank this `var` is at
let max_rank = adjust_rank_content(subs, young_mark, visit_mark, group_rank, &content);
subs.set_rank_unchecked(var, max_rank);
subs.set_mark_unchecked(var, visit_mark);
max_rank
} else if desc_mark == visit_mark {
// we have already visited this variable
// (probably two variables had the same root)
desc_rank
} else {
let min_rank = group_rank.min(desc_rank);
// TODO from elm-compiler: how can min_rank ever be group_rank?
subs.set_rank_unchecked(var, min_rank);
subs.set_mark_unchecked(var, visit_mark);
min_rank
}
}
fn adjust_rank_content(
subs: &mut Subs,
young_mark: Mark,
visit_mark: Mark,
group_rank: Rank,
content: &Content,
) -> Rank {
use roc_types::subs::Content::*;
use roc_types::subs::FlatType::*;
match content {
FlexVar(_) | RigidVar(_) | FlexAbleVar(_, _) | RigidAbleVar(_, _) | Error => group_rank,
RecursionVar { .. } => group_rank,
Structure(flat_type) => {
match flat_type {
Apply(_, args) => {
let mut rank = Rank::toplevel();
for var_index in args.into_iter() {
let var = subs[var_index];
rank = rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
}
rank
}
Func(arg_vars, closure_var, ret_var, _fx_var) => {
let mut rank = adjust_rank(subs, young_mark, visit_mark, group_rank, *ret_var);
// TODO investigate further.
//
// My theory is that because the closure_var contains variables already
// contained in the signature only, it does not need to be part of the rank
// calculuation
if true {
rank = rank.max(adjust_rank(
subs,
young_mark,
visit_mark,
group_rank,
*closure_var,
));
}
for index in arg_vars.into_iter() {
let var = subs[index];
rank = rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
}
rank
}
EmptyRecord => {
// from elm-compiler: THEORY: an empty record never needs to get generalized
//
// But for us, that theory does not hold, because there might be type variables hidden
// inside a lambda set but not on the left or right of an arrow, and records should not
// force de-generalization in such cases.
//
// See https://github.com/roc-lang/roc/issues/3641 for a longer discussion and
// example.
group_rank
}
// THEORY: an empty tag never needs to get generalized
EmptyTagUnion => Rank::toplevel(),
EffectfulFunc => Rank::toplevel(),
Record(fields, ext_var) => {
let mut rank = adjust_rank(subs, young_mark, visit_mark, group_rank, *ext_var);
for (_, var_index, field_index) in fields.iter_all() {
let var = subs[var_index];
rank = rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
// When generalizing annotations with rigid optional/required fields,
// we want to promote them to non-rigid, so that usages at
// specialized sites don't have to exactly include the optional/required field.
match subs[field_index] {
RecordField::RigidOptional(()) => {
subs[field_index] = RecordField::Optional(());
}
RecordField::RigidRequired(()) => {
subs[field_index] = RecordField::Required(());
}
_ => {}
}
}
rank
}
Tuple(elems, ext_var) => {
let mut rank = adjust_rank(subs, young_mark, visit_mark, group_rank, *ext_var);
for (_, var_index) in elems.iter_all() {
let var = subs[var_index];
rank = rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
}
rank
}
TagUnion(tags, ext_var) => {
let mut rank =
adjust_rank(subs, young_mark, visit_mark, group_rank, ext_var.var());
// For performance reasons, we only keep one representation of empty tag unions
// in subs. That representation exists at rank 0, which we don't always want to
// reflect the whole tag union as, because doing so may over-generalize free
// type variables.
// Normally this is not a problem because of the loop below that maximizes the
// rank from nested types in the union. But suppose we have the simple tag
// union
// [Z]{}
// there are no nested types in the tags, and the empty tag union is at rank 0,
// so we promote the tag union to rank 0. Now if we introduce the presence
// constraint
// [Z]{} += [S a]
// we'll wind up with [Z, S a]{}, but it will be at rank 0, and "a" will get
// over-generalized. Really, the empty tag union should be introduced at
// whatever current group rank we're at, and so that's how we encode it here.
if ext_var.var() == Variable::EMPTY_TAG_UNION && rank.is_generalized() {
rank = group_rank;
}
for (_, index) in tags.iter_all() {
let slice = subs[index];
for var_index in slice {
let var = subs[var_index];
rank = rank
.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
}
}
rank
}
FunctionOrTagUnion(_, _, ext_var) => {
adjust_rank(subs, young_mark, visit_mark, group_rank, ext_var.var())
}
RecursiveTagUnion(rec_var, tags, ext_var) => {
let mut rank =
adjust_rank(subs, young_mark, visit_mark, group_rank, ext_var.var());
for (_, index) in tags.iter_all() {
let slice = subs[index];
for var_index in slice {
let var = subs[var_index];
rank = rank
.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
}
}
// The recursion var may have a higher rank than the tag union itself, if it is
// erroneous and escapes into a region where it is let-generalized before it is
// constrained back down to the rank it originated from.
//
// For example, see the `recursion_var_specialization_error` reporting test -
// there, we have
//
// Job a : [Job (List (Job a)) a]
//
// job : Job Str
//
// when job is
// Job lst _ -> lst == ""
//
// In this case, `lst` is generalized and has a higher rank for the type
// `(List (Job a)) as a` - notice that only the recursion var `a` is active
// here, not the entire recursive tag union. In the body of this branch, `lst`
// becomes a type error, but the nested recursion var `a` is left untouched,
// because it is nested under the of `lst`, not the surface type that becomes
// an error.
//
// Had this not become a type error, `lst` would then be constrained against
// `job`, and its rank would get pulled back down. So, this can only happen in
// the presence of type errors.
//
// In all other cases, the recursion var has the same rank as the tag union itself
// all types it uses are also in the tags already, so it cannot influence the
// rank.
if cfg!(debug_assertions)
&& !matches!(
subs.get_content_without_compacting(*rec_var),
Content::Error | Content::FlexVar(..)
)
{
let rec_var_rank =
adjust_rank(subs, young_mark, visit_mark, group_rank, *rec_var);
debug_assert!(
rank >= rec_var_rank,
"rank was {:?} but recursion var <{:?}>{:?} has higher rank {:?}",
rank,
rec_var,
subs.get_content_without_compacting(*rec_var),
rec_var_rank
);
}
rank
}
}
}
Alias(_, args, real_var, _) => {
let mut rank = Rank::toplevel();
// Avoid visiting lambda set variables stored in the type variables of the alias
// independently.
//
// Why? Lambda set variables on the alias are not truly type arguments to the alias,
// and instead are links to the lambda sets that appear in functions under the real
// type of the alias. If their ranks are adjusted independently, we end up looking at
// function types "inside-out" - when the whole point of rank-adjustment is to look
// from the outside-in to determine at what rank a type lies!
//
// So, just wait to adjust their ranks until we visit the function types that contain
// them. If they should be generalized (or pulled to a lower rank) that will happen
// then; otherwise, we risk generalizing a lambda set too early, when its enclosing
// function type should not be.
let adjustable_variables =
(args.type_variables().into_iter()).chain(args.infer_ext_in_output_variables());
for var_index in adjustable_variables {
let var = subs[var_index];
rank = rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
}
// from elm-compiler: THEORY: anything in the real_var would be Rank::toplevel()
// this theory is not true in Roc! aliases of function types capture the closure var
rank = rank.max(adjust_rank(
subs, young_mark, visit_mark, group_rank, *real_var,
));
rank
}
LambdaSet(subs::LambdaSet {
solved,
recursion_var,
unspecialized,
ambient_function: ambient_function_var,
}) => {
let mut rank = group_rank;
for (_, index) in solved.iter_all() {
let slice = subs[index];
for var_index in slice {
let var = subs[var_index];
rank = rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
}
}
for uls_index in *unspecialized {
let Uls(var, _, _) = subs[uls_index];
rank = rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
}
if let (true, Some(rec_var)) = (cfg!(debug_assertions), recursion_var.into_variable()) {
// THEORY: unlike the situation for recursion vars under recursive tag unions,
// recursive vars inside lambda sets can't escape into higher let-generalized regions
// because lambda sets aren't user-facing.
//
// So the recursion var should be fully accounted by everything else in the lambda set
// (since it appears in the lambda set), and if the rank is higher, it's either a
// bug or our theory is wrong and indeed they can escape into higher regions.
let rec_var_rank = adjust_rank(subs, young_mark, visit_mark, group_rank, rec_var);
debug_assert!(
rank >= rec_var_rank,
"rank was {:?} but recursion var <{:?}>{:?} has higher rank {:?}",
rank,
rec_var,
subs.get_content_without_compacting(rec_var),
rec_var_rank
);
}
// NEVER TOUCH the ambient function var, it would already have been passed through.
{
let _ = ambient_function_var;
}
rank
}
ErasedLambda => group_rank,
Pure | Effectful => group_rank,
RangedNumber(_) => group_rank,
}
}