roc/crates/compiler/mono/src/layout.rs

3484 lines
122 KiB
Rust

use crate::ir::Parens;
use bumpalo::collections::Vec;
use bumpalo::Bump;
use roc_builtins::bitcode::{FloatWidth, IntWidth};
use roc_collections::all::{default_hasher, MutMap};
use roc_error_macros::{internal_error, todo_abilities};
use roc_module::ident::{Lowercase, TagName};
use roc_module::symbol::{Interns, Symbol};
use roc_problem::can::RuntimeError;
use roc_target::{PtrWidth, TargetInfo};
use roc_types::num::NumericRange;
use roc_types::subs::{
self, Content, FlatType, Label, OptVariable, RecordFields, Subs, UnionTags,
UnsortedUnionLabels, Variable,
};
use roc_types::types::{gather_fields_unsorted_iter, RecordField, RecordFieldsError};
use std::cmp::Ordering;
use std::collections::hash_map::{DefaultHasher, Entry};
use std::collections::HashMap;
use std::hash::{Hash, Hasher};
use ven_pretty::{DocAllocator, DocBuilder};
// if your changes cause this number to go down, great!
// please change it to the lower number.
// if it went up, maybe check that the change is really required
roc_error_macros::assert_sizeof_aarch64!(Builtin, 2 * 8);
roc_error_macros::assert_sizeof_aarch64!(Layout, 4 * 8);
roc_error_macros::assert_sizeof_aarch64!(UnionLayout, 3 * 8);
roc_error_macros::assert_sizeof_aarch64!(LambdaSet, 3 * 8);
roc_error_macros::assert_sizeof_wasm!(Builtin, 2 * 4);
roc_error_macros::assert_sizeof_wasm!(Layout, 6 * 4);
roc_error_macros::assert_sizeof_wasm!(UnionLayout, 3 * 4);
roc_error_macros::assert_sizeof_wasm!(LambdaSet, 3 * 4);
roc_error_macros::assert_sizeof_default!(Builtin, 2 * 8);
roc_error_macros::assert_sizeof_default!(Layout, 4 * 8);
roc_error_macros::assert_sizeof_default!(UnionLayout, 3 * 8);
roc_error_macros::assert_sizeof_default!(LambdaSet, 3 * 8);
pub type TagIdIntType = u16;
pub const MAX_ENUM_SIZE: usize = (std::mem::size_of::<TagIdIntType>() * 8) as usize;
const GENERATE_NULLABLE: bool = true;
#[derive(Debug, Clone)]
pub enum LayoutProblem {
UnresolvedTypeVar(Variable),
Erroneous,
}
impl From<LayoutProblem> for RuntimeError {
fn from(lp: LayoutProblem) -> Self {
match lp {
LayoutProblem::UnresolvedTypeVar(_) => RuntimeError::UnresolvedTypeVar,
LayoutProblem::Erroneous => RuntimeError::ErroneousType,
}
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum RawFunctionLayout<'a> {
Function(&'a [Layout<'a>], LambdaSet<'a>, &'a Layout<'a>),
ZeroArgumentThunk(Layout<'a>),
}
impl<'a> RawFunctionLayout<'a> {
pub fn is_zero_argument_thunk(&self) -> bool {
matches!(self, RawFunctionLayout::ZeroArgumentThunk(_))
}
fn new_help<'b>(
env: &mut Env<'a, 'b>,
var: Variable,
content: Content,
) -> Result<Self, LayoutProblem> {
use roc_types::subs::Content::*;
match content {
FlexVar(_) | RigidVar(_) => Err(LayoutProblem::UnresolvedTypeVar(var)),
FlexAbleVar(_, _) | RigidAbleVar(_, _) => todo_abilities!("Not reachable yet"),
RecursionVar { structure, .. } => {
let structure_content = env.subs.get_content_without_compacting(structure);
Self::new_help(env, structure, *structure_content)
}
LambdaSet(lset) => Self::layout_from_lambda_set(env, lset),
Structure(flat_type) => Self::layout_from_flat_type(env, flat_type),
RangedNumber(..) => Ok(Self::ZeroArgumentThunk(Layout::new_help(
env, var, content,
)?)),
// Ints
Alias(Symbol::NUM_I128, args, _, _) => {
debug_assert!(args.is_empty());
Ok(Self::ZeroArgumentThunk(Layout::i128()))
}
Alias(Symbol::NUM_I64, args, _, _) => {
debug_assert!(args.is_empty());
Ok(Self::ZeroArgumentThunk(Layout::i64()))
}
Alias(Symbol::NUM_I32, args, _, _) => {
debug_assert!(args.is_empty());
Ok(Self::ZeroArgumentThunk(Layout::i32()))
}
Alias(Symbol::NUM_I16, args, _, _) => {
debug_assert!(args.is_empty());
Ok(Self::ZeroArgumentThunk(Layout::i16()))
}
Alias(Symbol::NUM_I8, args, _, _) => {
debug_assert!(args.is_empty());
Ok(Self::ZeroArgumentThunk(Layout::i8()))
}
// I think unsigned and signed use the same layout
Alias(Symbol::NUM_U128, args, _, _) => {
debug_assert!(args.is_empty());
Ok(Self::ZeroArgumentThunk(Layout::u128()))
}
Alias(Symbol::NUM_U64, args, _, _) => {
debug_assert!(args.is_empty());
Ok(Self::ZeroArgumentThunk(Layout::u64()))
}
Alias(Symbol::NUM_U32, args, _, _) => {
debug_assert!(args.is_empty());
Ok(Self::ZeroArgumentThunk(Layout::u32()))
}
Alias(Symbol::NUM_U16, args, _, _) => {
debug_assert!(args.is_empty());
Ok(Self::ZeroArgumentThunk(Layout::u16()))
}
Alias(Symbol::NUM_U8, args, _, _) => {
debug_assert!(args.is_empty());
Ok(Self::ZeroArgumentThunk(Layout::u8()))
}
// Floats
Alias(Symbol::NUM_F64, args, _, _) => {
debug_assert!(args.is_empty());
Ok(Self::ZeroArgumentThunk(Layout::f64()))
}
Alias(Symbol::NUM_F32, args, _, _) => {
debug_assert!(args.is_empty());
Ok(Self::ZeroArgumentThunk(Layout::f32()))
}
// Nat
Alias(Symbol::NUM_NAT, args, _, _) => {
debug_assert!(args.is_empty());
Ok(Self::ZeroArgumentThunk(Layout::usize(env.target_info)))
}
Alias(symbol, _, _, _) if symbol.is_builtin() => Ok(Self::ZeroArgumentThunk(
Layout::new_help(env, var, content)?,
)),
Alias(_, _, var, _) => Self::from_var(env, var),
Error => Err(LayoutProblem::Erroneous),
}
}
fn layout_from_lambda_set(
_env: &mut Env<'a, '_>,
_lset: subs::LambdaSet,
) -> Result<Self, LayoutProblem> {
unreachable!()
// Lambda set is just a tag union from the layout's perspective.
// Self::layout_from_flat_type(env, lset.as_tag_union())
}
fn layout_from_flat_type(
env: &mut Env<'a, '_>,
flat_type: FlatType,
) -> Result<Self, LayoutProblem> {
use roc_types::subs::FlatType::*;
let arena = env.arena;
match flat_type {
Func(args, closure_var, ret_var) => {
let mut fn_args = Vec::with_capacity_in(args.len(), arena);
for index in args.into_iter() {
let arg_var = env.subs[index];
fn_args.push(Layout::from_var(env, arg_var)?);
}
let ret = Layout::from_var(env, ret_var)?;
let fn_args = fn_args.into_bump_slice();
let ret = arena.alloc(ret);
let lambda_set =
LambdaSet::from_var(env.arena, env.subs, closure_var, env.target_info)?;
Ok(Self::Function(fn_args, lambda_set, ret))
}
TagUnion(tags, ext) if tags.is_newtype_wrapper(env.subs) => {
debug_assert!(ext_var_is_empty_tag_union(env.subs, ext));
let slice_index = tags.variables().into_iter().next().unwrap();
let slice = env.subs[slice_index];
let var_index = slice.into_iter().next().unwrap();
let var = env.subs[var_index];
Self::from_var(env, var)
}
Record(fields, ext) if fields.len() == 1 => {
debug_assert!(ext_var_is_empty_record(env.subs, ext));
let var_index = fields.iter_variables().next().unwrap();
let var = env.subs[var_index];
Self::from_var(env, var)
}
_ => {
let layout = layout_from_flat_type(env, flat_type)?;
Ok(Self::ZeroArgumentThunk(layout))
}
}
}
/// Returns Err(()) if given an error, or Ok(Layout) if given a non-erroneous Structure.
/// Panics if given a FlexVar or RigidVar, since those should have been
/// monomorphized away already!
fn from_var(env: &mut Env<'a, '_>, var: Variable) -> Result<Self, LayoutProblem> {
if env.is_seen(var) {
unreachable!("The initial variable of a signature cannot be seen already")
} else {
let content = env.subs.get_content_without_compacting(var);
Self::new_help(env, var, *content)
}
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub struct FieldOrderHash(u64);
impl FieldOrderHash {
// NB: This should really be a proper "zero" hash via `DefaultHasher::new().finish()`, but Rust
// stdlib hashers are not (yet) compile-time-computable.
const ZERO_FIELD_HASH: Self = Self(0);
const IRRELEVANT_NON_ZERO_FIELD_HASH: Self = Self(1);
pub fn from_ordered_fields(fields: &[&Lowercase]) -> Self {
if fields.is_empty() {
// HACK: we must make sure this is always equivalent to a `ZERO_FIELD_HASH`.
return Self::ZERO_FIELD_HASH;
}
let mut hasher = DefaultHasher::new();
fields.iter().for_each(|field| field.hash(&mut hasher));
Self(hasher.finish())
}
}
/// Types for code gen must be monomorphic. No type variables allowed!
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub enum Layout<'a> {
Builtin(Builtin<'a>),
Struct {
/// Two different struct types can have the same layout, for example
/// { a: U8, b: I64 }
/// { a: I64, b: U8 }
/// both have the layout {I64, U8}. Not distinguishing the order of record fields can cause
/// us problems during monomorphization when we specialize the same type in different ways,
/// so keep a hash of the record order for disambiguation. This still of course may result
/// in collisions, but it's unlikely.
///
/// See also https://github.com/rtfeldman/roc/issues/2535.
field_order_hash: FieldOrderHash,
field_layouts: &'a [Layout<'a>],
},
Boxed(&'a Layout<'a>),
Union(UnionLayout<'a>),
LambdaSet(LambdaSet<'a>),
RecursivePointer,
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub enum UnionLayout<'a> {
/// A non-recursive tag union
/// e.g. `Result a e : [Ok a, Err e]`
NonRecursive(&'a [&'a [Layout<'a>]]),
/// A recursive tag union (general case)
/// e.g. `Expr : [Sym Str, Add Expr Expr]`
Recursive(&'a [&'a [Layout<'a>]]),
/// A recursive tag union with just one constructor
/// Optimization: No need to store a tag ID (the payload is "unwrapped")
/// e.g. `RoseTree a : [Tree a (List (RoseTree a))]`
NonNullableUnwrapped(&'a [Layout<'a>]),
/// A recursive tag union that has an empty variant
/// Optimization: Represent the empty variant as null pointer => no memory usage & fast comparison
/// It has more than one other variant, so they need tag IDs (payloads are "wrapped")
/// e.g. `FingerTree a : [Empty, Single a, More (Some a) (FingerTree (Tuple a)) (Some a)]`
/// see also: https://youtu.be/ip92VMpf_-A?t=164
///
/// nullable_id refers to the index of the tag that is represented at runtime as NULL.
/// For example, in `FingerTree a : [Empty, Single a, More (Some a) (FingerTree (Tuple a)) (Some a)]`,
/// the ids would be Empty = 0, More = 1, Single = 2, because that's how those tags are
/// ordered alphabetically. Since the Empty tag will be represented at runtime as NULL,
/// and since Empty's tag id is 0, here nullable_id would be 0.
NullableWrapped {
nullable_id: u16,
other_tags: &'a [&'a [Layout<'a>]],
},
/// A recursive tag union with only two variants, where one is empty.
/// Optimizations: Use null for the empty variant AND don't store a tag ID for the other variant.
/// e.g. `ConsList a : [Nil, Cons a (ConsList a)]`
///
/// nullable_id is a bool because it's only ever 0 or 1, but (as with the NullableWrapped
/// variant), it reprsents the index of the tag that will be represented at runtime as NULL.
///
/// So for example, in `ConsList a : [Nil, Cons a (ConsList a)]`, Nil is tag id 1 and
/// Cons is tag id 0 because Nil comes alphabetically after Cons. Here, Nil will be
/// represented as NULL at runtime, so nullable_id is 1 - which is to say, `true`, because
/// `(1 as bool)` is `true`.
NullableUnwrapped {
nullable_id: bool,
other_fields: &'a [Layout<'a>],
},
}
impl<'a> UnionLayout<'a> {
pub fn to_doc<D, A>(self, alloc: &'a D, _parens: Parens) -> DocBuilder<'a, D, A>
where
D: DocAllocator<'a, A>,
D::Doc: Clone,
A: Clone,
{
use UnionLayout::*;
match self {
NonRecursive(tags) => {
let tags_doc = tags.iter().map(|fields| {
alloc.text("C ").append(alloc.intersperse(
fields.iter().map(|x| x.to_doc(alloc, Parens::InTypeParam)),
" ",
))
});
alloc
.text("[")
.append(alloc.intersperse(tags_doc, ", "))
.append(alloc.text("]"))
}
Recursive(tags) => {
let tags_doc = tags.iter().map(|fields| {
alloc.text("C ").append(alloc.intersperse(
fields.iter().map(|x| x.to_doc(alloc, Parens::InTypeParam)),
" ",
))
});
alloc
.text("[<r>")
.append(alloc.intersperse(tags_doc, ", "))
.append(alloc.text("]"))
}
NonNullableUnwrapped(fields) => {
let fields_doc = alloc.text("C ").append(alloc.intersperse(
fields.iter().map(|x| x.to_doc(alloc, Parens::InTypeParam)),
" ",
));
alloc
.text("[<rnnu>")
.append(fields_doc)
.append(alloc.text("]"))
}
NullableUnwrapped {
nullable_id,
other_fields,
} => {
let fields_doc = alloc.text("C ").append(
alloc.intersperse(
other_fields
.iter()
.map(|x| x.to_doc(alloc, Parens::InTypeParam)),
" ",
),
);
let tags_doc = if nullable_id {
alloc.concat(vec![alloc.text("<null>, "), fields_doc])
} else {
alloc.concat(vec![fields_doc, alloc.text(", <null>")])
};
alloc
.text("[<rnu>")
.append(tags_doc)
.append(alloc.text("]"))
}
_ => alloc.text("TODO"),
}
}
pub fn layout_at(self, tag_id: TagIdIntType, index: usize) -> Layout<'a> {
let result = match self {
UnionLayout::NonRecursive(tag_layouts) => {
let field_layouts = tag_layouts[tag_id as usize];
// this cannot be recursive; return immediately
return field_layouts[index];
}
UnionLayout::Recursive(tag_layouts) => {
let field_layouts = tag_layouts[tag_id as usize];
field_layouts[index]
}
UnionLayout::NonNullableUnwrapped(field_layouts) => field_layouts[index],
UnionLayout::NullableWrapped {
nullable_id,
other_tags,
} => {
debug_assert_ne!(nullable_id, tag_id);
let tag_index = if tag_id < nullable_id {
tag_id
} else {
tag_id - 1
};
let field_layouts = other_tags[tag_index as usize];
field_layouts[index]
}
UnionLayout::NullableUnwrapped {
nullable_id,
other_fields,
} => {
debug_assert_ne!(nullable_id, tag_id != 0);
other_fields[index as usize]
}
};
if let Layout::RecursivePointer = result {
Layout::Union(self)
} else {
result
}
}
pub fn number_of_tags(&'a self) -> usize {
match self {
UnionLayout::NonRecursive(tags) | UnionLayout::Recursive(tags) => tags.len(),
UnionLayout::NullableWrapped { other_tags, .. } => other_tags.len() + 1,
UnionLayout::NonNullableUnwrapped(_) => 1,
UnionLayout::NullableUnwrapped { .. } => 2,
}
}
pub fn discriminant(&self) -> Discriminant {
match self {
UnionLayout::NonRecursive(tags) => Discriminant::from_number_of_tags(tags.len()),
UnionLayout::Recursive(tags) => Discriminant::from_number_of_tags(tags.len()),
UnionLayout::NullableWrapped { other_tags, .. } => {
Discriminant::from_number_of_tags(other_tags.len() + 1)
}
UnionLayout::NonNullableUnwrapped(_) => Discriminant::from_number_of_tags(2),
UnionLayout::NullableUnwrapped { .. } => Discriminant::from_number_of_tags(1),
}
}
pub fn tag_id_layout(&self) -> Layout<'a> {
// TODO is it beneficial to return a more specific layout?
// e.g. Layout::bool() and Layout::VOID
match self.discriminant() {
Discriminant::U0 => Layout::u8(),
Discriminant::U1 => Layout::u8(),
Discriminant::U8 => Layout::u8(),
Discriminant::U16 => Layout::u16(),
}
}
fn stores_tag_id_in_pointer_bits(tags: &[&[Layout<'a>]], target_info: TargetInfo) -> bool {
tags.len() < target_info.ptr_width() as usize
}
pub const POINTER_MASK_32BIT: usize = 0b0000_0111;
pub const POINTER_MASK_64BIT: usize = 0b0000_0011;
pub fn tag_id_pointer_bits_and_mask(target_info: TargetInfo) -> (usize, usize) {
match target_info.ptr_width() {
PtrWidth::Bytes8 => (3, Self::POINTER_MASK_64BIT),
PtrWidth::Bytes4 => (2, Self::POINTER_MASK_32BIT),
}
}
// i.e. it is not implicit and not stored in the pointer bits
pub fn stores_tag_id_as_data(&self, target_info: TargetInfo) -> bool {
match self {
UnionLayout::NonRecursive(_) => true,
UnionLayout::Recursive(tags)
| UnionLayout::NullableWrapped {
other_tags: tags, ..
} => !Self::stores_tag_id_in_pointer_bits(tags, target_info),
UnionLayout::NonNullableUnwrapped(_) | UnionLayout::NullableUnwrapped { .. } => false,
}
}
pub fn stores_tag_id_in_pointer(&self, target_info: TargetInfo) -> bool {
match self {
UnionLayout::NonRecursive(_) => false,
UnionLayout::Recursive(tags)
| UnionLayout::NullableWrapped {
other_tags: tags, ..
} => Self::stores_tag_id_in_pointer_bits(tags, target_info),
UnionLayout::NonNullableUnwrapped(_) | UnionLayout::NullableUnwrapped { .. } => false,
}
}
pub fn tag_is_null(&self, tag_id: TagIdIntType) -> bool {
match self {
UnionLayout::NonRecursive(_)
| UnionLayout::NonNullableUnwrapped(_)
| UnionLayout::Recursive(_) => false,
UnionLayout::NullableWrapped { nullable_id, .. } => *nullable_id == tag_id,
UnionLayout::NullableUnwrapped { nullable_id, .. } => *nullable_id == (tag_id != 0),
}
}
pub fn is_nullable(&self) -> bool {
match self {
UnionLayout::NonRecursive(_)
| UnionLayout::Recursive(_)
| UnionLayout::NonNullableUnwrapped { .. } => false,
UnionLayout::NullableWrapped { .. } | UnionLayout::NullableUnwrapped { .. } => true,
}
}
fn tags_alignment_bytes(tags: &[&[Layout]], target_info: TargetInfo) -> u32 {
tags.iter()
.map(|field_layouts| {
Layout::struct_no_name_order(field_layouts).alignment_bytes(target_info)
})
.max()
.unwrap_or(0)
}
pub fn allocation_alignment_bytes(&self, target_info: TargetInfo) -> u32 {
let allocation = match self {
UnionLayout::NonRecursive(tags) => Self::tags_alignment_bytes(tags, target_info),
UnionLayout::Recursive(tags) => Self::tags_alignment_bytes(tags, target_info),
UnionLayout::NonNullableUnwrapped(field_layouts) => {
Layout::struct_no_name_order(field_layouts).alignment_bytes(target_info)
}
UnionLayout::NullableWrapped { other_tags, .. } => {
Self::tags_alignment_bytes(other_tags, target_info)
}
UnionLayout::NullableUnwrapped { other_fields, .. } => {
Layout::struct_no_name_order(other_fields).alignment_bytes(target_info)
}
};
// because we store a refcount, the alignment must be at least the size of a pointer
allocation.max(target_info.ptr_width() as u32)
}
/// Size of the data in memory, whether it's stack or heap (for non-null tag ids)
pub fn data_size_and_alignment(&self, target_info: TargetInfo) -> (u32, u32) {
let (data_width, data_align) = self.data_size_and_alignment_help_match(target_info);
if self.stores_tag_id_as_data(target_info) {
use Discriminant::*;
match self.discriminant() {
U0 => (round_up_to_alignment(data_width, data_align), data_align),
U1 | U8 => (
round_up_to_alignment(data_width + 1, data_align),
data_align,
),
U16 => {
// first, round up the data so the tag id is well-aligned;
// then add the tag id width, and make sure the whole extends
// to the next alignment multiple
let tag_align = data_align.max(2);
let tag_width =
round_up_to_alignment(round_up_to_alignment(data_width, 2) + 2, tag_align);
(tag_width, tag_align)
}
}
} else {
(data_width, data_align)
}
}
/// Size of the data before the tag_id, if it exists.
/// Returns None if the tag_id is not stored as data in the layout.
pub fn data_size_without_tag_id(&self, target_info: TargetInfo) -> Option<u32> {
if !self.stores_tag_id_as_data(target_info) {
return None;
};
Some(self.data_size_and_alignment_help_match(target_info).0)
}
fn data_size_and_alignment_help_match(&self, target_info: TargetInfo) -> (u32, u32) {
match self {
Self::NonRecursive(tags) => Layout::stack_size_and_alignment_slices(tags, target_info),
Self::Recursive(tags) => Layout::stack_size_and_alignment_slices(tags, target_info),
Self::NonNullableUnwrapped(fields) => {
Layout::stack_size_and_alignment_slices(&[fields], target_info)
}
Self::NullableWrapped { other_tags, .. } => {
Layout::stack_size_and_alignment_slices(other_tags, target_info)
}
Self::NullableUnwrapped { other_fields, .. } => {
Layout::stack_size_and_alignment_slices(&[other_fields], target_info)
}
}
}
pub fn tag_id_offset(&self, target_info: TargetInfo) -> Option<u32> {
match self {
UnionLayout::NonRecursive(tags)
| UnionLayout::Recursive(tags)
| UnionLayout::NullableWrapped {
other_tags: tags, ..
} => Some(Self::tag_id_offset_help(tags, target_info)),
UnionLayout::NonNullableUnwrapped(_) | UnionLayout::NullableUnwrapped { .. } => None,
}
}
fn tag_id_offset_help(layouts: &[&[Layout]], target_info: TargetInfo) -> u32 {
let (data_width, data_align) =
Layout::stack_size_and_alignment_slices(layouts, target_info);
round_up_to_alignment(data_width, data_align)
}
/// Very important to use this when doing a memcpy!
fn stack_size_without_alignment(&self, target_info: TargetInfo) -> u32 {
match self {
UnionLayout::NonRecursive(_) => {
let (width, align) = self.data_size_and_alignment(target_info);
round_up_to_alignment(width, align)
}
UnionLayout::Recursive(_)
| UnionLayout::NonNullableUnwrapped(_)
| UnionLayout::NullableWrapped { .. }
| UnionLayout::NullableUnwrapped { .. } => target_info.ptr_width() as u32,
}
}
}
pub enum Discriminant {
U0,
U1,
U8,
U16,
}
impl Discriminant {
pub const fn from_number_of_tags(tags: usize) -> Self {
match tags {
0 => Discriminant::U0,
1 => Discriminant::U0,
2 => Discriminant::U1,
3..=255 => Discriminant::U8,
256..=65_535 => Discriminant::U16,
_ => panic!("discriminant too large"),
}
}
pub const fn stack_size(&self) -> u32 {
match self {
Discriminant::U0 => 0,
Discriminant::U1 => 1,
Discriminant::U8 => 1,
Discriminant::U16 => 2,
}
}
pub const fn alignment_bytes(&self) -> u32 {
self.stack_size()
}
}
/// Custom type so we can get the numeric representation of a symbol in tests (so `#UserApp.3`
/// instead of `UserApp.foo`). The pretty name is not reliable when running many tests
/// concurrently. The number does not change and will give a reliable output.
struct SetElement<'a> {
symbol: Symbol,
layout: &'a [Layout<'a>],
}
impl std::fmt::Debug for SetElement<'_> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let symbol_string = crate::ir::symbol_to_doc_string(self.symbol);
write!(f, "( {}, {:?})", symbol_string, self.layout)
}
}
impl std::fmt::Debug for LambdaSet<'_> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
struct Helper<'a> {
set: &'a [(Symbol, &'a [Layout<'a>])],
}
impl std::fmt::Debug for Helper<'_> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let entries = self.set.iter().map(|x| SetElement {
symbol: x.0,
layout: x.1,
});
f.debug_list().entries(entries).finish()
}
}
f.debug_struct("LambdaSet")
.field("set", &Helper { set: self.set })
.field("representation", &self.representation)
.finish()
}
}
/// Sometimes we can end up with lambdas of the same name and different captures in the same
/// lambda set, like `fun` having lambda set `[[thunk U64, thunk U8]]` due to the following program:
///
/// ```roc
/// capture : _ -> ({} -> Str)
/// capture = \val ->
/// thunk = \{} -> Num.toStr val
/// thunk
///
/// fun = \x ->
/// when x is
/// True -> capture 123u64
/// False -> capture 18u8
/// ```
///
/// By recording the captures layouts this lambda expects in its identifier, we can distinguish
/// between such differences when constructing closure capture data.
///
/// See also https://github.com/rtfeldman/roc/issues/3336.
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
pub struct CapturesNiche<'a>(&'a [Layout<'a>]);
impl CapturesNiche<'_> {
pub fn no_niche() -> Self {
Self(&[])
}
}
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
pub struct LambdaName<'a> {
name: Symbol,
captures_niche: CapturesNiche<'a>,
}
impl<'a> LambdaName<'a> {
#[inline(always)]
pub fn name(&self) -> Symbol {
self.name
}
#[inline(always)]
pub fn captures_niche(&self) -> CapturesNiche<'a> {
self.captures_niche
}
#[inline(always)]
pub fn no_captures(&self) -> bool {
self.captures_niche.0.is_empty()
}
#[inline(always)]
pub fn no_niche(name: Symbol) -> Self {
Self {
name,
captures_niche: CapturesNiche::no_niche(),
}
}
#[inline(always)]
pub fn replace_name(&self, name: Symbol) -> Self {
Self {
name,
captures_niche: self.captures_niche,
}
}
}
#[derive(Clone, Copy, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub struct LambdaSet<'a> {
/// collection of function names and their closure arguments
pub set: &'a [(Symbol, &'a [Layout<'a>])],
/// how the closure will be represented at runtime
representation: &'a Layout<'a>,
}
/// representation of the closure *for a particular function*
#[derive(Debug)]
pub enum ClosureRepresentation<'a> {
/// the closure is represented as a union. Includes the tag ID!
Union {
alphabetic_order_fields: &'a [Layout<'a>],
closure_name: Symbol,
tag_id: TagIdIntType,
union_layout: UnionLayout<'a>,
},
/// The closure is represented as a struct. The layouts are sorted
/// alphabetically by the identifier that is captured.
///
/// We MUST sort these according to their stack size before code gen!
AlphabeticOrderStruct(&'a [Layout<'a>]),
/// the representation is anything but a union
Other(Layout<'a>),
}
impl<'a> LambdaSet<'a> {
pub fn runtime_representation(&self) -> Layout<'a> {
*self.representation
}
/// Does the lambda set contain the given symbol?
pub fn contains(&self, symbol: Symbol) -> bool {
self.set.iter().any(|(s, _)| *s == symbol)
}
pub fn is_represented(&self) -> Option<Layout<'a>> {
match self.representation {
Layout::Struct {
field_layouts: &[], ..
}
| Layout::Builtin(Builtin::Bool)
| Layout::Builtin(Builtin::Int(..)) => None,
repr => Some(*repr),
}
}
pub fn iter_set(&self) -> impl ExactSizeIterator<Item = LambdaName<'a>> {
self.set.iter().map(|(name, captures_layouts)| LambdaName {
name: *name,
captures_niche: CapturesNiche(captures_layouts),
})
}
pub fn layout_for_member_with_lambda_name(
&self,
lambda_name: LambdaName,
) -> ClosureRepresentation<'a> {
debug_assert!(self.contains(lambda_name.name));
let comparator = |other_name: Symbol, other_captures_layouts: &[Layout]| {
other_name == lambda_name.name
// Make sure all captures are equal
&& other_captures_layouts
.iter()
.eq(lambda_name.captures_niche.0)
};
self.layout_for_member(comparator)
}
/// Finds an alias name for a possible-multimorphic lambda variant in the lambda set.
pub fn find_lambda_name(
&self,
function_symbol: Symbol,
captures_layouts: &[Layout],
) -> LambdaName<'a> {
debug_assert!(self.contains(function_symbol), "function symbol not in set");
let comparator = |other_name: Symbol, other_captures_layouts: &[Layout]| {
other_name == function_symbol
&& other_captures_layouts
.iter()
.zip(captures_layouts)
.all(|(other_layout, layout)| self.capture_layouts_eq(other_layout, layout))
};
let (name, layouts) = self
.set
.iter()
.find(|(name, layouts)| comparator(*name, layouts))
.unwrap_or_else(|| {
internal_error!(
"no lambda set found for ({:?}, {:#?}): {:#?}",
function_symbol,
captures_layouts,
self
)
});
LambdaName {
name: *name,
captures_niche: CapturesNiche(layouts),
}
}
/// Checks if two captured layouts are equivalent under the current lambda set.
/// Resolves recursive pointers to the layout of the lambda set.
fn capture_layouts_eq(&self, left: &Layout, right: &Layout) -> bool {
if left == right {
return true;
}
let left = if left == &Layout::RecursivePointer {
let runtime_repr = self.runtime_representation();
debug_assert!(matches!(
runtime_repr,
Layout::Union(UnionLayout::Recursive(_) | UnionLayout::NullableUnwrapped { .. })
));
Layout::LambdaSet(*self)
} else {
*left
};
let right = if right == &Layout::RecursivePointer {
let runtime_repr = self.runtime_representation();
debug_assert!(matches!(
runtime_repr,
Layout::Union(UnionLayout::Recursive(_) | UnionLayout::NullableUnwrapped { .. })
));
Layout::LambdaSet(*self)
} else {
*right
};
left == right
}
fn layout_for_member<F>(&self, comparator: F) -> ClosureRepresentation<'a>
where
F: Fn(Symbol, &[Layout]) -> bool,
{
match self.representation {
Layout::Union(union) => {
// here we rely on the fact that a union in a closure would be stored in a one-element record.
// a closure representation that is itself union must be a of the shape `Closure1 ... | Closure2 ...`
match union {
UnionLayout::NonRecursive(_) => {
// get the fields from the set, where they are sorted in alphabetic order
// (and not yet sorted by their alignment)
let (index, (name, fields)) = self
.set
.iter()
.enumerate()
.find(|(_, (s, layouts))| comparator(*s, layouts))
.unwrap();
let closure_name = *name;
ClosureRepresentation::Union {
tag_id: index as TagIdIntType,
alphabetic_order_fields: fields,
closure_name,
union_layout: *union,
}
}
UnionLayout::Recursive(_) => {
let (index, (name, fields)) = self
.set
.iter()
.enumerate()
.find(|(_, (s, layouts))| comparator(*s, layouts))
.unwrap();
let closure_name = *name;
ClosureRepresentation::Union {
tag_id: index as TagIdIntType,
alphabetic_order_fields: fields,
closure_name,
union_layout: *union,
}
}
UnionLayout::NullableUnwrapped {
nullable_id: _,
other_fields: _,
} => {
let (index, (name, fields)) = self
.set
.iter()
.enumerate()
.find(|(_, (s, layouts))| comparator(*s, layouts))
.unwrap();
let closure_name = *name;
ClosureRepresentation::Union {
tag_id: index as TagIdIntType,
alphabetic_order_fields: fields,
closure_name,
union_layout: *union,
}
}
UnionLayout::NonNullableUnwrapped(_) => todo!("recursive closures"),
UnionLayout::NullableWrapped {
nullable_id: _,
other_tags: _,
} => todo!("recursive closures"),
}
}
Layout::Struct { .. } => {
debug_assert_eq!(self.set.len(), 1);
// get the fields from the set, where they are sorted in alphabetic order
// (and not yet sorted by their alignment)
let (_, fields) = self
.set
.iter()
.find(|(s, layouts)| comparator(*s, layouts))
.unwrap();
ClosureRepresentation::AlphabeticOrderStruct(fields)
}
_ => ClosureRepresentation::Other(*self.representation),
}
}
pub fn extend_argument_list(
&self,
arena: &'a Bump,
argument_layouts: &'a [Layout<'a>],
) -> &'a [Layout<'a>] {
if let [] = self.set {
// TERRIBLE HACK for builting functions
argument_layouts
} else {
match self.representation {
Layout::Struct {
field_layouts: &[], ..
} => {
// this function does not have anything in its closure, and the lambda set is a
// singleton, so we pass no extra argument
argument_layouts
}
Layout::Builtin(Builtin::Bool)
| Layout::Builtin(Builtin::Int(IntWidth::I8 | IntWidth::U8)) => {
// we don't pass this along either
argument_layouts
}
_ => {
let mut arguments = Vec::with_capacity_in(argument_layouts.len() + 1, arena);
arguments.extend(argument_layouts);
arguments.push(Layout::LambdaSet(*self));
arguments.into_bump_slice()
}
}
}
}
pub fn from_var(
arena: &'a Bump,
subs: &Subs,
closure_var: Variable,
target_info: TargetInfo,
) -> Result<Self, LayoutProblem> {
match resolve_lambda_set(subs, closure_var) {
ResolvedLambdaSet::Set(mut lambdas, opt_recursion_var) => {
// sort the tags; make sure ordering stays intact!
lambdas.sort_by_key(|(sym, _)| *sym);
let mut set: Vec<(Symbol, &[Layout])> = Vec::with_capacity_in(lambdas.len(), arena);
let mut set_with_variables: std::vec::Vec<(Symbol, std::vec::Vec<Variable>)> =
std::vec::Vec::with_capacity(lambdas.len());
let mut last_function_symbol = None;
let mut lambdas_it = lambdas.iter().peekable();
let mut has_duplicate_lambda_names = false;
while let Some((function_symbol, variables)) = lambdas_it.next() {
let mut arguments = Vec::with_capacity_in(variables.len(), arena);
let mut env = Env {
arena,
subs,
seen: Vec::new_in(arena),
target_info,
};
if let Some(rec_var) = opt_recursion_var.into_variable() {
env.insert_seen(rec_var);
}
for var in variables {
arguments.push(Layout::from_var(&mut env, *var)?);
}
let arguments = arguments.into_bump_slice();
let is_multimorphic = match (last_function_symbol, lambdas_it.peek()) {
(None, None) => false,
(Some(sym), None) | (None, Some((sym, _))) => function_symbol == sym,
(Some(sym1), Some((sym2, _))) => {
function_symbol == sym1 || function_symbol == sym2
}
};
has_duplicate_lambda_names = has_duplicate_lambda_names || is_multimorphic;
set.push((*function_symbol, arguments));
set_with_variables.push((*function_symbol, variables.to_vec()));
last_function_symbol = Some(function_symbol);
}
let (set, set_with_variables) = if has_duplicate_lambda_names {
// If we have a lambda set with duplicate names, then we sort first by name,
// and break ties by sorting on the layout. We need to do this again since the
// first sort would not have sorted on the layout.
// TODO: be more efficient, we can compute the permutation once and then apply
// it to both vectors.
let mut joined = set
.into_iter()
.zip(set_with_variables.into_iter())
.collect::<std::vec::Vec<_>>();
joined.sort_by(|(lam_and_captures1, _), (lam_and_captures2, _)| {
lam_and_captures1.cmp(lam_and_captures2)
});
// Remove duplicate lambda captures layouts unification can't see as
// duplicates, for example [[Thunk {a: Str}, Thunk [A Str]]], each of which are
// newtypes over the lambda layout `Thunk Str`.
joined.dedup_by_key(|((name, captures), _)| (*name, *captures));
let (set, set_with_variables): (std::vec::Vec<_>, std::vec::Vec<_>) =
joined.into_iter().unzip();
let set = Vec::from_iter_in(set, arena);
(set, set_with_variables)
} else {
(set, set_with_variables)
};
let representation = arena.alloc(Self::make_representation(
arena,
subs,
set_with_variables,
opt_recursion_var.into_variable(),
target_info,
));
Ok(LambdaSet {
set: set.into_bump_slice(),
representation,
})
}
ResolvedLambdaSet::Unbound => {
// The lambda set is unbound which means it must be unused. Just give it the empty lambda set.
// See also https://github.com/rtfeldman/roc/issues/3163.
Ok(LambdaSet {
set: &[],
representation: arena.alloc(Layout::UNIT),
})
}
}
}
fn make_representation(
arena: &'a Bump,
subs: &Subs,
tags: std::vec::Vec<(Symbol, std::vec::Vec<Variable>)>,
opt_rec_var: Option<Variable>,
target_info: TargetInfo,
) -> Layout<'a> {
// otherwise, this is a closure with a payload
let variant = union_sorted_tags_help(arena, tags, opt_rec_var, subs, target_info);
use UnionVariant::*;
match variant {
Never => Layout::VOID,
BoolUnion { .. } => Layout::bool(),
ByteUnion { .. } => Layout::u8(),
Unit | UnitWithArguments => {
// no useful information to store
Layout::UNIT
}
Newtype {
arguments: layouts, ..
} => Layout::struct_no_name_order(layouts.into_bump_slice()),
Wrapped(variant) => {
use WrappedVariant::*;
match variant {
NonRecursive {
sorted_tag_layouts: tags,
} => {
debug_assert!(tags.len() > 1);
// if the closed-over value is actually a layout, it should be wrapped in a 1-element record
debug_assert!(matches!(tags[0].0, TagOrClosure::Closure(_)));
let mut tag_arguments = Vec::with_capacity_in(tags.len(), arena);
for (_, tag_args) in tags.iter() {
tag_arguments.push(&tag_args[0..]);
}
Layout::Union(UnionLayout::NonRecursive(tag_arguments.into_bump_slice()))
}
Recursive {
sorted_tag_layouts: tags,
} => {
debug_assert!(tags.len() > 1);
let mut tag_arguments = Vec::with_capacity_in(tags.len(), arena);
for (_, tag_args) in tags.iter() {
tag_arguments.push(&tag_args[0..]);
}
Layout::Union(UnionLayout::Recursive(tag_arguments.into_bump_slice()))
}
NullableUnwrapped {
nullable_id,
nullable_name: _,
other_name,
other_fields,
} => {
debug_assert!(matches!(other_name, TagOrClosure::Closure(_)));
Layout::Union(UnionLayout::NullableUnwrapped {
nullable_id,
other_fields,
})
}
layout => panic!("handle recursive layout: {:?}", layout),
}
}
}
}
pub fn stack_size(&self, target_info: TargetInfo) -> u32 {
self.representation.stack_size(target_info)
}
pub fn contains_refcounted(&self) -> bool {
self.representation.contains_refcounted()
}
pub fn safe_to_memcpy(&self) -> bool {
self.representation.safe_to_memcpy()
}
pub fn alignment_bytes(&self, target_info: TargetInfo) -> u32 {
self.representation.alignment_bytes(target_info)
}
}
enum ResolvedLambdaSet {
Set(
std::vec::Vec<(Symbol, std::vec::Vec<Variable>)>,
OptVariable,
),
/// TODO: figure out if this can happen in a correct program, or is the result of a bug in our
/// compiler. See https://github.com/rtfeldman/roc/issues/3163.
Unbound,
}
fn resolve_lambda_set(subs: &Subs, mut var: Variable) -> ResolvedLambdaSet {
let mut set = vec![];
loop {
match subs.get_content_without_compacting(var) {
Content::LambdaSet(subs::LambdaSet {
solved,
recursion_var,
unspecialized,
ambient_function: _,
}) => {
debug_assert!(
unspecialized.is_empty(),
"unspecialized lambda sets left over during resolution: {:?}, {:?}",
roc_types::subs::SubsFmtContent(subs.get_content_without_compacting(var), subs),
subs.uls_of_var
);
roc_types::pretty_print::push_union(subs, solved, &mut set);
return ResolvedLambdaSet::Set(set, *recursion_var);
}
Content::RecursionVar { structure, .. } => {
var = *structure;
}
Content::FlexVar(_) => return ResolvedLambdaSet::Unbound,
c => internal_error!("called with a non-lambda set {:?}", c),
}
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub enum Builtin<'a> {
Int(IntWidth),
Float(FloatWidth),
Bool,
Decimal,
Str,
List(&'a Layout<'a>),
}
pub struct Env<'a, 'b> {
target_info: TargetInfo,
arena: &'a Bump,
seen: Vec<'a, Variable>,
subs: &'b Subs,
}
impl<'a, 'b> Env<'a, 'b> {
fn is_seen(&self, var: Variable) -> bool {
let var = self.subs.get_root_key_without_compacting(var);
self.seen.iter().rev().any(|x| x == &var)
}
fn insert_seen(&mut self, var: Variable) {
let var = self.subs.get_root_key_without_compacting(var);
self.seen.push(var);
}
fn remove_seen(&mut self, var: Variable) -> bool {
let var = self.subs.get_root_key_without_compacting(var);
if let Some(index) = self.seen.iter().rposition(|x| x == &var) {
self.seen.remove(index);
true
} else {
false
}
}
}
pub const fn round_up_to_alignment(width: u32, alignment: u32) -> u32 {
match alignment {
0 => width,
1 => width,
_ => {
if width % alignment > 0 {
width + alignment - (width % alignment)
} else {
width
}
}
}
}
#[inline(always)]
pub fn is_unresolved_var(subs: &Subs, var: Variable) -> bool {
use Content::*;
let content = subs.get_content_without_compacting(var);
matches!(
content,
FlexVar(..) | RigidVar(..) | FlexAbleVar(..) | RigidAbleVar(..),
)
}
#[inline(always)]
pub fn is_any_float_range(subs: &Subs, var: Variable) -> bool {
use {roc_types::num::IntLitWidth::*, Content::*, NumericRange::*};
let content = subs.get_content_without_compacting(var);
matches!(
content,
RangedNumber(NumAtLeastEitherSign(I8) | NumAtLeastSigned(I8)),
)
}
impl<'a> Layout<'a> {
pub const VOID: Self = Layout::Union(UnionLayout::NonRecursive(&[]));
pub const UNIT: Self = Layout::Struct {
field_layouts: &[],
field_order_hash: FieldOrderHash::ZERO_FIELD_HASH,
};
fn new_help<'b>(
env: &mut Env<'a, 'b>,
_var: Variable,
content: Content,
) -> Result<Self, LayoutProblem> {
use roc_types::subs::Content::*;
match content {
FlexVar(_) | RigidVar(_) => {
roc_debug_flags::dbg_do!(roc_debug_flags::ROC_NO_UNBOUND_LAYOUT, {
return Err(LayoutProblem::UnresolvedTypeVar(_var));
});
// If we encounter an unbound type var (e.g. `*` or `a`)
// then it's zero-sized; In the future we may drop this argument
// completely, but for now we represent it with the empty tag union
Ok(Layout::VOID)
}
FlexAbleVar(_, _) | RigidAbleVar(_, _) => todo_abilities!("Not reachable yet"),
RecursionVar { structure, .. } => {
let structure_content = env.subs.get_content_without_compacting(structure);
Self::new_help(env, structure, *structure_content)
}
LambdaSet(lset) => layout_from_lambda_set(env, lset),
Structure(flat_type) => layout_from_flat_type(env, flat_type),
Alias(symbol, _args, actual_var, _) => {
if let Some(int_width) = IntWidth::try_from_symbol(symbol) {
return Ok(Layout::Builtin(Builtin::Int(int_width)));
}
if let Some(float_width) = FloatWidth::try_from_symbol(symbol) {
return Ok(Layout::Builtin(Builtin::Float(float_width)));
}
match symbol {
Symbol::NUM_DECIMAL => return Ok(Layout::Builtin(Builtin::Decimal)),
Symbol::NUM_NAT | Symbol::NUM_NATURAL => {
return Ok(Layout::usize(env.target_info))
}
Symbol::NUM_NUM | Symbol::NUM_INT | Symbol::NUM_INTEGER
if is_unresolved_var(env.subs, actual_var) =>
{
// default to i64
return Ok(Layout::i64());
}
Symbol::NUM_FRAC | Symbol::NUM_FLOATINGPOINT
if is_unresolved_var(env.subs, actual_var)
|| is_any_float_range(env.subs, actual_var) =>
{
// default to f64
return Ok(Layout::f64());
}
_ => Self::from_var(env, actual_var),
}
}
RangedNumber(range) => Self::layout_from_ranged_number(env, range),
Error => Err(LayoutProblem::Erroneous),
}
}
fn layout_from_ranged_number(
env: &mut Env<'a, '_>,
range: NumericRange,
) -> Result<Self, LayoutProblem> {
use roc_types::num::IntLitWidth;
// If we chose the default int layout then the real var might have been `Num *`, or
// similar. In this case fix-up width if we need to. Choose I64 if the range says
// that the number will fit, otherwise choose the next-largest number layout.
//
// We don't pass the range down because `RangedNumber`s are somewhat rare, they only
// appear due to number literals, so no need to increase parameter list sizes.
let num_layout = match range {
NumericRange::IntAtLeastSigned(w) | NumericRange::NumAtLeastSigned(w) => {
[IntLitWidth::I64, IntLitWidth::I128]
.iter()
.find(|candidate| candidate.is_superset(&w, true))
.expect("if number doesn't fit, should have been a type error")
}
NumericRange::IntAtLeastEitherSign(w) | NumericRange::NumAtLeastEitherSign(w) => [
IntLitWidth::I64,
IntLitWidth::U64,
IntLitWidth::I128,
IntLitWidth::U128,
]
.iter()
.find(|candidate| candidate.is_superset(&w, false))
.expect("if number doesn't fit, should have been a type error"),
};
Ok(Layout::int_literal_width_to_int(
*num_layout,
env.target_info,
))
}
/// Returns Err(()) if given an error, or Ok(Layout) if given a non-erroneous Structure.
/// Panics if given a FlexVar or RigidVar, since those should have been
/// monomorphized away already!
fn from_var(env: &mut Env<'a, '_>, var: Variable) -> Result<Self, LayoutProblem> {
if env.is_seen(var) {
Ok(Layout::RecursivePointer)
} else {
let content = env.subs.get_content_without_compacting(var);
Self::new_help(env, var, *content)
}
}
pub fn safe_to_memcpy(&self) -> bool {
use Layout::*;
match self {
Builtin(builtin) => builtin.safe_to_memcpy(),
Struct { field_layouts, .. } => field_layouts
.iter()
.all(|field_layout| field_layout.safe_to_memcpy()),
Union(variant) => {
use UnionLayout::*;
match variant {
NonRecursive(tags) => tags
.iter()
.all(|tag_layout| tag_layout.iter().all(|field| field.safe_to_memcpy())),
Recursive(_)
| NullableWrapped { .. }
| NullableUnwrapped { .. }
| NonNullableUnwrapped(_) => {
// a recursive union will always contain a pointer, and is thus not safe to memcpy
false
}
}
}
LambdaSet(lambda_set) => lambda_set.runtime_representation().safe_to_memcpy(),
Boxed(_) | RecursivePointer => {
// We cannot memcpy pointers, because then we would have the same pointer in multiple places!
false
}
}
}
pub fn is_dropped_because_empty(&self) -> bool {
// For this calculation, we don't need an accurate
// stack size, we just need to know whether it's zero,
// so it's fine to use a pointer size of 1.
false // TODO this should use is_zero_sized once doing so doesn't break things!
}
/// Like stack_size, but doesn't require target info because
/// whether something is zero sized is not target-dependent.
#[allow(dead_code)]
fn is_zero_sized(&self) -> bool {
match self {
// There are no zero-sized builtins
Layout::Builtin(_) => false,
// Functions are never zero-sized
Layout::LambdaSet(_) => false,
// Empty structs, or structs with all zero-sized fields, are zero-sized
Layout::Struct { field_layouts, .. } => field_layouts.iter().all(Self::is_zero_sized),
// A Box that points to nothing should be unwrapped
Layout::Boxed(content) => content.is_zero_sized(),
Layout::Union(union_layout) => match union_layout {
UnionLayout::NonRecursive(tags)
| UnionLayout::Recursive(tags)
| UnionLayout::NullableWrapped {
other_tags: tags, ..
} => tags
.iter()
.all(|payloads| payloads.iter().all(Self::is_zero_sized)),
UnionLayout::NonNullableUnwrapped(tags)
| UnionLayout::NullableUnwrapped {
other_fields: tags, ..
} => tags.iter().all(Self::is_zero_sized),
},
// Recursive pointers are considered zero-sized because
// if you have a recursive data structure where everything
// else but the recutsive pointer is zero-sized, then
// the whole thing is unnecessary at runtime and should
// be zero-sized.
Layout::RecursivePointer => true,
}
}
pub fn is_passed_by_reference(&self, target_info: TargetInfo) -> bool {
match self {
Layout::Builtin(builtin) => {
use Builtin::*;
match target_info.ptr_width() {
PtrWidth::Bytes4 => {
// more things fit into a register
false
}
PtrWidth::Bytes8 => {
// currently, only Str is passed by-reference internally
matches!(builtin, Str)
}
}
}
Layout::Union(UnionLayout::NonRecursive(_)) => true,
Layout::LambdaSet(lambda_set) => lambda_set
.runtime_representation()
.is_passed_by_reference(target_info),
_ => false,
}
}
pub fn stack_size(&self, target_info: TargetInfo) -> u32 {
let width = self.stack_size_without_alignment(target_info);
let alignment = self.alignment_bytes(target_info);
round_up_to_alignment(width, alignment)
}
pub fn stack_size_and_alignment(&self, target_info: TargetInfo) -> (u32, u32) {
let width = self.stack_size_without_alignment(target_info);
let alignment = self.alignment_bytes(target_info);
let size = round_up_to_alignment(width, alignment);
(size, alignment)
}
/// Very important to use this when doing a memcpy!
pub fn stack_size_without_alignment(&self, target_info: TargetInfo) -> u32 {
use Layout::*;
match self {
Builtin(builtin) => builtin.stack_size(target_info),
Struct { field_layouts, .. } => {
let mut sum = 0;
for field_layout in *field_layouts {
sum += field_layout.stack_size(target_info);
}
sum
}
Union(variant) => variant.stack_size_without_alignment(target_info),
LambdaSet(lambda_set) => lambda_set
.runtime_representation()
.stack_size_without_alignment(target_info),
RecursivePointer => target_info.ptr_width() as u32,
Boxed(_) => target_info.ptr_width() as u32,
}
}
pub fn alignment_bytes(&self, target_info: TargetInfo) -> u32 {
match self {
Layout::Struct { field_layouts, .. } => field_layouts
.iter()
.map(|x| x.alignment_bytes(target_info))
.max()
.unwrap_or(0),
Layout::Union(variant) => {
use UnionLayout::*;
match variant {
NonRecursive(tags) => {
let max_alignment = tags
.iter()
.flat_map(|layouts| {
layouts
.iter()
.map(|layout| layout.alignment_bytes(target_info))
})
.max();
let discriminant = variant.discriminant();
match max_alignment {
Some(align) => round_up_to_alignment(
align.max(discriminant.alignment_bytes()),
discriminant.alignment_bytes(),
),
None => {
// none of the tags had any payload, but the tag id still contains information
discriminant.alignment_bytes()
}
}
}
Recursive(_)
| NullableWrapped { .. }
| NullableUnwrapped { .. }
| NonNullableUnwrapped(_) => target_info.ptr_width() as u32,
}
}
Layout::LambdaSet(lambda_set) => lambda_set
.runtime_representation()
.alignment_bytes(target_info),
Layout::Builtin(builtin) => builtin.alignment_bytes(target_info),
Layout::RecursivePointer => target_info.ptr_width() as u32,
Layout::Boxed(_) => target_info.ptr_width() as u32,
}
}
pub fn allocation_alignment_bytes(&self, target_info: TargetInfo) -> u32 {
let ptr_width = target_info.ptr_width() as u32;
match self {
Layout::Builtin(builtin) => builtin.allocation_alignment_bytes(target_info),
Layout::Struct { .. } => self.alignment_bytes(target_info).max(ptr_width),
Layout::Union(union_layout) => union_layout.allocation_alignment_bytes(target_info),
Layout::LambdaSet(lambda_set) => lambda_set
.runtime_representation()
.allocation_alignment_bytes(target_info),
Layout::RecursivePointer => unreachable!("should be looked up to get an actual layout"),
Layout::Boxed(inner) => inner.allocation_alignment_bytes(target_info),
}
}
pub fn stack_size_and_alignment_slices(
slices: &[&[Self]],
target_info: TargetInfo,
) -> (u32, u32) {
let mut data_align = 1;
let mut data_width = 0;
for tag in slices {
let mut total = 0;
for layout in tag.iter() {
let (stack_size, alignment) = layout.stack_size_and_alignment(target_info);
total += stack_size;
data_align = data_align.max(alignment);
}
data_width = data_width.max(total);
}
data_width = round_up_to_alignment(data_width, data_align);
(data_width, data_align)
}
pub fn is_refcounted(&self) -> bool {
use self::Builtin::*;
use Layout::*;
match self {
Union(UnionLayout::NonRecursive(_)) => false,
Union(_) => true,
RecursivePointer => true,
Builtin(List(_)) | Builtin(Str) => true,
_ => false,
}
}
/// Even if a value (say, a record) is not itself reference counted,
/// it may contains values/fields that are. Therefore when this record
/// goes out of scope, the refcount on those values/fields must be decremented.
pub fn contains_refcounted(&self) -> bool {
use Layout::*;
match self {
Builtin(builtin) => builtin.is_refcounted(),
Struct { field_layouts, .. } => field_layouts.iter().any(|f| f.contains_refcounted()),
Union(variant) => {
use UnionLayout::*;
match variant {
NonRecursive(fields) => fields
.iter()
.flat_map(|ls| ls.iter())
.any(|f| f.contains_refcounted()),
Recursive(_)
| NullableWrapped { .. }
| NullableUnwrapped { .. }
| NonNullableUnwrapped(_) => true,
}
}
LambdaSet(lambda_set) => lambda_set.runtime_representation().contains_refcounted(),
RecursivePointer => true,
Boxed(_) => true,
}
}
pub fn to_doc<D, A>(self, alloc: &'a D, parens: Parens) -> DocBuilder<'a, D, A>
where
D: DocAllocator<'a, A>,
D::Doc: Clone,
A: Clone,
{
use Layout::*;
match self {
Builtin(builtin) => builtin.to_doc(alloc, parens),
Struct { field_layouts, .. } => {
let fields_doc = field_layouts.iter().map(|x| x.to_doc(alloc, parens));
alloc
.text("{")
.append(alloc.intersperse(fields_doc, ", "))
.append(alloc.text("}"))
}
Union(union_layout) => union_layout.to_doc(alloc, parens),
LambdaSet(lambda_set) => lambda_set.runtime_representation().to_doc(alloc, parens),
RecursivePointer => alloc.text("*self"),
Boxed(inner) => alloc
.text("Boxed(")
.append(inner.to_doc(alloc, parens))
.append(")"),
}
}
/// Used to build a `Layout::Struct` where the field name order is irrelevant.
pub fn struct_no_name_order(field_layouts: &'a [Layout]) -> Self {
if field_layouts.is_empty() {
Self::UNIT
} else {
Self::Struct {
field_layouts,
field_order_hash: FieldOrderHash::IRRELEVANT_NON_ZERO_FIELD_HASH,
}
}
}
}
/// Avoid recomputing Layout from Variable multiple times.
/// We use `ena` for easy snapshots and rollbacks of the cache.
/// During specialization, a type variable `a` can be specialized to different layouts,
/// e.g. `identity : a -> a` could be specialized to `Bool -> Bool` or `Str -> Str`.
/// Therefore in general it's invalid to store a map from variables to layouts
/// But if we're careful when to invalidate certain keys, we still get some benefit
#[derive(Debug)]
pub struct LayoutCache<'a> {
pub target_info: TargetInfo,
_marker: std::marker::PhantomData<&'a u8>,
}
#[derive(Debug, Clone)]
pub enum CachedLayout<'a> {
Cached(Layout<'a>),
NotCached,
Problem(LayoutProblem),
}
impl<'a> LayoutCache<'a> {
pub fn new(target_info: TargetInfo) -> Self {
Self {
target_info,
_marker: Default::default(),
}
}
pub fn from_var(
&mut self,
arena: &'a Bump,
var: Variable,
subs: &Subs,
) -> Result<Layout<'a>, LayoutProblem> {
// Store things according to the root Variable, to avoid duplicate work.
let var = subs.get_root_key_without_compacting(var);
let mut env = Env {
arena,
subs,
seen: Vec::new_in(arena),
target_info: self.target_info,
};
Layout::from_var(&mut env, var)
}
pub fn raw_from_var(
&mut self,
arena: &'a Bump,
var: Variable,
subs: &Subs,
) -> Result<RawFunctionLayout<'a>, LayoutProblem> {
// Store things according to the root Variable, to avoid duplicate work.
let var = subs.get_root_key_without_compacting(var);
let mut env = Env {
arena,
subs,
seen: Vec::new_in(arena),
target_info: self.target_info,
};
RawFunctionLayout::from_var(&mut env, var)
}
pub fn snapshot(&mut self) -> SnapshotKeyPlaceholder {
SnapshotKeyPlaceholder
}
pub fn rollback_to(&mut self, _snapshot: SnapshotKeyPlaceholder) {}
}
// placeholder for the type ven_ena::unify::Snapshot<ven_ena::unify::InPlace<CachedVariable<'a>>>
pub struct SnapshotKeyPlaceholder;
impl<'a> Layout<'a> {
pub fn int_width(width: IntWidth) -> Layout<'a> {
Layout::Builtin(Builtin::Int(width))
}
pub fn float_width(width: FloatWidth) -> Layout<'a> {
Layout::Builtin(Builtin::Float(width))
}
pub fn f64() -> Layout<'a> {
Layout::Builtin(Builtin::Float(FloatWidth::F64))
}
pub fn f32() -> Layout<'a> {
Layout::Builtin(Builtin::Float(FloatWidth::F32))
}
pub fn usize(target_info: TargetInfo) -> Layout<'a> {
match target_info.ptr_width() {
roc_target::PtrWidth::Bytes4 => Self::u32(),
roc_target::PtrWidth::Bytes8 => Self::u64(),
}
}
pub fn isize(target_info: TargetInfo) -> Layout<'a> {
match target_info.ptr_width() {
roc_target::PtrWidth::Bytes4 => Self::i32(),
roc_target::PtrWidth::Bytes8 => Self::i64(),
}
}
pub fn bool() -> Layout<'a> {
Layout::Builtin(Builtin::Bool)
}
pub const fn u8() -> Layout<'a> {
Layout::Builtin(Builtin::Int(IntWidth::U8))
}
pub fn u16() -> Layout<'a> {
Layout::Builtin(Builtin::Int(IntWidth::U16))
}
pub fn u32() -> Layout<'a> {
Layout::Builtin(Builtin::Int(IntWidth::U32))
}
pub fn u64() -> Layout<'a> {
Layout::Builtin(Builtin::Int(IntWidth::U64))
}
pub fn u128() -> Layout<'a> {
Layout::Builtin(Builtin::Int(IntWidth::U128))
}
pub fn i8() -> Layout<'a> {
Layout::Builtin(Builtin::Int(IntWidth::I8))
}
pub fn i16() -> Layout<'a> {
Layout::Builtin(Builtin::Int(IntWidth::I16))
}
pub fn i32() -> Layout<'a> {
Layout::Builtin(Builtin::Int(IntWidth::I32))
}
pub fn i64() -> Layout<'a> {
Layout::Builtin(Builtin::Int(IntWidth::I64))
}
pub fn i128() -> Layout<'a> {
Layout::Builtin(Builtin::Int(IntWidth::I128))
}
pub fn default_integer() -> Layout<'a> {
Layout::i64()
}
pub fn default_float() -> Layout<'a> {
Layout::f64()
}
pub fn int_literal_width_to_int(
width: roc_types::num::IntLitWidth,
target_info: TargetInfo,
) -> Layout<'a> {
use roc_types::num::IntLitWidth::*;
match width {
U8 => Layout::u8(),
U16 => Layout::u16(),
U32 => Layout::u32(),
U64 => Layout::u64(),
U128 => Layout::u128(),
I8 => Layout::i8(),
I16 => Layout::i16(),
I32 => Layout::i32(),
I64 => Layout::i64(),
I128 => Layout::i128(),
Nat => Layout::usize(target_info),
// f32 int literal bounded by +/- 2^24, so fit it into an i32
F32 => Layout::i32(),
// f64 int literal bounded by +/- 2^53, so fit it into an i32
F64 => Layout::i64(),
// dec int literal bounded by i128, so fit it into an i128
Dec => Layout::i128(),
}
}
}
impl<'a> Builtin<'a> {
const I1_SIZE: u32 = std::mem::size_of::<bool>() as u32;
const DECIMAL_SIZE: u32 = std::mem::size_of::<i128>() as u32;
/// Number of machine words in an empty one of these
pub const STR_WORDS: u32 = 3;
pub const LIST_WORDS: u32 = 3;
/// Layout of collection wrapper for List, Str, Dict, and Set - a struct of (pointer, length, capacity).
pub const WRAPPER_PTR: u32 = 0;
pub const WRAPPER_LEN: u32 = 1;
pub const WRAPPER_CAPACITY: u32 = 2;
pub fn stack_size(&self, target_info: TargetInfo) -> u32 {
use Builtin::*;
let ptr_width = target_info.ptr_width() as u32;
match self {
Int(int) => int.stack_size(),
Float(float) => float.stack_size(),
Bool => Builtin::I1_SIZE,
Decimal => Builtin::DECIMAL_SIZE,
Str => Builtin::STR_WORDS * ptr_width,
List(_) => Builtin::LIST_WORDS * ptr_width,
}
}
pub fn alignment_bytes(&self, target_info: TargetInfo) -> u32 {
use std::mem::align_of;
use Builtin::*;
let ptr_width = target_info.ptr_width() as u32;
// for our data structures, what counts is the alignment of the `( ptr, len )` tuple, and
// since both of those are one pointer size, the alignment of that structure is a pointer
// size
match self {
Int(int_width) => int_width.alignment_bytes(target_info),
Float(float_width) => float_width.alignment_bytes(target_info),
Bool => align_of::<bool>() as u32,
Decimal => IntWidth::I128.alignment_bytes(target_info),
// we often treat these as i128 (64-bit systems)
// or i64 (32-bit systems).
//
// In webassembly, For that to be safe
// they must be aligned to allow such access
List(_) => ptr_width,
Str => ptr_width,
}
}
pub fn safe_to_memcpy(&self) -> bool {
use Builtin::*;
match self {
Int(_) | Float(_) | Bool | Decimal => true,
Str | List(_) => false,
}
}
// Question: does is_refcounted exactly correspond with the "safe to memcpy" property?
pub fn is_refcounted(&self) -> bool {
use Builtin::*;
match self {
Int(_) | Float(_) | Bool | Decimal => false,
List(_) => true,
Str => true,
}
}
pub fn to_doc<D, A>(self, alloc: &'a D, _parens: Parens) -> DocBuilder<'a, D, A>
where
D: DocAllocator<'a, A>,
D::Doc: Clone,
A: Clone,
{
use Builtin::*;
match self {
Int(int_width) => {
use IntWidth::*;
match int_width {
I128 => alloc.text("I128"),
I64 => alloc.text("I64"),
I32 => alloc.text("I32"),
I16 => alloc.text("I16"),
I8 => alloc.text("I8"),
U128 => alloc.text("U128"),
U64 => alloc.text("U64"),
U32 => alloc.text("U32"),
U16 => alloc.text("U16"),
U8 => alloc.text("U8"),
}
}
Float(float_width) => {
use FloatWidth::*;
match float_width {
F128 => alloc.text("Float128"),
F64 => alloc.text("Float64"),
F32 => alloc.text("Float32"),
}
}
Bool => alloc.text("Int1"),
Decimal => alloc.text("Decimal"),
Str => alloc.text("Str"),
List(layout) => alloc
.text("List ")
.append(layout.to_doc(alloc, Parens::InTypeParam)),
}
}
pub fn allocation_alignment_bytes(&self, target_info: TargetInfo) -> u32 {
let ptr_width = target_info.ptr_width() as u32;
let allocation = match self {
Builtin::Str => ptr_width,
Builtin::List(e) => e.alignment_bytes(target_info).max(ptr_width),
// The following are usually not heap-allocated, but they might be when inside a Box.
Builtin::Int(int_width) => int_width.alignment_bytes(target_info).max(ptr_width),
Builtin::Float(float_width) => float_width.alignment_bytes(target_info).max(ptr_width),
Builtin::Bool => (core::mem::align_of::<bool>() as u32).max(ptr_width),
Builtin::Decimal => IntWidth::I128.alignment_bytes(target_info).max(ptr_width),
};
allocation.max(ptr_width)
}
}
fn layout_from_lambda_set<'a>(
env: &mut Env<'a, '_>,
lset: subs::LambdaSet,
) -> Result<Layout<'a>, LayoutProblem> {
// Lambda set is just a tag union from the layout's perspective.
let subs::LambdaSet {
solved,
recursion_var,
unspecialized,
ambient_function: _,
} = lset;
if !unspecialized.is_empty() {
internal_error!(
"unspecialized lambda sets remain during layout generation for {:?}",
roc_types::subs::SubsFmtContent(&Content::LambdaSet(lset), env.subs)
);
}
match recursion_var.into_variable() {
None => {
let labels = solved.unsorted_lambdas(env.subs);
Ok(layout_from_union(env, &labels))
}
Some(rec_var) => {
let labels = solved.unsorted_lambdas(env.subs);
layout_from_recursive_union(env, rec_var, &labels)
}
}
}
fn layout_from_flat_type<'a>(
env: &mut Env<'a, '_>,
flat_type: FlatType,
) -> Result<Layout<'a>, LayoutProblem> {
use roc_types::subs::FlatType::*;
let arena = env.arena;
let subs = env.subs;
let target_info = env.target_info;
match flat_type {
Apply(symbol, args) => {
let args = Vec::from_iter_in(args.into_iter().map(|index| subs[index]), arena);
match symbol {
// Ints
Symbol::NUM_NAT => {
debug_assert_eq!(args.len(), 0);
Ok(Layout::usize(env.target_info))
}
Symbol::NUM_I128 => {
debug_assert_eq!(args.len(), 0);
Ok(Layout::i128())
}
Symbol::NUM_I64 => {
debug_assert_eq!(args.len(), 0);
Ok(Layout::i64())
}
Symbol::NUM_I32 => {
debug_assert_eq!(args.len(), 0);
Ok(Layout::i32())
}
Symbol::NUM_I16 => {
debug_assert_eq!(args.len(), 0);
Ok(Layout::i16())
}
Symbol::NUM_I8 => {
debug_assert_eq!(args.len(), 0);
Ok(Layout::i8())
}
Symbol::NUM_U128 => {
debug_assert_eq!(args.len(), 0);
Ok(Layout::u128())
}
Symbol::NUM_U64 => {
debug_assert_eq!(args.len(), 0);
Ok(Layout::u64())
}
Symbol::NUM_U32 => {
debug_assert_eq!(args.len(), 0);
Ok(Layout::u32())
}
Symbol::NUM_U16 => {
debug_assert_eq!(args.len(), 0);
Ok(Layout::u16())
}
Symbol::NUM_U8 => {
debug_assert_eq!(args.len(), 0);
Ok(Layout::u8())
}
// Floats
Symbol::NUM_DEC => {
debug_assert_eq!(args.len(), 0);
Ok(Layout::Builtin(Builtin::Decimal))
}
Symbol::NUM_F64 => {
debug_assert_eq!(args.len(), 0);
Ok(Layout::f64())
}
Symbol::NUM_F32 => {
debug_assert_eq!(args.len(), 0);
Ok(Layout::f32())
}
Symbol::NUM_NUM => {
// Num.Num should only ever have 1 argument, e.g. Num.Num Int.Integer
debug_assert_eq!(args.len(), 1);
let var = args[0];
let content = subs.get_content_without_compacting(var);
layout_from_num_content(content, target_info)
}
Symbol::STR_STR => Ok(Layout::Builtin(Builtin::Str)),
Symbol::LIST_LIST => list_layout_from_elem(env, args[0]),
Symbol::BOX_BOX_TYPE => {
// Num.Num should only ever have 1 argument, e.g. Num.Num Int.Integer
debug_assert_eq!(args.len(), 1);
let inner_var = args[0];
let inner_layout = Layout::from_var(env, inner_var)?;
Ok(Layout::Boxed(env.arena.alloc(inner_layout)))
}
_ => {
panic!(
"TODO layout_from_flat_type for Apply({:?}, {:?})",
symbol, args
);
}
}
}
Func(_, closure_var, _) => {
if env.is_seen(closure_var) {
Ok(Layout::RecursivePointer)
} else {
let lambda_set =
LambdaSet::from_var(env.arena, env.subs, closure_var, env.target_info)?;
Ok(Layout::LambdaSet(lambda_set))
}
}
Record(fields, ext_var) => {
// extract any values from the ext_var
let mut sortables = Vec::with_capacity_in(fields.len(), arena);
let it = match fields.unsorted_iterator(subs, ext_var) {
Ok(it) => it,
Err(RecordFieldsError) => return Err(LayoutProblem::Erroneous),
};
for (label, field) in it {
match field {
RecordField::Required(field_var) | RecordField::Demanded(field_var) => {
sortables.push((label, Layout::from_var(env, field_var)?));
}
RecordField::Optional(_) => {
// drop optional fields
}
}
}
sortables.sort_by(|(label1, layout1), (label2, layout2)| {
cmp_fields(label1, layout1, label2, layout2, target_info)
});
let ordered_field_names =
Vec::from_iter_in(sortables.iter().map(|(label, _)| *label), arena);
let field_order_hash =
FieldOrderHash::from_ordered_fields(ordered_field_names.as_slice());
if sortables.len() == 1 {
// If the record has only one field that isn't zero-sized,
// unwrap it.
Ok(sortables.pop().unwrap().1)
} else {
let layouts = Vec::from_iter_in(sortables.into_iter().map(|t| t.1), arena);
Ok(Layout::Struct {
field_order_hash,
field_layouts: layouts.into_bump_slice(),
})
}
}
TagUnion(tags, ext_var) => {
let (tags, ext_var) = tags.unsorted_tags_and_ext(subs, ext_var);
debug_assert!(ext_var_is_empty_tag_union(subs, ext_var));
Ok(layout_from_union(env, &tags))
}
FunctionOrTagUnion(tag_name, _, ext_var) => {
debug_assert!(
ext_var_is_empty_tag_union(subs, ext_var),
"If ext_var wasn't empty, this wouldn't be a FunctionOrTagUnion!"
);
let union_tags = UnionTags::from_tag_name_index(tag_name);
let (tags, _) = union_tags.unsorted_tags_and_ext(subs, ext_var);
Ok(layout_from_union(env, &tags))
}
RecursiveTagUnion(rec_var, tags, ext_var) => {
let (tags, ext_var) = tags.unsorted_tags_and_ext(subs, ext_var);
debug_assert!(ext_var_is_empty_tag_union(subs, ext_var));
layout_from_recursive_union(env, rec_var, &tags)
}
EmptyTagUnion => Ok(Layout::VOID),
Erroneous(_) => Err(LayoutProblem::Erroneous),
EmptyRecord => Ok(Layout::UNIT),
}
}
pub type SortedField<'a> = (Lowercase, Variable, Result<Layout<'a>, Layout<'a>>);
pub fn sort_record_fields<'a>(
arena: &'a Bump,
var: Variable,
subs: &Subs,
target_info: TargetInfo,
) -> Result<Vec<'a, SortedField<'a>>, LayoutProblem> {
let mut env = Env {
arena,
subs,
seen: Vec::new_in(arena),
target_info,
};
let (it, _) = match gather_fields_unsorted_iter(subs, RecordFields::empty(), var) {
Ok(it) => it,
Err(_) => return Err(LayoutProblem::Erroneous),
};
let it = it
.into_iter()
.map(|(field, field_type)| (field.clone(), field_type));
sort_record_fields_help(&mut env, it)
}
fn sort_record_fields_help<'a>(
env: &mut Env<'a, '_>,
fields_map: impl Iterator<Item = (Lowercase, RecordField<Variable>)>,
) -> Result<Vec<'a, SortedField<'a>>, LayoutProblem> {
let target_info = env.target_info;
// Sort the fields by label
let mut sorted_fields = Vec::with_capacity_in(fields_map.size_hint().0, env.arena);
for (label, field) in fields_map {
match field {
RecordField::Demanded(v) | RecordField::Required(v) => {
let layout = Layout::from_var(env, v)?;
sorted_fields.push((label, v, Ok(layout)));
}
RecordField::Optional(v) => {
let layout = Layout::from_var(env, v)?;
sorted_fields.push((label, v, Err(layout)));
}
};
}
sorted_fields.sort_by(
|(label1, _, res_layout1), (label2, _, res_layout2)| match res_layout1 {
Ok(layout1) | Err(layout1) => match res_layout2 {
Ok(layout2) | Err(layout2) => {
cmp_fields(label1, layout1, label2, layout2, target_info)
}
},
},
);
Ok(sorted_fields)
}
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub enum TagOrClosure {
Tag(TagName),
Closure(Symbol),
}
impl TagOrClosure {
pub fn expect_tag(self) -> TagName {
match self {
Self::Tag(t) => t,
_ => internal_error!("not a tag"),
}
}
pub fn expect_tag_ref(&self) -> &TagName {
match self {
Self::Tag(t) => t,
_ => internal_error!("not a tag"),
}
}
}
impl From<TagName> for TagOrClosure {
fn from(t: TagName) -> Self {
Self::Tag(t)
}
}
impl From<Symbol> for TagOrClosure {
fn from(s: Symbol) -> Self {
Self::Closure(s)
}
}
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub enum UnionVariant<'a> {
Never,
Unit,
UnitWithArguments,
BoolUnion {
ttrue: TagOrClosure,
ffalse: TagOrClosure,
},
ByteUnion(Vec<'a, TagOrClosure>),
Newtype {
tag_name: TagOrClosure,
arguments: Vec<'a, Layout<'a>>,
},
Wrapped(WrappedVariant<'a>),
}
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub enum WrappedVariant<'a> {
Recursive {
sorted_tag_layouts: Vec<'a, (TagOrClosure, &'a [Layout<'a>])>,
},
NonRecursive {
sorted_tag_layouts: Vec<'a, (TagOrClosure, &'a [Layout<'a>])>,
},
NullableWrapped {
nullable_id: TagIdIntType,
nullable_name: TagOrClosure,
sorted_tag_layouts: Vec<'a, (TagOrClosure, &'a [Layout<'a>])>,
},
NonNullableUnwrapped {
tag_name: TagOrClosure,
fields: &'a [Layout<'a>],
},
NullableUnwrapped {
nullable_id: bool,
nullable_name: TagOrClosure,
other_name: TagOrClosure,
other_fields: &'a [Layout<'a>],
},
}
impl<'a> WrappedVariant<'a> {
pub fn tag_name_to_id(&self, tag_name: &TagName) -> (TagIdIntType, &'a [Layout<'a>]) {
use WrappedVariant::*;
match self {
Recursive { sorted_tag_layouts } | NonRecursive { sorted_tag_layouts } => {
let (tag_id, (_, argument_layouts)) = sorted_tag_layouts
.iter()
.enumerate()
.find(|(_, (key, _))| key.expect_tag_ref() == tag_name)
.expect("tag name is not in its own type");
debug_assert!(tag_id < 256);
(tag_id as TagIdIntType, *argument_layouts)
}
NullableWrapped {
nullable_id,
nullable_name,
sorted_tag_layouts,
} => {
// assumption: the nullable_name is not included in sorted_tag_layouts
if tag_name == nullable_name.expect_tag_ref() {
(*nullable_id as TagIdIntType, &[] as &[_])
} else {
let (mut tag_id, (_, argument_layouts)) = sorted_tag_layouts
.iter()
.enumerate()
.find(|(_, (key, _))| key.expect_tag_ref() == tag_name)
.expect("tag name is not in its own type");
if tag_id >= *nullable_id as usize {
tag_id += 1;
}
debug_assert!(tag_id < 256);
(tag_id as TagIdIntType, *argument_layouts)
}
}
NullableUnwrapped {
nullable_id,
nullable_name,
other_name,
other_fields,
} => {
if tag_name == nullable_name.expect_tag_ref() {
(*nullable_id as TagIdIntType, &[] as &[_])
} else {
debug_assert_eq!(other_name.expect_tag_ref(), tag_name);
(!*nullable_id as TagIdIntType, *other_fields)
}
}
NonNullableUnwrapped { fields, .. } => (0, fields),
}
}
pub fn number_of_tags(&'a self) -> usize {
use WrappedVariant::*;
match self {
Recursive { sorted_tag_layouts } | NonRecursive { sorted_tag_layouts } => {
sorted_tag_layouts.len()
}
NullableWrapped {
sorted_tag_layouts, ..
} => {
// assumption: the nullable_name is not included in sorted_tag_layouts
sorted_tag_layouts.len() + 1
}
NullableUnwrapped { .. } => 2,
NonNullableUnwrapped { .. } => 1,
}
}
}
pub fn union_sorted_tags<'a>(
arena: &'a Bump,
var: Variable,
subs: &Subs,
target_info: TargetInfo,
) -> Result<UnionVariant<'a>, LayoutProblem> {
let var =
if let Content::RecursionVar { structure, .. } = subs.get_content_without_compacting(var) {
*structure
} else {
var
};
let mut tags_vec = std::vec::Vec::new();
let result = match roc_types::pretty_print::chase_ext_tag_union(subs, var, &mut tags_vec) {
Ok(())
// Admit type variables in the extension for now. This may come from things that never got
// monomorphized, like in
// x : [A]*
// x = A
// x
// In such cases it's fine to drop the variable. We may be proven wrong in the future...
| Err((_, Content::FlexVar(_) | Content::RigidVar(_)))
| Err((_, Content::RecursionVar { .. })) => {
let opt_rec_var = get_recursion_var(subs, var);
union_sorted_tags_help(arena, tags_vec, opt_rec_var, subs, target_info)
}
Err((_, Content::Error)) => return Err(LayoutProblem::Erroneous),
Err(other) => panic!("invalid content in tag union variable: {:?}", other),
};
Ok(result)
}
fn get_recursion_var(subs: &Subs, var: Variable) -> Option<Variable> {
match subs.get_content_without_compacting(var) {
Content::Structure(FlatType::RecursiveTagUnion(rec_var, _, _)) => Some(*rec_var),
Content::Alias(_, _, actual, _) => get_recursion_var(subs, *actual),
_ => None,
}
}
fn is_recursive_tag_union(layout: &Layout) -> bool {
matches!(
layout,
Layout::Union(
UnionLayout::NullableUnwrapped { .. }
| UnionLayout::Recursive(_)
| UnionLayout::NullableWrapped { .. }
| UnionLayout::NonNullableUnwrapped { .. },
)
)
}
fn union_sorted_tags_help_new<'a, L>(
env: &mut Env<'a, '_>,
tags_list: &[(&'_ L, &[Variable])],
opt_rec_var: Option<Variable>,
) -> UnionVariant<'a>
where
L: Label + Ord + Clone + Into<TagOrClosure>,
{
// sort up front; make sure the ordering stays intact!
let mut tags_list = Vec::from_iter_in(tags_list.iter(), env.arena);
tags_list.sort_unstable_by(|(a, _), (b, _)| a.cmp(b));
match tags_list.len() {
0 => {
// trying to instantiate a type with no values
UnionVariant::Never
}
1 => {
let &(tag_name, arguments) = tags_list.remove(0);
let tag_name = tag_name.clone().into();
// just one tag in the union (but with arguments) can be a struct
let mut layouts = Vec::with_capacity_in(tags_list.len(), env.arena);
for &var in arguments {
match Layout::from_var(env, var) {
Ok(layout) => {
layouts.push(layout);
}
Err(LayoutProblem::UnresolvedTypeVar(_)) => {
// If we encounter an unbound type var (e.g. `Ok *`)
// then it's zero-sized; In the future we may drop this argument
// completely, but for now we represent it with the empty tag union
layouts.push(Layout::VOID)
}
Err(LayoutProblem::Erroneous) => {
// An erroneous type var will code gen to a runtime
// error, so we don't need to store any data for it.
}
}
}
layouts.sort_by(|layout1, layout2| {
let size1 = layout1.alignment_bytes(env.target_info);
let size2 = layout2.alignment_bytes(env.target_info);
size2.cmp(&size1)
});
if layouts.is_empty() {
UnionVariant::Unit
} else if opt_rec_var.is_some() {
UnionVariant::Wrapped(WrappedVariant::NonNullableUnwrapped {
tag_name,
fields: layouts.into_bump_slice(),
})
} else {
UnionVariant::Newtype {
tag_name,
arguments: layouts,
}
}
}
num_tags => {
// default path
let mut answer: Vec<(TagOrClosure, &[Layout])> =
Vec::with_capacity_in(tags_list.len(), env.arena);
let mut has_any_arguments = false;
let mut nullable: Option<(TagIdIntType, TagOrClosure)> = None;
// only recursive tag unions can be nullable
let is_recursive = opt_rec_var.is_some();
if is_recursive && GENERATE_NULLABLE {
for (index, (name, variables)) in tags_list.iter().enumerate() {
if variables.is_empty() {
nullable = Some((index as TagIdIntType, (*name).clone().into()));
break;
}
}
}
for (index, &(tag_name, arguments)) in tags_list.into_iter().enumerate() {
// reserve space for the tag discriminant
if matches!(nullable, Some((i, _)) if i as usize == index) {
debug_assert!(arguments.is_empty());
continue;
}
let mut arg_layouts = Vec::with_capacity_in(arguments.len() + 1, env.arena);
for &var in arguments {
match Layout::from_var(env, var) {
Ok(layout) => {
has_any_arguments = true;
// make sure to not unroll recursive types!
let self_recursion = opt_rec_var.is_some()
&& env.subs.get_root_key_without_compacting(var)
== env
.subs
.get_root_key_without_compacting(opt_rec_var.unwrap())
&& is_recursive_tag_union(&layout);
if self_recursion {
arg_layouts.push(Layout::RecursivePointer);
} else {
arg_layouts.push(layout);
}
}
Err(LayoutProblem::UnresolvedTypeVar(_)) => {
// If we encounter an unbound type var (e.g. `Ok *`)
// then it's zero-sized; In the future we may drop this argument
// completely, but for now we represent it with the empty tag union
arg_layouts.push(Layout::VOID);
}
Err(LayoutProblem::Erroneous) => {
// An erroneous type var will code gen to a runtime
// error, so we don't need to store any data for it.
}
}
}
arg_layouts.sort_by(|layout1, layout2| {
let size1 = layout1.alignment_bytes(env.target_info);
let size2 = layout2.alignment_bytes(env.target_info);
size2.cmp(&size1)
});
answer.push((tag_name.clone().into(), arg_layouts.into_bump_slice()));
}
match num_tags {
2 if !has_any_arguments => {
// type can be stored in a boolean
// tags_vec is sorted, and answer is sorted the same way
let ttrue = answer.remove(1).0;
let ffalse = answer.remove(0).0;
UnionVariant::BoolUnion { ffalse, ttrue }
}
3..=MAX_ENUM_SIZE if !has_any_arguments => {
// type can be stored in a byte
// needs the sorted tag names to determine the tag_id
let mut tag_names = Vec::with_capacity_in(answer.len(), env.arena);
for (tag_name, _) in answer {
tag_names.push(tag_name);
}
UnionVariant::ByteUnion(tag_names)
}
_ => {
let variant = if let Some((nullable_id, nullable_name)) = nullable {
if answer.len() == 1 {
let (other_name, other_arguments) = answer.drain(..).next().unwrap();
let nullable_id = nullable_id != 0;
WrappedVariant::NullableUnwrapped {
nullable_id,
nullable_name,
other_name,
other_fields: other_arguments,
}
} else {
WrappedVariant::NullableWrapped {
nullable_id,
nullable_name,
sorted_tag_layouts: answer,
}
}
} else if is_recursive {
debug_assert!(answer.len() > 1);
WrappedVariant::Recursive {
sorted_tag_layouts: answer,
}
} else {
WrappedVariant::NonRecursive {
sorted_tag_layouts: answer,
}
};
UnionVariant::Wrapped(variant)
}
}
}
}
}
pub fn union_sorted_tags_help<'a, L>(
arena: &'a Bump,
mut tags_vec: std::vec::Vec<(L, std::vec::Vec<Variable>)>,
opt_rec_var: Option<Variable>,
subs: &Subs,
target_info: TargetInfo,
) -> UnionVariant<'a>
where
L: Into<TagOrClosure> + Ord + Clone,
{
// sort up front; make sure the ordering stays intact!
tags_vec.sort_unstable_by(|(a, _), (b, _)| a.cmp(b));
let mut env = Env {
arena,
subs,
seen: Vec::new_in(arena),
target_info,
};
if let Some(rec_var) = opt_rec_var {
env.insert_seen(rec_var);
}
match tags_vec.len() {
0 => {
// trying to instantiate a type with no values
UnionVariant::Never
}
1 => {
let (tag_name, arguments) = tags_vec.remove(0);
// just one tag in the union (but with arguments) can be a struct
let mut layouts = Vec::with_capacity_in(tags_vec.len(), arena);
let mut contains_zero_sized = false;
for var in arguments {
match Layout::from_var(&mut env, var) {
Ok(layout) => {
// Drop any zero-sized arguments like {}
if !layout.is_dropped_because_empty() {
layouts.push(layout);
} else {
contains_zero_sized = true;
}
}
Err(LayoutProblem::UnresolvedTypeVar(_)) => {
// If we encounter an unbound type var (e.g. `Ok *`)
// then it's zero-sized; In the future we may drop this argument
// completely, but for now we represent it with the empty tag union
layouts.push(Layout::VOID)
}
Err(LayoutProblem::Erroneous) => {
// An erroneous type var will code gen to a runtime
// error, so we don't need to store any data for it.
}
}
}
layouts.sort_by(|layout1, layout2| {
let size1 = layout1.alignment_bytes(target_info);
let size2 = layout2.alignment_bytes(target_info);
size2.cmp(&size1)
});
if layouts.is_empty() {
if contains_zero_sized {
UnionVariant::UnitWithArguments
} else {
UnionVariant::Unit
}
} else if opt_rec_var.is_some() {
UnionVariant::Wrapped(WrappedVariant::NonNullableUnwrapped {
tag_name: tag_name.into(),
fields: layouts.into_bump_slice(),
})
} else {
UnionVariant::Newtype {
tag_name: tag_name.into(),
arguments: layouts,
}
}
}
num_tags => {
// default path
let mut answer = Vec::with_capacity_in(tags_vec.len(), arena);
let mut has_any_arguments = false;
let mut nullable = None;
// only recursive tag unions can be nullable
let is_recursive = opt_rec_var.is_some();
if is_recursive && GENERATE_NULLABLE {
for (index, (name, variables)) in tags_vec.iter().enumerate() {
if variables.is_empty() {
nullable = Some((index as TagIdIntType, name.clone()));
break;
}
}
}
for (index, (tag_name, arguments)) in tags_vec.into_iter().enumerate() {
// reserve space for the tag discriminant
if matches!(nullable, Some((i, _)) if i as usize == index) {
debug_assert!(arguments.is_empty());
continue;
}
let mut arg_layouts = Vec::with_capacity_in(arguments.len() + 1, arena);
for var in arguments {
match Layout::from_var(&mut env, var) {
Ok(layout) => {
has_any_arguments = true;
// make sure to not unroll recursive types!
let self_recursion = opt_rec_var.is_some()
&& subs.get_root_key_without_compacting(var)
== subs.get_root_key_without_compacting(opt_rec_var.unwrap())
&& is_recursive_tag_union(&layout);
if self_recursion {
arg_layouts.push(Layout::RecursivePointer);
} else {
arg_layouts.push(layout);
}
}
Err(LayoutProblem::UnresolvedTypeVar(_)) => {
// If we encounter an unbound type var (e.g. `Ok *`)
// then it's zero-sized; In the future we may drop this argument
// completely, but for now we represent it with the empty struct tag
// union
arg_layouts.push(Layout::VOID);
}
Err(LayoutProblem::Erroneous) => {
// An erroneous type var will code gen to a runtime
// error, so we don't need to store any data for it.
}
}
}
arg_layouts.sort_by(|layout1, layout2| {
let size1 = layout1.alignment_bytes(target_info);
let size2 = layout2.alignment_bytes(target_info);
size2.cmp(&size1)
});
answer.push((tag_name.into(), arg_layouts.into_bump_slice()));
}
match num_tags {
2 if !has_any_arguments => {
// type can be stored in a boolean
// tags_vec is sorted, and answer is sorted the same way
let ttrue = answer.remove(1).0;
let ffalse = answer.remove(0).0;
UnionVariant::BoolUnion { ffalse, ttrue }
}
3..=MAX_ENUM_SIZE if !has_any_arguments => {
// type can be stored in a byte
// needs the sorted tag names to determine the tag_id
let mut tag_names = Vec::with_capacity_in(answer.len(), arena);
for (tag_name, _) in answer {
tag_names.push(tag_name);
}
UnionVariant::ByteUnion(tag_names)
}
_ => {
let variant = if let Some((nullable_id, nullable_name)) = nullable {
if answer.len() == 1 {
let (other_name, other_arguments) = answer.drain(..).next().unwrap();
let nullable_id = nullable_id != 0;
WrappedVariant::NullableUnwrapped {
nullable_id,
nullable_name: nullable_name.into(),
other_name,
other_fields: other_arguments,
}
} else {
WrappedVariant::NullableWrapped {
nullable_id,
nullable_name: nullable_name.into(),
sorted_tag_layouts: answer,
}
}
} else if is_recursive {
debug_assert!(answer.len() > 1);
WrappedVariant::Recursive {
sorted_tag_layouts: answer,
}
} else {
WrappedVariant::NonRecursive {
sorted_tag_layouts: answer,
}
};
UnionVariant::Wrapped(variant)
}
}
}
}
}
fn layout_from_newtype<'a, L: Label>(
env: &mut Env<'a, '_>,
tags: &UnsortedUnionLabels<L>,
) -> Layout<'a> {
debug_assert!(tags.is_newtype_wrapper(env.subs));
let (_tag_name, var) = tags.get_newtype(env.subs);
match Layout::from_var(env, var) {
Ok(layout) => layout,
Err(LayoutProblem::UnresolvedTypeVar(_)) => {
// If we encounter an unbound type var (e.g. `Ok *`)
// then it's zero-sized; In the future we may drop this argument
// completely, but for now we represent it with the empty tag union
Layout::VOID
}
Err(LayoutProblem::Erroneous) => {
// An erroneous type var will code gen to a runtime
// error, so we don't need to store any data for it.
todo!()
}
}
}
fn layout_from_union<'a, L>(env: &mut Env<'a, '_>, tags: &UnsortedUnionLabels<L>) -> Layout<'a>
where
L: Label + Ord + Into<TagOrClosure>,
{
use UnionVariant::*;
if tags.is_newtype_wrapper(env.subs) {
return layout_from_newtype(env, tags);
}
let tags_vec = &tags.tags;
let opt_rec_var = None;
let variant = union_sorted_tags_help_new(env, tags_vec, opt_rec_var);
match variant {
Never => Layout::VOID,
Unit | UnitWithArguments => Layout::UNIT,
BoolUnion { .. } => Layout::bool(),
ByteUnion(_) => Layout::u8(),
Newtype {
arguments: field_layouts,
..
} => {
let answer1 = if field_layouts.len() == 1 {
field_layouts[0]
} else {
Layout::struct_no_name_order(field_layouts.into_bump_slice())
};
answer1
}
Wrapped(variant) => {
use WrappedVariant::*;
match variant {
NonRecursive {
sorted_tag_layouts: tags,
} => {
let mut tag_layouts = Vec::with_capacity_in(tags.len(), env.arena);
tag_layouts.extend(tags.iter().map(|r| r.1));
Layout::Union(UnionLayout::NonRecursive(tag_layouts.into_bump_slice()))
}
Recursive {
sorted_tag_layouts: tags,
} => {
let mut tag_layouts = Vec::with_capacity_in(tags.len(), env.arena);
tag_layouts.extend(tags.iter().map(|r| r.1));
debug_assert!(tag_layouts.len() > 1);
Layout::Union(UnionLayout::Recursive(tag_layouts.into_bump_slice()))
}
NullableWrapped {
nullable_id,
nullable_name: _,
sorted_tag_layouts: tags,
} => {
let mut tag_layouts = Vec::with_capacity_in(tags.len(), env.arena);
tag_layouts.extend(tags.iter().map(|r| r.1));
Layout::Union(UnionLayout::NullableWrapped {
nullable_id,
other_tags: tag_layouts.into_bump_slice(),
})
}
NullableUnwrapped { .. } => todo!(),
NonNullableUnwrapped { .. } => todo!(),
}
}
}
}
fn layout_from_recursive_union<'a, L>(
env: &mut Env<'a, '_>,
rec_var: Variable,
tags: &UnsortedUnionLabels<L>,
) -> Result<Layout<'a>, LayoutProblem>
where
L: Label + Ord + Into<TagOrClosure>,
{
let arena = env.arena;
let subs = env.subs;
let target_info = env.target_info;
// some observations
//
// * recursive tag unions are always recursive
// * therefore at least one tag has a pointer (non-zero sized) field
// * they must (to be instantiated) have 2 or more tags
//
// That means none of the optimizations for enums or single tag tag unions apply
let rec_var = subs.get_root_key_without_compacting(rec_var);
let tags_vec = &tags.tags;
let mut tag_layouts = Vec::with_capacity_in(tags_vec.len(), arena);
let mut nullable = None;
if GENERATE_NULLABLE {
for (index, (_name, variables)) in tags_vec.iter().enumerate() {
if variables.is_empty() {
nullable = Some(index as TagIdIntType);
break;
}
}
}
env.insert_seen(rec_var);
for (index, &(_name, variables)) in tags_vec.iter().enumerate() {
if matches!(nullable, Some(i) if i == index as TagIdIntType) {
// don't add the nullable case
continue;
}
let mut tag_layout = Vec::with_capacity_in(variables.len() + 1, arena);
for &var in variables {
// TODO does this cause problems with mutually recursive unions?
if rec_var == subs.get_root_key_without_compacting(var) {
tag_layout.push(Layout::RecursivePointer);
continue;
}
tag_layout.push(Layout::from_var(env, var)?);
}
tag_layout.sort_by(|layout1, layout2| {
let size1 = layout1.alignment_bytes(target_info);
let size2 = layout2.alignment_bytes(target_info);
size2.cmp(&size1)
});
tag_layouts.push(tag_layout.into_bump_slice());
}
env.remove_seen(rec_var);
let union_layout = if let Some(tag_id) = nullable {
match tag_layouts.into_bump_slice() {
[one] => {
let nullable_id = tag_id != 0;
UnionLayout::NullableUnwrapped {
nullable_id,
other_fields: one,
}
}
many => UnionLayout::NullableWrapped {
nullable_id: tag_id,
other_tags: many,
},
}
} else if tag_layouts.len() == 1 {
// drop the tag id
UnionLayout::NonNullableUnwrapped(tag_layouts.pop().unwrap())
} else {
UnionLayout::Recursive(tag_layouts.into_bump_slice())
};
Ok(Layout::Union(union_layout))
}
#[cfg(debug_assertions)]
pub fn ext_var_is_empty_record(subs: &Subs, ext_var: Variable) -> bool {
// the ext_var is empty
let fields = match roc_types::types::gather_fields(subs, RecordFields::empty(), ext_var) {
Ok(fields) => fields,
Err(_) => return false,
};
fields.fields.is_empty()
}
#[cfg(not(debug_assertions))]
pub fn ext_var_is_empty_record(_subs: &Subs, _ext_var: Variable) -> bool {
// This should only ever be used in debug_assert! macros
unreachable!();
}
#[cfg(debug_assertions)]
pub fn ext_var_is_empty_tag_union(subs: &Subs, ext_var: Variable) -> bool {
// the ext_var is empty
let mut ext_fields = std::vec::Vec::new();
match roc_types::pretty_print::chase_ext_tag_union(subs, ext_var, &mut ext_fields) {
Ok(()) | Err((_, Content::FlexVar(_) | Content::RigidVar(_) | Content::Error)) => {
ext_fields.is_empty()
}
Err(content) => panic!("invalid content in ext_var: {:?}", content),
}
}
#[cfg(not(debug_assertions))]
pub fn ext_var_is_empty_tag_union(_: &Subs, _: Variable) -> bool {
// This should only ever be used in debug_assert! macros
unreachable!();
}
fn layout_from_num_content<'a>(
content: &Content,
target_info: TargetInfo,
) -> Result<Layout<'a>, LayoutProblem> {
use roc_types::subs::Content::*;
use roc_types::subs::FlatType::*;
match content {
RecursionVar { .. } => panic!("recursion var in num"),
FlexVar(_) | RigidVar(_) => {
// If a Num makes it all the way through type checking with an unbound
// type variable, then assume it's a 64-bit integer.
//
// (e.g. for (5 + 5) assume both 5s are 64-bit integers.)
Ok(Layout::default_integer())
}
FlexAbleVar(_, _) | RigidAbleVar(_, _) => todo_abilities!("Not reachable yet"),
Structure(Apply(symbol, args)) => match *symbol {
// Ints
Symbol::NUM_NAT => Ok(Layout::usize(target_info)),
Symbol::NUM_INTEGER => Ok(Layout::i64()),
Symbol::NUM_I128 => Ok(Layout::i128()),
Symbol::NUM_I64 => Ok(Layout::i64()),
Symbol::NUM_I32 => Ok(Layout::i32()),
Symbol::NUM_I16 => Ok(Layout::i16()),
Symbol::NUM_I8 => Ok(Layout::i8()),
Symbol::NUM_U128 => Ok(Layout::u128()),
Symbol::NUM_U64 => Ok(Layout::u64()),
Symbol::NUM_U32 => Ok(Layout::u32()),
Symbol::NUM_U16 => Ok(Layout::u16()),
Symbol::NUM_U8 => Ok(Layout::u8()),
// Floats
Symbol::NUM_FLOATINGPOINT => Ok(Layout::f64()),
Symbol::NUM_F64 => Ok(Layout::f64()),
Symbol::NUM_F32 => Ok(Layout::f32()),
// Dec
Symbol::NUM_DEC => Ok(Layout::Builtin(Builtin::Decimal)),
_ => {
panic!(
"Invalid Num.Num type application: Apply({:?}, {:?})",
symbol, args
);
}
},
Alias(_, _, _, _) => {
todo!("TODO recursively resolve type aliases in num_from_content");
}
Structure(_) | RangedNumber(..) | LambdaSet(_) => {
panic!("Invalid Num.Num type application: {:?}", content);
}
Error => Err(LayoutProblem::Erroneous),
}
}
pub fn list_layout_from_elem<'a>(
env: &mut Env<'a, '_>,
element_var: Variable,
) -> Result<Layout<'a>, LayoutProblem> {
let is_variable = |content| matches!(content, &Content::FlexVar(_) | &Content::RigidVar(_));
let element_content = env.subs.get_content_without_compacting(element_var);
let element_layout = if is_variable(element_content) {
// If this was still a (List *) then it must have been an empty list
Layout::VOID
} else {
// NOTE: cannot re-use Content, because it may be recursive
// then some state is not correctly kept, we have to go through from_var
Layout::from_var(env, element_var)?
};
Ok(Layout::Builtin(Builtin::List(
env.arena.alloc(element_layout),
)))
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct LayoutId(u32);
impl LayoutId {
// Returns something like "#UserApp_foo_1" when given a symbol that interns to "foo"
// and a LayoutId of 1.
pub fn to_symbol_string(self, symbol: Symbol, interns: &Interns) -> String {
let ident_string = symbol.as_str(interns);
let module_string = interns.module_ids.get_name(symbol.module_id()).unwrap();
format!("{}_{}_{}", module_string, ident_string, self.0)
}
// Returns something like "roc__foo_1_exposed" when given a symbol that interns to "foo"
// and a LayoutId of 1.
pub fn to_exposed_symbol_string(self, symbol: Symbol, interns: &Interns) -> String {
let ident_string = symbol.as_str(interns);
format!("roc__{}_{}_exposed", ident_string, self.0)
}
}
struct IdsByLayout<'a> {
by_id: MutMap<Layout<'a>, u32>,
toplevels_by_id: MutMap<crate::ir::ProcLayout<'a>, u32>,
next_id: u32,
}
impl<'a> IdsByLayout<'a> {
#[inline(always)]
fn insert_layout(&mut self, layout: Layout<'a>) -> LayoutId {
match self.by_id.entry(layout) {
Entry::Vacant(vacant) => {
let answer = self.next_id;
vacant.insert(answer);
self.next_id += 1;
LayoutId(answer)
}
Entry::Occupied(occupied) => LayoutId(*occupied.get()),
}
}
#[inline(always)]
fn singleton_layout(layout: Layout<'a>) -> (Self, LayoutId) {
let mut by_id = HashMap::with_capacity_and_hasher(1, default_hasher());
by_id.insert(layout, 1);
let ids_by_layout = IdsByLayout {
by_id,
toplevels_by_id: Default::default(),
next_id: 2,
};
(ids_by_layout, LayoutId(1))
}
#[inline(always)]
fn insert_toplevel(&mut self, layout: crate::ir::ProcLayout<'a>) -> LayoutId {
match self.toplevels_by_id.entry(layout) {
Entry::Vacant(vacant) => {
let answer = self.next_id;
vacant.insert(answer);
self.next_id += 1;
LayoutId(answer)
}
Entry::Occupied(occupied) => LayoutId(*occupied.get()),
}
}
#[inline(always)]
fn singleton_toplevel(layout: crate::ir::ProcLayout<'a>) -> (Self, LayoutId) {
let mut toplevels_by_id = HashMap::with_capacity_and_hasher(1, default_hasher());
toplevels_by_id.insert(layout, 1);
let ids_by_layout = IdsByLayout {
by_id: Default::default(),
toplevels_by_id,
next_id: 2,
};
(ids_by_layout, LayoutId(1))
}
}
#[derive(Default)]
pub struct LayoutIds<'a> {
by_symbol: MutMap<Symbol, IdsByLayout<'a>>,
}
impl<'a> LayoutIds<'a> {
/// Returns a LayoutId which is unique for the given symbol and layout.
/// If given the same symbol and same layout, returns the same LayoutId.
#[inline(always)]
pub fn get<'b>(&mut self, symbol: Symbol, layout: &'b Layout<'a>) -> LayoutId {
match self.by_symbol.entry(symbol) {
Entry::Vacant(vacant) => {
let (ids_by_layout, layout_id) = IdsByLayout::singleton_layout(*layout);
vacant.insert(ids_by_layout);
layout_id
}
Entry::Occupied(mut occupied_ids) => occupied_ids.get_mut().insert_layout(*layout),
}
}
/// Returns a LayoutId which is unique for the given symbol and layout.
/// If given the same symbol and same layout, returns the same LayoutId.
#[inline(always)]
pub fn get_toplevel<'b>(
&mut self,
symbol: Symbol,
layout: &'b crate::ir::ProcLayout<'a>,
) -> LayoutId {
match self.by_symbol.entry(symbol) {
Entry::Vacant(vacant) => {
let (ids_by_layout, layout_id) = IdsByLayout::singleton_toplevel(*layout);
vacant.insert(ids_by_layout);
layout_id
}
Entry::Occupied(mut occupied_ids) => occupied_ids.get_mut().insert_toplevel(*layout),
}
}
}
/// Compare two fields when sorting them for code gen.
/// This is called by both code gen and glue, so that
/// their field orderings agree.
#[inline(always)]
pub fn cmp_fields<L: Ord>(
label1: &L,
layout1: &Layout<'_>,
label2: &L,
layout2: &Layout<'_>,
target_info: TargetInfo,
) -> Ordering {
let size1 = layout1.alignment_bytes(target_info);
let size2 = layout2.alignment_bytes(target_info);
size2.cmp(&size1).then(label1.cmp(label2))
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn width_and_alignment_union_empty_struct() {
let lambda_set = LambdaSet {
set: &[(Symbol::LIST_MAP, &[])],
representation: &Layout::UNIT,
};
let a = &[Layout::UNIT] as &[_];
let b = &[Layout::LambdaSet(lambda_set)] as &[_];
let tt = [a, b];
let layout = Layout::Union(UnionLayout::NonRecursive(&tt));
let target_info = TargetInfo::default_x86_64();
assert_eq!(layout.stack_size(target_info), 1);
assert_eq!(layout.alignment_bytes(target_info), 1);
}
#[test]
fn memcpy_size_result_u32_unit() {
let ok_tag = &[Layout::Builtin(Builtin::Int(IntWidth::U32))];
let err_tag = &[Layout::UNIT];
let tags = [ok_tag as &[_], err_tag as &[_]];
let union_layout = UnionLayout::NonRecursive(&tags as &[_]);
let layout = Layout::Union(union_layout);
let target_info = TargetInfo::default_x86_64();
assert_eq!(layout.stack_size_without_alignment(target_info), 8);
}
#[test]
fn void_stack_size() {
let target_info = TargetInfo::default_x86_64();
assert_eq!(Layout::VOID.stack_size(target_info), 0);
}
}