roc/compiler/mono/src/code_gen_help.rs
2021-12-20 08:39:16 +00:00

1054 lines
39 KiB
Rust

use bumpalo::collections::vec::Vec;
use bumpalo::Bump;
use roc_builtins::bitcode::IntWidth;
use roc_module::ident::Ident;
use roc_module::low_level::LowLevel;
use roc_module::symbol::{IdentIds, ModuleId, Symbol};
use crate::ir::{
BranchInfo, Call, CallSpecId, CallType, Expr, HostExposedLayouts, Literal, ModifyRc, Proc,
ProcLayout, SelfRecursive, Stmt, UpdateModeId,
};
use crate::layout::{Builtin, Layout, UnionLayout};
const LAYOUT_BOOL: Layout = Layout::Builtin(Builtin::Bool);
const LAYOUT_UNIT: Layout = Layout::Struct(&[]);
const LAYOUT_PTR: Layout = Layout::RecursivePointer;
const LAYOUT_U32: Layout = Layout::Builtin(Builtin::Int(IntWidth::U32));
/// "Infinite" reference count, for static values
/// Ref counts are encoded as negative numbers where isize::MIN represents 1
pub const REFCOUNT_MAX: usize = 0;
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum HelperOp {
Inc,
Dec,
DecRef,
Eq,
}
impl From<&ModifyRc> for HelperOp {
fn from(modify: &ModifyRc) -> Self {
match modify {
ModifyRc::Inc(..) => Self::Inc,
ModifyRc::Dec(_) => Self::Dec,
ModifyRc::DecRef(_) => Self::DecRef,
}
}
}
/// Generate specialized helper procs for code gen
/// ----------------------------------------------
///
/// Some low level operations need specialized helper procs to traverse data structures at runtime.
/// This includes refcounting, hashing, and equality checks.
///
/// For example, when checking List equality, we need to visit each element and compare them.
/// Depending on the type of the list elements, we may need to recurse deeper into each element.
/// For tag unions, we may need branches for different tag IDs, etc.
///
/// This module creates specialized helper procs for all such operations and types used in the program.
///
/// The backend drives the process, in two steps:
/// 1) When it sees the relevant node, it calls CodeGenHelp to get the replacement IR.
/// CodeGenHelp returns IR for a call to the helper proc, and remembers the specialization.
/// 2) After the backend has generated code for all user procs, it takes the IR for all of the
/// specialized helpers procs, and generates target code for them too.
///
pub struct CodeGenHelp<'a> {
arena: &'a Bump,
home: ModuleId,
ptr_size: u32,
layout_isize: Layout<'a>,
/// Specializations to generate
/// Order of insertion is preserved, since it is important for Wasm backend
specs: Vec<'a, (Layout<'a>, HelperOp, Symbol)>,
}
impl<'a> CodeGenHelp<'a> {
pub fn new(arena: &'a Bump, intwidth_isize: IntWidth, home: ModuleId) -> Self {
CodeGenHelp {
arena,
home,
ptr_size: intwidth_isize.stack_size(),
layout_isize: Layout::Builtin(Builtin::Int(intwidth_isize)),
specs: Vec::with_capacity_in(16, arena),
}
}
// ============================================================================
//
// CALL GENERATED PROCS
//
// ============================================================================
/// Expand a `Refcounting` node to a `Let` node that calls a specialized helper proc.
/// The helper procs themselves are to be generated later with `generate_procs`
pub fn expand_refcount_stmt(
&mut self,
ident_ids: &mut IdentIds,
layout: Layout<'a>,
modify: &ModifyRc,
following: &'a Stmt<'a>,
) -> (&'a Stmt<'a>, Vec<'a, (Symbol, ProcLayout<'a>)>) {
if !Self::is_rc_implemented_yet(&layout) {
// Just a warning, so we can decouple backend development from refcounting development.
// When we are closer to completion, we can change it to a panic.
println!(
"WARNING! MEMORY LEAK! Refcounting not yet implemented for Layout {:?}",
layout
);
return (following, Vec::new_in(self.arena));
}
let arena = self.arena;
match modify {
ModifyRc::Inc(structure, amount) => {
let layout_isize = self.layout_isize;
let (proc_name, new_procs_info) =
self.get_or_create_proc_symbols_recursive(ident_ids, &layout, HelperOp::Inc);
// Define a constant for the amount to increment
let amount_sym = self.create_symbol(ident_ids, "amount");
let amount_expr = Expr::Literal(Literal::Int(*amount as i128));
let amount_stmt = |next| Stmt::Let(amount_sym, amount_expr, layout_isize, next);
// Call helper proc, passing the Roc structure and constant amount
let arg_layouts = arena.alloc([layout, layout_isize]);
let call_result_empty = self.create_symbol(ident_ids, "call_result_empty");
let call_expr = Expr::Call(Call {
call_type: CallType::ByName {
name: proc_name,
ret_layout: &LAYOUT_UNIT,
arg_layouts,
specialization_id: CallSpecId::BACKEND_DUMMY,
},
arguments: arena.alloc([*structure, amount_sym]),
});
let call_stmt = Stmt::Let(call_result_empty, call_expr, LAYOUT_UNIT, following);
let rc_stmt = arena.alloc(amount_stmt(arena.alloc(call_stmt)));
(rc_stmt, new_procs_info)
}
ModifyRc::Dec(structure) => {
let (proc_name, new_procs_info) =
self.get_or_create_proc_symbols_recursive(ident_ids, &layout, HelperOp::Dec);
// Call helper proc, passing the Roc structure
let call_result_empty = self.create_symbol(ident_ids, "call_result_empty");
let call_expr = Expr::Call(Call {
call_type: CallType::ByName {
name: proc_name,
ret_layout: &LAYOUT_UNIT,
arg_layouts: arena.alloc([layout]),
specialization_id: CallSpecId::BACKEND_DUMMY,
},
arguments: arena.alloc([*structure]),
});
let rc_stmt = arena.alloc(Stmt::Let(
call_result_empty,
call_expr,
LAYOUT_UNIT,
following,
));
(rc_stmt, new_procs_info)
}
ModifyRc::DecRef(structure) => {
// No generated procs for DecRef, just lowlevel ops
let rc_ptr_sym = self.create_symbol(ident_ids, "rc_ptr");
// Pass the refcount pointer to the lowlevel call (see utils.zig)
let call_result_empty = self.create_symbol(ident_ids, "call_result_empty");
let call_expr = Expr::Call(Call {
call_type: CallType::LowLevel {
op: LowLevel::RefCountDec,
update_mode: UpdateModeId::BACKEND_DUMMY,
},
arguments: arena.alloc([rc_ptr_sym]),
});
let call_stmt = Stmt::Let(call_result_empty, call_expr, LAYOUT_UNIT, following);
let rc_stmt = arena.alloc(self.rc_ptr_from_struct(
ident_ids,
*structure,
rc_ptr_sym,
arena.alloc(call_stmt),
));
(rc_stmt, Vec::new_in(self.arena))
}
}
}
// Check if refcounting is implemented yet. In the long term, this will be deleted.
// In the short term, it helps us to skip refcounting and let it leak, so we can make
// progress incrementally. Kept in sync with generate_procs using assertions.
fn is_rc_implemented_yet(layout: &Layout) -> bool {
matches!(layout, Layout::Builtin(Builtin::Str))
}
/// Replace a generic `Lowlevel::Eq` call with a specialized helper proc.
/// The helper procs themselves are to be generated later with `generate_procs`
pub fn call_specialized_equals(
&mut self,
ident_ids: &mut IdentIds,
layout: &Layout<'a>,
arguments: &'a [Symbol],
) -> (&'a Expr<'a>, Vec<'a, (Symbol, ProcLayout<'a>)>) {
// Record a specialization and get its name
let (proc_name, new_procs_info) =
self.get_or_create_proc_symbols_recursive(ident_ids, layout, HelperOp::Eq);
// Call the specialized helper
let arg_layouts = self.arena.alloc([*layout, *layout]);
let expr = self.arena.alloc(Expr::Call(Call {
call_type: CallType::ByName {
name: proc_name,
ret_layout: &LAYOUT_BOOL,
arg_layouts,
specialization_id: CallSpecId::BACKEND_DUMMY,
},
arguments,
}));
(expr, new_procs_info)
}
// ============================================================================
//
// CREATE SPECIALIZATIONS
//
// ============================================================================
/// Find the Symbol of the procedure for this layout and operation
/// If any new helper procs are needed for this layout or its children,
/// return their details in a vector.
fn get_or_create_proc_symbols_recursive(
&mut self,
ident_ids: &mut IdentIds,
layout: &Layout<'a>,
op: HelperOp,
) -> (Symbol, Vec<'a, (Symbol, ProcLayout<'a>)>) {
let mut new_procs_info = Vec::new_in(self.arena);
let proc_symbol =
self.get_or_create_proc_symbols_visit(ident_ids, &mut new_procs_info, op, layout);
(proc_symbol, new_procs_info)
}
fn get_or_create_proc_symbols_visit(
&mut self,
ident_ids: &mut IdentIds,
new_procs_info: &mut Vec<'a, (Symbol, ProcLayout<'a>)>,
op: HelperOp,
layout: &Layout<'a>,
) -> Symbol {
if let Layout::LambdaSet(lambda_set) = layout {
return self.get_or_create_proc_symbols_visit(
ident_ids,
new_procs_info,
op,
&lambda_set.runtime_representation(),
);
}
let (symbol, new_proc_layout) = self.get_or_create_proc_symbol(ident_ids, layout, op);
if let Some(proc_layout) = new_proc_layout {
new_procs_info.push((symbol, proc_layout));
let mut visit_child = |child| {
if layout_needs_helper_proc(child, op) {
self.get_or_create_proc_symbols_visit(ident_ids, new_procs_info, op, child);
}
};
let mut visit_children = |children: &'a [Layout]| {
for child in children {
visit_child(child);
}
};
let mut visit_tags = |tags: &'a [&'a [Layout]]| {
for tag in tags {
visit_children(tag);
}
};
match layout {
Layout::Builtin(builtin) => match builtin {
Builtin::Dict(key, value) => {
visit_child(key);
visit_child(value);
}
Builtin::Set(element) | Builtin::List(element) => visit_child(element),
_ => {}
},
Layout::Struct(fields) => visit_children(fields),
Layout::Union(union_layout) => match union_layout {
UnionLayout::NonRecursive(tags) => visit_tags(tags),
UnionLayout::Recursive(tags) => visit_tags(tags),
UnionLayout::NonNullableUnwrapped(fields) => visit_children(fields),
UnionLayout::NullableWrapped { other_tags, .. } => visit_tags(other_tags),
UnionLayout::NullableUnwrapped { other_fields, .. } => {
visit_children(other_fields)
}
},
Layout::LambdaSet(_) => unreachable!(),
Layout::RecursivePointer => {}
}
}
symbol
}
fn get_or_create_proc_symbol(
&mut self,
ident_ids: &mut IdentIds,
layout: &Layout<'a>,
op: HelperOp,
) -> (Symbol, Option<ProcLayout<'a>>) {
let found = self.specs.iter().find(|(l, o, _)| l == layout && *o == op);
if let Some((_, _, existing_symbol)) = found {
(*existing_symbol, None)
} else {
let layout_name = layout_debug_name(layout);
let debug_name = format!("#help{:?}_{}", op, layout_name);
let new_symbol: Symbol = self.create_symbol(ident_ids, &debug_name);
self.specs.push((*layout, op, new_symbol));
let new_proc_layout = match op {
HelperOp::Inc => Some(ProcLayout {
arguments: self.arena.alloc([*layout, self.layout_isize]),
result: LAYOUT_UNIT,
}),
HelperOp::Dec => Some(ProcLayout {
arguments: self.arena.alloc([*layout]),
result: LAYOUT_UNIT,
}),
HelperOp::DecRef => None,
HelperOp::Eq => Some(ProcLayout {
arguments: self.arena.alloc([*layout, *layout]),
result: LAYOUT_BOOL,
}),
};
(new_symbol, new_proc_layout)
}
}
fn create_symbol(&self, ident_ids: &mut IdentIds, debug_name: &str) -> Symbol {
let ident_id = ident_ids.add(Ident::from(debug_name));
Symbol::new(self.home, ident_id)
}
// ============================================================================
//
// GENERATE PROCS
//
// ============================================================================
/// Generate refcounting helper procs, each specialized to a particular Layout.
/// For example `List (Result { a: Str, b: Int } Str)` would get its own helper
/// to update the refcounts on the List, the Result and the strings.
pub fn generate_procs(&self, arena: &'a Bump, ident_ids: &mut IdentIds) -> Vec<'a, Proc<'a>> {
use HelperOp::*;
// Clone the specializations so we can loop over them safely
// We need to keep self.specs for lookups of sub-procedures during generation
// Maybe could avoid this by separating specs vector from CodeGenHelp, letting backend own both.
let mut specs = self.specs.clone();
let procs_iter = specs.drain(0..).map(|(layout, op, proc_symbol)| {
let (ret_layout, body) = match op {
Inc | Dec | DecRef => (LAYOUT_UNIT, self.refcount_generic(ident_ids, layout, op)),
Eq => (LAYOUT_BOOL, self.eq_generic(ident_ids, layout)),
};
let roc_value = (layout, Symbol::ARG_1);
let args: &'a [(Layout<'a>, Symbol)] = match op {
HelperOp::Inc => {
let inc_amount = (self.layout_isize, Symbol::ARG_2);
self.arena.alloc([roc_value, inc_amount])
}
HelperOp::Dec | HelperOp::DecRef => self.arena.alloc([roc_value]),
HelperOp::Eq => self.arena.alloc([roc_value, (layout, Symbol::ARG_2)]),
};
Proc {
name: proc_symbol,
args,
body,
closure_data_layout: None,
ret_layout,
is_self_recursive: SelfRecursive::NotSelfRecursive,
must_own_arguments: false,
host_exposed_layouts: HostExposedLayouts::NotHostExposed,
}
});
Vec::from_iter_in(procs_iter, arena)
}
/// Apply the HelperOp to a field of a data structure
/// Only called while generating bodies of helper procs
/// The list of specializations should be complete by this time
fn apply_op_to_sub_layout(
&self,
op: HelperOp,
sub_layout: &Layout<'a>,
arguments: &'a [Symbol],
) -> Expr<'a> {
let found = self
.specs
.iter()
.find(|(l, o, _)| l == sub_layout && *o == op);
if let Some((_, _, proc_name)) = found {
let arg_layouts: &[Layout<'a>] = match op {
HelperOp::Eq => self.arena.alloc([*sub_layout, *sub_layout]),
HelperOp::Inc => self.arena.alloc([*sub_layout, self.layout_isize]),
HelperOp::Dec => self.arena.alloc([*sub_layout]),
HelperOp::DecRef => unreachable!("DecRef is not recursive"),
};
let ret_layout = if matches!(op, HelperOp::Eq) {
&LAYOUT_BOOL
} else {
&LAYOUT_UNIT
};
Expr::Call(Call {
call_type: CallType::ByName {
name: *proc_name,
ret_layout,
arg_layouts,
specialization_id: CallSpecId::BACKEND_DUMMY,
},
arguments,
})
} else {
// By the time we get here (generating helper procs), the list of specializations is complete.
// So if we didn't find one, we must be at a leaf of the layout tree.
debug_assert!(!layout_needs_helper_proc(sub_layout, op));
let lowlevel = match op {
HelperOp::Eq => LowLevel::Eq,
HelperOp::Inc => LowLevel::RefCountInc,
HelperOp::Dec => LowLevel::RefCountDec,
HelperOp::DecRef => unreachable!("DecRef is not recursive"),
};
Expr::Call(Call {
call_type: CallType::LowLevel {
op: lowlevel,
update_mode: UpdateModeId::BACKEND_DUMMY,
},
arguments,
})
}
}
// ============================================================================
//
// GENERATE REFCOUNTING
//
// ============================================================================
fn refcount_generic(
&self,
ident_ids: &mut IdentIds,
layout: Layout<'a>,
op: HelperOp,
) -> Stmt<'a> {
debug_assert!(Self::is_rc_implemented_yet(&layout));
let rc_todo = || todo!("Please update is_rc_implemented_yet for `{:?}`", layout);
match layout {
Layout::Builtin(
Builtin::Int(_) | Builtin::Float(_) | Builtin::Bool | Builtin::Decimal,
) => unreachable!("Not refcounted: {:?}", layout),
Layout::Builtin(Builtin::Str) => self.refcount_str(ident_ids, op),
Layout::Builtin(Builtin::Dict(_, _) | Builtin::Set(_) | Builtin::List(_)) => rc_todo(),
Layout::Struct(_) => rc_todo(),
Layout::Union(_) => rc_todo(),
Layout::LambdaSet(_) => {
unreachable!("Refcounting on LambdaSet is invalid. Should be a Union at runtime.")
}
Layout::RecursivePointer => rc_todo(),
}
}
fn return_unit(&self, ident_ids: &mut IdentIds) -> Stmt<'a> {
let unit = self.create_symbol(ident_ids, "unit");
let ret_stmt = self.arena.alloc(Stmt::Ret(unit));
Stmt::Let(unit, Expr::Struct(&[]), LAYOUT_UNIT, ret_stmt)
}
// Subtract a constant from a pointer to find the refcount
// Also does some type casting, so that we have different Symbols and Layouts
// for the 'pointer' and 'integer' versions of the address.
// This helps to avoid issues with the backends Symbol->Layout mapping.
fn rc_ptr_from_struct(
&self,
ident_ids: &mut IdentIds,
structure: Symbol,
rc_ptr_sym: Symbol,
following: &'a Stmt<'a>,
) -> Stmt<'a> {
// Typecast the structure pointer to an integer
// Backends expect a number Layout to choose the right "subtract" instruction
let addr_sym = self.create_symbol(ident_ids, "addr");
let addr_expr = Expr::Call(Call {
call_type: CallType::LowLevel {
op: LowLevel::PtrCast,
update_mode: UpdateModeId::BACKEND_DUMMY,
},
arguments: self.arena.alloc([structure]),
});
let addr_stmt = |next| Stmt::Let(addr_sym, addr_expr, self.layout_isize, next);
// Pointer size constant
let ptr_size_sym = self.create_symbol(ident_ids, "ptr_size");
let ptr_size_expr = Expr::Literal(Literal::Int(self.ptr_size as i128));
let ptr_size_stmt = |next| Stmt::Let(ptr_size_sym, ptr_size_expr, self.layout_isize, next);
// Refcount address
let rc_addr_sym = self.create_symbol(ident_ids, "rc_addr");
let rc_addr_expr = Expr::Call(Call {
call_type: CallType::LowLevel {
op: LowLevel::NumSub,
update_mode: UpdateModeId::BACKEND_DUMMY,
},
arguments: self.arena.alloc([structure, ptr_size_sym]),
});
let rc_addr_stmt = |next| Stmt::Let(rc_addr_sym, rc_addr_expr, self.layout_isize, next);
// Typecast the refcount address from integer to pointer
let rc_ptr_expr = Expr::Call(Call {
call_type: CallType::LowLevel {
op: LowLevel::PtrCast,
update_mode: UpdateModeId::BACKEND_DUMMY,
},
arguments: self.arena.alloc([rc_addr_sym]),
});
let rc_ptr_stmt = |next| Stmt::Let(rc_ptr_sym, rc_ptr_expr, LAYOUT_PTR, next);
addr_stmt(self.arena.alloc(
//
ptr_size_stmt(self.arena.alloc(
//
rc_addr_stmt(self.arena.alloc(
//
rc_ptr_stmt(self.arena.alloc(
//
following,
)),
)),
)),
))
}
/// Generate a procedure to modify the reference count of a Str
fn refcount_str(&self, ident_ids: &mut IdentIds, op: HelperOp) -> Stmt<'a> {
let string = Symbol::ARG_1;
let layout_isize = self.layout_isize;
// Get the string length as a signed int
let len = self.create_symbol(ident_ids, "len");
let len_expr = Expr::StructAtIndex {
index: 1,
field_layouts: self.arena.alloc([LAYOUT_PTR, layout_isize]),
structure: string,
};
let len_stmt = |next| Stmt::Let(len, len_expr, layout_isize, next);
// Zero
let zero = self.create_symbol(ident_ids, "zero");
let zero_expr = Expr::Literal(Literal::Int(0));
let zero_stmt = |next| Stmt::Let(zero, zero_expr, layout_isize, next);
// is_big_str = (len >= 0);
// Treat len as isize so that the small string flag is the same as the sign bit
let is_big_str = self.create_symbol(ident_ids, "is_big_str");
let is_big_str_expr = Expr::Call(Call {
call_type: CallType::LowLevel {
op: LowLevel::NumGte,
update_mode: UpdateModeId::BACKEND_DUMMY,
},
arguments: self.arena.alloc([len, zero]),
});
let is_big_str_stmt = |next| Stmt::Let(is_big_str, is_big_str_expr, LAYOUT_BOOL, next);
// Get the pointer to the string elements
let elements = self.create_symbol(ident_ids, "elements");
let elements_expr = Expr::StructAtIndex {
index: 0,
field_layouts: self.arena.alloc([LAYOUT_PTR, layout_isize]),
structure: string,
};
let elements_stmt = |next| Stmt::Let(elements, elements_expr, layout_isize, next);
// A pointer to the refcount value itself
let rc_ptr = self.create_symbol(ident_ids, "rc_ptr");
// Alignment constant (same value as ptr_size but different layout)
let alignment = self.create_symbol(ident_ids, "alignment");
let alignment_expr = Expr::Literal(Literal::Int(self.ptr_size as i128));
let alignment_stmt = |next| Stmt::Let(alignment, alignment_expr, LAYOUT_U32, next);
// Call the relevant Zig lowlevel to actually modify the refcount
let zig_call_result = self.create_symbol(ident_ids, "zig_call_result");
let zig_call_expr = match op {
HelperOp::Inc => Expr::Call(Call {
call_type: CallType::LowLevel {
op: LowLevel::RefCountInc,
update_mode: UpdateModeId::BACKEND_DUMMY,
},
arguments: self.arena.alloc([rc_ptr, Symbol::ARG_2]),
}),
HelperOp::Dec | HelperOp::DecRef => Expr::Call(Call {
call_type: CallType::LowLevel {
op: LowLevel::RefCountDec,
update_mode: UpdateModeId::BACKEND_DUMMY,
},
arguments: self.arena.alloc([rc_ptr, alignment]),
}),
_ => unreachable!(),
};
let zig_call_stmt = |next| Stmt::Let(zig_call_result, zig_call_expr, LAYOUT_UNIT, next);
// Generate an `if` to skip small strings but modify big strings
let then_branch = elements_stmt(self.arena.alloc(
//
self.rc_ptr_from_struct(
ident_ids,
elements,
rc_ptr,
self.arena.alloc(
//
alignment_stmt(self.arena.alloc(
//
zig_call_stmt(self.arena.alloc(
//
Stmt::Ret(zig_call_result),
)),
)),
),
),
));
let if_stmt = Stmt::Switch {
cond_symbol: is_big_str,
cond_layout: LAYOUT_BOOL,
branches: self.arena.alloc([(1, BranchInfo::None, then_branch)]),
default_branch: (
BranchInfo::None,
self.arena.alloc(self.return_unit(ident_ids)),
),
ret_layout: LAYOUT_UNIT,
};
// Combine the statements in sequence
len_stmt(self.arena.alloc(
//
zero_stmt(self.arena.alloc(
//
is_big_str_stmt(self.arena.alloc(
//
if_stmt,
)),
)),
))
}
// ============================================================================
//
// GENERATE EQUALS
//
// ============================================================================
fn eq_generic(&self, ident_ids: &mut IdentIds, layout: Layout<'a>) -> Stmt<'a> {
let eq_todo = || todo!("Specialized `==` operator for `{:?}`", layout);
let main_body = match layout {
Layout::Builtin(
Builtin::Int(_) | Builtin::Float(_) | Builtin::Bool | Builtin::Decimal,
) => unreachable!(
"No generated proc for `==`. Use direct code gen for {:?}",
layout
),
Layout::Builtin(Builtin::Str) => {
unreachable!("No generated helper proc for `==` on Str. Use Zig function.")
}
Layout::Builtin(Builtin::Dict(_, _) | Builtin::Set(_) | Builtin::List(_)) => eq_todo(),
Layout::Struct(field_layouts) => self.eq_struct(ident_ids, field_layouts),
Layout::Union(union_layout) => self.eq_tag_union(ident_ids, union_layout),
Layout::LambdaSet(_) => unreachable!("`==` is not defined on functions"),
Layout::RecursivePointer => eq_todo(),
};
Stmt::Let(
Symbol::BOOL_TRUE,
Expr::Literal(Literal::Int(1)),
LAYOUT_BOOL,
self.arena.alloc(Stmt::Let(
Symbol::BOOL_FALSE,
Expr::Literal(Literal::Int(0)),
LAYOUT_BOOL,
self.arena.alloc(main_body),
)),
)
}
fn if_pointers_equal_return_true(
&self,
ident_ids: &mut IdentIds,
ptr1: Symbol,
ptr2: Symbol,
following: &'a Stmt<'a>,
) -> Stmt<'a> {
let ptr1_addr = self.create_symbol(ident_ids, "addr1");
let ptr2_addr = self.create_symbol(ident_ids, "addr2");
let ptr_eq = self.create_symbol(ident_ids, "eq_addr");
Stmt::Let(
ptr1_addr,
Expr::Call(Call {
call_type: CallType::LowLevel {
op: LowLevel::PtrCast,
update_mode: UpdateModeId::BACKEND_DUMMY,
},
arguments: self.arena.alloc([ptr1]),
}),
self.layout_isize,
self.arena.alloc(Stmt::Let(
ptr2_addr,
Expr::Call(Call {
call_type: CallType::LowLevel {
op: LowLevel::PtrCast,
update_mode: UpdateModeId::BACKEND_DUMMY,
},
arguments: self.arena.alloc([ptr2]),
}),
self.layout_isize,
self.arena.alloc(Stmt::Let(
ptr_eq,
Expr::Call(Call {
call_type: CallType::LowLevel {
op: LowLevel::Eq,
update_mode: UpdateModeId::BACKEND_DUMMY,
},
arguments: self.arena.alloc([ptr1_addr, ptr2_addr]),
}),
LAYOUT_BOOL,
self.arena.alloc(Stmt::Switch {
cond_symbol: ptr_eq,
cond_layout: LAYOUT_BOOL,
branches: self.arena.alloc([(
1,
BranchInfo::None,
Stmt::Ret(Symbol::BOOL_TRUE),
)]),
default_branch: (BranchInfo::None, following),
ret_layout: LAYOUT_BOOL,
}),
)),
)),
)
}
fn if_false_return_false(&self, symbol: Symbol, following: &'a Stmt<'a>) -> Stmt<'a> {
Stmt::Switch {
cond_symbol: symbol,
cond_layout: LAYOUT_BOOL,
branches: self
.arena
.alloc([(0, BranchInfo::None, Stmt::Ret(Symbol::BOOL_FALSE))]),
default_branch: (BranchInfo::None, following),
ret_layout: LAYOUT_BOOL,
}
}
fn eq_struct(&self, ident_ids: &mut IdentIds, field_layouts: &'a [Layout<'a>]) -> Stmt<'a> {
let else_clause = self.eq_fields(
ident_ids,
0,
field_layouts,
None,
&[Symbol::ARG_1, Symbol::ARG_2],
Stmt::Ret(Symbol::BOOL_TRUE),
);
self.if_pointers_equal_return_true(
ident_ids,
Symbol::ARG_1,
Symbol::ARG_2,
self.arena.alloc(else_clause),
)
}
fn eq_fields(
&self,
ident_ids: &mut IdentIds,
tag_id: u64,
field_layouts: &'a [Layout<'a>],
rec_ptr_layout: Option<Layout<'a>>,
arguments: &'a [Symbol],
following: Stmt<'a>,
) -> Stmt<'a> {
let mut stmt = following;
for (i, layout) in field_layouts.iter().enumerate().rev() {
let field1_sym = self.create_symbol(ident_ids, &format!("field_1_{}_{}", tag_id, i));
let field1_expr = Expr::StructAtIndex {
index: i as u64,
field_layouts,
structure: arguments[0],
};
let field1_stmt = |next| Stmt::Let(field1_sym, field1_expr, *layout, next);
let field2_sym = self.create_symbol(ident_ids, &format!("field_2_{}_{}", tag_id, i));
let field2_expr = Expr::StructAtIndex {
index: i as u64,
field_layouts,
structure: arguments[1],
};
let field2_stmt = |next| Stmt::Let(field2_sym, field2_expr, *layout, next);
let sub_layout_args = self.arena.alloc([field1_sym, field2_sym]);
let sub_layout = match (layout, rec_ptr_layout) {
(Layout::RecursivePointer, Some(rec_layout)) => self.arena.alloc(rec_layout),
_ => layout,
};
let eq_call_expr =
self.apply_op_to_sub_layout(HelperOp::Eq, sub_layout, sub_layout_args);
let eq_call_name = format!("eq_call_{}", i);
let eq_call_sym = self.create_symbol(ident_ids, &eq_call_name);
let eq_call_stmt = |next| Stmt::Let(eq_call_sym, eq_call_expr, LAYOUT_BOOL, next);
stmt = field1_stmt(self.arena.alloc(
//
field2_stmt(self.arena.alloc(
//
eq_call_stmt(self.arena.alloc(
//
self.if_false_return_false(eq_call_sym, self.arena.alloc(stmt)),
)),
)),
))
}
stmt
}
fn eq_tag_union(&self, ident_ids: &mut IdentIds, union_layout: UnionLayout<'a>) -> Stmt<'a> {
use UnionLayout::*;
let main_stmt = match union_layout {
NonRecursive(tags) => self.eq_tag_union_help(ident_ids, union_layout, tags, None),
Recursive(tags) => self.eq_tag_union_help(ident_ids, union_layout, tags, None),
NonNullableUnwrapped(field_layouts) => self.eq_fields(
ident_ids,
0,
field_layouts,
Some(Layout::Union(union_layout)),
&[Symbol::ARG_1, Symbol::ARG_2],
Stmt::Ret(Symbol::BOOL_TRUE),
),
NullableWrapped {
other_tags,
nullable_id,
} => self.eq_tag_union_help(ident_ids, union_layout, other_tags, Some(nullable_id)),
NullableUnwrapped {
other_fields,
nullable_id: n,
} => self.eq_tag_union_help(
ident_ids,
union_layout,
self.arena.alloc([other_fields]),
Some(n as u16),
),
};
self.if_pointers_equal_return_true(
ident_ids,
Symbol::ARG_1,
Symbol::ARG_2,
self.arena.alloc(main_stmt),
)
}
fn eq_tag_union_help(
&self,
ident_ids: &mut IdentIds,
union_layout: UnionLayout<'a>,
tag_layouts: &'a [&'a [Layout<'a>]],
nullable_id: Option<u16>,
) -> Stmt<'a> {
let tag_id_layout = union_layout.tag_id_layout();
let tag_id_a = self.create_symbol(ident_ids, "tag_id_a");
let tag_id_a_stmt = |next| {
Stmt::Let(
tag_id_a,
Expr::GetTagId {
structure: Symbol::ARG_1,
union_layout,
},
tag_id_layout,
next,
)
};
let tag_id_b = self.create_symbol(ident_ids, "tag_id_b");
let tag_id_b_stmt = |next| {
Stmt::Let(
tag_id_b,
Expr::GetTagId {
structure: Symbol::ARG_2,
union_layout,
},
tag_id_layout,
next,
)
};
let tag_ids_eq = self.create_symbol(ident_ids, "tag_ids_eq");
let tag_ids_eq_stmt = |next| {
Stmt::Let(
tag_ids_eq,
Expr::Call(Call {
call_type: CallType::LowLevel {
op: LowLevel::Eq,
update_mode: UpdateModeId::BACKEND_DUMMY,
},
arguments: self.arena.alloc([tag_id_a, tag_id_b]),
}),
LAYOUT_BOOL,
next,
)
};
let if_equal_ids_stmt = |next| Stmt::Switch {
cond_symbol: tag_ids_eq,
cond_layout: LAYOUT_BOOL,
branches: self
.arena
.alloc([(0, BranchInfo::None, Stmt::Ret(Symbol::BOOL_FALSE))]),
default_branch: (BranchInfo::None, next),
ret_layout: LAYOUT_BOOL,
};
//
// Switch statement by tag ID
//
let mut tag_branches = Vec::with_capacity_in(tag_layouts.len(), self.arena);
// If there's a null tag, check it first. We might not need to load any data from memory.
if let Some(id) = nullable_id {
tag_branches.push((id as u64, BranchInfo::None, Stmt::Ret(Symbol::BOOL_TRUE)))
}
let recursive_ptr_layout = Some(Layout::Union(union_layout));
let mut tag_id: u64 = 0;
for field_layouts in tag_layouts.iter().take(tag_layouts.len() - 1) {
if let Some(null_id) = nullable_id {
if tag_id == null_id as u64 {
tag_id += 1;
}
}
tag_branches.push((
tag_id,
BranchInfo::None,
self.eq_fields(
ident_ids,
tag_id,
field_layouts,
recursive_ptr_layout,
&[Symbol::ARG_1, Symbol::ARG_2],
Stmt::Ret(Symbol::BOOL_TRUE),
),
));
tag_id += 1;
}
let tag_switch_stmt = Stmt::Switch {
cond_symbol: tag_id_a,
cond_layout: tag_id_layout,
branches: tag_branches.into_bump_slice(),
default_branch: (
BranchInfo::None,
self.arena.alloc(self.eq_fields(
ident_ids,
tag_id,
tag_layouts.last().unwrap(),
recursive_ptr_layout,
&[Symbol::ARG_1, Symbol::ARG_2],
Stmt::Ret(Symbol::BOOL_TRUE),
)),
),
ret_layout: LAYOUT_BOOL,
};
//
// combine all the statments
//
tag_id_a_stmt(self.arena.alloc(
//
tag_id_b_stmt(self.arena.alloc(
//
tag_ids_eq_stmt(self.arena.alloc(
//
if_equal_ids_stmt(self.arena.alloc(
//
tag_switch_stmt,
)),
)),
)),
))
}
}
/// Helper to derive a debug function name from a layout
fn layout_debug_name<'a>(layout: &Layout<'a>) -> &'static str {
match layout {
Layout::Builtin(Builtin::List(_)) => "list",
Layout::Builtin(Builtin::Set(_)) => "set",
Layout::Builtin(Builtin::Dict(_, _)) => "dict",
Layout::Builtin(Builtin::Str) => "str",
Layout::Struct(_) => "struct",
Layout::Union(_) => "union",
Layout::LambdaSet(_) => "lambdaset",
_ => unreachable!("Can't create helper proc name for {:?}", layout),
}
}
fn layout_needs_helper_proc(layout: &Layout, op: HelperOp) -> bool {
match layout {
Layout::Builtin(Builtin::Int(_) | Builtin::Float(_) | Builtin::Bool | Builtin::Decimal) => {
false
}
Layout::Builtin(Builtin::Str) => {
matches!(op, HelperOp::Inc | HelperOp::Dec | HelperOp::DecRef)
}
Layout::Builtin(Builtin::Dict(_, _) | Builtin::Set(_) | Builtin::List(_))
| Layout::Struct(_)
| Layout::Union(_)
| Layout::LambdaSet(_) => true,
Layout::RecursivePointer => false,
}
}