mirror of
https://github.com/roc-lang/roc.git
synced 2025-08-02 03:12:20 +00:00
7506 lines
255 KiB
Rust
7506 lines
255 KiB
Rust
use crate::llvm::bitcode::{
|
|
call_bitcode_fn, call_bitcode_fn_fixing_for_convention, call_list_bitcode_fn,
|
|
call_str_bitcode_fn, call_void_bitcode_fn,
|
|
};
|
|
use crate::llvm::build_dict::{
|
|
self, dict_contains, dict_difference, dict_empty, dict_get, dict_insert, dict_intersection,
|
|
dict_keys, dict_len, dict_remove, dict_union, dict_values, dict_walk, set_from_list,
|
|
};
|
|
use crate::llvm::build_hash::generic_hash;
|
|
use crate::llvm::build_list::{
|
|
self, allocate_list, empty_polymorphic_list, list_append, list_concat, list_drop_at,
|
|
list_get_unsafe, list_len, list_map, list_map2, list_map3, list_map4, list_map_with_index,
|
|
list_prepend, list_replace_unsafe, list_sort_with, list_sublist, list_swap,
|
|
list_symbol_to_c_abi, list_to_c_abi, list_with_capacity,
|
|
};
|
|
use crate::llvm::build_str::{
|
|
str_from_float, str_from_int, str_from_utf8, str_from_utf8_range, str_split,
|
|
};
|
|
use crate::llvm::compare::{generic_eq, generic_neq};
|
|
use crate::llvm::convert::{
|
|
self, argument_type_from_layout, basic_type_from_builtin, basic_type_from_layout,
|
|
block_of_memory_slices, zig_str_type,
|
|
};
|
|
use crate::llvm::refcounting::{
|
|
build_reset, decrement_refcount_layout, increment_refcount_layout, PointerToRefcount,
|
|
};
|
|
use bumpalo::collections::Vec;
|
|
use bumpalo::Bump;
|
|
use inkwell::attributes::{Attribute, AttributeLoc};
|
|
use inkwell::basic_block::BasicBlock;
|
|
use inkwell::builder::Builder;
|
|
use inkwell::context::Context;
|
|
use inkwell::debug_info::{
|
|
AsDIScope, DICompileUnit, DIFlagsConstants, DISubprogram, DebugInfoBuilder,
|
|
};
|
|
use inkwell::memory_buffer::MemoryBuffer;
|
|
use inkwell::module::{Linkage, Module};
|
|
use inkwell::passes::{PassManager, PassManagerBuilder};
|
|
use inkwell::types::{
|
|
AnyType, BasicMetadataTypeEnum, BasicType, BasicTypeEnum, FunctionType, IntType, StructType,
|
|
};
|
|
use inkwell::values::BasicValueEnum::{self, *};
|
|
use inkwell::values::{
|
|
BasicMetadataValueEnum, BasicValue, CallSiteValue, CallableValue, FloatValue, FunctionValue,
|
|
InstructionOpcode, InstructionValue, IntValue, PhiValue, PointerValue, StructValue,
|
|
};
|
|
use inkwell::OptimizationLevel;
|
|
use inkwell::{AddressSpace, IntPredicate};
|
|
use morphic_lib::{
|
|
CalleeSpecVar, FuncName, FuncSpec, FuncSpecSolutions, ModSolutions, UpdateMode, UpdateModeVar,
|
|
};
|
|
use roc_builtins::bitcode::{self, FloatWidth, IntWidth, IntrinsicName};
|
|
use roc_builtins::{float_intrinsic, llvm_int_intrinsic};
|
|
use roc_collections::all::{ImMap, MutMap, MutSet};
|
|
use roc_debug_flags::dbg_do;
|
|
#[cfg(debug_assertions)]
|
|
use roc_debug_flags::ROC_PRINT_LLVM_FN_VERIFICATION;
|
|
use roc_error_macros::internal_error;
|
|
use roc_module::low_level::LowLevel;
|
|
use roc_module::symbol::{Interns, ModuleId, Symbol};
|
|
use roc_mono::ir::{
|
|
BranchInfo, CallType, EntryPoint, HigherOrderLowLevel, JoinPointId, ListLiteralElement,
|
|
ModifyRc, OptLevel, ProcLayout,
|
|
};
|
|
use roc_mono::layout::{
|
|
Builtin, CapturesNiche, LambdaName, LambdaSet, Layout, LayoutIds, TagIdIntType, UnionLayout,
|
|
};
|
|
use roc_std::RocDec;
|
|
use roc_target::{PtrWidth, TargetInfo};
|
|
use std::convert::{TryFrom, TryInto};
|
|
use std::path::Path;
|
|
use target_lexicon::{Architecture, OperatingSystem, Triple};
|
|
|
|
use super::convert::zig_with_overflow_roc_dec;
|
|
|
|
#[inline(always)]
|
|
fn print_fn_verification_output() -> bool {
|
|
dbg_do!(ROC_PRINT_LLVM_FN_VERIFICATION, {
|
|
return true;
|
|
});
|
|
false
|
|
}
|
|
|
|
#[macro_export]
|
|
macro_rules! debug_info_init {
|
|
($env:expr, $function_value:expr) => {{
|
|
use inkwell::debug_info::AsDIScope;
|
|
|
|
let func_scope = $function_value.get_subprogram().expect("subprogram");
|
|
let lexical_block = $env.dibuilder.create_lexical_block(
|
|
/* scope */ func_scope.as_debug_info_scope(),
|
|
/* file */ $env.compile_unit.get_file(),
|
|
/* line_no */ 0,
|
|
/* column_no */ 0,
|
|
);
|
|
|
|
let loc = $env.dibuilder.create_debug_location(
|
|
$env.context,
|
|
/* line */ 0,
|
|
/* column */ 0,
|
|
/* current_scope */ lexical_block.as_debug_info_scope(),
|
|
/* inlined_at */ None,
|
|
);
|
|
$env.builder.set_current_debug_location(&$env.context, loc);
|
|
}};
|
|
}
|
|
|
|
/// Iterate over all functions in an llvm module
|
|
pub struct FunctionIterator<'ctx> {
|
|
next: Option<FunctionValue<'ctx>>,
|
|
}
|
|
|
|
impl<'ctx> FunctionIterator<'ctx> {
|
|
pub fn from_module(module: &inkwell::module::Module<'ctx>) -> Self {
|
|
Self {
|
|
next: module.get_first_function(),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'ctx> Iterator for FunctionIterator<'ctx> {
|
|
type Item = FunctionValue<'ctx>;
|
|
|
|
fn next(&mut self) -> Option<Self::Item> {
|
|
match self.next {
|
|
Some(function) => {
|
|
self.next = function.get_next_function();
|
|
|
|
Some(function)
|
|
}
|
|
None => None,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Default, Debug, Clone, PartialEq)]
|
|
pub struct Scope<'a, 'ctx> {
|
|
symbols: ImMap<Symbol, (Layout<'a>, BasicValueEnum<'ctx>)>,
|
|
pub top_level_thunks: ImMap<Symbol, (ProcLayout<'a>, FunctionValue<'ctx>)>,
|
|
join_points: ImMap<JoinPointId, (BasicBlock<'ctx>, &'a [PhiValue<'ctx>])>,
|
|
}
|
|
|
|
impl<'a, 'ctx> Scope<'a, 'ctx> {
|
|
fn get(&self, symbol: &Symbol) -> Option<&(Layout<'a>, BasicValueEnum<'ctx>)> {
|
|
self.symbols.get(symbol)
|
|
}
|
|
pub fn insert(&mut self, symbol: Symbol, value: (Layout<'a>, BasicValueEnum<'ctx>)) {
|
|
self.symbols.insert(symbol, value);
|
|
}
|
|
pub fn insert_top_level_thunk(
|
|
&mut self,
|
|
symbol: Symbol,
|
|
layout: &'a ProcLayout<'a>,
|
|
function_value: FunctionValue<'ctx>,
|
|
) {
|
|
self.top_level_thunks
|
|
.insert(symbol, (*layout, function_value));
|
|
}
|
|
fn remove(&mut self, symbol: &Symbol) {
|
|
self.symbols.remove(symbol);
|
|
}
|
|
|
|
pub fn retain_top_level_thunks_for_module(&mut self, module_id: ModuleId) {
|
|
self.top_level_thunks
|
|
.retain(|s, _| s.module_id() == module_id);
|
|
}
|
|
}
|
|
|
|
pub struct Env<'a, 'ctx, 'env> {
|
|
pub arena: &'a Bump,
|
|
pub context: &'ctx Context,
|
|
pub builder: &'env Builder<'ctx>,
|
|
pub dibuilder: &'env DebugInfoBuilder<'ctx>,
|
|
pub compile_unit: &'env DICompileUnit<'ctx>,
|
|
pub module: &'ctx Module<'ctx>,
|
|
pub interns: Interns,
|
|
pub target_info: TargetInfo,
|
|
pub is_gen_test: bool,
|
|
pub exposed_to_host: MutSet<Symbol>,
|
|
}
|
|
|
|
#[repr(u32)]
|
|
pub enum PanicTagId {
|
|
NullTerminatedString = 0,
|
|
}
|
|
|
|
impl std::convert::TryFrom<u32> for PanicTagId {
|
|
type Error = ();
|
|
|
|
fn try_from(value: u32) -> Result<Self, Self::Error> {
|
|
match value {
|
|
0 => Ok(PanicTagId::NullTerminatedString),
|
|
_ => Err(()),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'a, 'ctx, 'env> Env<'a, 'ctx, 'env> {
|
|
/// The integer type representing a pointer
|
|
///
|
|
/// on 64-bit systems, this is i64
|
|
/// on 32-bit systems, this is i32
|
|
pub fn ptr_int(&self) -> IntType<'ctx> {
|
|
let ctx = self.context;
|
|
|
|
match self.target_info.ptr_width() {
|
|
roc_target::PtrWidth::Bytes4 => ctx.i32_type(),
|
|
roc_target::PtrWidth::Bytes8 => ctx.i64_type(),
|
|
}
|
|
}
|
|
|
|
/// The integer type representing twice the width of a pointer
|
|
///
|
|
/// on 64-bit systems, this is i128
|
|
/// on 32-bit systems, this is i64
|
|
pub fn twice_ptr_int(&self) -> IntType<'ctx> {
|
|
let ctx = self.context;
|
|
|
|
match self.target_info.ptr_width() {
|
|
roc_target::PtrWidth::Bytes4 => ctx.i64_type(),
|
|
roc_target::PtrWidth::Bytes8 => ctx.i128_type(),
|
|
}
|
|
}
|
|
|
|
pub fn small_str_bytes(&self) -> u32 {
|
|
self.target_info.ptr_width() as u32 * 3
|
|
}
|
|
|
|
pub fn build_intrinsic_call(
|
|
&self,
|
|
intrinsic_name: &'static str,
|
|
args: &[BasicValueEnum<'ctx>],
|
|
) -> CallSiteValue<'ctx> {
|
|
let fn_val = self
|
|
.module
|
|
.get_function(intrinsic_name)
|
|
.unwrap_or_else(|| panic!("Unrecognized intrinsic function: {}", intrinsic_name));
|
|
|
|
let mut arg_vals: Vec<BasicMetadataValueEnum> =
|
|
Vec::with_capacity_in(args.len(), self.arena);
|
|
|
|
for arg in args.iter() {
|
|
arg_vals.push((*arg).into());
|
|
}
|
|
|
|
let call = self
|
|
.builder
|
|
.build_call(fn_val, arg_vals.into_bump_slice(), "call");
|
|
|
|
call.set_call_convention(fn_val.get_call_conventions());
|
|
|
|
call
|
|
}
|
|
|
|
pub fn call_intrinsic(
|
|
&self,
|
|
intrinsic_name: &'static str,
|
|
args: &[BasicValueEnum<'ctx>],
|
|
) -> BasicValueEnum<'ctx> {
|
|
let call = self.build_intrinsic_call(intrinsic_name, args);
|
|
|
|
call.try_as_basic_value().left().unwrap_or_else(|| {
|
|
panic!(
|
|
"LLVM error: Invalid call by name for intrinsic {}",
|
|
intrinsic_name
|
|
)
|
|
})
|
|
}
|
|
|
|
pub fn alignment_type(&self) -> IntType<'ctx> {
|
|
self.context.i32_type()
|
|
}
|
|
|
|
pub fn alignment_const(&self, alignment: u32) -> IntValue<'ctx> {
|
|
self.alignment_type().const_int(alignment as u64, false)
|
|
}
|
|
|
|
pub fn alignment_intvalue(&self, element_layout: &Layout<'a>) -> BasicValueEnum<'ctx> {
|
|
let alignment = element_layout.alignment_bytes(self.target_info);
|
|
let alignment_iv = self.alignment_const(alignment);
|
|
|
|
alignment_iv.into()
|
|
}
|
|
|
|
pub fn call_alloc(
|
|
&self,
|
|
number_of_bytes: IntValue<'ctx>,
|
|
alignment: u32,
|
|
) -> PointerValue<'ctx> {
|
|
let function = self.module.get_function("roc_alloc").unwrap();
|
|
let alignment = self.alignment_const(alignment);
|
|
let call = self.builder.build_call(
|
|
function,
|
|
&[number_of_bytes.into(), alignment.into()],
|
|
"roc_alloc",
|
|
);
|
|
|
|
call.set_call_convention(C_CALL_CONV);
|
|
|
|
call.try_as_basic_value()
|
|
.left()
|
|
.unwrap()
|
|
.into_pointer_value()
|
|
// TODO check if alloc returned null; if so, runtime error for OOM!
|
|
}
|
|
|
|
pub fn call_dealloc(&self, ptr: PointerValue<'ctx>, alignment: u32) -> InstructionValue<'ctx> {
|
|
let function = self.module.get_function("roc_dealloc").unwrap();
|
|
let alignment = self.alignment_const(alignment);
|
|
let call =
|
|
self.builder
|
|
.build_call(function, &[ptr.into(), alignment.into()], "roc_dealloc");
|
|
|
|
call.set_call_convention(C_CALL_CONV);
|
|
|
|
call.try_as_basic_value().right().unwrap()
|
|
}
|
|
|
|
pub fn call_memset(
|
|
&self,
|
|
bytes_ptr: PointerValue<'ctx>,
|
|
filler: IntValue<'ctx>,
|
|
length: IntValue<'ctx>,
|
|
) -> CallSiteValue<'ctx> {
|
|
let false_val = self.context.bool_type().const_int(0, false);
|
|
|
|
let intrinsic_name = match self.target_info.ptr_width() {
|
|
roc_target::PtrWidth::Bytes8 => LLVM_MEMSET_I64,
|
|
roc_target::PtrWidth::Bytes4 => LLVM_MEMSET_I32,
|
|
};
|
|
|
|
self.build_intrinsic_call(
|
|
intrinsic_name,
|
|
&[
|
|
bytes_ptr.into(),
|
|
filler.into(),
|
|
length.into(),
|
|
false_val.into(),
|
|
],
|
|
)
|
|
}
|
|
|
|
pub fn call_panic(&self, message: PointerValue<'ctx>, tag_id: PanicTagId) {
|
|
let function = self.module.get_function("roc_panic").unwrap();
|
|
let tag_id = self
|
|
.context
|
|
.i32_type()
|
|
.const_int(tag_id as u32 as u64, false);
|
|
|
|
let call = self
|
|
.builder
|
|
.build_call(function, &[message.into(), tag_id.into()], "roc_panic");
|
|
|
|
call.set_call_convention(C_CALL_CONV);
|
|
}
|
|
|
|
pub fn new_debug_info(module: &Module<'ctx>) -> (DebugInfoBuilder<'ctx>, DICompileUnit<'ctx>) {
|
|
module.create_debug_info_builder(
|
|
true,
|
|
/* language */ inkwell::debug_info::DWARFSourceLanguage::C,
|
|
/* filename */ "roc_app",
|
|
/* directory */ ".",
|
|
/* producer */ "my llvm compiler frontend",
|
|
/* is_optimized */ false,
|
|
/* compiler command line flags */ "",
|
|
/* runtime_ver */ 0,
|
|
/* split_name */ "",
|
|
/* kind */ inkwell::debug_info::DWARFEmissionKind::Full,
|
|
/* dwo_id */ 0,
|
|
/* split_debug_inling */ false,
|
|
/* debug_info_for_profiling */ false,
|
|
"",
|
|
"",
|
|
)
|
|
}
|
|
|
|
pub fn new_subprogram(&self, function_name: &str) -> DISubprogram<'ctx> {
|
|
let dibuilder = self.dibuilder;
|
|
let compile_unit = self.compile_unit;
|
|
|
|
let ditype = dibuilder
|
|
.create_basic_type(
|
|
"type_name",
|
|
0_u64,
|
|
0x00,
|
|
inkwell::debug_info::DIFlags::PUBLIC,
|
|
)
|
|
.unwrap();
|
|
|
|
let subroutine_type = dibuilder.create_subroutine_type(
|
|
compile_unit.get_file(),
|
|
/* return type */ Some(ditype.as_type()),
|
|
/* parameter types */ &[],
|
|
inkwell::debug_info::DIFlags::PUBLIC,
|
|
);
|
|
|
|
dibuilder.create_function(
|
|
/* scope */ compile_unit.get_file().as_debug_info_scope(),
|
|
/* func name */ function_name,
|
|
/* linkage_name */ None,
|
|
/* file */ compile_unit.get_file(),
|
|
/* line_no */ 0,
|
|
/* DIType */ subroutine_type,
|
|
/* is_local_to_unit */ true,
|
|
/* is_definition */ true,
|
|
/* scope_line */ 0,
|
|
/* flags */ inkwell::debug_info::DIFlags::PUBLIC,
|
|
/* is_optimized */ false,
|
|
)
|
|
}
|
|
}
|
|
|
|
pub fn module_from_builtins<'ctx>(
|
|
target: &target_lexicon::Triple,
|
|
ctx: &'ctx Context,
|
|
module_name: &str,
|
|
) -> Module<'ctx> {
|
|
// In the build script for the builtins module, we compile the builtins into LLVM bitcode
|
|
|
|
let bitcode_bytes: &[u8] = if target == &target_lexicon::Triple::host() {
|
|
include_bytes!("../../../builtins/bitcode/builtins-host.bc")
|
|
} else {
|
|
match target {
|
|
Triple {
|
|
architecture: Architecture::Wasm32,
|
|
..
|
|
} => {
|
|
include_bytes!("../../../builtins/bitcode/builtins-wasm32.bc")
|
|
}
|
|
Triple {
|
|
architecture: Architecture::X86_32(_),
|
|
operating_system: OperatingSystem::Linux,
|
|
..
|
|
} => {
|
|
include_bytes!("../../../builtins/bitcode/builtins-i386.bc")
|
|
}
|
|
Triple {
|
|
architecture: Architecture::X86_64,
|
|
operating_system: OperatingSystem::Linux,
|
|
..
|
|
} => {
|
|
include_bytes!("../../../builtins/bitcode/builtins-x86_64.bc")
|
|
}
|
|
_ => panic!(
|
|
"The zig builtins are not currently built for this target: {:?}",
|
|
target
|
|
),
|
|
}
|
|
};
|
|
|
|
let memory_buffer = MemoryBuffer::create_from_memory_range(bitcode_bytes, module_name);
|
|
|
|
let module = Module::parse_bitcode_from_buffer(&memory_buffer, ctx)
|
|
.unwrap_or_else(|err| panic!("Unable to import builtins bitcode. LLVM error: {:?}", err));
|
|
|
|
// Add LLVM intrinsics.
|
|
add_intrinsics(ctx, &module);
|
|
|
|
module
|
|
}
|
|
|
|
fn add_float_intrinsic<'ctx, F>(
|
|
ctx: &'ctx Context,
|
|
module: &Module<'ctx>,
|
|
name: &IntrinsicName,
|
|
construct_type: F,
|
|
) where
|
|
F: Fn(inkwell::types::FloatType<'ctx>) -> inkwell::types::FunctionType<'ctx>,
|
|
{
|
|
macro_rules! check {
|
|
($width:expr, $typ:expr) => {
|
|
let full_name = &name[$width];
|
|
|
|
if let Some(_) = module.get_function(full_name) {
|
|
// zig defined this function already
|
|
} else {
|
|
add_intrinsic(ctx, module, full_name, construct_type($typ));
|
|
}
|
|
};
|
|
}
|
|
|
|
check!(FloatWidth::F32, ctx.f32_type());
|
|
check!(FloatWidth::F64, ctx.f64_type());
|
|
// check!(IntWidth::F128, ctx.i128_type());
|
|
}
|
|
|
|
fn add_int_intrinsic<'ctx, F>(
|
|
ctx: &'ctx Context,
|
|
module: &Module<'ctx>,
|
|
name: &IntrinsicName,
|
|
construct_type: F,
|
|
) where
|
|
F: Fn(inkwell::types::IntType<'ctx>) -> inkwell::types::FunctionType<'ctx>,
|
|
{
|
|
macro_rules! check {
|
|
($width:expr, $typ:expr) => {
|
|
let full_name = &name[$width];
|
|
|
|
if let Some(_) = module.get_function(full_name) {
|
|
// zig defined this function already
|
|
} else {
|
|
add_intrinsic(ctx, module, full_name, construct_type($typ));
|
|
}
|
|
};
|
|
}
|
|
|
|
check!(IntWidth::U8, ctx.i8_type());
|
|
check!(IntWidth::U16, ctx.i16_type());
|
|
check!(IntWidth::U32, ctx.i32_type());
|
|
check!(IntWidth::U64, ctx.i64_type());
|
|
check!(IntWidth::U128, ctx.i128_type());
|
|
|
|
check!(IntWidth::I8, ctx.i8_type());
|
|
check!(IntWidth::I16, ctx.i16_type());
|
|
check!(IntWidth::I32, ctx.i32_type());
|
|
check!(IntWidth::I64, ctx.i64_type());
|
|
check!(IntWidth::I128, ctx.i128_type());
|
|
}
|
|
|
|
fn add_intrinsics<'ctx>(ctx: &'ctx Context, module: &Module<'ctx>) {
|
|
// List of all supported LLVM intrinsics:
|
|
//
|
|
// https://releases.llvm.org/10.0.0/docs/LangRef.html#standard-c-library-intrinsics
|
|
let i1_type = ctx.bool_type();
|
|
let i8_type = ctx.i8_type();
|
|
let i8_ptr_type = i8_type.ptr_type(AddressSpace::Generic);
|
|
let i32_type = ctx.i32_type();
|
|
let void_type = ctx.void_type();
|
|
|
|
if let Some(func) = module.get_function("__muloti4") {
|
|
func.set_linkage(Linkage::WeakAny);
|
|
}
|
|
|
|
add_intrinsic(
|
|
ctx,
|
|
module,
|
|
LLVM_SETJMP,
|
|
i32_type.fn_type(&[i8_ptr_type.into()], false),
|
|
);
|
|
|
|
add_intrinsic(
|
|
ctx,
|
|
module,
|
|
LLVM_LONGJMP,
|
|
void_type.fn_type(&[i8_ptr_type.into()], false),
|
|
);
|
|
|
|
add_intrinsic(
|
|
ctx,
|
|
module,
|
|
LLVM_FRAME_ADDRESS,
|
|
i8_ptr_type.fn_type(&[i32_type.into()], false),
|
|
);
|
|
|
|
add_intrinsic(
|
|
ctx,
|
|
module,
|
|
LLVM_STACK_SAVE,
|
|
i8_ptr_type.fn_type(&[], false),
|
|
);
|
|
|
|
add_float_intrinsic(ctx, module, &LLVM_LOG, |t| t.fn_type(&[t.into()], false));
|
|
add_float_intrinsic(ctx, module, &LLVM_POW, |t| {
|
|
t.fn_type(&[t.into(), t.into()], false)
|
|
});
|
|
add_float_intrinsic(ctx, module, &LLVM_FABS, |t| t.fn_type(&[t.into()], false));
|
|
add_float_intrinsic(ctx, module, &LLVM_SIN, |t| t.fn_type(&[t.into()], false));
|
|
add_float_intrinsic(ctx, module, &LLVM_COS, |t| t.fn_type(&[t.into()], false));
|
|
add_float_intrinsic(ctx, module, &LLVM_CEILING, |t| {
|
|
t.fn_type(&[t.into()], false)
|
|
});
|
|
add_float_intrinsic(ctx, module, &LLVM_FLOOR, |t| t.fn_type(&[t.into()], false));
|
|
|
|
add_int_intrinsic(ctx, module, &LLVM_ADD_WITH_OVERFLOW, |t| {
|
|
let fields = [t.into(), i1_type.into()];
|
|
ctx.struct_type(&fields, false)
|
|
.fn_type(&[t.into(), t.into()], false)
|
|
});
|
|
|
|
add_int_intrinsic(ctx, module, &LLVM_SUB_WITH_OVERFLOW, |t| {
|
|
let fields = [t.into(), i1_type.into()];
|
|
ctx.struct_type(&fields, false)
|
|
.fn_type(&[t.into(), t.into()], false)
|
|
});
|
|
|
|
add_int_intrinsic(ctx, module, &LLVM_MUL_WITH_OVERFLOW, |t| {
|
|
let fields = [t.into(), i1_type.into()];
|
|
ctx.struct_type(&fields, false)
|
|
.fn_type(&[t.into(), t.into()], false)
|
|
});
|
|
|
|
add_int_intrinsic(ctx, module, &LLVM_ADD_SATURATED, |t| {
|
|
t.fn_type(&[t.into(), t.into()], false)
|
|
});
|
|
|
|
add_int_intrinsic(ctx, module, &LLVM_SUB_SATURATED, |t| {
|
|
t.fn_type(&[t.into(), t.into()], false)
|
|
});
|
|
}
|
|
|
|
const LLVM_POW: IntrinsicName = float_intrinsic!("llvm.pow");
|
|
const LLVM_FABS: IntrinsicName = float_intrinsic!("llvm.fabs");
|
|
static LLVM_SQRT: IntrinsicName = float_intrinsic!("llvm.sqrt");
|
|
static LLVM_LOG: IntrinsicName = float_intrinsic!("llvm.log");
|
|
|
|
static LLVM_SIN: IntrinsicName = float_intrinsic!("llvm.sin");
|
|
static LLVM_COS: IntrinsicName = float_intrinsic!("llvm.cos");
|
|
static LLVM_CEILING: IntrinsicName = float_intrinsic!("llvm.ceil");
|
|
static LLVM_FLOOR: IntrinsicName = float_intrinsic!("llvm.floor");
|
|
static LLVM_ROUND: IntrinsicName = float_intrinsic!("llvm.round");
|
|
|
|
static LLVM_MEMSET_I64: &str = "llvm.memset.p0i8.i64";
|
|
static LLVM_MEMSET_I32: &str = "llvm.memset.p0i8.i32";
|
|
|
|
static LLVM_FRAME_ADDRESS: &str = "llvm.frameaddress.p0i8";
|
|
static LLVM_STACK_SAVE: &str = "llvm.stacksave";
|
|
|
|
static LLVM_SETJMP: &str = "llvm.eh.sjlj.setjmp";
|
|
pub static LLVM_LONGJMP: &str = "llvm.eh.sjlj.longjmp";
|
|
|
|
const LLVM_ADD_WITH_OVERFLOW: IntrinsicName =
|
|
llvm_int_intrinsic!("llvm.sadd.with.overflow", "llvm.uadd.with.overflow");
|
|
const LLVM_SUB_WITH_OVERFLOW: IntrinsicName =
|
|
llvm_int_intrinsic!("llvm.ssub.with.overflow", "llvm.usub.with.overflow");
|
|
const LLVM_MUL_WITH_OVERFLOW: IntrinsicName =
|
|
llvm_int_intrinsic!("llvm.smul.with.overflow", "llvm.umul.with.overflow");
|
|
|
|
const LLVM_ADD_SATURATED: IntrinsicName = llvm_int_intrinsic!("llvm.sadd.sat", "llvm.uadd.sat");
|
|
const LLVM_SUB_SATURATED: IntrinsicName = llvm_int_intrinsic!("llvm.ssub.sat", "llvm.usub.sat");
|
|
|
|
fn add_intrinsic<'ctx>(
|
|
context: &Context,
|
|
module: &Module<'ctx>,
|
|
intrinsic_name: &str,
|
|
fn_type: FunctionType<'ctx>,
|
|
) -> FunctionValue<'ctx> {
|
|
add_func(
|
|
context,
|
|
module,
|
|
intrinsic_name,
|
|
FunctionSpec::intrinsic(fn_type),
|
|
Linkage::External,
|
|
)
|
|
}
|
|
|
|
pub fn construct_optimization_passes<'a>(
|
|
module: &'a Module,
|
|
opt_level: OptLevel,
|
|
) -> (PassManager<Module<'a>>, PassManager<FunctionValue<'a>>) {
|
|
let mpm = PassManager::create(());
|
|
let fpm = PassManager::create(module);
|
|
|
|
// remove unused global values (e.g. those defined by zig, but unused in user code)
|
|
mpm.add_global_dce_pass();
|
|
|
|
mpm.add_always_inliner_pass();
|
|
|
|
// tail-call elimination is always on
|
|
fpm.add_instruction_combining_pass();
|
|
fpm.add_tail_call_elimination_pass();
|
|
|
|
let pmb = PassManagerBuilder::create();
|
|
match opt_level {
|
|
OptLevel::Development | OptLevel::Normal => {
|
|
pmb.set_optimization_level(OptimizationLevel::None);
|
|
}
|
|
OptLevel::Size => {
|
|
pmb.set_optimization_level(OptimizationLevel::Default);
|
|
// TODO: For some usecase, like embedded, it is useful to expose this and tune it.
|
|
pmb.set_inliner_with_threshold(50);
|
|
}
|
|
OptLevel::Optimize => {
|
|
pmb.set_optimization_level(OptimizationLevel::Aggressive);
|
|
// this threshold seems to do what we want
|
|
pmb.set_inliner_with_threshold(275);
|
|
}
|
|
}
|
|
|
|
// Add optimization passes for Size and Optimize.
|
|
if matches!(opt_level, OptLevel::Size | OptLevel::Optimize) {
|
|
// TODO figure out which of these actually help
|
|
|
|
// function passes
|
|
|
|
fpm.add_cfg_simplification_pass();
|
|
mpm.add_cfg_simplification_pass();
|
|
|
|
fpm.add_jump_threading_pass();
|
|
mpm.add_jump_threading_pass();
|
|
|
|
fpm.add_memcpy_optimize_pass(); // this one is very important
|
|
|
|
fpm.add_licm_pass();
|
|
|
|
// turn invoke into call
|
|
mpm.add_prune_eh_pass();
|
|
|
|
// remove unused global values (often the `_wrapper` can be removed)
|
|
mpm.add_global_dce_pass();
|
|
|
|
mpm.add_function_inlining_pass();
|
|
}
|
|
|
|
pmb.populate_module_pass_manager(&mpm);
|
|
pmb.populate_function_pass_manager(&fpm);
|
|
|
|
fpm.initialize();
|
|
|
|
// For now, we have just one of each
|
|
(mpm, fpm)
|
|
}
|
|
|
|
fn promote_to_main_function<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
mod_solutions: &'a ModSolutions,
|
|
symbol: Symbol,
|
|
top_level: ProcLayout<'a>,
|
|
) -> (&'static str, FunctionValue<'ctx>) {
|
|
let it = top_level.arguments.iter().copied();
|
|
let bytes = roc_alias_analysis::func_name_bytes_help(
|
|
symbol,
|
|
it,
|
|
CapturesNiche::no_niche(),
|
|
&top_level.result,
|
|
);
|
|
let func_name = FuncName(&bytes);
|
|
let func_solutions = mod_solutions.func_solutions(func_name).unwrap();
|
|
|
|
let mut it = func_solutions.specs();
|
|
let func_spec = it.next().unwrap();
|
|
debug_assert!(
|
|
it.next().is_none(),
|
|
"we expect only one specialization of this symbol"
|
|
);
|
|
|
|
// NOTE fake layout; it is only used for debug prints
|
|
let roc_main_fn = function_value_by_func_spec(
|
|
env,
|
|
*func_spec,
|
|
symbol,
|
|
&[],
|
|
CapturesNiche::no_niche(),
|
|
&Layout::UNIT,
|
|
);
|
|
|
|
let main_fn_name = "$Test.main";
|
|
|
|
// Add main to the module.
|
|
let main_fn = expose_function_to_host_help_c_abi(
|
|
env,
|
|
main_fn_name,
|
|
roc_main_fn,
|
|
top_level.arguments,
|
|
top_level.result,
|
|
main_fn_name,
|
|
);
|
|
|
|
(main_fn_name, main_fn)
|
|
}
|
|
|
|
fn int_with_precision<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
value: i128,
|
|
int_width: IntWidth,
|
|
) -> IntValue<'ctx> {
|
|
use IntWidth::*;
|
|
|
|
match int_width {
|
|
U128 | I128 => const_i128(env, value),
|
|
U64 | I64 => env.context.i64_type().const_int(value as u64, false),
|
|
U32 | I32 => env.context.i32_type().const_int(value as u64, false),
|
|
U16 | I16 => env.context.i16_type().const_int(value as u64, false),
|
|
U8 | I8 => env.context.i8_type().const_int(value as u64, false),
|
|
}
|
|
}
|
|
|
|
fn float_with_precision<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
value: f64,
|
|
float_width: FloatWidth,
|
|
) -> BasicValueEnum<'ctx> {
|
|
match float_width {
|
|
FloatWidth::F64 => env.context.f64_type().const_float(value).into(),
|
|
FloatWidth::F32 => env.context.f32_type().const_float(value).into(),
|
|
FloatWidth::F128 => todo!("F128 is not implemented"),
|
|
}
|
|
}
|
|
|
|
pub fn build_exp_literal<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
parent: FunctionValue<'ctx>,
|
|
layout: &Layout<'_>,
|
|
literal: &roc_mono::ir::Literal<'a>,
|
|
) -> BasicValueEnum<'ctx> {
|
|
use roc_mono::ir::Literal::*;
|
|
|
|
match literal {
|
|
Int(bytes) => match layout {
|
|
Layout::Builtin(Builtin::Bool) => env
|
|
.context
|
|
.bool_type()
|
|
.const_int(i128::from_ne_bytes(*bytes) as u64, false)
|
|
.into(),
|
|
Layout::Builtin(Builtin::Int(int_width)) => {
|
|
int_with_precision(env, i128::from_ne_bytes(*bytes), *int_width).into()
|
|
}
|
|
_ => panic!("Invalid layout for int literal = {:?}", layout),
|
|
},
|
|
|
|
U128(bytes) => const_u128(env, u128::from_ne_bytes(*bytes)).into(),
|
|
|
|
Float(float) => match layout {
|
|
Layout::Builtin(Builtin::Float(float_width)) => {
|
|
float_with_precision(env, *float, *float_width)
|
|
}
|
|
_ => panic!("Invalid layout for float literal = {:?}", layout),
|
|
},
|
|
|
|
Decimal(bytes) => {
|
|
let (upper_bits, lower_bits) = RocDec::from_ne_bytes(*bytes).as_bits();
|
|
env.context
|
|
.i128_type()
|
|
.const_int_arbitrary_precision(&[lower_bits, upper_bits as u64])
|
|
.into()
|
|
}
|
|
Bool(b) => env.context.bool_type().const_int(*b as u64, false).into(),
|
|
Byte(b) => env.context.i8_type().const_int(*b as u64, false).into(),
|
|
Str(str_literal) => {
|
|
if str_literal.len() < env.small_str_bytes() as usize {
|
|
match env.small_str_bytes() {
|
|
24 => small_str_ptr_width_8(env, parent, str_literal).into(),
|
|
12 => small_str_ptr_width_4(env, parent, str_literal).into(),
|
|
_ => unreachable!("incorrect small_str_bytes"),
|
|
}
|
|
} else {
|
|
let ptr = define_global_str_literal_ptr(env, *str_literal);
|
|
let number_of_elements = env.ptr_int().const_int(str_literal.len() as u64, false);
|
|
|
|
let alloca =
|
|
const_str_alloca_ptr(env, parent, ptr, number_of_elements, number_of_elements);
|
|
|
|
match env.target_info.ptr_width() {
|
|
PtrWidth::Bytes4 => env.builder.build_load(alloca, "load_const_str"),
|
|
PtrWidth::Bytes8 => alloca.into(),
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn const_str_alloca_ptr<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
parent: FunctionValue<'ctx>,
|
|
ptr: PointerValue<'ctx>,
|
|
len: IntValue<'ctx>,
|
|
cap: IntValue<'ctx>,
|
|
) -> PointerValue<'ctx> {
|
|
let typ = zig_str_type(env);
|
|
|
|
let value = typ.const_named_struct(&[ptr.into(), len.into(), cap.into()]);
|
|
|
|
let alloca = create_entry_block_alloca(env, parent, typ.into(), "const_str_store");
|
|
|
|
env.builder.build_store(alloca, value);
|
|
|
|
alloca
|
|
}
|
|
|
|
fn small_str_ptr_width_8<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
parent: FunctionValue<'ctx>,
|
|
str_literal: &str,
|
|
) -> PointerValue<'ctx> {
|
|
debug_assert_eq!(env.target_info.ptr_width() as u8, 8);
|
|
|
|
let mut array = [0u8; 24];
|
|
|
|
array[..str_literal.len()].copy_from_slice(str_literal.as_bytes());
|
|
|
|
array[env.small_str_bytes() as usize - 1] = str_literal.len() as u8 | roc_std::RocStr::MASK;
|
|
|
|
let word1 = u64::from_ne_bytes(array[0..8].try_into().unwrap());
|
|
let word2 = u64::from_ne_bytes(array[8..16].try_into().unwrap());
|
|
let word3 = u64::from_ne_bytes(array[16..24].try_into().unwrap());
|
|
|
|
let ptr = env.ptr_int().const_int(word1, false);
|
|
let len = env.ptr_int().const_int(word2, false);
|
|
let cap = env.ptr_int().const_int(word3, false);
|
|
|
|
let address_space = AddressSpace::Generic;
|
|
let ptr_type = env.context.i8_type().ptr_type(address_space);
|
|
let ptr = env.builder.build_int_to_ptr(ptr, ptr_type, "to_u8_ptr");
|
|
|
|
const_str_alloca_ptr(env, parent, ptr, len, cap)
|
|
}
|
|
|
|
fn small_str_ptr_width_4<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
parent: FunctionValue<'ctx>,
|
|
str_literal: &str,
|
|
) -> PointerValue<'ctx> {
|
|
debug_assert_eq!(env.target_info.ptr_width() as u8, 4);
|
|
|
|
let mut array = [0u8; 12];
|
|
|
|
array[..str_literal.len()].copy_from_slice(str_literal.as_bytes());
|
|
|
|
array[env.small_str_bytes() as usize - 1] = str_literal.len() as u8 | roc_std::RocStr::MASK;
|
|
|
|
let word1 = u32::from_ne_bytes(array[0..4].try_into().unwrap());
|
|
let word2 = u32::from_ne_bytes(array[4..8].try_into().unwrap());
|
|
let word3 = u32::from_ne_bytes(array[8..12].try_into().unwrap());
|
|
|
|
let ptr = env.ptr_int().const_int(word1 as u64, false);
|
|
let len = env.ptr_int().const_int(word2 as u64, false);
|
|
let cap = env.ptr_int().const_int(word3 as u64, false);
|
|
|
|
let address_space = AddressSpace::Generic;
|
|
let ptr_type = env.context.i8_type().ptr_type(address_space);
|
|
let ptr = env.builder.build_int_to_ptr(ptr, ptr_type, "to_u8_ptr");
|
|
|
|
const_str_alloca_ptr(env, parent, ptr, len, cap)
|
|
}
|
|
|
|
pub fn build_exp_call<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
layout_ids: &mut LayoutIds<'a>,
|
|
func_spec_solutions: &FuncSpecSolutions,
|
|
scope: &mut Scope<'a, 'ctx>,
|
|
parent: FunctionValue<'ctx>,
|
|
layout: &Layout<'a>,
|
|
call: &roc_mono::ir::Call<'a>,
|
|
) -> BasicValueEnum<'ctx> {
|
|
let roc_mono::ir::Call {
|
|
call_type,
|
|
arguments,
|
|
} = call;
|
|
|
|
match call_type {
|
|
CallType::ByName {
|
|
name,
|
|
specialization_id,
|
|
arg_layouts,
|
|
ret_layout,
|
|
..
|
|
} => {
|
|
let mut arg_tuples: Vec<BasicValueEnum> =
|
|
Vec::with_capacity_in(arguments.len(), env.arena);
|
|
|
|
for symbol in arguments.iter() {
|
|
arg_tuples.push(load_symbol(scope, symbol));
|
|
}
|
|
|
|
let bytes = specialization_id.to_bytes();
|
|
let callee_var = CalleeSpecVar(&bytes);
|
|
let func_spec = func_spec_solutions.callee_spec(callee_var).unwrap();
|
|
|
|
roc_call_with_args(
|
|
env,
|
|
arg_layouts,
|
|
ret_layout,
|
|
*name,
|
|
func_spec,
|
|
arg_tuples.into_bump_slice(),
|
|
)
|
|
}
|
|
|
|
CallType::LowLevel { op, update_mode } => {
|
|
let bytes = update_mode.to_bytes();
|
|
let update_var = UpdateModeVar(&bytes);
|
|
let update_mode = func_spec_solutions
|
|
.update_mode(update_var)
|
|
.unwrap_or(UpdateMode::Immutable);
|
|
|
|
run_low_level(
|
|
env,
|
|
layout_ids,
|
|
scope,
|
|
parent,
|
|
layout,
|
|
*op,
|
|
arguments,
|
|
update_mode,
|
|
)
|
|
}
|
|
|
|
CallType::HigherOrder(higher_order) => {
|
|
let bytes = higher_order.passed_function.specialization_id.to_bytes();
|
|
let callee_var = CalleeSpecVar(&bytes);
|
|
let func_spec = func_spec_solutions.callee_spec(callee_var).unwrap();
|
|
|
|
run_higher_order_low_level(env, layout_ids, scope, layout, func_spec, higher_order)
|
|
}
|
|
|
|
CallType::Foreign {
|
|
foreign_symbol,
|
|
ret_layout,
|
|
} => build_foreign_symbol(env, scope, foreign_symbol, arguments, ret_layout),
|
|
}
|
|
}
|
|
|
|
pub const TAG_ID_INDEX: u32 = 1;
|
|
pub const TAG_DATA_INDEX: u32 = 0;
|
|
|
|
pub fn struct_from_fields<'a, 'ctx, 'env, I>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
struct_type: StructType<'ctx>,
|
|
values: I,
|
|
) -> StructValue<'ctx>
|
|
where
|
|
I: Iterator<Item = (usize, BasicValueEnum<'ctx>)>,
|
|
{
|
|
let mut struct_value = struct_type.const_zero().into();
|
|
|
|
// Insert field exprs into struct_val
|
|
for (index, field_val) in values {
|
|
let index: u32 = index as u32;
|
|
|
|
struct_value = env
|
|
.builder
|
|
.build_insert_value(struct_value, field_val, index, "insert_record_field")
|
|
.unwrap();
|
|
}
|
|
|
|
struct_value.into_struct_value()
|
|
}
|
|
|
|
fn struct_pointer_from_fields<'a, 'ctx, 'env, I>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
struct_type: StructType<'ctx>,
|
|
input_pointer: PointerValue<'ctx>,
|
|
values: I,
|
|
) where
|
|
I: Iterator<Item = (usize, (Layout<'a>, BasicValueEnum<'ctx>))>,
|
|
{
|
|
let struct_ptr = env
|
|
.builder
|
|
.build_bitcast(
|
|
input_pointer,
|
|
struct_type.ptr_type(AddressSpace::Generic),
|
|
"struct_ptr",
|
|
)
|
|
.into_pointer_value();
|
|
|
|
// Insert field exprs into struct_val
|
|
for (index, (field_layout, field_value)) in values {
|
|
let field_ptr = env
|
|
.builder
|
|
.build_struct_gep(struct_ptr, index as u32, "field_struct_gep")
|
|
.unwrap();
|
|
|
|
store_roc_value(env, field_layout, field_ptr, field_value);
|
|
}
|
|
}
|
|
|
|
pub fn build_exp_expr<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
layout_ids: &mut LayoutIds<'a>,
|
|
func_spec_solutions: &FuncSpecSolutions,
|
|
scope: &mut Scope<'a, 'ctx>,
|
|
parent: FunctionValue<'ctx>,
|
|
layout: &Layout<'a>,
|
|
expr: &roc_mono::ir::Expr<'a>,
|
|
) -> BasicValueEnum<'ctx> {
|
|
use roc_mono::ir::Expr::*;
|
|
|
|
match expr {
|
|
Literal(literal) => build_exp_literal(env, parent, layout, literal),
|
|
|
|
Call(call) => build_exp_call(
|
|
env,
|
|
layout_ids,
|
|
func_spec_solutions,
|
|
scope,
|
|
parent,
|
|
layout,
|
|
call,
|
|
),
|
|
|
|
Struct(sorted_fields) => {
|
|
let ctx = env.context;
|
|
|
|
// Determine types
|
|
let num_fields = sorted_fields.len();
|
|
let mut field_types = Vec::with_capacity_in(num_fields, env.arena);
|
|
let mut field_vals = Vec::with_capacity_in(num_fields, env.arena);
|
|
|
|
for symbol in sorted_fields.iter() {
|
|
// Zero-sized fields have no runtime representation.
|
|
// The layout of the struct expects them to be dropped!
|
|
let (field_expr, field_layout) = load_symbol_and_layout(scope, symbol);
|
|
if !field_layout.is_dropped_because_empty() {
|
|
field_types.push(basic_type_from_layout(env, field_layout));
|
|
|
|
if field_layout.is_passed_by_reference(env.target_info) {
|
|
let field_value = env.builder.build_load(
|
|
field_expr.into_pointer_value(),
|
|
"load_tag_to_put_in_struct",
|
|
);
|
|
|
|
field_vals.push(field_value);
|
|
} else {
|
|
field_vals.push(field_expr);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Create the struct_type
|
|
let struct_type = ctx.struct_type(field_types.into_bump_slice(), false);
|
|
|
|
// Insert field exprs into struct_val
|
|
struct_from_fields(env, struct_type, field_vals.into_iter().enumerate()).into()
|
|
}
|
|
|
|
Reuse {
|
|
arguments,
|
|
tag_layout: union_layout,
|
|
tag_id,
|
|
symbol,
|
|
..
|
|
} => {
|
|
let reset = load_symbol(scope, symbol).into_pointer_value();
|
|
build_tag(
|
|
env,
|
|
scope,
|
|
union_layout,
|
|
*tag_id,
|
|
arguments,
|
|
Some(reset),
|
|
parent,
|
|
)
|
|
}
|
|
|
|
Tag {
|
|
arguments,
|
|
tag_layout: union_layout,
|
|
tag_id,
|
|
..
|
|
} => build_tag(env, scope, union_layout, *tag_id, arguments, None, parent),
|
|
|
|
ExprBox { symbol } => {
|
|
let (value, layout) = load_symbol_and_layout(scope, symbol);
|
|
let basic_type = basic_type_from_layout(env, layout);
|
|
let allocation = reserve_with_refcount_help(
|
|
env,
|
|
basic_type,
|
|
layout.stack_size(env.target_info),
|
|
layout.alignment_bytes(env.target_info),
|
|
);
|
|
|
|
store_roc_value(env, *layout, allocation, value);
|
|
|
|
allocation.into()
|
|
}
|
|
|
|
ExprUnbox { symbol } => {
|
|
let value = load_symbol(scope, symbol);
|
|
|
|
debug_assert!(value.is_pointer_value());
|
|
|
|
load_roc_value(env, *layout, value.into_pointer_value(), "load_boxed_value")
|
|
}
|
|
|
|
Reset { symbol, .. } => {
|
|
let (tag_ptr, layout) = load_symbol_and_layout(scope, symbol);
|
|
let tag_ptr = tag_ptr.into_pointer_value();
|
|
|
|
// reset is only generated for union values
|
|
let union_layout = match layout {
|
|
Layout::Union(ul) => ul,
|
|
_ => unreachable!(),
|
|
};
|
|
|
|
let ctx = env.context;
|
|
let then_block = ctx.append_basic_block(parent, "then_reset");
|
|
let else_block = ctx.append_basic_block(parent, "else_decref");
|
|
let cont_block = ctx.append_basic_block(parent, "cont");
|
|
|
|
let refcount_ptr =
|
|
PointerToRefcount::from_ptr_to_data(env, tag_pointer_clear_tag_id(env, tag_ptr));
|
|
let is_unique = refcount_ptr.is_1(env);
|
|
|
|
env.builder
|
|
.build_conditional_branch(is_unique, then_block, else_block);
|
|
|
|
{
|
|
// reset, when used on a unique reference, eagerly decrements the components of the
|
|
// referenced value, and returns the location of the now-invalid cell
|
|
env.builder.position_at_end(then_block);
|
|
|
|
let reset_function = build_reset(env, layout_ids, *union_layout);
|
|
let call = env
|
|
.builder
|
|
.build_call(reset_function, &[tag_ptr.into()], "call_reset");
|
|
|
|
call.set_call_convention(FAST_CALL_CONV);
|
|
|
|
let _ = call.try_as_basic_value();
|
|
|
|
env.builder.build_unconditional_branch(cont_block);
|
|
}
|
|
{
|
|
// If reset is used on a shared, non-reusable reference, it behaves
|
|
// like dec and returns NULL, which instructs reuse to behave like ctor
|
|
env.builder.position_at_end(else_block);
|
|
refcount_ptr.decrement(env, layout);
|
|
env.builder.build_unconditional_branch(cont_block);
|
|
}
|
|
{
|
|
env.builder.position_at_end(cont_block);
|
|
let phi = env.builder.build_phi(tag_ptr.get_type(), "branch");
|
|
|
|
let null_ptr = tag_ptr.get_type().const_null();
|
|
phi.add_incoming(&[(&tag_ptr, then_block), (&null_ptr, else_block)]);
|
|
|
|
phi.as_basic_value()
|
|
}
|
|
}
|
|
|
|
StructAtIndex {
|
|
index, structure, ..
|
|
} => {
|
|
let (value, layout) = load_symbol_and_layout(scope, structure);
|
|
|
|
let layout = if let Layout::LambdaSet(lambda_set) = layout {
|
|
lambda_set.runtime_representation()
|
|
} else {
|
|
*layout
|
|
};
|
|
|
|
// extract field from a record
|
|
match (value, layout) {
|
|
(StructValue(argument), Layout::Struct { field_layouts, .. }) => {
|
|
debug_assert!(!field_layouts.is_empty());
|
|
|
|
let field_value = env
|
|
.builder
|
|
.build_extract_value(
|
|
argument,
|
|
*index as u32,
|
|
env.arena
|
|
.alloc(format!("struct_field_access_record_{}", index)),
|
|
)
|
|
.unwrap();
|
|
|
|
let field_layout = field_layouts[*index as usize];
|
|
use_roc_value(env, field_layout, field_value, "struct_field_tag")
|
|
}
|
|
(
|
|
PointerValue(argument),
|
|
Layout::Union(UnionLayout::NonNullableUnwrapped(fields)),
|
|
) => {
|
|
let struct_layout = Layout::struct_no_name_order(fields);
|
|
let struct_type = basic_type_from_layout(env, &struct_layout);
|
|
|
|
let cast_argument = env
|
|
.builder
|
|
.build_bitcast(
|
|
argument,
|
|
struct_type.ptr_type(AddressSpace::Generic),
|
|
"cast_rosetree_like",
|
|
)
|
|
.into_pointer_value();
|
|
|
|
let ptr = env
|
|
.builder
|
|
.build_struct_gep(
|
|
cast_argument,
|
|
*index as u32,
|
|
env.arena.alloc(format!("non_nullable_unwrapped_{}", index)),
|
|
)
|
|
.unwrap();
|
|
|
|
env.builder.build_load(ptr, "load_rosetree_like")
|
|
}
|
|
(other, layout) => {
|
|
// potential cause: indexing into an unwrapped 1-element record/tag?
|
|
unreachable!(
|
|
"can only index into struct layout\nValue: {:?}\nLayout: {:?}\nIndex: {:?}",
|
|
other, layout, index
|
|
)
|
|
}
|
|
}
|
|
}
|
|
|
|
EmptyArray => empty_polymorphic_list(env),
|
|
Array { elem_layout, elems } => list_literal(env, parent, scope, elem_layout, elems),
|
|
RuntimeErrorFunction(_) => todo!(),
|
|
|
|
UnionAtIndex {
|
|
tag_id,
|
|
structure,
|
|
index,
|
|
union_layout,
|
|
} => {
|
|
// cast the argument bytes into the desired shape for this tag
|
|
let (argument, _structure_layout) = load_symbol_and_layout(scope, structure);
|
|
|
|
match union_layout {
|
|
UnionLayout::NonRecursive(tag_layouts) => {
|
|
debug_assert!(argument.is_pointer_value());
|
|
|
|
let field_layouts = tag_layouts[*tag_id as usize];
|
|
|
|
let tag_id_type =
|
|
basic_type_from_layout(env, &union_layout.tag_id_layout()).into_int_type();
|
|
|
|
lookup_at_index_ptr2(
|
|
env,
|
|
union_layout,
|
|
tag_id_type,
|
|
field_layouts,
|
|
*index as usize,
|
|
argument.into_pointer_value(),
|
|
)
|
|
}
|
|
UnionLayout::Recursive(tag_layouts) => {
|
|
debug_assert!(argument.is_pointer_value());
|
|
|
|
let field_layouts = tag_layouts[*tag_id as usize];
|
|
|
|
let tag_id_type =
|
|
basic_type_from_layout(env, &union_layout.tag_id_layout()).into_int_type();
|
|
|
|
let ptr = tag_pointer_clear_tag_id(env, argument.into_pointer_value());
|
|
|
|
lookup_at_index_ptr2(
|
|
env,
|
|
union_layout,
|
|
tag_id_type,
|
|
field_layouts,
|
|
*index as usize,
|
|
ptr,
|
|
)
|
|
}
|
|
UnionLayout::NonNullableUnwrapped(field_layouts) => {
|
|
let struct_layout = Layout::struct_no_name_order(field_layouts);
|
|
|
|
let struct_type = basic_type_from_layout(env, &struct_layout);
|
|
|
|
lookup_at_index_ptr(
|
|
env,
|
|
union_layout,
|
|
field_layouts,
|
|
*index as usize,
|
|
argument.into_pointer_value(),
|
|
struct_type.into_struct_type(),
|
|
)
|
|
}
|
|
UnionLayout::NullableWrapped {
|
|
nullable_id,
|
|
other_tags,
|
|
} => {
|
|
debug_assert!(argument.is_pointer_value());
|
|
debug_assert_ne!(*tag_id, *nullable_id);
|
|
|
|
let tag_index = if *tag_id < *nullable_id {
|
|
*tag_id
|
|
} else {
|
|
tag_id - 1
|
|
};
|
|
|
|
let field_layouts = other_tags[tag_index as usize];
|
|
|
|
let tag_id_type =
|
|
basic_type_from_layout(env, &union_layout.tag_id_layout()).into_int_type();
|
|
|
|
let ptr = tag_pointer_clear_tag_id(env, argument.into_pointer_value());
|
|
lookup_at_index_ptr2(
|
|
env,
|
|
union_layout,
|
|
tag_id_type,
|
|
field_layouts,
|
|
*index as usize,
|
|
ptr,
|
|
)
|
|
}
|
|
UnionLayout::NullableUnwrapped {
|
|
nullable_id,
|
|
other_fields,
|
|
} => {
|
|
debug_assert!(argument.is_pointer_value());
|
|
debug_assert_ne!(*tag_id != 0, *nullable_id);
|
|
|
|
let field_layouts = other_fields;
|
|
let struct_layout = Layout::struct_no_name_order(field_layouts);
|
|
|
|
let struct_type = basic_type_from_layout(env, &struct_layout);
|
|
|
|
lookup_at_index_ptr(
|
|
env,
|
|
union_layout,
|
|
field_layouts,
|
|
// the tag id is not stored
|
|
*index as usize,
|
|
argument.into_pointer_value(),
|
|
struct_type.into_struct_type(),
|
|
)
|
|
}
|
|
}
|
|
}
|
|
|
|
GetTagId {
|
|
structure,
|
|
union_layout,
|
|
} => {
|
|
// cast the argument bytes into the desired shape for this tag
|
|
let (argument, _structure_layout) = load_symbol_and_layout(scope, structure);
|
|
|
|
get_tag_id(env, parent, union_layout, argument).into()
|
|
}
|
|
}
|
|
}
|
|
|
|
#[allow(clippy::too_many_arguments)]
|
|
fn build_wrapped_tag<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
scope: &Scope<'a, 'ctx>,
|
|
union_layout: &UnionLayout<'a>,
|
|
tag_id: u8,
|
|
arguments: &[Symbol],
|
|
tag_field_layouts: &[Layout<'a>],
|
|
tags: &[&[Layout<'a>]],
|
|
reuse_allocation: Option<PointerValue<'ctx>>,
|
|
parent: FunctionValue<'ctx>,
|
|
) -> BasicValueEnum<'ctx> {
|
|
let builder = env.builder;
|
|
|
|
let tag_id_layout = union_layout.tag_id_layout();
|
|
|
|
let (field_types, field_values) = build_tag_fields(env, scope, tag_field_layouts, arguments);
|
|
|
|
// Create the struct_type
|
|
let raw_data_ptr = allocate_tag(env, parent, reuse_allocation, union_layout, tags);
|
|
let struct_type = env.context.struct_type(&field_types, false);
|
|
|
|
if union_layout.stores_tag_id_as_data(env.target_info) {
|
|
let tag_id_ptr = builder
|
|
.build_struct_gep(raw_data_ptr, TAG_ID_INDEX, "tag_id_index")
|
|
.unwrap();
|
|
|
|
let tag_id_type = basic_type_from_layout(env, &tag_id_layout).into_int_type();
|
|
|
|
env.builder
|
|
.build_store(tag_id_ptr, tag_id_type.const_int(tag_id as u64, false));
|
|
|
|
let opaque_struct_ptr = builder
|
|
.build_struct_gep(raw_data_ptr, TAG_DATA_INDEX, "tag_data_index")
|
|
.unwrap();
|
|
|
|
struct_pointer_from_fields(
|
|
env,
|
|
struct_type,
|
|
opaque_struct_ptr,
|
|
field_values.into_iter().enumerate(),
|
|
);
|
|
|
|
raw_data_ptr.into()
|
|
} else {
|
|
struct_pointer_from_fields(
|
|
env,
|
|
struct_type,
|
|
raw_data_ptr,
|
|
field_values.into_iter().enumerate(),
|
|
);
|
|
|
|
tag_pointer_set_tag_id(env, tag_id, raw_data_ptr).into()
|
|
}
|
|
}
|
|
|
|
pub fn entry_block_alloca_zerofill<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
basic_type: BasicTypeEnum<'ctx>,
|
|
name: &str,
|
|
) -> PointerValue<'ctx> {
|
|
let parent = env
|
|
.builder
|
|
.get_insert_block()
|
|
.unwrap()
|
|
.get_parent()
|
|
.unwrap();
|
|
|
|
create_entry_block_alloca(env, parent, basic_type, name)
|
|
}
|
|
|
|
fn build_tag_field_value<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
value: BasicValueEnum<'ctx>,
|
|
tag_field_layout: Layout<'a>,
|
|
) -> BasicValueEnum<'ctx> {
|
|
if let Layout::RecursivePointer = tag_field_layout {
|
|
debug_assert!(value.is_pointer_value());
|
|
|
|
// we store recursive pointers as `i64*`
|
|
env.builder.build_bitcast(
|
|
value,
|
|
env.context.i64_type().ptr_type(AddressSpace::Generic),
|
|
"cast_recursive_pointer",
|
|
)
|
|
} else if tag_field_layout.is_passed_by_reference(env.target_info) {
|
|
debug_assert!(value.is_pointer_value());
|
|
|
|
// NOTE: we rely on this being passed to `store_roc_value` so that
|
|
// the value is memcpy'd
|
|
value
|
|
} else {
|
|
// this check fails for recursive tag unions, but can be helpful while debugging
|
|
// debug_assert_eq!(tag_field_layout, val_layout);
|
|
|
|
value
|
|
}
|
|
}
|
|
|
|
fn build_tag_fields<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
scope: &Scope<'a, 'ctx>,
|
|
fields: &[Layout<'a>],
|
|
arguments: &[Symbol],
|
|
) -> (
|
|
Vec<'a, BasicTypeEnum<'ctx>>,
|
|
Vec<'a, (Layout<'a>, BasicValueEnum<'ctx>)>,
|
|
) {
|
|
debug_assert_eq!(fields.len(), arguments.len());
|
|
|
|
let capacity = fields.len();
|
|
let mut field_types = Vec::with_capacity_in(capacity, env.arena);
|
|
let mut field_values = Vec::with_capacity_in(capacity, env.arena);
|
|
|
|
for (field_symbol, tag_field_layout) in arguments.iter().zip(fields.iter()) {
|
|
let field_type = basic_type_from_layout(env, tag_field_layout);
|
|
field_types.push(field_type);
|
|
|
|
let raw_value = load_symbol(scope, field_symbol);
|
|
let field_value = build_tag_field_value(env, raw_value, *tag_field_layout);
|
|
|
|
field_values.push((*tag_field_layout, field_value));
|
|
}
|
|
|
|
(field_types, field_values)
|
|
}
|
|
|
|
fn build_tag<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
scope: &Scope<'a, 'ctx>,
|
|
union_layout: &UnionLayout<'a>,
|
|
tag_id: TagIdIntType,
|
|
arguments: &[Symbol],
|
|
reuse_allocation: Option<PointerValue<'ctx>>,
|
|
parent: FunctionValue<'ctx>,
|
|
) -> BasicValueEnum<'ctx> {
|
|
let tag_id_layout = union_layout.tag_id_layout();
|
|
let union_size = union_layout.number_of_tags();
|
|
|
|
match union_layout {
|
|
UnionLayout::NonRecursive(tags) => {
|
|
debug_assert!(union_size > 1);
|
|
|
|
let internal_type = block_of_memory_slices(env.context, tags, env.target_info);
|
|
|
|
let tag_id_type = basic_type_from_layout(env, &tag_id_layout).into_int_type();
|
|
let wrapper_type = env
|
|
.context
|
|
.struct_type(&[internal_type, tag_id_type.into()], false);
|
|
let result_alloca = entry_block_alloca_zerofill(env, wrapper_type.into(), "opaque_tag");
|
|
|
|
// Determine types
|
|
let num_fields = arguments.len() + 1;
|
|
let mut field_types = Vec::with_capacity_in(num_fields, env.arena);
|
|
let mut field_vals = Vec::with_capacity_in(num_fields, env.arena);
|
|
|
|
let tag_field_layouts = &tags[tag_id as usize];
|
|
|
|
for (field_symbol, tag_field_layout) in arguments.iter().zip(tag_field_layouts.iter()) {
|
|
let (val, _val_layout) = load_symbol_and_layout(scope, field_symbol);
|
|
|
|
// Zero-sized fields have no runtime representation.
|
|
// The layout of the struct expects them to be dropped!
|
|
if !tag_field_layout.is_dropped_because_empty() {
|
|
let field_type = basic_type_from_layout(env, tag_field_layout);
|
|
|
|
field_types.push(field_type);
|
|
|
|
if let Layout::RecursivePointer = tag_field_layout {
|
|
panic!(
|
|
r"non-recursive tag unions cannot directly contain a recursive pointer"
|
|
);
|
|
} else {
|
|
// this check fails for recursive tag unions, but can be helpful while debugging
|
|
// debug_assert_eq!(tag_field_layout, val_layout);
|
|
|
|
field_vals.push(val);
|
|
}
|
|
}
|
|
}
|
|
// store the tag id
|
|
let tag_id_ptr = env
|
|
.builder
|
|
.build_struct_gep(result_alloca, TAG_ID_INDEX, "tag_id_ptr")
|
|
.unwrap();
|
|
|
|
let tag_id_intval = tag_id_type.const_int(tag_id as u64, false);
|
|
env.builder.build_store(tag_id_ptr, tag_id_intval);
|
|
|
|
// Create the struct_type
|
|
let struct_type = env
|
|
.context
|
|
.struct_type(field_types.into_bump_slice(), false);
|
|
|
|
let struct_opaque_ptr = env
|
|
.builder
|
|
.build_struct_gep(result_alloca, TAG_DATA_INDEX, "opaque_data_ptr")
|
|
.unwrap();
|
|
let struct_ptr = env.builder.build_pointer_cast(
|
|
struct_opaque_ptr,
|
|
struct_type.ptr_type(AddressSpace::Generic),
|
|
"to_specific",
|
|
);
|
|
|
|
// Insert field exprs into struct_val
|
|
//let struct_val =
|
|
//struct_from_fields(env, struct_type, field_vals.into_iter().enumerate());
|
|
|
|
// Insert field exprs into struct_val
|
|
for (index, field_val) in field_vals.iter().copied().enumerate() {
|
|
let index: u32 = index as u32;
|
|
|
|
let ptr = env
|
|
.builder
|
|
.build_struct_gep(struct_ptr, index, "get_tag_field_ptr")
|
|
.unwrap();
|
|
|
|
let field_layout = tag_field_layouts[index as usize];
|
|
store_roc_value(env, field_layout, ptr, field_val);
|
|
}
|
|
|
|
// env.builder.build_load(result_alloca, "load_result")
|
|
result_alloca.into()
|
|
}
|
|
UnionLayout::Recursive(tags) => {
|
|
debug_assert!(union_size > 1);
|
|
|
|
let tag_field_layouts = &tags[tag_id as usize];
|
|
|
|
build_wrapped_tag(
|
|
env,
|
|
scope,
|
|
union_layout,
|
|
tag_id as _,
|
|
arguments,
|
|
tag_field_layouts,
|
|
tags,
|
|
reuse_allocation,
|
|
parent,
|
|
)
|
|
}
|
|
UnionLayout::NullableWrapped {
|
|
nullable_id,
|
|
other_tags: tags,
|
|
} => {
|
|
let tag_field_layouts = {
|
|
use std::cmp::Ordering::*;
|
|
match tag_id.cmp(&(*nullable_id as _)) {
|
|
Equal => {
|
|
let layout = Layout::Union(*union_layout);
|
|
|
|
return basic_type_from_layout(env, &layout)
|
|
.into_pointer_type()
|
|
.const_null()
|
|
.into();
|
|
}
|
|
Less => &tags[tag_id as usize],
|
|
Greater => &tags[tag_id as usize - 1],
|
|
}
|
|
};
|
|
|
|
build_wrapped_tag(
|
|
env,
|
|
scope,
|
|
union_layout,
|
|
tag_id as _,
|
|
arguments,
|
|
tag_field_layouts,
|
|
tags,
|
|
reuse_allocation,
|
|
parent,
|
|
)
|
|
}
|
|
UnionLayout::NonNullableUnwrapped(fields) => {
|
|
debug_assert_eq!(union_size, 1);
|
|
debug_assert_eq!(tag_id, 0);
|
|
debug_assert_eq!(arguments.len(), fields.len());
|
|
|
|
let (field_types, field_values) = build_tag_fields(env, scope, fields, arguments);
|
|
|
|
// Create the struct_type
|
|
let data_ptr =
|
|
reserve_with_refcount_union_as_block_of_memory(env, *union_layout, &[fields]);
|
|
|
|
let struct_type = env
|
|
.context
|
|
.struct_type(field_types.into_bump_slice(), false);
|
|
|
|
struct_pointer_from_fields(
|
|
env,
|
|
struct_type,
|
|
data_ptr,
|
|
field_values.into_iter().enumerate(),
|
|
);
|
|
|
|
data_ptr.into()
|
|
}
|
|
UnionLayout::NullableUnwrapped {
|
|
nullable_id,
|
|
other_fields,
|
|
} => {
|
|
let tag_struct_type =
|
|
block_of_memory_slices(env.context, &[other_fields], env.target_info);
|
|
|
|
if tag_id == *nullable_id as _ {
|
|
let output_type = tag_struct_type.ptr_type(AddressSpace::Generic);
|
|
|
|
return output_type.const_null().into();
|
|
}
|
|
|
|
// this tag id is not the nullable one. For the type to be recursive, the other
|
|
// constructor must have at least one argument!
|
|
debug_assert!(!arguments.is_empty());
|
|
|
|
debug_assert!(union_size == 2);
|
|
|
|
// Determine types
|
|
let (field_types, field_values) = build_tag_fields(env, scope, other_fields, arguments);
|
|
|
|
// Create the struct_type
|
|
let data_ptr =
|
|
allocate_tag(env, parent, reuse_allocation, union_layout, &[other_fields]);
|
|
|
|
let struct_type = env
|
|
.context
|
|
.struct_type(field_types.into_bump_slice(), false);
|
|
|
|
struct_pointer_from_fields(
|
|
env,
|
|
struct_type,
|
|
data_ptr,
|
|
field_values.into_iter().enumerate(),
|
|
);
|
|
|
|
data_ptr.into()
|
|
}
|
|
}
|
|
}
|
|
|
|
fn tag_pointer_set_tag_id<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
tag_id: u8,
|
|
pointer: PointerValue<'ctx>,
|
|
) -> PointerValue<'ctx> {
|
|
// we only have 3 bits, so can encode only 0..7 (or on 32-bit targets, 2 bits to encode 0..3)
|
|
debug_assert!((tag_id as u32) < env.target_info.ptr_width() as u32);
|
|
|
|
let ptr_int = env.ptr_int();
|
|
|
|
let as_int = env.builder.build_ptr_to_int(pointer, ptr_int, "to_int");
|
|
|
|
let tag_id_intval = ptr_int.const_int(tag_id as u64, false);
|
|
let combined = env.builder.build_or(as_int, tag_id_intval, "store_tag_id");
|
|
|
|
env.builder
|
|
.build_int_to_ptr(combined, pointer.get_type(), "to_ptr")
|
|
}
|
|
|
|
pub fn tag_pointer_tag_id_bits_and_mask(target_info: TargetInfo) -> (u64, u64) {
|
|
match target_info.ptr_width() {
|
|
roc_target::PtrWidth::Bytes8 => (3, 0b0000_0111),
|
|
roc_target::PtrWidth::Bytes4 => (2, 0b0000_0011),
|
|
}
|
|
}
|
|
|
|
pub fn tag_pointer_read_tag_id<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
pointer: PointerValue<'ctx>,
|
|
) -> IntValue<'ctx> {
|
|
let (_, mask) = tag_pointer_tag_id_bits_and_mask(env.target_info);
|
|
let ptr_int = env.ptr_int();
|
|
|
|
let as_int = env.builder.build_ptr_to_int(pointer, ptr_int, "to_int");
|
|
let mask_intval = env.ptr_int().const_int(mask, false);
|
|
|
|
let masked = env.builder.build_and(as_int, mask_intval, "mask");
|
|
|
|
env.builder
|
|
.build_int_cast_sign_flag(masked, env.context.i8_type(), false, "to_u8")
|
|
}
|
|
|
|
pub fn tag_pointer_clear_tag_id<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
pointer: PointerValue<'ctx>,
|
|
) -> PointerValue<'ctx> {
|
|
let ptr_int = env.ptr_int();
|
|
|
|
let (tag_id_bits_mask, _) = tag_pointer_tag_id_bits_and_mask(env.target_info);
|
|
|
|
let as_int = env.builder.build_ptr_to_int(pointer, ptr_int, "to_int");
|
|
|
|
let mask = {
|
|
let a = env.ptr_int().const_all_ones();
|
|
let tag_id_bits = env.ptr_int().const_int(tag_id_bits_mask, false);
|
|
env.builder.build_left_shift(a, tag_id_bits, "make_mask")
|
|
};
|
|
|
|
let masked = env.builder.build_and(as_int, mask, "masked");
|
|
|
|
env.builder
|
|
.build_int_to_ptr(masked, pointer.get_type(), "to_ptr")
|
|
}
|
|
|
|
fn allocate_tag<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
parent: FunctionValue<'ctx>,
|
|
reuse_allocation: Option<PointerValue<'ctx>>,
|
|
union_layout: &UnionLayout<'a>,
|
|
tags: &[&[Layout<'a>]],
|
|
) -> PointerValue<'ctx> {
|
|
match reuse_allocation {
|
|
Some(ptr) => {
|
|
// check if its a null pointer
|
|
let is_null_ptr = env.builder.build_is_null(ptr, "is_null_ptr");
|
|
let ctx = env.context;
|
|
let then_block = ctx.append_basic_block(parent, "then_allocate_fresh");
|
|
let else_block = ctx.append_basic_block(parent, "else_reuse");
|
|
let cont_block = ctx.append_basic_block(parent, "cont");
|
|
|
|
env.builder
|
|
.build_conditional_branch(is_null_ptr, then_block, else_block);
|
|
|
|
let raw_ptr = {
|
|
env.builder.position_at_end(then_block);
|
|
let raw_ptr =
|
|
reserve_with_refcount_union_as_block_of_memory(env, *union_layout, tags);
|
|
env.builder.build_unconditional_branch(cont_block);
|
|
raw_ptr
|
|
};
|
|
|
|
let reuse_ptr = {
|
|
env.builder.position_at_end(else_block);
|
|
|
|
let cleared = tag_pointer_clear_tag_id(env, ptr);
|
|
|
|
env.builder.build_unconditional_branch(cont_block);
|
|
|
|
cleared
|
|
};
|
|
|
|
{
|
|
env.builder.position_at_end(cont_block);
|
|
let phi = env.builder.build_phi(raw_ptr.get_type(), "branch");
|
|
|
|
phi.add_incoming(&[(&raw_ptr, then_block), (&reuse_ptr, else_block)]);
|
|
|
|
phi.as_basic_value().into_pointer_value()
|
|
}
|
|
}
|
|
None => reserve_with_refcount_union_as_block_of_memory(env, *union_layout, tags),
|
|
}
|
|
}
|
|
|
|
pub fn get_tag_id<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
parent: FunctionValue<'ctx>,
|
|
union_layout: &UnionLayout<'a>,
|
|
argument: BasicValueEnum<'ctx>,
|
|
) -> IntValue<'ctx> {
|
|
let builder = env.builder;
|
|
|
|
let tag_id_layout = union_layout.tag_id_layout();
|
|
let tag_id_int_type = basic_type_from_layout(env, &tag_id_layout).into_int_type();
|
|
|
|
match union_layout {
|
|
UnionLayout::NonRecursive(_) => {
|
|
debug_assert!(argument.is_pointer_value(), "{:?}", argument);
|
|
|
|
let argument_ptr = argument.into_pointer_value();
|
|
get_tag_id_wrapped(env, argument_ptr)
|
|
}
|
|
UnionLayout::Recursive(_) => {
|
|
let argument_ptr = argument.into_pointer_value();
|
|
|
|
if union_layout.stores_tag_id_as_data(env.target_info) {
|
|
get_tag_id_wrapped(env, argument_ptr)
|
|
} else {
|
|
tag_pointer_read_tag_id(env, argument_ptr)
|
|
}
|
|
}
|
|
UnionLayout::NonNullableUnwrapped(_) => tag_id_int_type.const_zero(),
|
|
UnionLayout::NullableWrapped { nullable_id, .. } => {
|
|
let argument_ptr = argument.into_pointer_value();
|
|
let is_null = env.builder.build_is_null(argument_ptr, "is_null");
|
|
|
|
let ctx = env.context;
|
|
let then_block = ctx.append_basic_block(parent, "then");
|
|
let else_block = ctx.append_basic_block(parent, "else");
|
|
let cont_block = ctx.append_basic_block(parent, "cont");
|
|
|
|
let result = builder.build_alloca(tag_id_int_type, "result");
|
|
|
|
env.builder
|
|
.build_conditional_branch(is_null, then_block, else_block);
|
|
|
|
{
|
|
env.builder.position_at_end(then_block);
|
|
let tag_id = tag_id_int_type.const_int(*nullable_id as u64, false);
|
|
env.builder.build_store(result, tag_id);
|
|
env.builder.build_unconditional_branch(cont_block);
|
|
}
|
|
|
|
{
|
|
env.builder.position_at_end(else_block);
|
|
|
|
let tag_id = if union_layout.stores_tag_id_as_data(env.target_info) {
|
|
get_tag_id_wrapped(env, argument_ptr)
|
|
} else {
|
|
tag_pointer_read_tag_id(env, argument_ptr)
|
|
};
|
|
env.builder.build_store(result, tag_id);
|
|
env.builder.build_unconditional_branch(cont_block);
|
|
}
|
|
|
|
env.builder.position_at_end(cont_block);
|
|
|
|
env.builder
|
|
.build_load(result, "load_result")
|
|
.into_int_value()
|
|
}
|
|
UnionLayout::NullableUnwrapped { nullable_id, .. } => {
|
|
let argument_ptr = argument.into_pointer_value();
|
|
let is_null = env.builder.build_is_null(argument_ptr, "is_null");
|
|
|
|
let then_value = tag_id_int_type.const_int(*nullable_id as u64, false);
|
|
let else_value = tag_id_int_type.const_int(!*nullable_id as u64, false);
|
|
|
|
env.builder
|
|
.build_select(is_null, then_value, else_value, "select_tag_id")
|
|
.into_int_value()
|
|
}
|
|
}
|
|
}
|
|
|
|
fn lookup_at_index_ptr<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
union_layout: &UnionLayout<'a>,
|
|
field_layouts: &[Layout<'_>],
|
|
index: usize,
|
|
value: PointerValue<'ctx>,
|
|
struct_type: StructType<'ctx>,
|
|
) -> BasicValueEnum<'ctx> {
|
|
let builder = env.builder;
|
|
|
|
let ptr = env
|
|
.builder
|
|
.build_bitcast(
|
|
value,
|
|
struct_type.ptr_type(AddressSpace::Generic),
|
|
"cast_lookup_at_index_ptr",
|
|
)
|
|
.into_pointer_value();
|
|
|
|
let elem_ptr = builder
|
|
.build_struct_gep(ptr, index as u32, "at_index_struct_gep")
|
|
.unwrap();
|
|
|
|
let field_layout = field_layouts[index];
|
|
let result = load_roc_value(env, field_layout, elem_ptr, "load_at_index_ptr_old");
|
|
|
|
if let Some(Layout::RecursivePointer) = field_layouts.get(index as usize) {
|
|
// a recursive field is stored as a `i64*`, to use it we must cast it to
|
|
// a pointer to the block of memory representation
|
|
let actual_type = basic_type_from_layout(env, &Layout::Union(*union_layout));
|
|
debug_assert!(actual_type.is_pointer_type());
|
|
|
|
builder.build_bitcast(
|
|
result,
|
|
actual_type,
|
|
"cast_rec_pointer_lookup_at_index_ptr_old",
|
|
)
|
|
} else {
|
|
result
|
|
}
|
|
}
|
|
|
|
fn lookup_at_index_ptr2<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
union_layout: &UnionLayout<'a>,
|
|
tag_id_type: IntType<'ctx>,
|
|
field_layouts: &[Layout<'_>],
|
|
index: usize,
|
|
value: PointerValue<'ctx>,
|
|
) -> BasicValueEnum<'ctx> {
|
|
let builder = env.builder;
|
|
|
|
let struct_layout = Layout::struct_no_name_order(field_layouts);
|
|
let struct_type = basic_type_from_layout(env, &struct_layout);
|
|
|
|
let wrapper_type = env
|
|
.context
|
|
.struct_type(&[struct_type, tag_id_type.into()], false);
|
|
|
|
let ptr = env
|
|
.builder
|
|
.build_bitcast(
|
|
value,
|
|
wrapper_type.ptr_type(AddressSpace::Generic),
|
|
"cast_lookup_at_index_ptr",
|
|
)
|
|
.into_pointer_value();
|
|
|
|
let data_ptr = builder
|
|
.build_struct_gep(ptr, TAG_DATA_INDEX, "at_index_struct_gep_tag")
|
|
.unwrap();
|
|
|
|
let elem_ptr = builder
|
|
.build_struct_gep(data_ptr, index as u32, "at_index_struct_gep_data")
|
|
.unwrap();
|
|
|
|
let field_layout = field_layouts[index];
|
|
let result = load_roc_value(env, field_layout, elem_ptr, "load_at_index_ptr");
|
|
|
|
if let Some(Layout::RecursivePointer) = field_layouts.get(index as usize) {
|
|
// a recursive field is stored as a `i64*`, to use it we must cast it to
|
|
// a pointer to the block of memory representation
|
|
|
|
let actual_type = basic_type_from_layout(env, &Layout::Union(*union_layout));
|
|
debug_assert!(actual_type.is_pointer_type());
|
|
|
|
builder.build_bitcast(
|
|
result,
|
|
actual_type,
|
|
"cast_rec_pointer_lookup_at_index_ptr_new",
|
|
)
|
|
} else {
|
|
result
|
|
}
|
|
}
|
|
|
|
pub fn reserve_with_refcount<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
layout: &Layout<'a>,
|
|
) -> PointerValue<'ctx> {
|
|
let stack_size = layout.stack_size(env.target_info);
|
|
let alignment_bytes = layout.alignment_bytes(env.target_info);
|
|
|
|
let basic_type = basic_type_from_layout(env, layout);
|
|
|
|
reserve_with_refcount_help(env, basic_type, stack_size, alignment_bytes)
|
|
}
|
|
|
|
fn reserve_with_refcount_union_as_block_of_memory<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
union_layout: UnionLayout<'a>,
|
|
fields: &[&[Layout<'a>]],
|
|
) -> PointerValue<'ctx> {
|
|
let ptr_bytes = env.target_info;
|
|
|
|
let block_type = block_of_memory_slices(env.context, fields, env.target_info);
|
|
|
|
let basic_type = if union_layout.stores_tag_id_as_data(ptr_bytes) {
|
|
let tag_id_type = basic_type_from_layout(env, &union_layout.tag_id_layout());
|
|
|
|
env.context
|
|
.struct_type(&[block_type, tag_id_type], false)
|
|
.into()
|
|
} else {
|
|
block_type
|
|
};
|
|
|
|
let mut stack_size = fields
|
|
.iter()
|
|
.map(|tag| tag.iter().map(|l| l.stack_size(env.target_info)).sum())
|
|
.max()
|
|
.unwrap_or_default();
|
|
|
|
if union_layout.stores_tag_id_as_data(ptr_bytes) {
|
|
stack_size += union_layout.tag_id_layout().stack_size(env.target_info);
|
|
}
|
|
|
|
let alignment_bytes = fields
|
|
.iter()
|
|
.flat_map(|tag| tag.iter().map(|l| l.alignment_bytes(env.target_info)))
|
|
.max()
|
|
.unwrap_or(0);
|
|
|
|
reserve_with_refcount_help(env, basic_type, stack_size, alignment_bytes)
|
|
}
|
|
|
|
fn reserve_with_refcount_help<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
basic_type: impl BasicType<'ctx>,
|
|
stack_size: u32,
|
|
alignment_bytes: u32,
|
|
) -> PointerValue<'ctx> {
|
|
let len_type = env.ptr_int();
|
|
|
|
let value_bytes_intvalue = len_type.const_int(stack_size as u64, false);
|
|
|
|
allocate_with_refcount_help(env, basic_type, alignment_bytes, value_bytes_intvalue)
|
|
}
|
|
|
|
pub fn allocate_with_refcount<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
layout: &Layout<'a>,
|
|
value: BasicValueEnum<'ctx>,
|
|
) -> PointerValue<'ctx> {
|
|
let data_ptr = reserve_with_refcount(env, layout);
|
|
|
|
// store the value in the pointer
|
|
env.builder.build_store(data_ptr, value);
|
|
|
|
data_ptr
|
|
}
|
|
|
|
pub fn allocate_with_refcount_help<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
value_type: impl BasicType<'ctx>,
|
|
alignment_bytes: u32,
|
|
number_of_data_bytes: IntValue<'ctx>,
|
|
) -> PointerValue<'ctx> {
|
|
let ptr = call_bitcode_fn(
|
|
env,
|
|
&[
|
|
number_of_data_bytes.into(),
|
|
env.alignment_const(alignment_bytes).into(),
|
|
],
|
|
roc_builtins::bitcode::UTILS_ALLOCATE_WITH_REFCOUNT,
|
|
)
|
|
.into_pointer_value();
|
|
|
|
let ptr_type = value_type.ptr_type(AddressSpace::Generic);
|
|
|
|
env.builder
|
|
.build_bitcast(ptr, ptr_type, "alloc_cast_to_desired")
|
|
.into_pointer_value()
|
|
}
|
|
|
|
macro_rules! dict_key_value_layout {
|
|
($dict_layout:expr) => {
|
|
match $dict_layout {
|
|
Layout::Builtin(Builtin::Dict(key_layout, value_layout)) => (key_layout, value_layout),
|
|
_ => unreachable!("invalid dict layout"),
|
|
}
|
|
};
|
|
}
|
|
|
|
macro_rules! list_element_layout {
|
|
($list_layout:expr) => {
|
|
match $list_layout {
|
|
Layout::Builtin(Builtin::List(list_layout)) => *list_layout,
|
|
_ => unreachable!("invalid list layout"),
|
|
}
|
|
};
|
|
}
|
|
|
|
fn list_literal<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
parent: FunctionValue<'ctx>,
|
|
scope: &Scope<'a, 'ctx>,
|
|
element_layout: &Layout<'a>,
|
|
elems: &[ListLiteralElement],
|
|
) -> BasicValueEnum<'ctx> {
|
|
let ctx = env.context;
|
|
let builder = env.builder;
|
|
|
|
let element_type = basic_type_from_layout(env, element_layout);
|
|
|
|
let list_length = elems.len();
|
|
let list_length_intval = env.ptr_int().const_int(list_length as _, false);
|
|
|
|
// TODO re-enable, currently causes morphic segfaults because it tries to update
|
|
// constants in-place...
|
|
// if element_type.is_int_type() {
|
|
if false {
|
|
let element_type = element_type.into_int_type();
|
|
let element_width = element_layout.stack_size(env.target_info);
|
|
let size = list_length * element_width as usize;
|
|
let alignment = element_layout
|
|
.alignment_bytes(env.target_info)
|
|
.max(env.target_info.ptr_width() as u32);
|
|
|
|
let mut is_all_constant = true;
|
|
let zero_elements =
|
|
(env.target_info.ptr_width() as u8 as f64 / element_width as f64).ceil() as usize;
|
|
|
|
// runtime-evaluated elements
|
|
let mut runtime_evaluated_elements = Vec::with_capacity_in(list_length, env.arena);
|
|
|
|
// set up a global that contains all the literal elements of the array
|
|
// any variables or expressions are represented as `undef`
|
|
let global = {
|
|
let mut global_elements = Vec::with_capacity_in(list_length, env.arena);
|
|
|
|
// Add zero bytes that represent the refcount
|
|
//
|
|
// - if all elements are const, then we store the whole list as a constant.
|
|
// It then needs a refcount before the first element.
|
|
// - but if the list is not all constants, then we will just copy the constant values,
|
|
// and we do not need that refcount at the start
|
|
//
|
|
// In the latter case, we won't store the zeros in the globals
|
|
// (we slice them off again below)
|
|
for _ in 0..zero_elements {
|
|
global_elements.push(element_type.const_zero());
|
|
}
|
|
|
|
// Copy the elements from the list literal into the array
|
|
for (index, element) in elems.iter().enumerate() {
|
|
match element {
|
|
ListLiteralElement::Literal(literal) => {
|
|
let val = build_exp_literal(env, parent, element_layout, literal);
|
|
global_elements.push(val.into_int_value());
|
|
}
|
|
ListLiteralElement::Symbol(symbol) => {
|
|
let val = load_symbol(scope, symbol);
|
|
|
|
// here we'd like to furthermore check for intval.is_const().
|
|
// if all elements are const for LLVM, we could make the array a constant.
|
|
// BUT morphic does not know about this, and could allow us to modify that
|
|
// array in-place. That would cause a segfault. So, we'll have to find
|
|
// constants ourselves and cannot lean on LLVM here.
|
|
|
|
is_all_constant = false;
|
|
|
|
runtime_evaluated_elements.push((index, val));
|
|
|
|
global_elements.push(element_type.get_undef());
|
|
}
|
|
};
|
|
}
|
|
|
|
let const_elements = if is_all_constant {
|
|
global_elements.into_bump_slice()
|
|
} else {
|
|
&global_elements[zero_elements..]
|
|
};
|
|
|
|
// use None for the address space (e.g. Const does not work)
|
|
let typ = element_type.array_type(const_elements.len() as u32);
|
|
let global = env.module.add_global(typ, None, "roc__list_literal");
|
|
|
|
global.set_constant(true);
|
|
global.set_alignment(alignment);
|
|
global.set_unnamed_addr(true);
|
|
global.set_linkage(inkwell::module::Linkage::Private);
|
|
|
|
global.set_initializer(&element_type.const_array(const_elements));
|
|
global.as_pointer_value()
|
|
};
|
|
|
|
if is_all_constant {
|
|
// all elements are constants, so we can use the memory in the constants section directly
|
|
// here we make a pointer to the first actual element (skipping the 0 bytes that
|
|
// represent the refcount)
|
|
let zero = env.ptr_int().const_zero();
|
|
let offset = env.ptr_int().const_int(zero_elements as _, false);
|
|
|
|
let ptr = unsafe {
|
|
env.builder
|
|
.build_in_bounds_gep(global, &[zero, offset], "first_element_pointer")
|
|
};
|
|
|
|
super::build_list::store_list(env, ptr, list_length_intval)
|
|
} else {
|
|
// some of our elements are non-constant, so we must allocate space on the heap
|
|
let ptr = allocate_list(env, element_layout, list_length_intval);
|
|
|
|
// then, copy the relevant segment from the constant section into the heap
|
|
env.builder
|
|
.build_memcpy(
|
|
ptr,
|
|
alignment,
|
|
global,
|
|
alignment,
|
|
env.ptr_int().const_int(size as _, false),
|
|
)
|
|
.unwrap();
|
|
|
|
// then replace the `undef`s with the values that we evaluate at runtime
|
|
for (index, val) in runtime_evaluated_elements {
|
|
let index_val = ctx.i64_type().const_int(index as u64, false);
|
|
let elem_ptr = unsafe { builder.build_in_bounds_gep(ptr, &[index_val], "index") };
|
|
|
|
builder.build_store(elem_ptr, val);
|
|
}
|
|
|
|
super::build_list::store_list(env, ptr, list_length_intval)
|
|
}
|
|
} else {
|
|
let ptr = allocate_list(env, element_layout, list_length_intval);
|
|
|
|
// Copy the elements from the list literal into the array
|
|
for (index, element) in elems.iter().enumerate() {
|
|
let val = match element {
|
|
ListLiteralElement::Literal(literal) => {
|
|
build_exp_literal(env, parent, element_layout, literal)
|
|
}
|
|
ListLiteralElement::Symbol(symbol) => load_symbol(scope, symbol),
|
|
};
|
|
let index_val = ctx.i64_type().const_int(index as u64, false);
|
|
let elem_ptr = unsafe { builder.build_in_bounds_gep(ptr, &[index_val], "index") };
|
|
|
|
store_roc_value(env, *element_layout, elem_ptr, val);
|
|
}
|
|
|
|
super::build_list::store_list(env, ptr, list_length_intval)
|
|
}
|
|
}
|
|
|
|
pub fn load_roc_value<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
layout: Layout<'a>,
|
|
source: PointerValue<'ctx>,
|
|
name: &str,
|
|
) -> BasicValueEnum<'ctx> {
|
|
if layout.is_passed_by_reference(env.target_info) {
|
|
let alloca = entry_block_alloca_zerofill(env, basic_type_from_layout(env, &layout), name);
|
|
|
|
store_roc_value(env, layout, alloca, source.into());
|
|
|
|
alloca.into()
|
|
} else {
|
|
env.builder.build_load(source, name)
|
|
}
|
|
}
|
|
|
|
pub fn use_roc_value<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
layout: Layout<'a>,
|
|
source: BasicValueEnum<'ctx>,
|
|
name: &str,
|
|
) -> BasicValueEnum<'ctx> {
|
|
if layout.is_passed_by_reference(env.target_info) {
|
|
let alloca = entry_block_alloca_zerofill(env, basic_type_from_layout(env, &layout), name);
|
|
|
|
env.builder.build_store(alloca, source);
|
|
|
|
alloca.into()
|
|
} else {
|
|
source
|
|
}
|
|
}
|
|
|
|
pub fn store_roc_value_opaque<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
layout: Layout<'a>,
|
|
opaque_destination: PointerValue<'ctx>,
|
|
value: BasicValueEnum<'ctx>,
|
|
) {
|
|
let target_type = basic_type_from_layout(env, &layout).ptr_type(AddressSpace::Generic);
|
|
let destination =
|
|
env.builder
|
|
.build_pointer_cast(opaque_destination, target_type, "store_roc_value_opaque");
|
|
|
|
store_roc_value(env, layout, destination, value)
|
|
}
|
|
|
|
pub fn store_roc_value<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
layout: Layout<'a>,
|
|
destination: PointerValue<'ctx>,
|
|
value: BasicValueEnum<'ctx>,
|
|
) {
|
|
if layout.is_passed_by_reference(env.target_info) {
|
|
debug_assert!(value.is_pointer_value());
|
|
|
|
let align_bytes = layout.alignment_bytes(env.target_info);
|
|
|
|
if align_bytes > 0 {
|
|
let size = env
|
|
.ptr_int()
|
|
.const_int(layout.stack_size(env.target_info) as u64, false);
|
|
|
|
env.builder
|
|
.build_memcpy(
|
|
destination,
|
|
align_bytes,
|
|
value.into_pointer_value(),
|
|
align_bytes,
|
|
size,
|
|
)
|
|
.unwrap();
|
|
}
|
|
} else {
|
|
env.builder.build_store(destination, value);
|
|
}
|
|
}
|
|
|
|
pub fn build_exp_stmt<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
layout_ids: &mut LayoutIds<'a>,
|
|
func_spec_solutions: &FuncSpecSolutions,
|
|
scope: &mut Scope<'a, 'ctx>,
|
|
parent: FunctionValue<'ctx>,
|
|
stmt: &roc_mono::ir::Stmt<'a>,
|
|
) -> BasicValueEnum<'ctx> {
|
|
use roc_mono::ir::Stmt::*;
|
|
|
|
match stmt {
|
|
Let(first_symbol, first_expr, first_layout, mut cont) => {
|
|
let mut queue = Vec::new_in(env.arena);
|
|
|
|
queue.push((first_symbol, first_expr, first_layout));
|
|
|
|
while let Let(symbol, expr, layout, new_cont) = cont {
|
|
queue.push((symbol, expr, layout));
|
|
|
|
cont = new_cont;
|
|
}
|
|
|
|
let mut stack = Vec::with_capacity_in(queue.len(), env.arena);
|
|
|
|
for (symbol, expr, layout) in queue {
|
|
debug_assert!(layout != &Layout::RecursivePointer);
|
|
|
|
let val = build_exp_expr(
|
|
env,
|
|
layout_ids,
|
|
func_spec_solutions,
|
|
scope,
|
|
parent,
|
|
layout,
|
|
expr,
|
|
);
|
|
|
|
// Make a new scope which includes the binding we just encountered.
|
|
// This should be done *after* compiling the bound expr, since any
|
|
// recursive (in the LetRec sense) bindings should already have
|
|
// been extracted as procedures. Nothing in here should need to
|
|
// access itself!
|
|
// scope = scope.clone();
|
|
|
|
scope.insert(*symbol, (*layout, val));
|
|
stack.push(*symbol);
|
|
}
|
|
|
|
let result = build_exp_stmt(env, layout_ids, func_spec_solutions, scope, parent, cont);
|
|
|
|
for symbol in stack {
|
|
scope.remove(&symbol);
|
|
}
|
|
|
|
result
|
|
}
|
|
Ret(symbol) => {
|
|
let (value, layout) = load_symbol_and_layout(scope, symbol);
|
|
|
|
match RocReturn::from_layout(env, layout) {
|
|
RocReturn::Return => {
|
|
if let Some(block) = env.builder.get_insert_block() {
|
|
if block.get_terminator().is_none() {
|
|
env.builder.build_return(Some(&value));
|
|
}
|
|
}
|
|
|
|
value
|
|
}
|
|
RocReturn::ByPointer => {
|
|
// we need to write our value into the final argument of the current function
|
|
let parameters = parent.get_params();
|
|
let out_parameter = parameters.last().unwrap();
|
|
debug_assert!(out_parameter.is_pointer_value());
|
|
|
|
// store_roc_value(env, *layout, out_parameter.into_pointer_value(), value);
|
|
|
|
let destination = out_parameter.into_pointer_value();
|
|
if layout.is_passed_by_reference(env.target_info) {
|
|
let align_bytes = layout.alignment_bytes(env.target_info);
|
|
|
|
if align_bytes > 0 {
|
|
debug_assert!(
|
|
value.is_pointer_value(),
|
|
"{:?}: {:?}\n{:?}",
|
|
parent.get_name(),
|
|
value,
|
|
layout
|
|
);
|
|
|
|
// What we want to do here is
|
|
//
|
|
// let value_ptr = value.into_pointer_value();
|
|
// if value_ptr.get_first_use().is_some() {
|
|
// value_ptr.replace_all_uses_with(destination);
|
|
//
|
|
// In other words, if the source pointer is used,
|
|
// then we just subsitute the source for the input pointer, done.
|
|
//
|
|
// Only that does not work if the source is not written to.
|
|
// A simple example is the identity function
|
|
//
|
|
// A slightly more complex case that will also make the above not
|
|
// work is when the source pointer is only incremented, but not
|
|
// written to. Then there is a first_use, but it's still invalid to
|
|
// subsitute source with destination
|
|
//
|
|
// Hence, we explicitly memcpy source to destination, and rely on
|
|
// LLVM optimizing away any inefficiencies.
|
|
let size = env.ptr_int().const_int(
|
|
layout.stack_size_without_alignment(env.target_info) as u64,
|
|
false,
|
|
);
|
|
|
|
env.builder
|
|
.build_memcpy(
|
|
destination,
|
|
align_bytes,
|
|
value.into_pointer_value(),
|
|
align_bytes,
|
|
size,
|
|
)
|
|
.unwrap();
|
|
}
|
|
} else {
|
|
env.builder.build_store(destination, value);
|
|
}
|
|
|
|
if let Some(block) = env.builder.get_insert_block() {
|
|
match block.get_terminator() {
|
|
None => {
|
|
env.builder.build_return(None);
|
|
}
|
|
Some(terminator) => {
|
|
terminator.remove_from_basic_block();
|
|
env.builder.build_return(None);
|
|
}
|
|
}
|
|
}
|
|
|
|
env.context.i8_type().const_zero().into()
|
|
}
|
|
}
|
|
}
|
|
|
|
Switch {
|
|
branches,
|
|
default_branch,
|
|
ret_layout,
|
|
cond_layout,
|
|
cond_symbol,
|
|
} => {
|
|
let ret_type = basic_type_from_layout(env, ret_layout);
|
|
|
|
let switch_args = SwitchArgsIr {
|
|
cond_layout: *cond_layout,
|
|
cond_symbol: *cond_symbol,
|
|
branches,
|
|
default_branch: default_branch.1,
|
|
ret_type,
|
|
};
|
|
|
|
build_switch_ir(
|
|
env,
|
|
layout_ids,
|
|
func_spec_solutions,
|
|
scope,
|
|
parent,
|
|
switch_args,
|
|
)
|
|
}
|
|
Join {
|
|
id,
|
|
parameters,
|
|
remainder,
|
|
body: continuation,
|
|
} => {
|
|
let builder = env.builder;
|
|
let context = env.context;
|
|
|
|
// create new block
|
|
let cont_block = context.append_basic_block(parent, "joinpointcont");
|
|
|
|
let mut joinpoint_args = Vec::with_capacity_in(parameters.len(), env.arena);
|
|
{
|
|
let current = builder.get_insert_block().unwrap();
|
|
builder.position_at_end(cont_block);
|
|
|
|
for param in parameters.iter() {
|
|
let basic_type = basic_type_from_layout(env, ¶m.layout);
|
|
|
|
let phi_type = if param.layout.is_passed_by_reference(env.target_info) {
|
|
basic_type.ptr_type(AddressSpace::Generic).into()
|
|
} else {
|
|
basic_type
|
|
};
|
|
|
|
let phi_node = env.builder.build_phi(phi_type, "joinpointarg");
|
|
joinpoint_args.push(phi_node);
|
|
}
|
|
|
|
builder.position_at_end(current);
|
|
}
|
|
|
|
// store this join point
|
|
let joinpoint_args = joinpoint_args.into_bump_slice();
|
|
scope.join_points.insert(*id, (cont_block, joinpoint_args));
|
|
|
|
// construct the blocks that may jump to this join point
|
|
build_exp_stmt(
|
|
env,
|
|
layout_ids,
|
|
func_spec_solutions,
|
|
scope,
|
|
parent,
|
|
remainder,
|
|
);
|
|
|
|
let phi_block = builder.get_insert_block().unwrap();
|
|
|
|
// put the cont block at the back
|
|
builder.position_at_end(cont_block);
|
|
|
|
// bind the values
|
|
for (phi_value, param) in joinpoint_args.iter().zip(parameters.iter()) {
|
|
let value = phi_value.as_basic_value();
|
|
scope.insert(param.symbol, (param.layout, value));
|
|
}
|
|
|
|
// put the continuation in
|
|
let result = build_exp_stmt(
|
|
env,
|
|
layout_ids,
|
|
func_spec_solutions,
|
|
scope,
|
|
parent,
|
|
continuation,
|
|
);
|
|
|
|
// remove this join point again
|
|
scope.join_points.remove(id);
|
|
|
|
cont_block.move_after(phi_block).unwrap();
|
|
|
|
result
|
|
}
|
|
|
|
Jump(join_point, arguments) => {
|
|
let builder = env.builder;
|
|
let context = env.context;
|
|
let (cont_block, argument_phi_values) = scope.join_points.get(join_point).unwrap();
|
|
|
|
let current_block = builder.get_insert_block().unwrap();
|
|
|
|
for (phi_value, argument) in argument_phi_values.iter().zip(arguments.iter()) {
|
|
let (value, _) = load_symbol_and_layout(scope, argument);
|
|
|
|
phi_value.add_incoming(&[(&value, current_block)]);
|
|
}
|
|
|
|
builder.build_unconditional_branch(*cont_block);
|
|
|
|
// This doesn't currently do anything
|
|
context.i64_type().const_zero().into()
|
|
}
|
|
|
|
Refcounting(modify, cont) => {
|
|
use ModifyRc::*;
|
|
|
|
match modify {
|
|
Inc(symbol, inc_amount) => {
|
|
let (value, layout) = load_symbol_and_layout(scope, symbol);
|
|
let layout = *layout;
|
|
|
|
if layout.contains_refcounted() {
|
|
increment_refcount_layout(
|
|
env,
|
|
parent,
|
|
layout_ids,
|
|
*inc_amount,
|
|
value,
|
|
&layout,
|
|
);
|
|
}
|
|
|
|
build_exp_stmt(env, layout_ids, func_spec_solutions, scope, parent, cont)
|
|
}
|
|
Dec(symbol) => {
|
|
let (value, layout) = load_symbol_and_layout(scope, symbol);
|
|
|
|
if layout.contains_refcounted() {
|
|
decrement_refcount_layout(env, parent, layout_ids, value, layout);
|
|
}
|
|
|
|
build_exp_stmt(env, layout_ids, func_spec_solutions, scope, parent, cont)
|
|
}
|
|
DecRef(symbol) => {
|
|
let (value, layout) = load_symbol_and_layout(scope, symbol);
|
|
|
|
match layout {
|
|
Layout::Builtin(Builtin::Str) => todo!(),
|
|
Layout::Builtin(Builtin::List(element_layout)) => {
|
|
debug_assert!(value.is_struct_value());
|
|
let alignment = element_layout.alignment_bytes(env.target_info);
|
|
|
|
build_list::decref(env, value.into_struct_value(), alignment);
|
|
}
|
|
Layout::Builtin(Builtin::Dict(key_layout, value_layout)) => {
|
|
debug_assert!(value.is_struct_value());
|
|
let alignment = key_layout
|
|
.alignment_bytes(env.target_info)
|
|
.max(value_layout.alignment_bytes(env.target_info));
|
|
|
|
build_dict::decref(env, value.into_struct_value(), alignment);
|
|
}
|
|
Layout::Builtin(Builtin::Set(key_layout)) => {
|
|
debug_assert!(value.is_struct_value());
|
|
let alignment = key_layout.alignment_bytes(env.target_info);
|
|
|
|
build_dict::decref(env, value.into_struct_value(), alignment);
|
|
}
|
|
|
|
_ if layout.is_refcounted() => {
|
|
if value.is_pointer_value() {
|
|
let value_ptr = value.into_pointer_value();
|
|
|
|
let then_block = env.context.append_basic_block(parent, "then");
|
|
let done_block = env.context.append_basic_block(parent, "done");
|
|
|
|
let condition =
|
|
env.builder.build_is_not_null(value_ptr, "box_is_not_null");
|
|
env.builder
|
|
.build_conditional_branch(condition, then_block, done_block);
|
|
|
|
{
|
|
env.builder.position_at_end(then_block);
|
|
let refcount_ptr =
|
|
PointerToRefcount::from_ptr_to_data(env, value_ptr);
|
|
refcount_ptr.decrement(env, layout);
|
|
|
|
env.builder.build_unconditional_branch(done_block);
|
|
}
|
|
|
|
env.builder.position_at_end(done_block);
|
|
} else {
|
|
eprint!("we're likely leaking memory; see issue #985 for details");
|
|
}
|
|
}
|
|
_ => {
|
|
// nothing to do
|
|
}
|
|
}
|
|
|
|
build_exp_stmt(env, layout_ids, func_spec_solutions, scope, parent, cont)
|
|
}
|
|
}
|
|
}
|
|
|
|
Expect {
|
|
condition: cond,
|
|
region: _,
|
|
lookups: _,
|
|
layouts: _,
|
|
remainder,
|
|
} => {
|
|
// do stuff
|
|
|
|
let bd = env.builder;
|
|
let context = env.context;
|
|
|
|
let (cond, _cond_layout) = load_symbol_and_layout(scope, cond);
|
|
|
|
let condition = bd.build_int_compare(
|
|
IntPredicate::EQ,
|
|
cond.into_int_value(),
|
|
context.bool_type().const_int(1, false),
|
|
"is_true",
|
|
);
|
|
|
|
let then_block = context.append_basic_block(parent, "then_block");
|
|
let throw_block = context.append_basic_block(parent, "throw_block");
|
|
|
|
bd.build_conditional_branch(condition, then_block, throw_block);
|
|
|
|
{
|
|
bd.position_at_end(throw_block);
|
|
|
|
match env.target_info.ptr_width() {
|
|
roc_target::PtrWidth::Bytes8 => {
|
|
let func = env
|
|
.module
|
|
.get_function(bitcode::UTILS_EXPECT_FAILED)
|
|
.unwrap();
|
|
// TODO get the actual line info instead of
|
|
// hardcoding as zero!
|
|
let callable = CallableValue::try_from(func).unwrap();
|
|
let start_line = context.i32_type().const_int(0, false);
|
|
let end_line = context.i32_type().const_int(0, false);
|
|
let start_col = context.i16_type().const_int(0, false);
|
|
let end_col = context.i16_type().const_int(0, false);
|
|
|
|
bd.build_call(
|
|
callable,
|
|
&[
|
|
start_line.into(),
|
|
end_line.into(),
|
|
start_col.into(),
|
|
end_col.into(),
|
|
],
|
|
"call_expect_failed",
|
|
);
|
|
|
|
bd.build_unconditional_branch(then_block);
|
|
}
|
|
roc_target::PtrWidth::Bytes4 => {
|
|
// temporary WASM implementation
|
|
throw_exception(env, "An expectation failed!");
|
|
}
|
|
}
|
|
}
|
|
|
|
bd.position_at_end(then_block);
|
|
|
|
build_exp_stmt(
|
|
env,
|
|
layout_ids,
|
|
func_spec_solutions,
|
|
scope,
|
|
parent,
|
|
remainder,
|
|
)
|
|
}
|
|
|
|
RuntimeError(error_msg) => {
|
|
throw_exception(env, error_msg);
|
|
|
|
// unused value (must return a BasicValue)
|
|
let zero = env.context.i64_type().const_zero();
|
|
zero.into()
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn load_symbol<'a, 'ctx>(scope: &Scope<'a, 'ctx>, symbol: &Symbol) -> BasicValueEnum<'ctx> {
|
|
match scope.get(symbol) {
|
|
Some((_, ptr)) => *ptr,
|
|
|
|
None => panic!(
|
|
"There was no entry for {:?} {} in scope {:?}",
|
|
symbol, symbol, scope
|
|
),
|
|
}
|
|
}
|
|
|
|
pub fn load_symbol_and_layout<'a, 'ctx, 'b>(
|
|
scope: &'b Scope<'a, 'ctx>,
|
|
symbol: &Symbol,
|
|
) -> (BasicValueEnum<'ctx>, &'b Layout<'a>) {
|
|
match scope.get(symbol) {
|
|
Some((layout, ptr)) => (*ptr, layout),
|
|
None => panic!("There was no entry for {:?} in scope {:?}", symbol, scope),
|
|
}
|
|
}
|
|
|
|
pub fn load_symbol_and_lambda_set<'a, 'ctx, 'b>(
|
|
scope: &'b Scope<'a, 'ctx>,
|
|
symbol: &Symbol,
|
|
) -> (BasicValueEnum<'ctx>, LambdaSet<'a>) {
|
|
match scope.get(symbol) {
|
|
Some((Layout::LambdaSet(lambda_set), ptr)) => (*ptr, *lambda_set),
|
|
Some((other, ptr)) => panic!("Not a lambda set: {:?}, {:?}", other, ptr),
|
|
None => panic!("There was no entry for {:?} in scope {:?}", symbol, scope),
|
|
}
|
|
}
|
|
|
|
/// Cast a value to another value of the same (or smaller?) size
|
|
pub fn cast_basic_basic<'ctx>(
|
|
builder: &Builder<'ctx>,
|
|
from_value: BasicValueEnum<'ctx>,
|
|
to_type: BasicTypeEnum<'ctx>,
|
|
) -> BasicValueEnum<'ctx> {
|
|
complex_bitcast(builder, from_value, to_type, "cast_basic_basic")
|
|
}
|
|
|
|
pub fn complex_bitcast_struct_struct<'ctx>(
|
|
builder: &Builder<'ctx>,
|
|
from_value: StructValue<'ctx>,
|
|
to_type: StructType<'ctx>,
|
|
name: &str,
|
|
) -> StructValue<'ctx> {
|
|
complex_bitcast(builder, from_value.into(), to_type.into(), name).into_struct_value()
|
|
}
|
|
|
|
pub fn cast_block_of_memory_to_tag<'ctx>(
|
|
builder: &Builder<'ctx>,
|
|
from_value: StructValue<'ctx>,
|
|
to_type: BasicTypeEnum<'ctx>,
|
|
) -> StructValue<'ctx> {
|
|
complex_bitcast(
|
|
builder,
|
|
from_value.into(),
|
|
to_type,
|
|
"block_of_memory_to_tag",
|
|
)
|
|
.into_struct_value()
|
|
}
|
|
|
|
/// Cast a value to another value of the same (or smaller?) size
|
|
pub fn complex_bitcast<'ctx>(
|
|
builder: &Builder<'ctx>,
|
|
from_value: BasicValueEnum<'ctx>,
|
|
to_type: BasicTypeEnum<'ctx>,
|
|
name: &str,
|
|
) -> BasicValueEnum<'ctx> {
|
|
use BasicTypeEnum::*;
|
|
|
|
if let (PointerType(_), PointerType(_)) = (from_value.get_type(), to_type) {
|
|
// we can't use the more straightforward bitcast in all cases
|
|
// it seems like a bitcast only works on integers and pointers
|
|
// and crucially does not work not on arrays
|
|
return builder.build_bitcast(from_value, to_type, name);
|
|
}
|
|
|
|
complex_bitcast_from_bigger_than_to(builder, from_value, to_type, name)
|
|
}
|
|
|
|
/// Check the size of the input and output types. Pretending we have more bytes at a pointer than
|
|
/// we actually do can lead to faulty optimizations and weird segfaults/crashes
|
|
pub fn complex_bitcast_check_size<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
from_value: BasicValueEnum<'ctx>,
|
|
to_type: BasicTypeEnum<'ctx>,
|
|
name: &str,
|
|
) -> BasicValueEnum<'ctx> {
|
|
use BasicTypeEnum::*;
|
|
|
|
if let (PointerType(_), PointerType(_)) = (from_value.get_type(), to_type) {
|
|
// we can't use the more straightforward bitcast in all cases
|
|
// it seems like a bitcast only works on integers and pointers
|
|
// and crucially does not work not on arrays
|
|
return env.builder.build_bitcast(from_value, to_type, name);
|
|
}
|
|
|
|
let block = env.builder.get_insert_block().expect("to be in a function");
|
|
let parent = block.get_parent().expect("to be in a function");
|
|
let then_block = env.context.append_basic_block(parent, "then");
|
|
let else_block = env.context.append_basic_block(parent, "else");
|
|
let cont_block = env.context.append_basic_block(parent, "cont");
|
|
|
|
let from_size = from_value.get_type().size_of().unwrap();
|
|
let to_size = to_type.size_of().unwrap();
|
|
|
|
let condition = env.builder.build_int_compare(
|
|
IntPredicate::UGT,
|
|
from_size,
|
|
to_size,
|
|
"from_size >= to_size",
|
|
);
|
|
|
|
env.builder
|
|
.build_conditional_branch(condition, then_block, else_block);
|
|
|
|
let then_answer = {
|
|
env.builder.position_at_end(then_block);
|
|
let result = complex_bitcast_from_bigger_than_to(env.builder, from_value, to_type, name);
|
|
env.builder.build_unconditional_branch(cont_block);
|
|
result
|
|
};
|
|
|
|
let else_answer = {
|
|
env.builder.position_at_end(else_block);
|
|
let result = complex_bitcast_to_bigger_than_from(env.builder, from_value, to_type, name);
|
|
env.builder.build_unconditional_branch(cont_block);
|
|
result
|
|
};
|
|
|
|
env.builder.position_at_end(cont_block);
|
|
|
|
let result = env.builder.build_phi(then_answer.get_type(), "answer");
|
|
|
|
result.add_incoming(&[(&then_answer, then_block), (&else_answer, else_block)]);
|
|
|
|
result.as_basic_value()
|
|
}
|
|
|
|
fn complex_bitcast_from_bigger_than_to<'ctx>(
|
|
builder: &Builder<'ctx>,
|
|
from_value: BasicValueEnum<'ctx>,
|
|
to_type: BasicTypeEnum<'ctx>,
|
|
name: &str,
|
|
) -> BasicValueEnum<'ctx> {
|
|
// store the value in memory
|
|
let argument_pointer = builder.build_alloca(from_value.get_type(), "cast_alloca");
|
|
builder.build_store(argument_pointer, from_value);
|
|
|
|
// then read it back as a different type
|
|
let to_type_pointer = builder
|
|
.build_bitcast(
|
|
argument_pointer,
|
|
to_type.ptr_type(inkwell::AddressSpace::Generic),
|
|
name,
|
|
)
|
|
.into_pointer_value();
|
|
|
|
builder.build_load(to_type_pointer, "cast_value")
|
|
}
|
|
|
|
fn complex_bitcast_to_bigger_than_from<'ctx>(
|
|
builder: &Builder<'ctx>,
|
|
from_value: BasicValueEnum<'ctx>,
|
|
to_type: BasicTypeEnum<'ctx>,
|
|
name: &str,
|
|
) -> BasicValueEnum<'ctx> {
|
|
// reserve space in memory with the return type. This way, if the return type is bigger
|
|
// than the input type, we don't access invalid memory when later taking a pointer to
|
|
// the cast value
|
|
let storage = builder.build_alloca(to_type, "cast_alloca");
|
|
|
|
// then cast the pointer to our desired type
|
|
let from_type_pointer = builder
|
|
.build_bitcast(
|
|
storage,
|
|
from_value
|
|
.get_type()
|
|
.ptr_type(inkwell::AddressSpace::Generic),
|
|
name,
|
|
)
|
|
.into_pointer_value();
|
|
|
|
// store the value in memory
|
|
builder.build_store(from_type_pointer, from_value);
|
|
|
|
// then read it back as a different type
|
|
builder.build_load(storage, "cast_value")
|
|
}
|
|
|
|
/// get the tag id out of a pointer to a wrapped (i.e. stores the tag id at runtime) layout
|
|
fn get_tag_id_wrapped<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
from_value: PointerValue<'ctx>,
|
|
) -> IntValue<'ctx> {
|
|
let tag_id_ptr = env
|
|
.builder
|
|
.build_struct_gep(from_value, TAG_ID_INDEX, "tag_id_ptr")
|
|
.unwrap();
|
|
|
|
env.builder
|
|
.build_load(tag_id_ptr, "load_tag_id")
|
|
.into_int_value()
|
|
}
|
|
|
|
pub fn get_tag_id_non_recursive<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
tag: StructValue<'ctx>,
|
|
) -> IntValue<'ctx> {
|
|
env.builder
|
|
.build_extract_value(tag, TAG_ID_INDEX, "get_tag_id")
|
|
.unwrap()
|
|
.into_int_value()
|
|
}
|
|
|
|
struct SwitchArgsIr<'a, 'ctx> {
|
|
pub cond_symbol: Symbol,
|
|
pub cond_layout: Layout<'a>,
|
|
pub branches: &'a [(u64, BranchInfo<'a>, roc_mono::ir::Stmt<'a>)],
|
|
pub default_branch: &'a roc_mono::ir::Stmt<'a>,
|
|
pub ret_type: BasicTypeEnum<'ctx>,
|
|
}
|
|
|
|
fn const_i128<'a, 'ctx, 'env>(env: &Env<'a, 'ctx, 'env>, value: i128) -> IntValue<'ctx> {
|
|
// truncate the lower 64 bits
|
|
let value = value as u128;
|
|
let a = value as u64;
|
|
|
|
// get the upper 64 bits
|
|
let b = (value >> 64) as u64;
|
|
|
|
env.context
|
|
.i128_type()
|
|
.const_int_arbitrary_precision(&[a, b])
|
|
}
|
|
|
|
fn const_u128<'a, 'ctx, 'env>(env: &Env<'a, 'ctx, 'env>, value: u128) -> IntValue<'ctx> {
|
|
// truncate the lower 64 bits
|
|
let value = value as u128;
|
|
let a = value as u64;
|
|
|
|
// get the upper 64 bits
|
|
let b = (value >> 64) as u64;
|
|
|
|
env.context
|
|
.i128_type()
|
|
.const_int_arbitrary_precision(&[a, b])
|
|
}
|
|
|
|
fn build_switch_ir<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
layout_ids: &mut LayoutIds<'a>,
|
|
func_spec_solutions: &FuncSpecSolutions,
|
|
scope: &Scope<'a, 'ctx>,
|
|
parent: FunctionValue<'ctx>,
|
|
switch_args: SwitchArgsIr<'a, 'ctx>,
|
|
) -> BasicValueEnum<'ctx> {
|
|
let arena = env.arena;
|
|
let builder = env.builder;
|
|
let context = env.context;
|
|
let SwitchArgsIr {
|
|
branches,
|
|
cond_symbol,
|
|
mut cond_layout,
|
|
default_branch,
|
|
ret_type,
|
|
..
|
|
} = switch_args;
|
|
|
|
let mut copy = scope.clone();
|
|
let scope = &mut copy;
|
|
|
|
let cond_symbol = &cond_symbol;
|
|
let (cond_value, stored_layout) = load_symbol_and_layout(scope, cond_symbol);
|
|
|
|
debug_assert_eq!(
|
|
basic_type_from_layout(env, &cond_layout),
|
|
basic_type_from_layout(env, stored_layout),
|
|
"This switch matches on {:?}, but the matched-on symbol {:?} has layout {:?}",
|
|
cond_layout,
|
|
cond_symbol,
|
|
stored_layout
|
|
);
|
|
|
|
let cont_block = context.append_basic_block(parent, "cont");
|
|
|
|
// Build the condition
|
|
let cond = match cond_layout {
|
|
Layout::Builtin(Builtin::Float(float_width)) => {
|
|
// float matches are done on the bit pattern
|
|
cond_layout = Layout::float_width(float_width);
|
|
|
|
let int_type = match float_width {
|
|
FloatWidth::F32 => env.context.i32_type(),
|
|
FloatWidth::F64 => env.context.i64_type(),
|
|
FloatWidth::F128 => env.context.i128_type(),
|
|
};
|
|
|
|
builder
|
|
.build_bitcast(cond_value, int_type, "")
|
|
.into_int_value()
|
|
}
|
|
Layout::Union(variant) => {
|
|
cond_layout = variant.tag_id_layout();
|
|
|
|
get_tag_id(env, parent, &variant, cond_value)
|
|
}
|
|
Layout::Builtin(_) => cond_value.into_int_value(),
|
|
other => todo!("Build switch value from layout: {:?}", other),
|
|
};
|
|
|
|
// Build the cases
|
|
let mut incoming = Vec::with_capacity_in(branches.len(), arena);
|
|
|
|
if let Layout::Builtin(Builtin::Bool) = cond_layout {
|
|
match (branches, default_branch) {
|
|
([(0, _, false_branch)], true_branch) | ([(1, _, true_branch)], false_branch) => {
|
|
let then_block = context.append_basic_block(parent, "then_block");
|
|
let else_block = context.append_basic_block(parent, "else_block");
|
|
|
|
builder.build_conditional_branch(cond, then_block, else_block);
|
|
|
|
{
|
|
builder.position_at_end(then_block);
|
|
|
|
let branch_val = build_exp_stmt(
|
|
env,
|
|
layout_ids,
|
|
func_spec_solutions,
|
|
scope,
|
|
parent,
|
|
true_branch,
|
|
);
|
|
|
|
if then_block.get_terminator().is_none() {
|
|
builder.build_unconditional_branch(cont_block);
|
|
incoming.push((branch_val, then_block));
|
|
}
|
|
}
|
|
|
|
{
|
|
builder.position_at_end(else_block);
|
|
|
|
let branch_val = build_exp_stmt(
|
|
env,
|
|
layout_ids,
|
|
func_spec_solutions,
|
|
scope,
|
|
parent,
|
|
false_branch,
|
|
);
|
|
|
|
if else_block.get_terminator().is_none() {
|
|
builder.build_unconditional_branch(cont_block);
|
|
incoming.push((branch_val, else_block));
|
|
}
|
|
}
|
|
}
|
|
|
|
_ => {
|
|
unreachable!()
|
|
}
|
|
}
|
|
} else {
|
|
let default_block = context.append_basic_block(parent, "default");
|
|
let mut cases = Vec::with_capacity_in(branches.len(), arena);
|
|
|
|
for (int, _, _) in branches.iter() {
|
|
// Switch constants must all be same type as switch value!
|
|
// e.g. this is incorrect, and will trigger a LLVM warning:
|
|
//
|
|
// switch i8 %apple1, label %default [
|
|
// i64 2, label %branch2
|
|
// i64 0, label %branch0
|
|
// i64 1, label %branch1
|
|
// ]
|
|
//
|
|
// they either need to all be i8, or i64
|
|
let condition_int_type = cond.get_type();
|
|
|
|
let int_val = if condition_int_type == context.i128_type() {
|
|
const_i128(env, *int as i128)
|
|
} else {
|
|
condition_int_type.const_int(*int as u64, false)
|
|
};
|
|
|
|
let block = context.append_basic_block(parent, format!("branch{}", int).as_str());
|
|
|
|
cases.push((int_val, block));
|
|
}
|
|
|
|
builder.build_switch(cond, default_block, &cases);
|
|
|
|
for ((_, _, branch_expr), (_, block)) in branches.iter().zip(cases) {
|
|
builder.position_at_end(block);
|
|
|
|
let branch_val = build_exp_stmt(
|
|
env,
|
|
layout_ids,
|
|
func_spec_solutions,
|
|
scope,
|
|
parent,
|
|
branch_expr,
|
|
);
|
|
|
|
if block.get_terminator().is_none() {
|
|
builder.build_unconditional_branch(cont_block);
|
|
incoming.push((branch_val, block));
|
|
}
|
|
}
|
|
|
|
// The block for the conditional's default branch.
|
|
builder.position_at_end(default_block);
|
|
|
|
let default_val = build_exp_stmt(
|
|
env,
|
|
layout_ids,
|
|
func_spec_solutions,
|
|
scope,
|
|
parent,
|
|
default_branch,
|
|
);
|
|
|
|
if default_block.get_terminator().is_none() {
|
|
builder.build_unconditional_branch(cont_block);
|
|
incoming.push((default_val, default_block));
|
|
}
|
|
}
|
|
|
|
// emit merge block
|
|
if incoming.is_empty() {
|
|
unsafe {
|
|
cont_block.delete().unwrap();
|
|
}
|
|
// produce unused garbage value
|
|
context.i64_type().const_zero().into()
|
|
} else {
|
|
builder.position_at_end(cont_block);
|
|
|
|
let phi = builder.build_phi(ret_type, "branch");
|
|
|
|
for (branch_val, block) in incoming {
|
|
phi.add_incoming(&[(&Into::<BasicValueEnum>::into(branch_val), block)]);
|
|
}
|
|
|
|
phi.as_basic_value()
|
|
}
|
|
}
|
|
|
|
/// Creates a new stack allocation instruction in the entry block of the function.
|
|
pub fn create_entry_block_alloca<'a, 'ctx>(
|
|
env: &Env<'a, 'ctx, '_>,
|
|
parent: FunctionValue<'_>,
|
|
basic_type: BasicTypeEnum<'ctx>,
|
|
name: &str,
|
|
) -> PointerValue<'ctx> {
|
|
let builder = env.context.create_builder();
|
|
let entry = parent.get_first_basic_block().unwrap();
|
|
|
|
match entry.get_first_instruction() {
|
|
Some(first_instr) => builder.position_before(&first_instr),
|
|
None => builder.position_at_end(entry),
|
|
}
|
|
|
|
builder.build_alloca(basic_type, name)
|
|
}
|
|
|
|
fn expose_function_to_host<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
symbol: Symbol,
|
|
roc_function: FunctionValue<'ctx>,
|
|
arguments: &'a [Layout<'a>],
|
|
captures_niche: CapturesNiche<'a>,
|
|
return_layout: Layout<'a>,
|
|
layout_ids: &mut LayoutIds<'a>,
|
|
) {
|
|
let ident_string = symbol.as_str(&env.interns);
|
|
|
|
let proc_layout = ProcLayout {
|
|
arguments,
|
|
result: return_layout,
|
|
captures_niche,
|
|
};
|
|
|
|
let c_function_name: String = layout_ids
|
|
.get_toplevel(symbol, &proc_layout)
|
|
.to_exposed_symbol_string(symbol, &env.interns);
|
|
|
|
expose_function_to_host_help_c_abi(
|
|
env,
|
|
ident_string,
|
|
roc_function,
|
|
arguments,
|
|
return_layout,
|
|
&c_function_name,
|
|
);
|
|
}
|
|
|
|
fn expose_function_to_host_help_c_abi_generic<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
roc_function: FunctionValue<'ctx>,
|
|
arguments: &[Layout<'a>],
|
|
return_layout: Layout<'a>,
|
|
c_function_name: &str,
|
|
) -> FunctionValue<'ctx> {
|
|
// NOTE we ingore env.is_gen_test here
|
|
|
|
let mut cc_argument_types = Vec::with_capacity_in(arguments.len(), env.arena);
|
|
for layout in arguments {
|
|
cc_argument_types.push(to_cc_type(env, layout));
|
|
}
|
|
|
|
// STEP 1: turn `f : a,b,c -> d` into `f : a,b,c, &d -> {}`
|
|
// let mut argument_types = roc_function.get_type().get_param_types();
|
|
let mut argument_types = cc_argument_types;
|
|
|
|
match roc_function.get_type().get_return_type() {
|
|
None => {
|
|
// this function already returns by-pointer
|
|
let output_type = roc_function.get_type().get_param_types().pop().unwrap();
|
|
argument_types.insert(0, output_type);
|
|
}
|
|
Some(return_type) => {
|
|
let output_type = return_type.ptr_type(AddressSpace::Generic);
|
|
argument_types.insert(0, output_type.into());
|
|
}
|
|
}
|
|
// This is not actually a function that returns a value but then became
|
|
// return-by-pointer do to the calling convention. Instead, here we
|
|
// explicitly are forcing the passing of values via the first parameter
|
|
// pointer, since they are generic and hence opaque to anything outside roc.
|
|
let c_function_spec = FunctionSpec::cconv(env, CCReturn::Void, None, &argument_types);
|
|
|
|
let c_function = add_func(
|
|
env.context,
|
|
env.module,
|
|
c_function_name,
|
|
c_function_spec,
|
|
Linkage::External,
|
|
);
|
|
|
|
let subprogram = env.new_subprogram(c_function_name);
|
|
c_function.set_subprogram(subprogram);
|
|
|
|
// STEP 2: build the exposed function's body
|
|
let builder = env.builder;
|
|
let context = env.context;
|
|
|
|
let entry = context.append_basic_block(c_function, "entry");
|
|
|
|
builder.position_at_end(entry);
|
|
|
|
debug_info_init!(env, c_function);
|
|
|
|
// drop the first argument, which is the pointer we write the result into
|
|
let args_vector = c_function.get_params();
|
|
let mut args = args_vector.as_slice();
|
|
|
|
// drop the output parameter
|
|
args = &args[1..];
|
|
|
|
let mut arguments_for_call = Vec::with_capacity_in(args.len(), env.arena);
|
|
|
|
let it = args.iter().zip(roc_function.get_type().get_param_types());
|
|
for (arg, fastcc_type) in it {
|
|
let arg_type = arg.get_type();
|
|
if arg_type == fastcc_type {
|
|
// the C and Fast calling conventions agree
|
|
arguments_for_call.push(*arg);
|
|
} else {
|
|
// not pretty, but seems to cover all our current cases
|
|
if arg_type.is_pointer_type() && !fastcc_type.is_pointer_type() {
|
|
// bitcast the ptr
|
|
let fastcc_ptr = env
|
|
.builder
|
|
.build_bitcast(
|
|
*arg,
|
|
fastcc_type.ptr_type(AddressSpace::Generic),
|
|
"bitcast_arg",
|
|
)
|
|
.into_pointer_value();
|
|
|
|
let loaded = env.builder.build_load(fastcc_ptr, "load_arg");
|
|
arguments_for_call.push(loaded);
|
|
} else {
|
|
let as_cc_type = env.builder.build_pointer_cast(
|
|
arg.into_pointer_value(),
|
|
fastcc_type.into_pointer_type(),
|
|
"to_cc_type_ptr",
|
|
);
|
|
arguments_for_call.push(as_cc_type.into());
|
|
}
|
|
}
|
|
}
|
|
|
|
let arguments_for_call = &arguments_for_call.into_bump_slice();
|
|
|
|
let call_result = {
|
|
if env.is_gen_test {
|
|
debug_assert_eq!(args.len(), roc_function.get_params().len());
|
|
|
|
let roc_wrapper_function = make_exception_catcher(env, roc_function, return_layout);
|
|
debug_assert_eq!(
|
|
arguments_for_call.len(),
|
|
roc_wrapper_function.get_params().len()
|
|
);
|
|
|
|
builder.position_at_end(entry);
|
|
|
|
let wrapped_layout = roc_result_layout(env.arena, return_layout, env.target_info);
|
|
call_roc_function(env, roc_function, &wrapped_layout, arguments_for_call)
|
|
} else {
|
|
call_roc_function(env, roc_function, &return_layout, arguments_for_call)
|
|
}
|
|
};
|
|
|
|
let output_arg_index = 0;
|
|
|
|
let output_arg = c_function
|
|
.get_nth_param(output_arg_index as u32)
|
|
.unwrap()
|
|
.into_pointer_value();
|
|
|
|
store_roc_value(env, return_layout, output_arg, call_result);
|
|
builder.build_return(None);
|
|
|
|
c_function
|
|
}
|
|
|
|
fn expose_function_to_host_help_c_abi_gen_test<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
ident_string: &str,
|
|
roc_function: FunctionValue<'ctx>,
|
|
arguments: &[Layout<'a>],
|
|
return_layout: Layout<'a>,
|
|
c_function_name: &str,
|
|
) -> FunctionValue<'ctx> {
|
|
// a tagged union to indicate to the test loader that a panic occurred.
|
|
// especially when running 32-bit binaries on a 64-bit machine, there
|
|
// does not seem to be a smarter solution
|
|
let wrapper_return_type = roc_result_type(env, basic_type_from_layout(env, &return_layout));
|
|
|
|
let mut cc_argument_types = Vec::with_capacity_in(arguments.len(), env.arena);
|
|
for layout in arguments {
|
|
cc_argument_types.push(to_cc_type(env, layout));
|
|
}
|
|
|
|
// STEP 1: turn `f : a,b,c -> d` into `f : a,b,c, &d -> {}` if the C abi demands it
|
|
let mut argument_types = cc_argument_types;
|
|
let return_type = wrapper_return_type;
|
|
|
|
let c_function_spec = {
|
|
let output_type = return_type.ptr_type(AddressSpace::Generic);
|
|
argument_types.push(output_type.into());
|
|
FunctionSpec::cconv(env, CCReturn::Void, None, &argument_types)
|
|
};
|
|
|
|
let c_function = add_func(
|
|
env.context,
|
|
env.module,
|
|
c_function_name,
|
|
c_function_spec,
|
|
Linkage::External,
|
|
);
|
|
|
|
let subprogram = env.new_subprogram(c_function_name);
|
|
c_function.set_subprogram(subprogram);
|
|
|
|
// STEP 2: build the exposed function's body
|
|
let builder = env.builder;
|
|
let context = env.context;
|
|
|
|
let entry = context.append_basic_block(c_function, "entry");
|
|
|
|
builder.position_at_end(entry);
|
|
|
|
debug_info_init!(env, c_function);
|
|
|
|
// drop the final argument, which is the pointer we write the result into
|
|
let args_vector = c_function.get_params();
|
|
let mut args = args_vector.as_slice();
|
|
let args_length = args.len();
|
|
|
|
args = &args[..args.len() - 1];
|
|
|
|
let mut arguments_for_call = Vec::with_capacity_in(args.len(), env.arena);
|
|
|
|
let it = args.iter().zip(roc_function.get_type().get_param_types());
|
|
for (arg, fastcc_type) in it {
|
|
let arg_type = arg.get_type();
|
|
if arg_type == fastcc_type {
|
|
// the C and Fast calling conventions agree
|
|
arguments_for_call.push(*arg);
|
|
} else {
|
|
let cast = complex_bitcast_check_size(env, *arg, fastcc_type, "to_fastcc_type");
|
|
arguments_for_call.push(cast);
|
|
}
|
|
}
|
|
|
|
let arguments_for_call = &arguments_for_call.into_bump_slice();
|
|
|
|
let call_result = {
|
|
let last_block = builder.get_insert_block().unwrap();
|
|
|
|
let roc_wrapper_function = make_exception_catcher(env, roc_function, return_layout);
|
|
|
|
builder.position_at_end(last_block);
|
|
|
|
call_roc_function(
|
|
env,
|
|
roc_wrapper_function,
|
|
&Layout::struct_no_name_order(&[Layout::u64(), return_layout]),
|
|
arguments_for_call,
|
|
)
|
|
};
|
|
|
|
let output_arg_index = args_length - 1;
|
|
|
|
let output_arg = c_function
|
|
.get_nth_param(output_arg_index as u32)
|
|
.unwrap()
|
|
.into_pointer_value();
|
|
|
|
builder.build_store(output_arg, call_result);
|
|
builder.build_return(None);
|
|
|
|
// STEP 3: build a {} -> u64 function that gives the size of the return type
|
|
let size_function_spec = FunctionSpec::cconv(
|
|
env,
|
|
CCReturn::Return,
|
|
Some(env.context.i64_type().as_basic_type_enum()),
|
|
&[],
|
|
);
|
|
let size_function_name: String = format!("roc__{}_size", ident_string);
|
|
|
|
let size_function = add_func(
|
|
env.context,
|
|
env.module,
|
|
size_function_name.as_str(),
|
|
size_function_spec,
|
|
Linkage::External,
|
|
);
|
|
|
|
let subprogram = env.new_subprogram(&size_function_name);
|
|
size_function.set_subprogram(subprogram);
|
|
|
|
let entry = context.append_basic_block(size_function, "entry");
|
|
|
|
builder.position_at_end(entry);
|
|
|
|
debug_info_init!(env, size_function);
|
|
|
|
let size: BasicValueEnum = return_type.size_of().unwrap().into();
|
|
builder.build_return(Some(&size));
|
|
|
|
c_function
|
|
}
|
|
|
|
fn expose_function_to_host_help_c_abi_v2<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
roc_function: FunctionValue<'ctx>,
|
|
arguments: &[Layout<'a>],
|
|
return_layout: Layout<'a>,
|
|
c_function_name: &str,
|
|
) -> FunctionValue<'ctx> {
|
|
let it = arguments.iter().map(|l| basic_type_from_layout(env, l));
|
|
let argument_types = Vec::from_iter_in(it, env.arena);
|
|
let return_type = basic_type_from_layout(env, &return_layout);
|
|
|
|
let cc_return = to_cc_return(env, &return_layout);
|
|
let roc_return = RocReturn::from_layout(env, &return_layout);
|
|
|
|
let c_function_spec = FunctionSpec::cconv(env, cc_return, Some(return_type), &argument_types);
|
|
|
|
let c_function = add_func(
|
|
env.context,
|
|
env.module,
|
|
c_function_name,
|
|
c_function_spec,
|
|
Linkage::External,
|
|
);
|
|
|
|
let subprogram = env.new_subprogram(c_function_name);
|
|
c_function.set_subprogram(subprogram);
|
|
|
|
// STEP 2: build the exposed function's body
|
|
let builder = env.builder;
|
|
let context = env.context;
|
|
|
|
let entry = context.append_basic_block(c_function, "entry");
|
|
builder.position_at_end(entry);
|
|
|
|
let params = c_function.get_params();
|
|
|
|
let param_types = Vec::from_iter_in(roc_function.get_type().get_param_types(), env.arena);
|
|
|
|
let (params, param_types) = match (&roc_return, &cc_return) {
|
|
// Drop the "return pointer" if it exists on the roc function
|
|
// and the c function does not return via pointer
|
|
(RocReturn::ByPointer, CCReturn::Return) => (¶ms[..], ¶m_types[1..]),
|
|
// Drop the return pointer the other way, if the C function returns by pointer but Roc
|
|
// doesn't
|
|
(RocReturn::Return, CCReturn::ByPointer) => (¶ms[1..], ¶m_types[..]),
|
|
_ => (¶ms[..], ¶m_types[..]),
|
|
};
|
|
|
|
debug_assert!(
|
|
params.len() == param_types.len(),
|
|
"when exposing a function to the host, params.len() was {}, but param_types.len() was {}",
|
|
params.len(),
|
|
param_types.len()
|
|
);
|
|
|
|
let it = params.iter().zip(param_types).map(|(arg, fastcc_type)| {
|
|
let arg_type = arg.get_type();
|
|
if arg_type == *fastcc_type {
|
|
// the C and Fast calling conventions agree
|
|
*arg
|
|
} else {
|
|
complex_bitcast_check_size(env, *arg, *fastcc_type, "to_fastcc_type")
|
|
}
|
|
});
|
|
|
|
let arguments = Vec::from_iter_in(it, env.arena);
|
|
|
|
let value = call_roc_function(env, roc_function, &return_layout, arguments.as_slice());
|
|
|
|
match cc_return {
|
|
CCReturn::Return => match roc_return {
|
|
RocReturn::Return => {
|
|
env.builder.build_return(Some(&value));
|
|
}
|
|
RocReturn::ByPointer => {
|
|
let loaded = env
|
|
.builder
|
|
.build_load(value.into_pointer_value(), "load_result");
|
|
env.builder.build_return(Some(&loaded));
|
|
}
|
|
},
|
|
CCReturn::ByPointer => {
|
|
let out_ptr = c_function.get_nth_param(0).unwrap().into_pointer_value();
|
|
|
|
env.builder.build_store(out_ptr, value);
|
|
env.builder.build_return(None);
|
|
}
|
|
CCReturn::Void => {
|
|
env.builder.build_return(None);
|
|
}
|
|
}
|
|
|
|
c_function
|
|
}
|
|
|
|
fn expose_function_to_host_help_c_abi<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
ident_string: &str,
|
|
roc_function: FunctionValue<'ctx>,
|
|
arguments: &[Layout<'a>],
|
|
return_layout: Layout<'a>,
|
|
c_function_name: &str,
|
|
) -> FunctionValue<'ctx> {
|
|
if env.is_gen_test {
|
|
return expose_function_to_host_help_c_abi_gen_test(
|
|
env,
|
|
ident_string,
|
|
roc_function,
|
|
arguments,
|
|
return_layout,
|
|
c_function_name,
|
|
);
|
|
}
|
|
|
|
// a generic version that writes the result into a passed *u8 pointer
|
|
expose_function_to_host_help_c_abi_generic(
|
|
env,
|
|
roc_function,
|
|
arguments,
|
|
return_layout,
|
|
&format!("{}_generic", c_function_name),
|
|
);
|
|
|
|
let c_function = expose_function_to_host_help_c_abi_v2(
|
|
env,
|
|
roc_function,
|
|
arguments,
|
|
return_layout,
|
|
c_function_name,
|
|
);
|
|
|
|
// STEP 3: build a {} -> u64 function that gives the size of the return type
|
|
let size_function_spec = FunctionSpec::cconv(
|
|
env,
|
|
CCReturn::Return,
|
|
Some(env.context.i64_type().as_basic_type_enum()),
|
|
&[],
|
|
);
|
|
let size_function_name: String = format!("roc__{}_size", ident_string);
|
|
|
|
let size_function = add_func(
|
|
env.context,
|
|
env.module,
|
|
size_function_name.as_str(),
|
|
size_function_spec,
|
|
Linkage::External,
|
|
);
|
|
|
|
let subprogram = env.new_subprogram(&size_function_name);
|
|
size_function.set_subprogram(subprogram);
|
|
|
|
let entry = env.context.append_basic_block(size_function, "entry");
|
|
|
|
env.builder.position_at_end(entry);
|
|
|
|
debug_info_init!(env, size_function);
|
|
|
|
let return_type = if env.is_gen_test {
|
|
roc_result_type(env, roc_function.get_type().get_return_type().unwrap()).into()
|
|
} else {
|
|
// roc_function.get_type().get_return_type().unwrap()
|
|
basic_type_from_layout(env, &return_layout)
|
|
};
|
|
|
|
let size: BasicValueEnum = return_type.size_of().unwrap().into();
|
|
env.builder.build_return(Some(&size));
|
|
|
|
c_function
|
|
}
|
|
|
|
pub fn get_sjlj_buffer<'a, 'ctx, 'env>(env: &Env<'a, 'ctx, 'env>) -> PointerValue<'ctx> {
|
|
// The size of jump_buf is platform-dependent.
|
|
// - AArch64 needs 3 machine-sized words
|
|
// - LLVM says the following about the SJLJ intrinsic:
|
|
//
|
|
// [It is] a five word buffer in which the calling context is saved.
|
|
// The front end places the frame pointer in the first word, and the
|
|
// target implementation of this intrinsic should place the destination
|
|
// address for a llvm.eh.sjlj.longjmp in the second word.
|
|
// The following three words are available for use in a target-specific manner.
|
|
//
|
|
// So, let's create a 5-word buffer.
|
|
let word_type = match env.target_info.ptr_width() {
|
|
PtrWidth::Bytes4 => env.context.i32_type(),
|
|
PtrWidth::Bytes8 => env.context.i64_type(),
|
|
};
|
|
let type_ = word_type.array_type(5);
|
|
|
|
let global = match env.module.get_global("roc_sjlj_buffer") {
|
|
Some(global) => global,
|
|
None => env.module.add_global(type_, None, "roc_sjlj_buffer"),
|
|
};
|
|
|
|
global.set_initializer(&type_.const_zero());
|
|
|
|
env.builder
|
|
.build_bitcast(
|
|
global.as_pointer_value(),
|
|
env.context.i32_type().ptr_type(AddressSpace::Generic),
|
|
"cast_sjlj_buffer",
|
|
)
|
|
.into_pointer_value()
|
|
}
|
|
|
|
pub fn build_setjmp_call<'a, 'ctx, 'env>(env: &Env<'a, 'ctx, 'env>) -> BasicValueEnum<'ctx> {
|
|
let jmp_buf = get_sjlj_buffer(env);
|
|
if cfg!(target_arch = "aarch64") {
|
|
// Due to https://github.com/rtfeldman/roc/issues/2965, we use a setjmp we linked in from Zig
|
|
call_bitcode_fn(env, &[jmp_buf.into()], bitcode::UTILS_SETJMP)
|
|
} else {
|
|
// Anywhere else, use the LLVM intrinsic.
|
|
// https://llvm.org/docs/ExceptionHandling.html#llvm-eh-sjlj-setjmp
|
|
|
|
let jmp_buf_i8p_arr = env
|
|
.builder
|
|
.build_bitcast(
|
|
jmp_buf,
|
|
env.context
|
|
.i8_type()
|
|
.ptr_type(AddressSpace::Generic)
|
|
.array_type(5)
|
|
.ptr_type(AddressSpace::Generic),
|
|
"jmp_buf [5 x i8*]",
|
|
)
|
|
.into_pointer_value();
|
|
|
|
// LLVM asks us to please store the frame pointer in the first word.
|
|
let frame_address = env.call_intrinsic(
|
|
LLVM_FRAME_ADDRESS,
|
|
&[env.context.i32_type().const_zero().into()],
|
|
);
|
|
|
|
let zero = env.context.i32_type().const_zero();
|
|
let fa_index = env.context.i32_type().const_zero();
|
|
let fa = unsafe {
|
|
env.builder.build_in_bounds_gep(
|
|
jmp_buf_i8p_arr,
|
|
&[zero, fa_index],
|
|
"frame address index",
|
|
)
|
|
};
|
|
env.builder.build_store(fa, frame_address);
|
|
|
|
// LLVM says that the target implementation of the setjmp intrinsic will put the
|
|
// destination address at index 1, and that the remaining three words are for ad-hoc target
|
|
// usage. But for whatever reason, on x86, it appears we need a stacksave in those words.
|
|
let ss_index = env.context.i32_type().const_int(2, false);
|
|
let ss = unsafe {
|
|
env.builder
|
|
.build_in_bounds_gep(jmp_buf_i8p_arr, &[zero, ss_index], "name")
|
|
};
|
|
let stack_save = env.call_intrinsic(LLVM_STACK_SAVE, &[]);
|
|
env.builder.build_store(ss, stack_save);
|
|
|
|
let jmp_buf_i8p = env.builder.build_bitcast(
|
|
jmp_buf,
|
|
env.context.i8_type().ptr_type(AddressSpace::Generic),
|
|
"jmp_buf i8*",
|
|
);
|
|
env.call_intrinsic(LLVM_SETJMP, &[jmp_buf_i8p])
|
|
}
|
|
}
|
|
|
|
/// Pointer to pointer of the panic message.
|
|
pub fn get_panic_msg_ptr<'a, 'ctx, 'env>(env: &Env<'a, 'ctx, 'env>) -> PointerValue<'ctx> {
|
|
let ptr_to_u8_ptr = env.context.i8_type().ptr_type(AddressSpace::Generic);
|
|
|
|
let global_name = "roc_panic_msg_ptr";
|
|
let global = env.module.get_global(global_name).unwrap_or_else(|| {
|
|
let global = env.module.add_global(ptr_to_u8_ptr, None, global_name);
|
|
global.set_initializer(&ptr_to_u8_ptr.const_zero());
|
|
global
|
|
});
|
|
|
|
global.as_pointer_value()
|
|
}
|
|
|
|
fn set_jump_and_catch_long_jump<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
parent: FunctionValue<'ctx>,
|
|
roc_function: FunctionValue<'ctx>,
|
|
arguments: &[BasicValueEnum<'ctx>],
|
|
return_layout: Layout<'a>,
|
|
) -> BasicValueEnum<'ctx> {
|
|
let context = env.context;
|
|
let builder = env.builder;
|
|
|
|
let return_type = basic_type_from_layout(env, &return_layout);
|
|
let call_result_type = roc_result_type(env, return_type.as_basic_type_enum());
|
|
let result_alloca = builder.build_alloca(call_result_type, "result");
|
|
|
|
let then_block = context.append_basic_block(parent, "then_block");
|
|
let catch_block = context.append_basic_block(parent, "catch_block");
|
|
let cont_block = context.append_basic_block(parent, "cont_block");
|
|
|
|
let panicked_u32 = build_setjmp_call(env);
|
|
let panicked_bool = env.builder.build_int_compare(
|
|
IntPredicate::NE,
|
|
panicked_u32.into_int_value(),
|
|
panicked_u32.get_type().into_int_type().const_zero(),
|
|
"to_bool",
|
|
);
|
|
|
|
env.builder
|
|
.build_conditional_branch(panicked_bool, catch_block, then_block);
|
|
|
|
// all went well
|
|
{
|
|
builder.position_at_end(then_block);
|
|
|
|
let call_result = call_roc_function(env, roc_function, &return_layout, arguments);
|
|
|
|
let return_value = make_good_roc_result(env, return_layout, call_result);
|
|
|
|
builder.build_store(result_alloca, return_value);
|
|
|
|
env.builder.build_unconditional_branch(cont_block);
|
|
}
|
|
|
|
// something went wrong
|
|
{
|
|
builder.position_at_end(catch_block);
|
|
|
|
let error_msg = {
|
|
// u8**
|
|
let ptr_int_ptr = get_panic_msg_ptr(env);
|
|
|
|
// u8* again
|
|
builder.build_load(ptr_int_ptr, "ptr_int")
|
|
};
|
|
|
|
let return_value = {
|
|
let v1 = call_result_type.const_zero();
|
|
|
|
// flag is non-zero, indicating failure
|
|
let flag = context.i64_type().const_int(1, false);
|
|
|
|
let v2 = builder
|
|
.build_insert_value(v1, flag, 0, "set_error")
|
|
.unwrap();
|
|
|
|
let v3 = builder
|
|
.build_insert_value(v2, error_msg, 1, "set_exception")
|
|
.unwrap();
|
|
v3
|
|
};
|
|
|
|
builder.build_store(result_alloca, return_value);
|
|
|
|
env.builder.build_unconditional_branch(cont_block);
|
|
}
|
|
|
|
env.builder.position_at_end(cont_block);
|
|
|
|
builder.build_load(result_alloca, "set_jump_and_catch_long_jump_load_result")
|
|
}
|
|
|
|
fn make_exception_catcher<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
roc_function: FunctionValue<'ctx>,
|
|
return_layout: Layout<'a>,
|
|
) -> FunctionValue<'ctx> {
|
|
let wrapper_function_name = format!("{}_catcher", roc_function.get_name().to_str().unwrap());
|
|
|
|
let function_value =
|
|
make_exception_catching_wrapper(env, roc_function, return_layout, &wrapper_function_name);
|
|
|
|
function_value.set_linkage(Linkage::Internal);
|
|
|
|
function_value
|
|
}
|
|
|
|
fn roc_result_layout<'a>(
|
|
arena: &'a Bump,
|
|
return_layout: Layout<'a>,
|
|
target_info: TargetInfo,
|
|
) -> Layout<'a> {
|
|
let elements = [Layout::u64(), Layout::usize(target_info), return_layout];
|
|
|
|
Layout::struct_no_name_order(arena.alloc(elements))
|
|
}
|
|
|
|
fn roc_result_type<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
return_type: BasicTypeEnum<'ctx>,
|
|
) -> StructType<'ctx> {
|
|
env.context.struct_type(
|
|
&[
|
|
env.context.i64_type().into(),
|
|
env.context.i8_type().ptr_type(AddressSpace::Generic).into(),
|
|
return_type,
|
|
],
|
|
false,
|
|
)
|
|
}
|
|
|
|
fn make_good_roc_result<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
return_layout: Layout<'a>,
|
|
return_value: BasicValueEnum<'ctx>,
|
|
) -> BasicValueEnum<'ctx> {
|
|
let context = env.context;
|
|
let builder = env.builder;
|
|
|
|
let v1 = roc_result_type(env, basic_type_from_layout(env, &return_layout)).const_zero();
|
|
|
|
let v2 = builder
|
|
.build_insert_value(v1, context.i64_type().const_zero(), 0, "set_no_error")
|
|
.unwrap();
|
|
|
|
let v3 = if return_layout.is_passed_by_reference(env.target_info) {
|
|
let loaded = env.builder.build_load(
|
|
return_value.into_pointer_value(),
|
|
"load_call_result_passed_by_ptr",
|
|
);
|
|
builder
|
|
.build_insert_value(v2, loaded, 2, "set_call_result")
|
|
.unwrap()
|
|
} else {
|
|
builder
|
|
.build_insert_value(v2, return_value, 2, "set_call_result")
|
|
.unwrap()
|
|
};
|
|
|
|
v3.into_struct_value().into()
|
|
}
|
|
|
|
fn make_exception_catching_wrapper<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
roc_function: FunctionValue<'ctx>,
|
|
return_layout: Layout<'a>,
|
|
wrapper_function_name: &str,
|
|
) -> FunctionValue<'ctx> {
|
|
// build the C calling convention wrapper
|
|
|
|
let context = env.context;
|
|
let builder = env.builder;
|
|
|
|
let roc_function_type = roc_function.get_type();
|
|
let argument_types = match RocReturn::from_layout(env, &return_layout) {
|
|
RocReturn::Return => roc_function_type.get_param_types(),
|
|
RocReturn::ByPointer => {
|
|
// Our fastcc passes the return pointer as the last parameter.
|
|
// Remove the return pointer since we now intend to return the result by value.
|
|
let mut types = roc_function_type.get_param_types();
|
|
types.pop();
|
|
|
|
types
|
|
}
|
|
};
|
|
|
|
let wrapper_return_type = roc_result_type(env, basic_type_from_layout(env, &return_layout));
|
|
|
|
// argument_types.push(wrapper_return_type.ptr_type(AddressSpace::Generic).into());
|
|
|
|
// let wrapper_function_type = env.context.void_type().fn_type(&argument_types, false);
|
|
let wrapper_function_spec = FunctionSpec::cconv(
|
|
env,
|
|
CCReturn::Return,
|
|
Some(wrapper_return_type.as_basic_type_enum()),
|
|
&argument_types,
|
|
);
|
|
|
|
// Add main to the module.
|
|
let wrapper_function = add_func(
|
|
env.context,
|
|
env.module,
|
|
wrapper_function_name,
|
|
wrapper_function_spec,
|
|
Linkage::External,
|
|
);
|
|
|
|
let subprogram = env.new_subprogram(wrapper_function_name);
|
|
wrapper_function.set_subprogram(subprogram);
|
|
|
|
// our exposed main function adheres to the C calling convention
|
|
wrapper_function.set_call_conventions(FAST_CALL_CONV);
|
|
|
|
// invoke instead of call, so that we can catch any exceptions thrown in Roc code
|
|
let arguments = wrapper_function.get_params();
|
|
|
|
let basic_block = context.append_basic_block(wrapper_function, "entry");
|
|
builder.position_at_end(basic_block);
|
|
|
|
debug_info_init!(env, wrapper_function);
|
|
|
|
let result = set_jump_and_catch_long_jump(
|
|
env,
|
|
wrapper_function,
|
|
roc_function,
|
|
&arguments,
|
|
return_layout,
|
|
);
|
|
|
|
builder.build_return(Some(&result));
|
|
|
|
wrapper_function
|
|
}
|
|
|
|
pub fn build_proc_headers<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
mod_solutions: &'a ModSolutions,
|
|
procedures: MutMap<(Symbol, ProcLayout<'a>), roc_mono::ir::Proc<'a>>,
|
|
scope: &mut Scope<'a, 'ctx>,
|
|
layout_ids: &mut LayoutIds<'a>,
|
|
// alias_analysis_solutions: AliasAnalysisSolutions,
|
|
) -> Vec<
|
|
'a,
|
|
(
|
|
roc_mono::ir::Proc<'a>,
|
|
&'a [(&'a FuncSpecSolutions, FunctionValue<'ctx>)],
|
|
),
|
|
> {
|
|
// Populate Procs further and get the low-level Expr from the canonical Expr
|
|
let mut headers = Vec::with_capacity_in(procedures.len(), env.arena);
|
|
for ((symbol, layout), proc) in procedures {
|
|
let name_bytes = roc_alias_analysis::func_name_bytes(&proc);
|
|
let func_name = FuncName(&name_bytes);
|
|
|
|
let func_solutions = mod_solutions.func_solutions(func_name).unwrap();
|
|
|
|
let it = func_solutions.specs();
|
|
let mut function_values = Vec::with_capacity_in(it.size_hint().0, env.arena);
|
|
for specialization in it {
|
|
let fn_val = build_proc_header(env, *specialization, symbol, &proc, layout_ids);
|
|
|
|
if proc.args.is_empty() {
|
|
// this is a 0-argument thunk, i.e. a top-level constant definition
|
|
// it must be in-scope everywhere in the module!
|
|
scope.insert_top_level_thunk(symbol, env.arena.alloc(layout), fn_val);
|
|
}
|
|
|
|
let func_spec_solutions = func_solutions.spec(specialization).unwrap();
|
|
|
|
function_values.push((func_spec_solutions, fn_val));
|
|
}
|
|
headers.push((proc, function_values.into_bump_slice()));
|
|
}
|
|
|
|
headers
|
|
}
|
|
|
|
pub fn build_procedures<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
opt_level: OptLevel,
|
|
procedures: MutMap<(Symbol, ProcLayout<'a>), roc_mono::ir::Proc<'a>>,
|
|
entry_point: EntryPoint<'a>,
|
|
debug_output_file: Option<&Path>,
|
|
) {
|
|
build_procedures_help(env, opt_level, procedures, entry_point, debug_output_file);
|
|
}
|
|
|
|
pub fn build_procedures_return_main<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
opt_level: OptLevel,
|
|
procedures: MutMap<(Symbol, ProcLayout<'a>), roc_mono::ir::Proc<'a>>,
|
|
entry_point: EntryPoint<'a>,
|
|
) -> (&'static str, FunctionValue<'ctx>) {
|
|
let mod_solutions = build_procedures_help(
|
|
env,
|
|
opt_level,
|
|
procedures,
|
|
entry_point,
|
|
Some(Path::new("/tmp/test.ll")),
|
|
);
|
|
|
|
promote_to_main_function(env, mod_solutions, entry_point.symbol, entry_point.layout)
|
|
}
|
|
|
|
fn build_procedures_help<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
opt_level: OptLevel,
|
|
procedures: MutMap<(Symbol, ProcLayout<'a>), roc_mono::ir::Proc<'a>>,
|
|
entry_point: EntryPoint<'a>,
|
|
debug_output_file: Option<&Path>,
|
|
) -> &'a ModSolutions {
|
|
let mut layout_ids = roc_mono::layout::LayoutIds::default();
|
|
let mut scope = Scope::default();
|
|
|
|
let it = procedures.iter().map(|x| x.1);
|
|
|
|
let solutions = match roc_alias_analysis::spec_program(opt_level, entry_point, it) {
|
|
Err(e) => panic!("Error in alias analysis: {}", e),
|
|
Ok(solutions) => solutions,
|
|
};
|
|
|
|
let solutions = env.arena.alloc(solutions);
|
|
|
|
let mod_solutions = solutions
|
|
.mod_solutions(roc_alias_analysis::MOD_APP)
|
|
.unwrap();
|
|
|
|
// Add all the Proc headers to the module.
|
|
// We have to do this in a separate pass first,
|
|
// because their bodies may reference each other.
|
|
let headers = build_proc_headers(env, mod_solutions, procedures, &mut scope, &mut layout_ids);
|
|
|
|
let (_, function_pass) = construct_optimization_passes(env.module, opt_level);
|
|
|
|
for (proc, fn_vals) in headers {
|
|
for (func_spec_solutions, fn_val) in fn_vals {
|
|
let mut current_scope = scope.clone();
|
|
|
|
// only have top-level thunks for this proc's module in scope
|
|
// this retain is not needed for correctness, but will cause less confusion when debugging
|
|
let home = proc.name.name().module_id();
|
|
current_scope.retain_top_level_thunks_for_module(home);
|
|
|
|
build_proc(
|
|
env,
|
|
mod_solutions,
|
|
&mut layout_ids,
|
|
func_spec_solutions,
|
|
scope.clone(),
|
|
&proc,
|
|
*fn_val,
|
|
);
|
|
|
|
// call finalize() before any code generation/verification
|
|
env.dibuilder.finalize();
|
|
|
|
if fn_val.verify(true) {
|
|
function_pass.run_on(fn_val);
|
|
} else {
|
|
let mode = "NON-OPTIMIZED";
|
|
|
|
eprintln!(
|
|
"\n\nFunction {:?} failed LLVM verification in {} build. Its content was:\n",
|
|
fn_val.get_name().to_str().unwrap(),
|
|
mode,
|
|
);
|
|
|
|
fn_val.print_to_stderr();
|
|
|
|
if let Some(app_ll_file) = debug_output_file {
|
|
env.module.print_to_file(&app_ll_file).unwrap();
|
|
|
|
panic!(
|
|
r"😱 LLVM errors when defining function {:?}; I wrote the full LLVM IR to {:?}",
|
|
fn_val.get_name().to_str().unwrap(),
|
|
app_ll_file,
|
|
);
|
|
} else {
|
|
env.module.print_to_stderr();
|
|
|
|
panic!(
|
|
"The preceding code was from {:?}, which failed LLVM verification in {} build.",
|
|
fn_val.get_name().to_str().unwrap(),
|
|
mode,
|
|
)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
mod_solutions
|
|
}
|
|
|
|
fn func_spec_name<'a>(
|
|
arena: &'a Bump,
|
|
interns: &Interns,
|
|
symbol: Symbol,
|
|
func_spec: FuncSpec,
|
|
) -> bumpalo::collections::String<'a> {
|
|
use std::fmt::Write;
|
|
|
|
let mut buf = bumpalo::collections::String::with_capacity_in(1, arena);
|
|
|
|
let ident_string = symbol.as_str(interns);
|
|
let module_string = interns.module_ids.get_name(symbol.module_id()).unwrap();
|
|
write!(buf, "{}_{}_", module_string, ident_string).unwrap();
|
|
|
|
for byte in func_spec.0.iter() {
|
|
write!(buf, "{:x?}", byte).unwrap();
|
|
}
|
|
|
|
buf
|
|
}
|
|
|
|
fn build_proc_header<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
func_spec: FuncSpec,
|
|
symbol: Symbol,
|
|
proc: &roc_mono::ir::Proc<'a>,
|
|
layout_ids: &mut LayoutIds<'a>,
|
|
) -> FunctionValue<'ctx> {
|
|
let args = proc.args;
|
|
let arena = env.arena;
|
|
|
|
let fn_name = func_spec_name(env.arena, &env.interns, symbol, func_spec);
|
|
|
|
let ret_type = basic_type_from_layout(env, &proc.ret_layout);
|
|
let mut arg_basic_types = Vec::with_capacity_in(args.len(), arena);
|
|
|
|
for (layout, _) in args.iter() {
|
|
let arg_type = argument_type_from_layout(env, layout);
|
|
|
|
arg_basic_types.push(arg_type);
|
|
}
|
|
|
|
let roc_return = RocReturn::from_layout(env, &proc.ret_layout);
|
|
let fn_spec = FunctionSpec::fastcc(env, roc_return, ret_type, arg_basic_types);
|
|
|
|
let fn_val = add_func(
|
|
env.context,
|
|
env.module,
|
|
fn_name.as_str(),
|
|
fn_spec,
|
|
Linkage::Internal,
|
|
);
|
|
|
|
let subprogram = env.new_subprogram(&fn_name);
|
|
fn_val.set_subprogram(subprogram);
|
|
|
|
if env.exposed_to_host.contains(&symbol) {
|
|
let arguments = Vec::from_iter_in(proc.args.iter().map(|(layout, _)| *layout), env.arena);
|
|
expose_function_to_host(
|
|
env,
|
|
symbol,
|
|
fn_val,
|
|
arguments.into_bump_slice(),
|
|
proc.name.captures_niche(),
|
|
proc.ret_layout,
|
|
layout_ids,
|
|
);
|
|
}
|
|
|
|
if false {
|
|
let kind_id = Attribute::get_named_enum_kind_id("alwaysinline");
|
|
debug_assert!(kind_id > 0);
|
|
let enum_attr = env.context.create_enum_attribute(kind_id, 1);
|
|
fn_val.add_attribute(AttributeLoc::Function, enum_attr);
|
|
}
|
|
|
|
if false {
|
|
let kind_id = Attribute::get_named_enum_kind_id("noinline");
|
|
debug_assert!(kind_id > 0);
|
|
let enum_attr = env.context.create_enum_attribute(kind_id, 1);
|
|
fn_val.add_attribute(AttributeLoc::Function, enum_attr);
|
|
}
|
|
|
|
fn_val
|
|
}
|
|
|
|
#[allow(clippy::too_many_arguments)]
|
|
pub fn build_closure_caller<'a, 'ctx, 'env>(
|
|
env: &'a Env<'a, 'ctx, 'env>,
|
|
def_name: &str,
|
|
evaluator: FunctionValue<'ctx>,
|
|
alias_symbol: Symbol,
|
|
arguments: &[Layout<'a>],
|
|
return_layout: &Layout<'a>,
|
|
lambda_set: LambdaSet<'a>,
|
|
result: &Layout<'a>,
|
|
) {
|
|
let mut argument_types = Vec::with_capacity_in(arguments.len() + 3, env.arena);
|
|
|
|
for layout in arguments {
|
|
let arg_type = basic_type_from_layout(env, layout);
|
|
let arg_ptr_type = arg_type.ptr_type(AddressSpace::Generic);
|
|
|
|
argument_types.push(arg_ptr_type.into());
|
|
}
|
|
|
|
let closure_argument_type = {
|
|
let basic_type = basic_type_from_layout(env, &lambda_set.runtime_representation());
|
|
|
|
basic_type.ptr_type(AddressSpace::Generic)
|
|
};
|
|
argument_types.push(closure_argument_type.into());
|
|
|
|
let context = &env.context;
|
|
let builder = env.builder;
|
|
|
|
let result_type = basic_type_from_layout(env, result);
|
|
|
|
let output_type = { result_type.ptr_type(AddressSpace::Generic) };
|
|
argument_types.push(output_type.into());
|
|
|
|
// STEP 1: build function header
|
|
|
|
// e.g. `roc__main_1_Fx_caller`
|
|
let function_name = format!(
|
|
"roc__{}_{}_caller",
|
|
def_name,
|
|
alias_symbol.as_str(&env.interns)
|
|
);
|
|
|
|
let function_spec = FunctionSpec::cconv(env, CCReturn::Void, None, &argument_types);
|
|
|
|
let function_value = add_func(
|
|
env.context,
|
|
env.module,
|
|
function_name.as_str(),
|
|
function_spec,
|
|
Linkage::External,
|
|
);
|
|
|
|
// STEP 2: build function body
|
|
|
|
let entry = context.append_basic_block(function_value, "entry");
|
|
|
|
builder.position_at_end(entry);
|
|
|
|
let mut evaluator_arguments = function_value.get_params();
|
|
|
|
// the final parameter is the output pointer, pop it
|
|
let output = evaluator_arguments.pop().unwrap().into_pointer_value();
|
|
|
|
// NOTE this may be incorrect in the long run
|
|
// here we load any argument that is a pointer
|
|
let closure_layout = lambda_set.runtime_representation();
|
|
let layouts_it = arguments.iter().chain(std::iter::once(&closure_layout));
|
|
for (param, layout) in evaluator_arguments.iter_mut().zip(layouts_it) {
|
|
if param.is_pointer_value() && !layout.is_passed_by_reference(env.target_info) {
|
|
*param = builder.build_load(param.into_pointer_value(), "load_param");
|
|
}
|
|
}
|
|
|
|
if env.is_gen_test {
|
|
let call_result = set_jump_and_catch_long_jump(
|
|
env,
|
|
function_value,
|
|
evaluator,
|
|
&evaluator_arguments,
|
|
*return_layout,
|
|
);
|
|
|
|
builder.build_store(output, call_result);
|
|
} else {
|
|
let call_result = call_roc_function(env, evaluator, return_layout, &evaluator_arguments);
|
|
|
|
if return_layout.is_passed_by_reference(env.target_info) {
|
|
let align_bytes = return_layout.alignment_bytes(env.target_info);
|
|
|
|
if align_bytes > 0 {
|
|
let size = env
|
|
.ptr_int()
|
|
.const_int(return_layout.stack_size(env.target_info) as u64, false);
|
|
|
|
env.builder
|
|
.build_memcpy(
|
|
output,
|
|
align_bytes,
|
|
call_result.into_pointer_value(),
|
|
align_bytes,
|
|
size,
|
|
)
|
|
.unwrap();
|
|
}
|
|
} else {
|
|
builder.build_store(output, call_result);
|
|
}
|
|
};
|
|
|
|
builder.build_return(None);
|
|
|
|
// STEP 3: build a {} -> u64 function that gives the size of the return type
|
|
build_host_exposed_alias_size_help(env, def_name, alias_symbol, Some("result"), result_type);
|
|
|
|
// STEP 4: build a {} -> u64 function that gives the size of the closure
|
|
build_host_exposed_alias_size(
|
|
env,
|
|
def_name,
|
|
alias_symbol,
|
|
lambda_set.runtime_representation(),
|
|
);
|
|
}
|
|
|
|
fn build_host_exposed_alias_size<'a, 'ctx, 'env>(
|
|
env: &'a Env<'a, 'ctx, 'env>,
|
|
def_name: &str,
|
|
alias_symbol: Symbol,
|
|
layout: Layout<'a>,
|
|
) {
|
|
build_host_exposed_alias_size_help(
|
|
env,
|
|
def_name,
|
|
alias_symbol,
|
|
None,
|
|
basic_type_from_layout(env, &layout),
|
|
)
|
|
}
|
|
|
|
fn build_host_exposed_alias_size_help<'a, 'ctx, 'env>(
|
|
env: &'a Env<'a, 'ctx, 'env>,
|
|
def_name: &str,
|
|
alias_symbol: Symbol,
|
|
opt_label: Option<&str>,
|
|
basic_type: BasicTypeEnum<'ctx>,
|
|
) {
|
|
let builder = env.builder;
|
|
let context = env.context;
|
|
|
|
let i64 = env.context.i64_type().as_basic_type_enum();
|
|
let size_function_spec = FunctionSpec::cconv(env, CCReturn::Return, Some(i64), &[]);
|
|
let size_function_name: String = if let Some(label) = opt_label {
|
|
format!(
|
|
"roc__{}_{}_{}_size",
|
|
def_name,
|
|
alias_symbol.as_str(&env.interns),
|
|
label
|
|
)
|
|
} else {
|
|
format!(
|
|
"roc__{}_{}_size",
|
|
def_name,
|
|
alias_symbol.as_str(&env.interns)
|
|
)
|
|
};
|
|
|
|
let size_function = add_func(
|
|
env.context,
|
|
env.module,
|
|
size_function_name.as_str(),
|
|
size_function_spec,
|
|
Linkage::External,
|
|
);
|
|
|
|
let entry = context.append_basic_block(size_function, "entry");
|
|
|
|
builder.position_at_end(entry);
|
|
|
|
let size: BasicValueEnum = basic_type.size_of().unwrap().into();
|
|
builder.build_return(Some(&size));
|
|
}
|
|
|
|
pub fn build_proc<'a, 'ctx, 'env>(
|
|
env: &'a Env<'a, 'ctx, 'env>,
|
|
mod_solutions: &'a ModSolutions,
|
|
layout_ids: &mut LayoutIds<'a>,
|
|
func_spec_solutions: &FuncSpecSolutions,
|
|
mut scope: Scope<'a, 'ctx>,
|
|
proc: &roc_mono::ir::Proc<'a>,
|
|
fn_val: FunctionValue<'ctx>,
|
|
) {
|
|
use roc_mono::ir::HostExposedLayouts;
|
|
use roc_mono::layout::RawFunctionLayout;
|
|
let copy = proc.host_exposed_layouts.clone();
|
|
match copy {
|
|
HostExposedLayouts::NotHostExposed => {}
|
|
HostExposedLayouts::HostExposed { rigids: _, aliases } => {
|
|
for (name, (symbol, top_level, layout)) in aliases {
|
|
match layout {
|
|
RawFunctionLayout::Function(arguments, closure, result) => {
|
|
// define closure size and return value size, e.g.
|
|
//
|
|
// * roc__mainForHost_1_Update_size() -> i64
|
|
// * roc__mainForHost_1_Update_result_size() -> i64
|
|
|
|
let it = top_level.arguments.iter().copied();
|
|
let bytes = roc_alias_analysis::func_name_bytes_help(
|
|
symbol,
|
|
it,
|
|
CapturesNiche::no_niche(),
|
|
&top_level.result,
|
|
);
|
|
let func_name = FuncName(&bytes);
|
|
let func_solutions = mod_solutions.func_solutions(func_name).unwrap();
|
|
|
|
let mut it = func_solutions.specs();
|
|
let evaluator = match it.next() {
|
|
Some(func_spec) => {
|
|
debug_assert!(
|
|
it.next().is_none(),
|
|
"we expect only one specialization of this symbol"
|
|
);
|
|
|
|
function_value_by_func_spec(
|
|
env,
|
|
*func_spec,
|
|
symbol,
|
|
top_level.arguments,
|
|
CapturesNiche::no_niche(),
|
|
&top_level.result,
|
|
)
|
|
}
|
|
None => {
|
|
// morphic did not generate a specialization for this function,
|
|
// therefore it must actually be unused.
|
|
// An example is our closure callers
|
|
panic!("morphic did not specialize {:?}", symbol);
|
|
}
|
|
};
|
|
|
|
let ident_string = proc.name.name().as_str(&env.interns);
|
|
let fn_name: String = format!("{}_1", ident_string);
|
|
|
|
build_closure_caller(
|
|
env, &fn_name, evaluator, name, arguments, result, closure, result,
|
|
)
|
|
}
|
|
|
|
RawFunctionLayout::ZeroArgumentThunk(_) => {
|
|
// do nothing
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
let args = proc.args;
|
|
let context = &env.context;
|
|
|
|
// Add a basic block for the entry point
|
|
let entry = context.append_basic_block(fn_val, "entry");
|
|
let builder = env.builder;
|
|
|
|
builder.position_at_end(entry);
|
|
|
|
debug_info_init!(env, fn_val);
|
|
|
|
// Add args to scope
|
|
for (arg_val, (layout, arg_symbol)) in fn_val.get_param_iter().zip(args) {
|
|
arg_val.set_name(arg_symbol.as_str(&env.interns));
|
|
scope.insert(*arg_symbol, (*layout, arg_val));
|
|
}
|
|
|
|
let body = build_exp_stmt(
|
|
env,
|
|
layout_ids,
|
|
func_spec_solutions,
|
|
&mut scope,
|
|
fn_val,
|
|
&proc.body,
|
|
);
|
|
|
|
// only add a return if codegen did not already add one
|
|
if let Some(block) = builder.get_insert_block() {
|
|
if block.get_terminator().is_none() {
|
|
builder.build_return(Some(&body));
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn verify_fn(fn_val: FunctionValue<'_>) {
|
|
if !fn_val.verify(print_fn_verification_output()) {
|
|
unsafe {
|
|
fn_val.delete();
|
|
}
|
|
|
|
panic!("Invalid generated fn_val.")
|
|
}
|
|
}
|
|
|
|
fn function_value_by_func_spec<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
func_spec: FuncSpec,
|
|
symbol: Symbol,
|
|
arguments: &[Layout<'a>],
|
|
captures_niche: CapturesNiche<'a>,
|
|
result: &Layout<'a>,
|
|
) -> FunctionValue<'ctx> {
|
|
let fn_name = func_spec_name(env.arena, &env.interns, symbol, func_spec);
|
|
let fn_name = fn_name.as_str();
|
|
|
|
function_value_by_name_help(env, arguments, captures_niche, result, symbol, fn_name)
|
|
}
|
|
|
|
fn function_value_by_name_help<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
arguments: &[Layout<'a>],
|
|
_captures_niche: CapturesNiche<'a>,
|
|
result: &Layout<'a>,
|
|
symbol: Symbol,
|
|
fn_name: &str,
|
|
) -> FunctionValue<'ctx> {
|
|
env.module.get_function(fn_name).unwrap_or_else(|| {
|
|
if symbol.is_builtin() {
|
|
eprintln!(
|
|
"Unrecognized builtin function: {:?}\nLayout: {:?}\n",
|
|
fn_name,
|
|
(arguments, result)
|
|
);
|
|
eprintln!("Is the function defined? If so, maybe there is a problem with the layout");
|
|
|
|
panic!(
|
|
"Unrecognized builtin function: {:?} (symbol: {:?})",
|
|
fn_name, symbol,
|
|
)
|
|
} else {
|
|
// Unrecognized non-builtin function:
|
|
eprintln!(
|
|
"Unrecognized non-builtin function: {:?}\n\nSymbol: {:?}\nLayout: {:?}\n",
|
|
fn_name,
|
|
symbol,
|
|
(arguments, result)
|
|
);
|
|
eprintln!("Is the function defined? If so, maybe there is a problem with the layout");
|
|
|
|
panic!(
|
|
"Unrecognized non-builtin function: {:?} (symbol: {:?})",
|
|
fn_name, symbol,
|
|
)
|
|
}
|
|
})
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn roc_call_with_args<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
argument_layouts: &[Layout<'a>],
|
|
result_layout: &Layout<'a>,
|
|
name: LambdaName<'a>,
|
|
func_spec: FuncSpec,
|
|
arguments: &[BasicValueEnum<'ctx>],
|
|
) -> BasicValueEnum<'ctx> {
|
|
let fn_val = function_value_by_func_spec(
|
|
env,
|
|
func_spec,
|
|
name.name(),
|
|
argument_layouts,
|
|
name.captures_niche(),
|
|
result_layout,
|
|
);
|
|
|
|
call_roc_function(env, fn_val, result_layout, arguments)
|
|
}
|
|
|
|
pub fn call_roc_function<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
roc_function: FunctionValue<'ctx>,
|
|
result_layout: &Layout<'a>,
|
|
arguments: &[BasicValueEnum<'ctx>],
|
|
) -> BasicValueEnum<'ctx> {
|
|
let pass_by_pointer = roc_function.get_type().get_param_types().len() == arguments.len() + 1;
|
|
|
|
match RocReturn::from_layout(env, result_layout) {
|
|
RocReturn::ByPointer if !pass_by_pointer => {
|
|
// WARNING this is a hack!!
|
|
let it = arguments.iter().map(|x| (*x).into());
|
|
let mut arguments = Vec::from_iter_in(it, env.arena);
|
|
arguments.pop();
|
|
|
|
let result_type = basic_type_from_layout(env, result_layout);
|
|
let result_alloca = env.builder.build_alloca(result_type, "result_value");
|
|
|
|
arguments.push(result_alloca.into());
|
|
|
|
debug_assert_eq!(
|
|
roc_function.get_type().get_param_types().len(),
|
|
arguments.len()
|
|
);
|
|
let call = env.builder.build_call(roc_function, &arguments, "call");
|
|
|
|
// roc functions should have the fast calling convention
|
|
debug_assert_eq!(roc_function.get_call_conventions(), FAST_CALL_CONV);
|
|
call.set_call_convention(FAST_CALL_CONV);
|
|
|
|
env.builder.build_load(result_alloca, "load_result")
|
|
}
|
|
RocReturn::ByPointer => {
|
|
let it = arguments.iter().map(|x| (*x).into());
|
|
let mut arguments = Vec::from_iter_in(it, env.arena);
|
|
|
|
let result_type = basic_type_from_layout(env, result_layout);
|
|
let result_alloca = entry_block_alloca_zerofill(env, result_type, "result_value");
|
|
|
|
arguments.push(result_alloca.into());
|
|
|
|
debug_assert_eq!(
|
|
roc_function.get_type().get_param_types().len(),
|
|
arguments.len()
|
|
);
|
|
let call = env.builder.build_call(roc_function, &arguments, "call");
|
|
|
|
// roc functions should have the fast calling convention
|
|
debug_assert_eq!(roc_function.get_call_conventions(), FAST_CALL_CONV);
|
|
call.set_call_convention(FAST_CALL_CONV);
|
|
|
|
if result_layout.is_passed_by_reference(env.target_info) {
|
|
result_alloca.into()
|
|
} else {
|
|
env.builder
|
|
.build_load(result_alloca, "return_by_pointer_load_result")
|
|
}
|
|
}
|
|
RocReturn::Return => {
|
|
debug_assert_eq!(
|
|
roc_function.get_type().get_param_types().len(),
|
|
arguments.len()
|
|
);
|
|
let it = arguments.iter().map(|x| (*x).into());
|
|
let arguments = Vec::from_iter_in(it, env.arena);
|
|
|
|
let call = env.builder.build_call(roc_function, &arguments, "call");
|
|
|
|
// roc functions should have the fast calling convention
|
|
debug_assert_eq!(roc_function.get_call_conventions(), FAST_CALL_CONV);
|
|
call.set_call_convention(FAST_CALL_CONV);
|
|
|
|
call.try_as_basic_value().left().unwrap_or_else(|| {
|
|
panic!(
|
|
"LLVM error: Invalid call by name for name {:?}",
|
|
roc_function.get_name()
|
|
)
|
|
})
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Translates a target_lexicon::Triple to a LLVM calling convention u32
|
|
/// as described in https://llvm.org/doxygen/namespacellvm_1_1CallingConv.html
|
|
pub fn get_call_conventions(cc: target_lexicon::CallingConvention) -> u32 {
|
|
use target_lexicon::CallingConvention::*;
|
|
|
|
// For now, we're returning 0 for the C calling convention on all of these.
|
|
// Not sure if we should be picking something more specific!
|
|
match cc {
|
|
SystemV => C_CALL_CONV,
|
|
WasmBasicCAbi => C_CALL_CONV,
|
|
WindowsFastcall => C_CALL_CONV,
|
|
AppleAarch64 => C_CALL_CONV,
|
|
_ => C_CALL_CONV,
|
|
}
|
|
}
|
|
|
|
/// Source: https://llvm.org/doxygen/namespacellvm_1_1CallingConv.html
|
|
pub const C_CALL_CONV: u32 = 0;
|
|
pub const FAST_CALL_CONV: u32 = 8;
|
|
pub const COLD_CALL_CONV: u32 = 9;
|
|
|
|
pub struct RocFunctionCall<'ctx> {
|
|
pub caller: PointerValue<'ctx>,
|
|
pub data: PointerValue<'ctx>,
|
|
pub inc_n_data: PointerValue<'ctx>,
|
|
pub data_is_owned: IntValue<'ctx>,
|
|
}
|
|
|
|
#[allow(clippy::too_many_arguments)]
|
|
fn roc_function_call<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
layout_ids: &mut LayoutIds<'a>,
|
|
transform: FunctionValue<'ctx>,
|
|
closure_data: BasicValueEnum<'ctx>,
|
|
lambda_set: LambdaSet<'a>,
|
|
closure_data_is_owned: bool,
|
|
argument_layouts: &[Layout<'a>],
|
|
result_layout: Layout<'a>,
|
|
) -> RocFunctionCall<'ctx> {
|
|
use crate::llvm::bitcode::{build_inc_n_wrapper, build_transform_caller};
|
|
|
|
let closure_data_ptr = env
|
|
.builder
|
|
.build_alloca(closure_data.get_type(), "closure_data_ptr");
|
|
env.builder.build_store(closure_data_ptr, closure_data);
|
|
|
|
let stepper_caller =
|
|
build_transform_caller(env, transform, lambda_set, argument_layouts, result_layout)
|
|
.as_global_value()
|
|
.as_pointer_value();
|
|
|
|
let inc_closure_data =
|
|
build_inc_n_wrapper(env, layout_ids, &lambda_set.runtime_representation())
|
|
.as_global_value()
|
|
.as_pointer_value();
|
|
|
|
let closure_data_is_owned = env
|
|
.context
|
|
.bool_type()
|
|
.const_int(closure_data_is_owned as u64, false);
|
|
|
|
RocFunctionCall {
|
|
caller: stepper_caller,
|
|
inc_n_data: inc_closure_data,
|
|
data_is_owned: closure_data_is_owned,
|
|
data: closure_data_ptr,
|
|
}
|
|
}
|
|
|
|
#[allow(clippy::too_many_arguments)]
|
|
fn run_higher_order_low_level<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
layout_ids: &mut LayoutIds<'a>,
|
|
scope: &Scope<'a, 'ctx>,
|
|
return_layout: &Layout<'a>,
|
|
func_spec: FuncSpec,
|
|
higher_order: &HigherOrderLowLevel<'a>,
|
|
) -> BasicValueEnum<'ctx> {
|
|
use roc_mono::ir::PassedFunction;
|
|
use roc_mono::low_level::HigherOrder::*;
|
|
|
|
let HigherOrderLowLevel {
|
|
op,
|
|
passed_function,
|
|
..
|
|
} = higher_order;
|
|
|
|
let PassedFunction {
|
|
argument_layouts,
|
|
return_layout: result_layout,
|
|
owns_captured_environment: function_owns_closure_data,
|
|
name: function_name,
|
|
captured_environment,
|
|
..
|
|
} = *passed_function;
|
|
|
|
// macros because functions cause lifetime issues related to the `env` or `layout_ids`
|
|
macro_rules! function_details {
|
|
() => {{
|
|
let function = function_value_by_func_spec(
|
|
env,
|
|
func_spec,
|
|
function_name.name(),
|
|
argument_layouts,
|
|
function_name.captures_niche(),
|
|
return_layout,
|
|
);
|
|
|
|
let (closure, closure_layout) =
|
|
load_symbol_and_lambda_set(scope, &captured_environment);
|
|
|
|
(function, closure, closure_layout)
|
|
}};
|
|
}
|
|
|
|
match op {
|
|
ListMap { xs } => {
|
|
// List.map : List before, (before -> after) -> List after
|
|
let (list, list_layout) = load_symbol_and_layout(scope, xs);
|
|
|
|
let (function, closure, closure_layout) = function_details!();
|
|
|
|
match (list_layout, return_layout) {
|
|
(
|
|
Layout::Builtin(Builtin::List(element_layout)),
|
|
Layout::Builtin(Builtin::List(result_layout)),
|
|
) => {
|
|
let argument_layouts = &[**element_layout];
|
|
|
|
let roc_function_call = roc_function_call(
|
|
env,
|
|
layout_ids,
|
|
function,
|
|
closure,
|
|
closure_layout,
|
|
function_owns_closure_data,
|
|
argument_layouts,
|
|
**result_layout,
|
|
);
|
|
|
|
list_map(env, roc_function_call, list, element_layout, result_layout)
|
|
}
|
|
_ => unreachable!("invalid list layout"),
|
|
}
|
|
}
|
|
ListMap2 { xs, ys } => {
|
|
let (list1, list1_layout) = load_symbol_and_layout(scope, xs);
|
|
let (list2, list2_layout) = load_symbol_and_layout(scope, ys);
|
|
|
|
let (function, closure, closure_layout) = function_details!();
|
|
|
|
match (list1_layout, list2_layout, return_layout) {
|
|
(
|
|
Layout::Builtin(Builtin::List(element1_layout)),
|
|
Layout::Builtin(Builtin::List(element2_layout)),
|
|
Layout::Builtin(Builtin::List(result_layout)),
|
|
) => {
|
|
let argument_layouts = &[**element1_layout, **element2_layout];
|
|
|
|
let roc_function_call = roc_function_call(
|
|
env,
|
|
layout_ids,
|
|
function,
|
|
closure,
|
|
closure_layout,
|
|
function_owns_closure_data,
|
|
argument_layouts,
|
|
**result_layout,
|
|
);
|
|
|
|
list_map2(
|
|
env,
|
|
layout_ids,
|
|
roc_function_call,
|
|
list1,
|
|
list2,
|
|
element1_layout,
|
|
element2_layout,
|
|
result_layout,
|
|
)
|
|
}
|
|
_ => unreachable!("invalid list layout"),
|
|
}
|
|
}
|
|
ListMap3 { xs, ys, zs } => {
|
|
let (list1, list1_layout) = load_symbol_and_layout(scope, xs);
|
|
let (list2, list2_layout) = load_symbol_and_layout(scope, ys);
|
|
let (list3, list3_layout) = load_symbol_and_layout(scope, zs);
|
|
|
|
let (function, closure, closure_layout) = function_details!();
|
|
|
|
match (list1_layout, list2_layout, list3_layout, return_layout) {
|
|
(
|
|
Layout::Builtin(Builtin::List(element1_layout)),
|
|
Layout::Builtin(Builtin::List(element2_layout)),
|
|
Layout::Builtin(Builtin::List(element3_layout)),
|
|
Layout::Builtin(Builtin::List(result_layout)),
|
|
) => {
|
|
let argument_layouts =
|
|
&[**element1_layout, **element2_layout, **element3_layout];
|
|
|
|
let roc_function_call = roc_function_call(
|
|
env,
|
|
layout_ids,
|
|
function,
|
|
closure,
|
|
closure_layout,
|
|
function_owns_closure_data,
|
|
argument_layouts,
|
|
**result_layout,
|
|
);
|
|
|
|
list_map3(
|
|
env,
|
|
layout_ids,
|
|
roc_function_call,
|
|
list1,
|
|
list2,
|
|
list3,
|
|
element1_layout,
|
|
element2_layout,
|
|
element3_layout,
|
|
result_layout,
|
|
)
|
|
}
|
|
_ => unreachable!("invalid list layout"),
|
|
}
|
|
}
|
|
ListMap4 { xs, ys, zs, ws } => {
|
|
let (list1, list1_layout) = load_symbol_and_layout(scope, xs);
|
|
let (list2, list2_layout) = load_symbol_and_layout(scope, ys);
|
|
let (list3, list3_layout) = load_symbol_and_layout(scope, zs);
|
|
let (list4, list4_layout) = load_symbol_and_layout(scope, ws);
|
|
|
|
let (function, closure, closure_layout) = function_details!();
|
|
|
|
match (
|
|
list1_layout,
|
|
list2_layout,
|
|
list3_layout,
|
|
list4_layout,
|
|
return_layout,
|
|
) {
|
|
(
|
|
Layout::Builtin(Builtin::List(element1_layout)),
|
|
Layout::Builtin(Builtin::List(element2_layout)),
|
|
Layout::Builtin(Builtin::List(element3_layout)),
|
|
Layout::Builtin(Builtin::List(element4_layout)),
|
|
Layout::Builtin(Builtin::List(result_layout)),
|
|
) => {
|
|
let argument_layouts = &[
|
|
**element1_layout,
|
|
**element2_layout,
|
|
**element3_layout,
|
|
**element4_layout,
|
|
];
|
|
|
|
let roc_function_call = roc_function_call(
|
|
env,
|
|
layout_ids,
|
|
function,
|
|
closure,
|
|
closure_layout,
|
|
function_owns_closure_data,
|
|
argument_layouts,
|
|
**result_layout,
|
|
);
|
|
|
|
list_map4(
|
|
env,
|
|
layout_ids,
|
|
roc_function_call,
|
|
list1,
|
|
list2,
|
|
list3,
|
|
list4,
|
|
element1_layout,
|
|
element2_layout,
|
|
element3_layout,
|
|
element4_layout,
|
|
result_layout,
|
|
)
|
|
}
|
|
_ => unreachable!("invalid list layout"),
|
|
}
|
|
}
|
|
ListMapWithIndex { xs } => {
|
|
// List.mapWithIndex : List before, (before, Nat -> after) -> List after
|
|
let (list, list_layout) = load_symbol_and_layout(scope, xs);
|
|
|
|
let (function, closure, closure_layout) = function_details!();
|
|
|
|
match (list_layout, return_layout) {
|
|
(
|
|
Layout::Builtin(Builtin::List(element_layout)),
|
|
Layout::Builtin(Builtin::List(result_layout)),
|
|
) => {
|
|
let argument_layouts = &[**element_layout, Layout::usize(env.target_info)];
|
|
|
|
let roc_function_call = roc_function_call(
|
|
env,
|
|
layout_ids,
|
|
function,
|
|
closure,
|
|
closure_layout,
|
|
function_owns_closure_data,
|
|
argument_layouts,
|
|
**result_layout,
|
|
);
|
|
|
|
list_map_with_index(env, roc_function_call, list, element_layout, result_layout)
|
|
}
|
|
_ => unreachable!("invalid list layout"),
|
|
}
|
|
}
|
|
ListSortWith { xs } => {
|
|
// List.sortWith : List a, (a, a -> Ordering) -> List a
|
|
let (list, list_layout) = load_symbol_and_layout(scope, xs);
|
|
|
|
let (function, closure, closure_layout) = function_details!();
|
|
|
|
match list_layout {
|
|
Layout::Builtin(Builtin::List(element_layout)) => {
|
|
use crate::llvm::bitcode::build_compare_wrapper;
|
|
|
|
let argument_layouts = &[**element_layout, **element_layout];
|
|
|
|
let compare_wrapper =
|
|
build_compare_wrapper(env, function, closure_layout, element_layout)
|
|
.as_global_value()
|
|
.as_pointer_value();
|
|
|
|
let roc_function_call = roc_function_call(
|
|
env,
|
|
layout_ids,
|
|
function,
|
|
closure,
|
|
closure_layout,
|
|
function_owns_closure_data,
|
|
argument_layouts,
|
|
result_layout,
|
|
);
|
|
|
|
list_sort_with(
|
|
env,
|
|
roc_function_call,
|
|
compare_wrapper,
|
|
list,
|
|
element_layout,
|
|
)
|
|
}
|
|
_ => unreachable!("invalid list layout"),
|
|
}
|
|
}
|
|
DictWalk { xs, state } => {
|
|
let (dict, dict_layout) = load_symbol_and_layout(scope, xs);
|
|
let (default, default_layout) = load_symbol_and_layout(scope, state);
|
|
|
|
let (function, closure, closure_layout) = function_details!();
|
|
|
|
match dict_layout {
|
|
Layout::Builtin(Builtin::Dict(key_layout, value_layout)) => {
|
|
let argument_layouts = &[*default_layout, **key_layout, **value_layout];
|
|
|
|
let roc_function_call = roc_function_call(
|
|
env,
|
|
layout_ids,
|
|
function,
|
|
closure,
|
|
closure_layout,
|
|
function_owns_closure_data,
|
|
argument_layouts,
|
|
result_layout,
|
|
);
|
|
|
|
dict_walk(
|
|
env,
|
|
roc_function_call,
|
|
dict,
|
|
default,
|
|
key_layout,
|
|
value_layout,
|
|
default_layout,
|
|
)
|
|
}
|
|
_ => unreachable!("invalid dict layout"),
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#[allow(clippy::too_many_arguments)]
|
|
fn run_low_level<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
layout_ids: &mut LayoutIds<'a>,
|
|
scope: &Scope<'a, 'ctx>,
|
|
parent: FunctionValue<'ctx>,
|
|
layout: &Layout<'a>,
|
|
op: LowLevel,
|
|
args: &[Symbol],
|
|
update_mode: UpdateMode,
|
|
) -> BasicValueEnum<'ctx> {
|
|
use LowLevel::*;
|
|
|
|
debug_assert!(!op.is_higher_order());
|
|
|
|
match op {
|
|
StrConcat => {
|
|
// Str.concat : Str, Str -> Str
|
|
debug_assert_eq!(args.len(), 2);
|
|
|
|
let string1 = load_symbol(scope, &args[0]);
|
|
let string2 = load_symbol(scope, &args[1]);
|
|
|
|
call_str_bitcode_fn(env, &[string1, string2], bitcode::STR_CONCAT)
|
|
}
|
|
StrJoinWith => {
|
|
// Str.joinWith : List Str, Str -> Str
|
|
debug_assert_eq!(args.len(), 2);
|
|
|
|
let list = list_symbol_to_c_abi(env, scope, args[0]);
|
|
let string = load_symbol(scope, &args[1]);
|
|
|
|
call_str_bitcode_fn(env, &[list.into(), string], bitcode::STR_JOIN_WITH)
|
|
}
|
|
StrToScalars => {
|
|
// Str.toScalars : Str -> List U32
|
|
debug_assert_eq!(args.len(), 1);
|
|
|
|
let string = load_symbol(scope, &args[0]);
|
|
|
|
call_list_bitcode_fn(env, &[string], bitcode::STR_TO_SCALARS)
|
|
}
|
|
StrStartsWith => {
|
|
// Str.startsWith : Str, Str -> Bool
|
|
debug_assert_eq!(args.len(), 2);
|
|
|
|
let string = load_symbol(scope, &args[0]);
|
|
let prefix = load_symbol(scope, &args[1]);
|
|
|
|
call_bitcode_fn(env, &[string, prefix], bitcode::STR_STARTS_WITH)
|
|
}
|
|
StrStartsWithScalar => {
|
|
// Str.startsWithScalar : Str, U32 -> Bool
|
|
debug_assert_eq!(args.len(), 2);
|
|
|
|
let string = load_symbol(scope, &args[0]);
|
|
let prefix = load_symbol(scope, &args[1]);
|
|
|
|
call_bitcode_fn(env, &[string, prefix], bitcode::STR_STARTS_WITH_SCALAR)
|
|
}
|
|
StrEndsWith => {
|
|
// Str.startsWith : Str, Str -> Bool
|
|
debug_assert_eq!(args.len(), 2);
|
|
|
|
let string = load_symbol(scope, &args[0]);
|
|
let prefix = load_symbol(scope, &args[1]);
|
|
|
|
call_bitcode_fn(env, &[string, prefix], bitcode::STR_ENDS_WITH)
|
|
}
|
|
StrToNum => {
|
|
// Str.toNum : Str -> Result (Num *) {}
|
|
debug_assert_eq!(args.len(), 1);
|
|
|
|
let number_layout = match layout {
|
|
Layout::Struct { field_layouts, .. } => field_layouts[0], // TODO: why is it sometimes a struct?
|
|
_ => unreachable!(),
|
|
};
|
|
|
|
// match on the return layout to figure out which zig builtin we need
|
|
let intrinsic = match number_layout {
|
|
Layout::Builtin(Builtin::Int(int_width)) => &bitcode::STR_TO_INT[int_width],
|
|
Layout::Builtin(Builtin::Float(float_width)) => &bitcode::STR_TO_FLOAT[float_width],
|
|
Layout::Builtin(Builtin::Decimal) => bitcode::DEC_FROM_STR,
|
|
_ => unreachable!(),
|
|
};
|
|
|
|
let string = load_symbol(scope, &args[0]);
|
|
|
|
let result = call_bitcode_fn(env, &[string], intrinsic);
|
|
|
|
// zig passes the result as a packed integer sometimes, instead of a struct. So we cast
|
|
let expected_type = basic_type_from_layout(env, layout);
|
|
let actual_type = result.get_type();
|
|
|
|
if expected_type != actual_type {
|
|
complex_bitcast_check_size(env, result, expected_type, "str_to_num_cast")
|
|
} else {
|
|
result
|
|
}
|
|
}
|
|
StrFromInt => {
|
|
// Str.fromInt : Int -> Str
|
|
debug_assert_eq!(args.len(), 1);
|
|
|
|
let (int, int_layout) = load_symbol_and_layout(scope, &args[0]);
|
|
let int = int.into_int_value();
|
|
|
|
let int_width = match int_layout {
|
|
Layout::Builtin(Builtin::Int(int_width)) => *int_width,
|
|
_ => unreachable!(),
|
|
};
|
|
|
|
str_from_int(env, int, int_width)
|
|
}
|
|
StrFromFloat => {
|
|
// Str.fromFloat : Float * -> Str
|
|
debug_assert_eq!(args.len(), 1);
|
|
|
|
str_from_float(env, scope, args[0])
|
|
}
|
|
StrFromUtf8 => {
|
|
// Str.fromUtf8 : List U8 -> Result Str Utf8Problem
|
|
debug_assert_eq!(args.len(), 1);
|
|
|
|
str_from_utf8(env, scope, args[0], update_mode)
|
|
}
|
|
StrFromUtf8Range => {
|
|
debug_assert_eq!(args.len(), 2);
|
|
|
|
let count_and_start = load_symbol(scope, &args[1]).into_struct_value();
|
|
|
|
str_from_utf8_range(env, scope, args[0], count_and_start)
|
|
}
|
|
StrToUtf8 => {
|
|
// Str.fromInt : Str -> List U8
|
|
debug_assert_eq!(args.len(), 1);
|
|
|
|
let string = load_symbol(scope, &args[0]);
|
|
call_list_bitcode_fn(env, &[string], bitcode::STR_TO_UTF8)
|
|
}
|
|
StrRepeat => {
|
|
// Str.repeat : Str, Nat -> Str
|
|
debug_assert_eq!(args.len(), 2);
|
|
|
|
let string = load_symbol(scope, &args[0]);
|
|
let count = load_symbol(scope, &args[1]);
|
|
call_str_bitcode_fn(env, &[string, count], bitcode::STR_REPEAT)
|
|
}
|
|
StrSplit => {
|
|
// Str.split : Str, Str -> List Str
|
|
debug_assert_eq!(args.len(), 2);
|
|
|
|
str_split(env, scope, args[0], args[1])
|
|
}
|
|
StrIsEmpty => {
|
|
// Str.isEmpty : Str -> Str
|
|
debug_assert_eq!(args.len(), 1);
|
|
|
|
// the builtin will always return an u64
|
|
let string = load_symbol(scope, &args[0]);
|
|
let length =
|
|
call_bitcode_fn(env, &[string], bitcode::STR_NUMBER_OF_BYTES).into_int_value();
|
|
|
|
// cast to the appropriate usize of the current build
|
|
let byte_count =
|
|
env.builder
|
|
.build_int_cast_sign_flag(length, env.ptr_int(), false, "len_as_usize");
|
|
|
|
let is_zero = env.builder.build_int_compare(
|
|
IntPredicate::EQ,
|
|
byte_count,
|
|
env.ptr_int().const_zero(),
|
|
"str_len_is_zero",
|
|
);
|
|
BasicValueEnum::IntValue(is_zero)
|
|
}
|
|
StrCountGraphemes => {
|
|
// Str.countGraphemes : Str -> Nat
|
|
debug_assert_eq!(args.len(), 1);
|
|
|
|
let string = load_symbol(scope, &args[0]);
|
|
call_bitcode_fn(env, &[string], bitcode::STR_COUNT_GRAPEHEME_CLUSTERS)
|
|
}
|
|
StrCountUtf8Bytes => {
|
|
// Str.countGraphemes : Str -> Nat
|
|
debug_assert_eq!(args.len(), 1);
|
|
|
|
let string = load_symbol(scope, &args[0]);
|
|
call_bitcode_fn(env, &[string], bitcode::STR_COUNT_UTF8_BYTES)
|
|
}
|
|
StrSubstringUnsafe => {
|
|
// Str.substringUnsafe : Str, Nat, Nat -> Str
|
|
debug_assert_eq!(args.len(), 3);
|
|
|
|
let string = load_symbol(scope, &args[0]);
|
|
let start = load_symbol(scope, &args[1]);
|
|
let length = load_symbol(scope, &args[2]);
|
|
call_str_bitcode_fn(env, &[string, start, length], bitcode::STR_SUBSTRING_UNSAFE)
|
|
}
|
|
StrReserve => {
|
|
// Str.reserve : Str, Nat -> Str
|
|
debug_assert_eq!(args.len(), 2);
|
|
|
|
let string = load_symbol(scope, &args[0]);
|
|
let capacity = load_symbol(scope, &args[1]);
|
|
call_str_bitcode_fn(env, &[string, capacity], bitcode::STR_RESERVE)
|
|
}
|
|
StrAppendScalar => {
|
|
// Str.appendScalar : Str, U32 -> Str
|
|
debug_assert_eq!(args.len(), 2);
|
|
|
|
let string = load_symbol(scope, &args[0]);
|
|
let capacity = load_symbol(scope, &args[1]);
|
|
call_str_bitcode_fn(env, &[string, capacity], bitcode::STR_APPEND_SCALAR)
|
|
}
|
|
StrTrim => {
|
|
// Str.trim : Str -> Str
|
|
debug_assert_eq!(args.len(), 1);
|
|
|
|
let string = load_symbol(scope, &args[0]);
|
|
call_str_bitcode_fn(env, &[string], bitcode::STR_TRIM)
|
|
}
|
|
StrTrimLeft => {
|
|
// Str.trim : Str -> Str
|
|
debug_assert_eq!(args.len(), 1);
|
|
|
|
let string = load_symbol(scope, &args[0]);
|
|
call_str_bitcode_fn(env, &[string], bitcode::STR_TRIM_LEFT)
|
|
}
|
|
StrTrimRight => {
|
|
// Str.trim : Str -> Str
|
|
debug_assert_eq!(args.len(), 1);
|
|
|
|
let string = load_symbol(scope, &args[0]);
|
|
call_str_bitcode_fn(env, &[string], bitcode::STR_TRIM_RIGHT)
|
|
}
|
|
ListLen => {
|
|
// List.len : List * -> Int
|
|
debug_assert_eq!(args.len(), 1);
|
|
|
|
let arg = load_symbol(scope, &args[0]);
|
|
|
|
list_len(env.builder, arg.into_struct_value()).into()
|
|
}
|
|
ListWithCapacity => {
|
|
// List.withCapacity : Nat -> List a
|
|
debug_assert_eq!(args.len(), 1);
|
|
|
|
let list_len = load_symbol(scope, &args[0]).into_int_value();
|
|
let result_layout = *layout;
|
|
|
|
list_with_capacity(env, list_len, &list_element_layout!(result_layout))
|
|
}
|
|
ListConcat => {
|
|
debug_assert_eq!(args.len(), 2);
|
|
|
|
let (first_list, list_layout) = load_symbol_and_layout(scope, &args[0]);
|
|
|
|
let second_list = load_symbol(scope, &args[1]);
|
|
|
|
let element_layout = list_element_layout!(list_layout);
|
|
|
|
list_concat(env, first_list, second_list, element_layout)
|
|
}
|
|
ListAppend => {
|
|
// List.append : List elem, elem -> List elem
|
|
debug_assert_eq!(args.len(), 2);
|
|
|
|
let original_wrapper = load_symbol(scope, &args[0]).into_struct_value();
|
|
let (elem, elem_layout) = load_symbol_and_layout(scope, &args[1]);
|
|
|
|
list_append(env, original_wrapper, elem, elem_layout, update_mode)
|
|
}
|
|
ListSwap => {
|
|
// List.swap : List elem, Nat, Nat -> List elem
|
|
debug_assert_eq!(args.len(), 3);
|
|
|
|
let (list, list_layout) = load_symbol_and_layout(scope, &args[0]);
|
|
let original_wrapper = list.into_struct_value();
|
|
|
|
let index_1 = load_symbol(scope, &args[1]);
|
|
let index_2 = load_symbol(scope, &args[2]);
|
|
|
|
let element_layout = list_element_layout!(list_layout);
|
|
list_swap(
|
|
env,
|
|
original_wrapper,
|
|
index_1.into_int_value(),
|
|
index_2.into_int_value(),
|
|
element_layout,
|
|
update_mode,
|
|
)
|
|
}
|
|
ListSublist => {
|
|
// List.sublist : List elem, { start : Nat, len : Nat } -> List elem
|
|
//
|
|
// As a low-level, record is destructed
|
|
// List.sublist : List elem, start : Nat, len : Nat -> List elem
|
|
debug_assert_eq!(args.len(), 3);
|
|
|
|
let (list, list_layout) = load_symbol_and_layout(scope, &args[0]);
|
|
let original_wrapper = list.into_struct_value();
|
|
|
|
let start = load_symbol(scope, &args[1]);
|
|
let len = load_symbol(scope, &args[2]);
|
|
|
|
let element_layout = list_element_layout!(list_layout);
|
|
list_sublist(
|
|
env,
|
|
layout_ids,
|
|
original_wrapper,
|
|
start.into_int_value(),
|
|
len.into_int_value(),
|
|
element_layout,
|
|
)
|
|
}
|
|
ListDropAt => {
|
|
// List.dropAt : List elem, Nat -> List elem
|
|
debug_assert_eq!(args.len(), 2);
|
|
|
|
let (list, list_layout) = load_symbol_and_layout(scope, &args[0]);
|
|
let original_wrapper = list.into_struct_value();
|
|
|
|
let count = load_symbol(scope, &args[1]);
|
|
|
|
let element_layout = list_element_layout!(list_layout);
|
|
list_drop_at(
|
|
env,
|
|
layout_ids,
|
|
original_wrapper,
|
|
count.into_int_value(),
|
|
element_layout,
|
|
)
|
|
}
|
|
ListPrepend => {
|
|
// List.prepend : List elem, elem -> List elem
|
|
debug_assert_eq!(args.len(), 2);
|
|
|
|
let original_wrapper = load_symbol(scope, &args[0]).into_struct_value();
|
|
let (elem, elem_layout) = load_symbol_and_layout(scope, &args[1]);
|
|
|
|
list_prepend(env, original_wrapper, elem, elem_layout)
|
|
}
|
|
StrGetUnsafe => {
|
|
// List.getUnsafe : List elem, Nat -> elem
|
|
debug_assert_eq!(args.len(), 2);
|
|
|
|
let wrapper_struct = load_symbol(scope, &args[0]);
|
|
let elem_index = load_symbol(scope, &args[1]);
|
|
|
|
call_bitcode_fn(env, &[wrapper_struct, elem_index], bitcode::STR_GET_UNSAFE)
|
|
}
|
|
ListGetUnsafe => {
|
|
// List.getUnsafe : List elem, Nat -> elem
|
|
debug_assert_eq!(args.len(), 2);
|
|
|
|
let (wrapper_struct, list_layout) = load_symbol_and_layout(scope, &args[0]);
|
|
let wrapper_struct = wrapper_struct.into_struct_value();
|
|
let elem_index = load_symbol(scope, &args[1]).into_int_value();
|
|
|
|
let element_layout = list_element_layout!(list_layout);
|
|
|
|
list_get_unsafe(
|
|
env,
|
|
layout_ids,
|
|
parent,
|
|
element_layout,
|
|
elem_index,
|
|
wrapper_struct,
|
|
)
|
|
}
|
|
ListReplaceUnsafe => {
|
|
let list = load_symbol(scope, &args[0]);
|
|
let index = load_symbol(scope, &args[1]);
|
|
let (element, element_layout) = load_symbol_and_layout(scope, &args[2]);
|
|
|
|
list_replace_unsafe(
|
|
env,
|
|
layout_ids,
|
|
list,
|
|
index.into_int_value(),
|
|
element,
|
|
element_layout,
|
|
update_mode,
|
|
)
|
|
}
|
|
ListIsUnique => {
|
|
// List.isUnique : List a -> Bool
|
|
debug_assert_eq!(args.len(), 1);
|
|
|
|
let list = load_symbol(scope, &args[0]);
|
|
let list = list_to_c_abi(env, list).into();
|
|
|
|
call_bitcode_fn(env, &[list], bitcode::LIST_IS_UNIQUE)
|
|
}
|
|
NumToStr => {
|
|
// Num.toStr : Num a -> Str
|
|
debug_assert_eq!(args.len(), 1);
|
|
|
|
let (num, num_layout) = load_symbol_and_layout(scope, &args[0]);
|
|
|
|
match num_layout {
|
|
Layout::Builtin(Builtin::Int(int_width)) => {
|
|
let int = num.into_int_value();
|
|
|
|
str_from_int(env, int, *int_width)
|
|
}
|
|
Layout::Builtin(Builtin::Float(_float_width)) => {
|
|
str_from_float(env, scope, args[0])
|
|
}
|
|
_ => unreachable!(),
|
|
}
|
|
}
|
|
NumAbs | NumNeg | NumRound | NumSqrtUnchecked | NumLogUnchecked | NumSin | NumCos
|
|
| NumCeiling | NumFloor | NumToFrac | NumIsFinite | NumAtan | NumAcos | NumAsin
|
|
| NumToIntChecked => {
|
|
debug_assert_eq!(args.len(), 1);
|
|
|
|
let (arg, arg_layout) = load_symbol_and_layout(scope, &args[0]);
|
|
|
|
match arg_layout {
|
|
Layout::Builtin(arg_builtin) => {
|
|
use roc_mono::layout::Builtin::*;
|
|
|
|
match arg_builtin {
|
|
Int(int_width) => {
|
|
let int_type = convert::int_type_from_int_width(env, *int_width);
|
|
build_int_unary_op(
|
|
env,
|
|
arg.into_int_value(),
|
|
*int_width,
|
|
int_type,
|
|
op,
|
|
layout,
|
|
)
|
|
}
|
|
Float(float_width) => build_float_unary_op(
|
|
env,
|
|
layout,
|
|
arg.into_float_value(),
|
|
op,
|
|
*float_width,
|
|
),
|
|
_ => {
|
|
unreachable!("Compiler bug: tried to run numeric operation {:?} on invalid builtin layout: ({:?})", op, arg_layout);
|
|
}
|
|
}
|
|
}
|
|
_ => {
|
|
unreachable!(
|
|
"Compiler bug: tried to run numeric operation {:?} on invalid layout: {:?}",
|
|
op, arg_layout
|
|
);
|
|
}
|
|
}
|
|
}
|
|
NumBytesToU16 => {
|
|
debug_assert_eq!(args.len(), 2);
|
|
let list = load_symbol(scope, &args[0]);
|
|
let position = load_symbol(scope, &args[1]);
|
|
call_bitcode_fn(
|
|
env,
|
|
&[list_to_c_abi(env, list).into(), position],
|
|
bitcode::NUM_BYTES_TO_U16,
|
|
)
|
|
}
|
|
NumBytesToU32 => {
|
|
debug_assert_eq!(args.len(), 2);
|
|
let list = load_symbol(scope, &args[0]);
|
|
let position = load_symbol(scope, &args[1]);
|
|
call_bitcode_fn(
|
|
env,
|
|
&[list_to_c_abi(env, list).into(), position],
|
|
bitcode::NUM_BYTES_TO_U32,
|
|
)
|
|
}
|
|
NumCompare => {
|
|
use inkwell::FloatPredicate;
|
|
|
|
debug_assert_eq!(args.len(), 2);
|
|
|
|
let (lhs_arg, lhs_layout) = load_symbol_and_layout(scope, &args[0]);
|
|
let (rhs_arg, rhs_layout) = load_symbol_and_layout(scope, &args[1]);
|
|
|
|
match (lhs_layout, rhs_layout) {
|
|
(Layout::Builtin(lhs_builtin), Layout::Builtin(rhs_builtin))
|
|
if lhs_builtin == rhs_builtin =>
|
|
{
|
|
use roc_mono::layout::Builtin::*;
|
|
|
|
let tag_eq = env.context.i8_type().const_int(0_u64, false);
|
|
let tag_gt = env.context.i8_type().const_int(1_u64, false);
|
|
let tag_lt = env.context.i8_type().const_int(2_u64, false);
|
|
|
|
match lhs_builtin {
|
|
Int(int_width) => {
|
|
let are_equal = env.builder.build_int_compare(
|
|
IntPredicate::EQ,
|
|
lhs_arg.into_int_value(),
|
|
rhs_arg.into_int_value(),
|
|
"int_eq",
|
|
);
|
|
|
|
let predicate = if int_width.is_signed() {
|
|
IntPredicate::SLT
|
|
} else {
|
|
IntPredicate::ULT
|
|
};
|
|
|
|
let is_less_than = env.builder.build_int_compare(
|
|
predicate,
|
|
lhs_arg.into_int_value(),
|
|
rhs_arg.into_int_value(),
|
|
"int_compare",
|
|
);
|
|
|
|
let step1 =
|
|
env.builder
|
|
.build_select(is_less_than, tag_lt, tag_gt, "lt_or_gt");
|
|
|
|
env.builder.build_select(
|
|
are_equal,
|
|
tag_eq,
|
|
step1.into_int_value(),
|
|
"lt_or_gt",
|
|
)
|
|
}
|
|
Float(_) => {
|
|
let are_equal = env.builder.build_float_compare(
|
|
FloatPredicate::OEQ,
|
|
lhs_arg.into_float_value(),
|
|
rhs_arg.into_float_value(),
|
|
"float_eq",
|
|
);
|
|
let is_less_than = env.builder.build_float_compare(
|
|
FloatPredicate::OLT,
|
|
lhs_arg.into_float_value(),
|
|
rhs_arg.into_float_value(),
|
|
"float_compare",
|
|
);
|
|
|
|
let step1 =
|
|
env.builder
|
|
.build_select(is_less_than, tag_lt, tag_gt, "lt_or_gt");
|
|
|
|
env.builder.build_select(
|
|
are_equal,
|
|
tag_eq,
|
|
step1.into_int_value(),
|
|
"lt_or_gt",
|
|
)
|
|
}
|
|
|
|
_ => {
|
|
unreachable!("Compiler bug: tried to run numeric operation {:?} on invalid builtin layout: ({:?})", op, lhs_layout);
|
|
}
|
|
}
|
|
}
|
|
_ => {
|
|
unreachable!("Compiler bug: tried to run numeric operation {:?} on invalid layouts. The 2 layouts were: ({:?}) and ({:?})", op, lhs_layout, rhs_layout);
|
|
}
|
|
}
|
|
}
|
|
|
|
NumAdd | NumSub | NumMul | NumLt | NumLte | NumGt | NumGte | NumRemUnchecked
|
|
| NumIsMultipleOf | NumAddWrap | NumAddChecked | NumAddSaturated | NumDivUnchecked
|
|
| NumDivCeilUnchecked | NumPow | NumPowInt | NumSubWrap | NumSubChecked
|
|
| NumSubSaturated | NumMulWrap | NumMulSaturated | NumMulChecked => {
|
|
debug_assert_eq!(args.len(), 2);
|
|
|
|
let (lhs_arg, lhs_layout) = load_symbol_and_layout(scope, &args[0]);
|
|
let (rhs_arg, rhs_layout) = load_symbol_and_layout(scope, &args[1]);
|
|
|
|
build_num_binop(env, parent, lhs_arg, lhs_layout, rhs_arg, rhs_layout, op)
|
|
}
|
|
NumBitwiseAnd | NumBitwiseOr | NumBitwiseXor => {
|
|
debug_assert_eq!(args.len(), 2);
|
|
|
|
let (lhs_arg, lhs_layout) = load_symbol_and_layout(scope, &args[0]);
|
|
let (rhs_arg, rhs_layout) = load_symbol_and_layout(scope, &args[1]);
|
|
|
|
debug_assert_eq!(lhs_layout, rhs_layout);
|
|
let int_width = intwidth_from_layout(*lhs_layout);
|
|
|
|
build_int_binop(
|
|
env,
|
|
parent,
|
|
int_width,
|
|
lhs_arg.into_int_value(),
|
|
rhs_arg.into_int_value(),
|
|
op,
|
|
)
|
|
}
|
|
NumShiftLeftBy | NumShiftRightBy | NumShiftRightZfBy => {
|
|
debug_assert_eq!(args.len(), 2);
|
|
|
|
let (lhs_arg, lhs_layout) = load_symbol_and_layout(scope, &args[0]);
|
|
let (rhs_arg, rhs_layout) = load_symbol_and_layout(scope, &args[1]);
|
|
|
|
debug_assert_eq!(lhs_layout, rhs_layout);
|
|
let int_width = intwidth_from_layout(*lhs_layout);
|
|
|
|
build_int_binop(
|
|
env,
|
|
parent,
|
|
int_width,
|
|
lhs_arg.into_int_value(),
|
|
rhs_arg.into_int_value(),
|
|
op,
|
|
)
|
|
}
|
|
NumIntCast => {
|
|
debug_assert_eq!(args.len(), 1);
|
|
|
|
let arg = load_symbol(scope, &args[0]).into_int_value();
|
|
|
|
let to = basic_type_from_layout(env, layout).into_int_type();
|
|
let to_signed = intwidth_from_layout(*layout).is_signed();
|
|
|
|
env.builder
|
|
.build_int_cast_sign_flag(arg, to, to_signed, "inc_cast")
|
|
.into()
|
|
}
|
|
NumToFloatCast => {
|
|
debug_assert_eq!(args.len(), 1);
|
|
|
|
let (arg, arg_layout) = load_symbol_and_layout(scope, &args[0]);
|
|
|
|
match arg_layout {
|
|
Layout::Builtin(Builtin::Int(width)) => {
|
|
// Converting from int to float
|
|
let int_val = arg.into_int_value();
|
|
let dest = basic_type_from_layout(env, layout).into_float_type();
|
|
|
|
if width.is_signed() {
|
|
env.builder
|
|
.build_signed_int_to_float(int_val, dest, "signed_int_to_float")
|
|
.into()
|
|
} else {
|
|
env.builder
|
|
.build_unsigned_int_to_float(int_val, dest, "unsigned_int_to_float")
|
|
.into()
|
|
}
|
|
}
|
|
Layout::Builtin(Builtin::Float(_)) => {
|
|
// Converting from float to float - e.g. F64 to F32, or vice versa
|
|
let dest = basic_type_from_layout(env, layout).into_float_type();
|
|
|
|
env.builder
|
|
.build_float_cast(arg.into_float_value(), dest, "cast_float_to_float")
|
|
.into()
|
|
}
|
|
Layout::Builtin(Builtin::Decimal) => {
|
|
todo!("Support converting Dec values to floats.");
|
|
}
|
|
other => {
|
|
unreachable!("Tried to do a float cast to non-float layout {:?}", other);
|
|
}
|
|
}
|
|
}
|
|
NumToFloatChecked => {
|
|
// NOTE: There's a NumToIntChecked implementation above,
|
|
// which could be useful to look at when implementing this.
|
|
todo!("implement checked float conversion");
|
|
}
|
|
Eq => {
|
|
debug_assert_eq!(args.len(), 2);
|
|
|
|
let (lhs_arg, lhs_layout) = load_symbol_and_layout(scope, &args[0]);
|
|
let (rhs_arg, rhs_layout) = load_symbol_and_layout(scope, &args[1]);
|
|
|
|
generic_eq(env, layout_ids, lhs_arg, rhs_arg, lhs_layout, rhs_layout)
|
|
}
|
|
NotEq => {
|
|
debug_assert_eq!(args.len(), 2);
|
|
|
|
let (lhs_arg, lhs_layout) = load_symbol_and_layout(scope, &args[0]);
|
|
let (rhs_arg, rhs_layout) = load_symbol_and_layout(scope, &args[1]);
|
|
|
|
generic_neq(env, layout_ids, lhs_arg, rhs_arg, lhs_layout, rhs_layout)
|
|
}
|
|
And => {
|
|
// The (&&) operator
|
|
debug_assert_eq!(args.len(), 2);
|
|
|
|
let lhs_arg = load_symbol(scope, &args[0]);
|
|
let rhs_arg = load_symbol(scope, &args[1]);
|
|
let bool_val = env.builder.build_and(
|
|
lhs_arg.into_int_value(),
|
|
rhs_arg.into_int_value(),
|
|
"bool_and",
|
|
);
|
|
|
|
BasicValueEnum::IntValue(bool_val)
|
|
}
|
|
Or => {
|
|
// The (||) operator
|
|
debug_assert_eq!(args.len(), 2);
|
|
|
|
let lhs_arg = load_symbol(scope, &args[0]);
|
|
let rhs_arg = load_symbol(scope, &args[1]);
|
|
let bool_val = env.builder.build_or(
|
|
lhs_arg.into_int_value(),
|
|
rhs_arg.into_int_value(),
|
|
"bool_or",
|
|
);
|
|
|
|
BasicValueEnum::IntValue(bool_val)
|
|
}
|
|
Not => {
|
|
// The (!) operator
|
|
debug_assert_eq!(args.len(), 1);
|
|
|
|
let arg = load_symbol(scope, &args[0]);
|
|
let bool_val = env.builder.build_not(arg.into_int_value(), "bool_not");
|
|
|
|
BasicValueEnum::IntValue(bool_val)
|
|
}
|
|
Hash => {
|
|
debug_assert_eq!(args.len(), 2);
|
|
let seed = load_symbol(scope, &args[0]);
|
|
let (value, layout) = load_symbol_and_layout(scope, &args[1]);
|
|
|
|
debug_assert!(seed.is_int_value());
|
|
|
|
generic_hash(env, layout_ids, seed.into_int_value(), value, layout).into()
|
|
}
|
|
DictSize => {
|
|
debug_assert_eq!(args.len(), 1);
|
|
dict_len(env, scope, args[0])
|
|
}
|
|
DictEmpty => {
|
|
debug_assert_eq!(args.len(), 0);
|
|
dict_empty(env)
|
|
}
|
|
DictInsert => {
|
|
debug_assert_eq!(args.len(), 3);
|
|
|
|
let (dict, _) = load_symbol_and_layout(scope, &args[0]);
|
|
let (key, key_layout) = load_symbol_and_layout(scope, &args[1]);
|
|
let (value, value_layout) = load_symbol_and_layout(scope, &args[2]);
|
|
dict_insert(env, layout_ids, dict, key, key_layout, value, value_layout)
|
|
}
|
|
DictRemove => {
|
|
debug_assert_eq!(args.len(), 2);
|
|
|
|
let (dict, dict_layout) = load_symbol_and_layout(scope, &args[0]);
|
|
let key = load_symbol(scope, &args[1]);
|
|
|
|
let (key_layout, value_layout) = dict_key_value_layout!(dict_layout);
|
|
dict_remove(env, layout_ids, dict, key, key_layout, value_layout)
|
|
}
|
|
DictContains => {
|
|
debug_assert_eq!(args.len(), 2);
|
|
|
|
let (dict, dict_layout) = load_symbol_and_layout(scope, &args[0]);
|
|
let key = load_symbol(scope, &args[1]);
|
|
|
|
let (key_layout, value_layout) = dict_key_value_layout!(dict_layout);
|
|
dict_contains(env, layout_ids, dict, key, key_layout, value_layout)
|
|
}
|
|
DictGetUnsafe => {
|
|
debug_assert_eq!(args.len(), 2);
|
|
|
|
let (dict, dict_layout) = load_symbol_and_layout(scope, &args[0]);
|
|
let key = load_symbol(scope, &args[1]);
|
|
|
|
let (key_layout, value_layout) = dict_key_value_layout!(dict_layout);
|
|
dict_get(env, layout_ids, dict, key, key_layout, value_layout)
|
|
}
|
|
DictKeys => {
|
|
debug_assert_eq!(args.len(), 1);
|
|
|
|
let (dict, dict_layout) = load_symbol_and_layout(scope, &args[0]);
|
|
|
|
let (key_layout, value_layout) = dict_key_value_layout!(dict_layout);
|
|
dict_keys(env, layout_ids, dict, key_layout, value_layout)
|
|
}
|
|
DictValues => {
|
|
debug_assert_eq!(args.len(), 1);
|
|
|
|
let (dict, dict_layout) = load_symbol_and_layout(scope, &args[0]);
|
|
|
|
let (key_layout, value_layout) = dict_key_value_layout!(dict_layout);
|
|
dict_values(env, layout_ids, dict, key_layout, value_layout)
|
|
}
|
|
DictUnion => {
|
|
debug_assert_eq!(args.len(), 2);
|
|
|
|
let (dict1, dict_layout) = load_symbol_and_layout(scope, &args[0]);
|
|
let (dict2, _) = load_symbol_and_layout(scope, &args[1]);
|
|
|
|
let (key_layout, value_layout) = dict_key_value_layout!(dict_layout);
|
|
dict_union(env, layout_ids, dict1, dict2, key_layout, value_layout)
|
|
}
|
|
DictDifference => {
|
|
debug_assert_eq!(args.len(), 2);
|
|
|
|
let (dict1, dict_layout) = load_symbol_and_layout(scope, &args[0]);
|
|
let (dict2, _) = load_symbol_and_layout(scope, &args[1]);
|
|
|
|
let (key_layout, value_layout) = dict_key_value_layout!(dict_layout);
|
|
dict_difference(env, layout_ids, dict1, dict2, key_layout, value_layout)
|
|
}
|
|
DictIntersection => {
|
|
debug_assert_eq!(args.len(), 2);
|
|
|
|
let (dict1, dict_layout) = load_symbol_and_layout(scope, &args[0]);
|
|
let (dict2, _) = load_symbol_and_layout(scope, &args[1]);
|
|
|
|
let (key_layout, value_layout) = dict_key_value_layout!(dict_layout);
|
|
dict_intersection(env, layout_ids, dict1, dict2, key_layout, value_layout)
|
|
}
|
|
SetFromList => {
|
|
debug_assert_eq!(args.len(), 1);
|
|
|
|
let (list, list_layout) = load_symbol_and_layout(scope, &args[0]);
|
|
|
|
let key_layout = list_element_layout!(list_layout);
|
|
set_from_list(env, layout_ids, list, key_layout)
|
|
}
|
|
SetToDict => {
|
|
debug_assert_eq!(args.len(), 1);
|
|
|
|
let (set, _set_layout) = load_symbol_and_layout(scope, &args[0]);
|
|
|
|
set
|
|
}
|
|
|
|
ListMap | ListMap2 | ListMap3 | ListMap4 | ListMapWithIndex | ListSortWith | DictWalk => {
|
|
unreachable!("these are higher order, and are handled elsewhere")
|
|
}
|
|
|
|
BoxExpr | UnboxExpr => {
|
|
unreachable!("The {:?} operation is turned into mono Expr", op)
|
|
}
|
|
|
|
PtrCast | RefCountInc | RefCountDec => {
|
|
unreachable!("Not used in LLVM backend: {:?}", op);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// A type that is valid according to the C ABI
|
|
///
|
|
/// As an example, structs that fit inside an integer type should
|
|
/// (this does not currently happen here) be coerced to that integer type.
|
|
fn to_cc_type<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
layout: &Layout<'a>,
|
|
) -> BasicTypeEnum<'ctx> {
|
|
match layout {
|
|
Layout::Builtin(builtin) => to_cc_type_builtin(env, builtin),
|
|
_ => {
|
|
// TODO this is almost certainly incorrect for bigger structs
|
|
basic_type_from_layout(env, layout)
|
|
}
|
|
}
|
|
}
|
|
|
|
fn to_cc_type_builtin<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
builtin: &Builtin<'a>,
|
|
) -> BasicTypeEnum<'ctx> {
|
|
match builtin {
|
|
Builtin::Int(_) | Builtin::Float(_) | Builtin::Bool | Builtin::Decimal => {
|
|
basic_type_from_builtin(env, builtin)
|
|
}
|
|
Builtin::Str | Builtin::List(_) => {
|
|
let address_space = AddressSpace::Generic;
|
|
let field_types: [BasicTypeEnum; 3] = [
|
|
env.context.i8_type().ptr_type(address_space).into(),
|
|
env.ptr_int().into(),
|
|
env.ptr_int().into(),
|
|
];
|
|
|
|
let struct_type = env.context.struct_type(&field_types, false);
|
|
|
|
struct_type.ptr_type(address_space).into()
|
|
}
|
|
Builtin::Dict(_, _) | Builtin::Set(_) => {
|
|
// TODO verify this is what actually happens
|
|
basic_type_from_builtin(env, builtin)
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Copy)]
|
|
enum RocReturn {
|
|
/// Return as normal
|
|
Return,
|
|
/// require an extra argument, a pointer
|
|
/// where the result is written into returns void
|
|
ByPointer,
|
|
}
|
|
|
|
impl RocReturn {
|
|
fn roc_return_by_pointer(target_info: TargetInfo, layout: Layout) -> bool {
|
|
match layout {
|
|
Layout::Builtin(builtin) => {
|
|
use Builtin::*;
|
|
|
|
match target_info.ptr_width() {
|
|
roc_target::PtrWidth::Bytes4 => false,
|
|
|
|
roc_target::PtrWidth::Bytes8 => {
|
|
//
|
|
matches!(builtin, Str)
|
|
}
|
|
}
|
|
}
|
|
Layout::Union(UnionLayout::NonRecursive(_)) => true,
|
|
Layout::LambdaSet(lambda_set) => {
|
|
RocReturn::roc_return_by_pointer(target_info, lambda_set.runtime_representation())
|
|
}
|
|
_ => false,
|
|
}
|
|
}
|
|
|
|
fn from_layout<'a, 'ctx, 'env>(env: &Env<'a, 'ctx, 'env>, layout: &Layout<'a>) -> Self {
|
|
if Self::roc_return_by_pointer(env.target_info, *layout) {
|
|
RocReturn::ByPointer
|
|
} else {
|
|
RocReturn::Return
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone, Copy)]
|
|
pub enum CCReturn {
|
|
/// Return as normal
|
|
Return,
|
|
/// require an extra argument, a pointer
|
|
/// where the result is written into
|
|
/// returns void
|
|
ByPointer,
|
|
/// The return type is zero-sized
|
|
Void,
|
|
}
|
|
|
|
#[derive(Debug, Clone, Copy)]
|
|
pub struct FunctionSpec<'ctx> {
|
|
/// The function type
|
|
pub typ: FunctionType<'ctx>,
|
|
call_conv: u32,
|
|
|
|
/// Index (0-based) of return-by-pointer parameter, if it exists.
|
|
/// We only care about this for C-call-conv functions, because this may take
|
|
/// ownership of a register due to the convention. For example, on AArch64,
|
|
/// values returned-by-pointer use the x8 register.
|
|
/// But for internal functions we don't need to worry about that and we don't
|
|
/// want the convention, since it might eat a register and cause a spill!
|
|
cconv_sret_parameter: Option<u32>,
|
|
}
|
|
|
|
impl<'ctx> FunctionSpec<'ctx> {
|
|
fn attach_attributes(&self, ctx: &Context, fn_val: FunctionValue<'ctx>) {
|
|
fn_val.set_call_conventions(self.call_conv);
|
|
|
|
if let Some(param_index) = self.cconv_sret_parameter {
|
|
// Indicate to LLVM that this argument holds the return value of the function.
|
|
let sret_attribute_id = Attribute::get_named_enum_kind_id("sret");
|
|
debug_assert!(sret_attribute_id > 0);
|
|
let ret_typ = self.typ.get_param_types()[param_index as usize];
|
|
let sret_attribute =
|
|
ctx.create_type_attribute(sret_attribute_id, ret_typ.as_any_type_enum());
|
|
fn_val.add_attribute(AttributeLoc::Param(0), sret_attribute);
|
|
}
|
|
}
|
|
|
|
/// C-calling convention
|
|
pub fn cconv<'a, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
cc_return: CCReturn,
|
|
return_type: Option<BasicTypeEnum<'ctx>>,
|
|
argument_types: &[BasicTypeEnum<'ctx>],
|
|
) -> FunctionSpec<'ctx> {
|
|
let (typ, opt_sret_parameter) = match cc_return {
|
|
CCReturn::ByPointer => {
|
|
// turn the output type into a pointer type. Make it the first argument to the function
|
|
let output_type = return_type.unwrap().ptr_type(AddressSpace::Generic);
|
|
|
|
let mut arguments: Vec<'_, BasicTypeEnum> =
|
|
bumpalo::vec![in env.arena; output_type.into()];
|
|
arguments.extend(argument_types);
|
|
|
|
let arguments = function_arguments(env, &arguments);
|
|
(env.context.void_type().fn_type(&arguments, false), Some(0))
|
|
}
|
|
CCReturn::Return => {
|
|
let arguments = function_arguments(env, argument_types);
|
|
(return_type.unwrap().fn_type(&arguments, false), None)
|
|
}
|
|
CCReturn::Void => {
|
|
let arguments = function_arguments(env, argument_types);
|
|
(env.context.void_type().fn_type(&arguments, false), None)
|
|
}
|
|
};
|
|
|
|
Self {
|
|
typ,
|
|
call_conv: C_CALL_CONV,
|
|
cconv_sret_parameter: opt_sret_parameter,
|
|
}
|
|
}
|
|
|
|
/// Fastcc calling convention
|
|
fn fastcc<'a, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
roc_return: RocReturn,
|
|
return_type: BasicTypeEnum<'ctx>,
|
|
mut argument_types: Vec<BasicTypeEnum<'ctx>>,
|
|
) -> FunctionSpec<'ctx> {
|
|
let typ = match roc_return {
|
|
RocReturn::Return => {
|
|
return_type.fn_type(&function_arguments(env, &argument_types), false)
|
|
}
|
|
RocReturn::ByPointer => {
|
|
argument_types.push(return_type.ptr_type(AddressSpace::Generic).into());
|
|
env.context
|
|
.void_type()
|
|
.fn_type(&function_arguments(env, &argument_types), false)
|
|
}
|
|
};
|
|
|
|
Self {
|
|
typ,
|
|
call_conv: FAST_CALL_CONV,
|
|
cconv_sret_parameter: None,
|
|
}
|
|
}
|
|
|
|
pub fn known_fastcc(fn_type: FunctionType<'ctx>) -> FunctionSpec<'ctx> {
|
|
Self {
|
|
typ: fn_type,
|
|
call_conv: FAST_CALL_CONV,
|
|
cconv_sret_parameter: None,
|
|
}
|
|
}
|
|
|
|
pub fn intrinsic(fn_type: FunctionType<'ctx>) -> Self {
|
|
// LLVM intrinsics always use the C calling convention, because
|
|
// they are implemented in C libraries
|
|
Self {
|
|
typ: fn_type,
|
|
call_conv: C_CALL_CONV,
|
|
cconv_sret_parameter: None,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// According to the C ABI, how should we return a value with the given layout?
|
|
pub fn to_cc_return<'a, 'ctx, 'env>(env: &Env<'a, 'ctx, 'env>, layout: &Layout<'a>) -> CCReturn {
|
|
let return_size = layout.stack_size(env.target_info);
|
|
let pass_result_by_pointer = return_size > 2 * env.target_info.ptr_width() as u32;
|
|
|
|
if return_size == 0 {
|
|
CCReturn::Void
|
|
} else if pass_result_by_pointer {
|
|
CCReturn::ByPointer
|
|
} else {
|
|
CCReturn::Return
|
|
}
|
|
}
|
|
|
|
fn function_arguments<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
arguments: &[BasicTypeEnum<'ctx>],
|
|
) -> Vec<'a, BasicMetadataTypeEnum<'ctx>> {
|
|
let it = arguments.iter().map(|x| (*x).into());
|
|
Vec::from_iter_in(it, env.arena)
|
|
}
|
|
|
|
fn build_foreign_symbol<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
scope: &mut Scope<'a, 'ctx>,
|
|
foreign: &roc_module::ident::ForeignSymbol,
|
|
argument_symbols: &[Symbol],
|
|
ret_layout: &Layout<'a>,
|
|
) -> BasicValueEnum<'ctx> {
|
|
let builder = env.builder;
|
|
let context = env.context;
|
|
|
|
let fastcc_function_name = format!("{}_fastcc_wrapper", foreign.as_str());
|
|
|
|
let (fastcc_function, arguments) = match env.module.get_function(fastcc_function_name.as_str())
|
|
{
|
|
Some(function_value) => {
|
|
let mut arguments = Vec::with_capacity_in(argument_symbols.len(), env.arena);
|
|
|
|
for symbol in argument_symbols {
|
|
let (value, _) = load_symbol_and_layout(scope, symbol);
|
|
|
|
arguments.push(value);
|
|
}
|
|
|
|
(function_value, arguments)
|
|
}
|
|
None => {
|
|
// Here we build two functions:
|
|
//
|
|
// - an C_CALL_CONV extern that will be provided by the host, e.g. `roc_fx_putLine`
|
|
// This is just a type signature that we make available to the linker,
|
|
// and can use in the wrapper
|
|
// - a FAST_CALL_CONV wrapper that we make here, e.g. `roc_fx_putLine_fastcc_wrapper`
|
|
|
|
let return_type = basic_type_from_layout(env, ret_layout);
|
|
let roc_return = RocReturn::from_layout(env, ret_layout);
|
|
let cc_return = to_cc_return(env, ret_layout);
|
|
|
|
let mut cc_argument_types =
|
|
Vec::with_capacity_in(argument_symbols.len() + 1, env.arena);
|
|
let mut fastcc_argument_types =
|
|
Vec::with_capacity_in(argument_symbols.len(), env.arena);
|
|
let mut arguments = Vec::with_capacity_in(argument_symbols.len(), env.arena);
|
|
|
|
for symbol in argument_symbols {
|
|
let (value, layout) = load_symbol_and_layout(scope, symbol);
|
|
|
|
cc_argument_types.push(to_cc_type(env, layout));
|
|
|
|
let basic_type = argument_type_from_layout(env, layout);
|
|
fastcc_argument_types.push(basic_type);
|
|
|
|
arguments.push(value);
|
|
}
|
|
|
|
let cc_type =
|
|
FunctionSpec::cconv(env, cc_return, Some(return_type), &cc_argument_types);
|
|
let cc_function = get_foreign_symbol(env, foreign.clone(), cc_type);
|
|
|
|
let fastcc_type =
|
|
FunctionSpec::fastcc(env, roc_return, return_type, fastcc_argument_types);
|
|
|
|
let fastcc_function = add_func(
|
|
env.context,
|
|
env.module,
|
|
&fastcc_function_name,
|
|
fastcc_type,
|
|
Linkage::Internal,
|
|
);
|
|
|
|
let old = builder.get_insert_block().unwrap();
|
|
|
|
let entry = context.append_basic_block(fastcc_function, "entry");
|
|
{
|
|
builder.position_at_end(entry);
|
|
|
|
let mut fastcc_parameters = fastcc_function.get_params();
|
|
let mut cc_arguments =
|
|
Vec::with_capacity_in(fastcc_parameters.len() + 1, env.arena);
|
|
|
|
let return_pointer = match roc_return {
|
|
RocReturn::Return => env.builder.build_alloca(return_type, "return_value"),
|
|
RocReturn::ByPointer => fastcc_parameters.pop().unwrap().into_pointer_value(),
|
|
};
|
|
|
|
if let CCReturn::ByPointer = cc_return {
|
|
cc_arguments.push(return_pointer.into());
|
|
}
|
|
|
|
let it = fastcc_parameters.into_iter().zip(cc_argument_types.iter());
|
|
for (param, cc_type) in it {
|
|
if param.get_type() == *cc_type {
|
|
cc_arguments.push(param.into());
|
|
} else {
|
|
// not pretty, but seems to cover all our current case
|
|
if cc_type.is_pointer_type() && !param.get_type().is_pointer_type() {
|
|
// we need to pass this value by-reference; put it into an alloca
|
|
// and bitcast the reference
|
|
|
|
let param_alloca =
|
|
env.builder.build_alloca(param.get_type(), "param_alloca");
|
|
env.builder.build_store(param_alloca, param);
|
|
|
|
let as_cc_type = env.builder.build_bitcast(
|
|
param_alloca,
|
|
cc_type.into_pointer_type(),
|
|
"to_cc_type_ptr",
|
|
);
|
|
|
|
cc_arguments.push(as_cc_type.into());
|
|
} else {
|
|
// eprintln!("C type: {:?}", cc_type);
|
|
// eprintln!("Fastcc type: {:?}", param.get_type());
|
|
// todo!("C <-> Fastcc interaction that we haven't seen before")
|
|
|
|
let as_cc_type = env.builder.build_pointer_cast(
|
|
param.into_pointer_value(),
|
|
cc_type.into_pointer_type(),
|
|
"to_cc_type_ptr",
|
|
);
|
|
cc_arguments.push(as_cc_type.into());
|
|
}
|
|
}
|
|
}
|
|
|
|
let call = env.builder.build_call(cc_function, &cc_arguments, "tmp");
|
|
call.set_call_convention(C_CALL_CONV);
|
|
|
|
match roc_return {
|
|
RocReturn::Return => {
|
|
let return_value = match cc_return {
|
|
CCReturn::Return => call.try_as_basic_value().left().unwrap(),
|
|
|
|
CCReturn::ByPointer => {
|
|
env.builder.build_load(return_pointer, "read_result")
|
|
}
|
|
CCReturn::Void => return_type.const_zero(),
|
|
};
|
|
|
|
builder.build_return(Some(&return_value));
|
|
}
|
|
RocReturn::ByPointer => {
|
|
debug_assert!(matches!(cc_return, CCReturn::ByPointer));
|
|
|
|
builder.build_return(None);
|
|
}
|
|
}
|
|
}
|
|
|
|
builder.position_at_end(old);
|
|
|
|
(fastcc_function, arguments)
|
|
}
|
|
};
|
|
|
|
call_roc_function(env, fastcc_function, ret_layout, &arguments)
|
|
}
|
|
|
|
fn throw_on_overflow<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
parent: FunctionValue<'ctx>,
|
|
result: StructValue<'ctx>, // of the form { value: T, has_overflowed: bool }
|
|
message: &str,
|
|
) -> BasicValueEnum<'ctx> {
|
|
let bd = env.builder;
|
|
let context = env.context;
|
|
|
|
let has_overflowed = bd.build_extract_value(result, 1, "has_overflowed").unwrap();
|
|
|
|
let condition = bd.build_int_compare(
|
|
IntPredicate::EQ,
|
|
has_overflowed.into_int_value(),
|
|
context.bool_type().const_zero(),
|
|
"has_not_overflowed",
|
|
);
|
|
|
|
let then_block = context.append_basic_block(parent, "then_block");
|
|
let throw_block = context.append_basic_block(parent, "throw_block");
|
|
|
|
bd.build_conditional_branch(condition, then_block, throw_block);
|
|
|
|
bd.position_at_end(throw_block);
|
|
|
|
throw_exception(env, message);
|
|
|
|
bd.position_at_end(then_block);
|
|
|
|
bd.build_extract_value(result, 0, "operation_result")
|
|
.unwrap()
|
|
}
|
|
|
|
fn intwidth_from_layout(layout: Layout<'_>) -> IntWidth {
|
|
match layout {
|
|
Layout::Builtin(Builtin::Int(int_width)) => int_width,
|
|
|
|
_ => unreachable!(),
|
|
}
|
|
}
|
|
|
|
fn build_int_binop<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
parent: FunctionValue<'ctx>,
|
|
int_width: IntWidth,
|
|
lhs: IntValue<'ctx>,
|
|
rhs: IntValue<'ctx>,
|
|
op: LowLevel,
|
|
) -> BasicValueEnum<'ctx> {
|
|
use inkwell::IntPredicate::*;
|
|
use roc_module::low_level::LowLevel::*;
|
|
|
|
let bd = env.builder;
|
|
|
|
match op {
|
|
NumAdd => {
|
|
let result = env
|
|
.call_intrinsic(
|
|
&LLVM_ADD_WITH_OVERFLOW[int_width],
|
|
&[lhs.into(), rhs.into()],
|
|
)
|
|
.into_struct_value();
|
|
|
|
throw_on_overflow(env, parent, result, "integer addition overflowed!")
|
|
}
|
|
NumAddWrap => bd.build_int_add(lhs, rhs, "add_int_wrap").into(),
|
|
NumAddChecked => env.call_intrinsic(
|
|
&LLVM_ADD_WITH_OVERFLOW[int_width],
|
|
&[lhs.into(), rhs.into()],
|
|
),
|
|
NumAddSaturated => {
|
|
env.call_intrinsic(&LLVM_ADD_SATURATED[int_width], &[lhs.into(), rhs.into()])
|
|
}
|
|
NumSub => {
|
|
let result = env
|
|
.call_intrinsic(
|
|
&LLVM_SUB_WITH_OVERFLOW[int_width],
|
|
&[lhs.into(), rhs.into()],
|
|
)
|
|
.into_struct_value();
|
|
|
|
throw_on_overflow(env, parent, result, "integer subtraction overflowed!")
|
|
}
|
|
NumSubWrap => bd.build_int_sub(lhs, rhs, "sub_int").into(),
|
|
NumSubChecked => env.call_intrinsic(
|
|
&LLVM_SUB_WITH_OVERFLOW[int_width],
|
|
&[lhs.into(), rhs.into()],
|
|
),
|
|
NumSubSaturated => {
|
|
env.call_intrinsic(&LLVM_SUB_SATURATED[int_width], &[lhs.into(), rhs.into()])
|
|
}
|
|
NumMul => {
|
|
let result = env
|
|
.call_intrinsic(
|
|
&LLVM_MUL_WITH_OVERFLOW[int_width],
|
|
&[lhs.into(), rhs.into()],
|
|
)
|
|
.into_struct_value();
|
|
|
|
throw_on_overflow(env, parent, result, "integer multiplication overflowed!")
|
|
}
|
|
NumMulWrap => bd.build_int_mul(lhs, rhs, "mul_int").into(),
|
|
NumMulSaturated => call_bitcode_fn(
|
|
env,
|
|
&[lhs.into(), rhs.into()],
|
|
&bitcode::NUM_MUL_SATURATED_INT[int_width],
|
|
),
|
|
NumMulChecked => env.call_intrinsic(
|
|
&LLVM_MUL_WITH_OVERFLOW[int_width],
|
|
&[lhs.into(), rhs.into()],
|
|
),
|
|
NumGt => {
|
|
if int_width.is_signed() {
|
|
bd.build_int_compare(SGT, lhs, rhs, "gt_int").into()
|
|
} else {
|
|
bd.build_int_compare(UGT, lhs, rhs, "gt_uint").into()
|
|
}
|
|
}
|
|
NumGte => {
|
|
if int_width.is_signed() {
|
|
bd.build_int_compare(SGE, lhs, rhs, "gte_int").into()
|
|
} else {
|
|
bd.build_int_compare(UGE, lhs, rhs, "gte_uint").into()
|
|
}
|
|
}
|
|
NumLt => {
|
|
if int_width.is_signed() {
|
|
bd.build_int_compare(SLT, lhs, rhs, "lt_int").into()
|
|
} else {
|
|
bd.build_int_compare(ULT, lhs, rhs, "lt_uint").into()
|
|
}
|
|
}
|
|
NumLte => {
|
|
if int_width.is_signed() {
|
|
bd.build_int_compare(SLE, lhs, rhs, "lte_int").into()
|
|
} else {
|
|
bd.build_int_compare(ULE, lhs, rhs, "lte_uint").into()
|
|
}
|
|
}
|
|
NumRemUnchecked => {
|
|
if int_width.is_signed() {
|
|
bd.build_int_signed_rem(lhs, rhs, "rem_int").into()
|
|
} else {
|
|
bd.build_int_unsigned_rem(lhs, rhs, "rem_uint").into()
|
|
}
|
|
}
|
|
NumIsMultipleOf => {
|
|
// this builds the following construct
|
|
//
|
|
// if (rhs == 0 || rhs == -1) {
|
|
// // lhs is a multiple of rhs iff
|
|
// //
|
|
// // - rhs == -1
|
|
// // - both rhs and lhs are 0
|
|
// //
|
|
// // the -1 case is important for overflow reasons `isize::MIN % -1` crashes in rust
|
|
// (rhs == -1) || (lhs == 0)
|
|
// } else {
|
|
// let rem = lhs % rhs;
|
|
// rem == 0
|
|
// }
|
|
//
|
|
// NOTE we'd like the branches to be swapped for better branch prediction,
|
|
// but llvm normalizes to the above ordering in -O3
|
|
let zero = rhs.get_type().const_zero();
|
|
let neg_1 = rhs.get_type().const_int(-1i64 as u64, false);
|
|
|
|
let special_block = env.context.append_basic_block(parent, "special_block");
|
|
let default_block = env.context.append_basic_block(parent, "default_block");
|
|
let cont_block = env.context.append_basic_block(parent, "branchcont");
|
|
|
|
bd.build_switch(
|
|
rhs,
|
|
default_block,
|
|
&[(zero, special_block), (neg_1, special_block)],
|
|
);
|
|
|
|
let condition_rem = {
|
|
bd.position_at_end(default_block);
|
|
|
|
let rem = bd.build_int_signed_rem(lhs, rhs, "int_rem");
|
|
let result = bd.build_int_compare(IntPredicate::EQ, rem, zero, "is_zero_rem");
|
|
|
|
bd.build_unconditional_branch(cont_block);
|
|
result
|
|
};
|
|
|
|
let condition_special = {
|
|
bd.position_at_end(special_block);
|
|
|
|
let is_zero = bd.build_int_compare(IntPredicate::EQ, lhs, zero, "is_zero_lhs");
|
|
let is_neg_one =
|
|
bd.build_int_compare(IntPredicate::EQ, rhs, neg_1, "is_neg_one_rhs");
|
|
|
|
let result = bd.build_or(is_neg_one, is_zero, "cond");
|
|
|
|
bd.build_unconditional_branch(cont_block);
|
|
|
|
result
|
|
};
|
|
|
|
{
|
|
bd.position_at_end(cont_block);
|
|
|
|
let phi = bd.build_phi(env.context.bool_type(), "branch");
|
|
|
|
phi.add_incoming(&[
|
|
(&condition_rem, default_block),
|
|
(&condition_special, special_block),
|
|
]);
|
|
|
|
phi.as_basic_value()
|
|
}
|
|
}
|
|
NumPowInt => call_bitcode_fn(
|
|
env,
|
|
&[lhs.into(), rhs.into()],
|
|
&bitcode::NUM_POW_INT[int_width],
|
|
),
|
|
NumDivUnchecked => {
|
|
if int_width.is_signed() {
|
|
bd.build_int_signed_div(lhs, rhs, "div_int").into()
|
|
} else {
|
|
bd.build_int_unsigned_div(lhs, rhs, "div_uint").into()
|
|
}
|
|
}
|
|
NumDivCeilUnchecked => call_bitcode_fn(
|
|
env,
|
|
&[lhs.into(), rhs.into()],
|
|
&bitcode::NUM_DIV_CEIL[int_width],
|
|
),
|
|
NumBitwiseAnd => bd.build_and(lhs, rhs, "int_bitwise_and").into(),
|
|
NumBitwiseXor => bd.build_xor(lhs, rhs, "int_bitwise_xor").into(),
|
|
NumBitwiseOr => bd.build_or(lhs, rhs, "int_bitwise_or").into(),
|
|
NumShiftLeftBy => {
|
|
// NOTE arguments are flipped;
|
|
// we write `assert_eq!(0b0000_0001 << 0, 0b0000_0001);`
|
|
// as `Num.shiftLeftBy 0 0b0000_0001
|
|
bd.build_left_shift(rhs, lhs, "int_shift_left").into()
|
|
}
|
|
NumShiftRightBy => {
|
|
// NOTE arguments are flipped;
|
|
bd.build_right_shift(rhs, lhs, true, "int_shift_right")
|
|
.into()
|
|
}
|
|
NumShiftRightZfBy => {
|
|
// NOTE arguments are flipped;
|
|
bd.build_right_shift(rhs, lhs, false, "int_shift_right_zf")
|
|
.into()
|
|
}
|
|
|
|
_ => {
|
|
unreachable!("Unrecognized int binary operation: {:?}", op);
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn build_num_binop<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
parent: FunctionValue<'ctx>,
|
|
lhs_arg: BasicValueEnum<'ctx>,
|
|
lhs_layout: &Layout<'a>,
|
|
rhs_arg: BasicValueEnum<'ctx>,
|
|
rhs_layout: &Layout<'a>,
|
|
op: LowLevel,
|
|
) -> BasicValueEnum<'ctx> {
|
|
match (lhs_layout, rhs_layout) {
|
|
(Layout::Builtin(lhs_builtin), Layout::Builtin(rhs_builtin))
|
|
if lhs_builtin == rhs_builtin =>
|
|
{
|
|
use roc_mono::layout::Builtin::*;
|
|
|
|
match lhs_builtin {
|
|
Int(int_width) => build_int_binop(
|
|
env,
|
|
parent,
|
|
*int_width,
|
|
lhs_arg.into_int_value(),
|
|
rhs_arg.into_int_value(),
|
|
op,
|
|
),
|
|
|
|
Float(float_width) => build_float_binop(
|
|
env,
|
|
*float_width,
|
|
lhs_arg.into_float_value(),
|
|
rhs_arg.into_float_value(),
|
|
op,
|
|
),
|
|
|
|
Decimal => {
|
|
build_dec_binop(env, parent, lhs_arg, lhs_layout, rhs_arg, rhs_layout, op)
|
|
}
|
|
_ => {
|
|
unreachable!("Compiler bug: tried to run numeric operation {:?} on invalid builtin layout: ({:?})", op, lhs_layout);
|
|
}
|
|
}
|
|
}
|
|
_ => {
|
|
unreachable!("Compiler bug: tried to run numeric operation {:?} on invalid layouts. The 2 layouts were: ({:?}) and ({:?})", op, lhs_layout, rhs_layout);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn build_float_binop<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
float_width: FloatWidth,
|
|
lhs: FloatValue<'ctx>,
|
|
rhs: FloatValue<'ctx>,
|
|
op: LowLevel,
|
|
) -> BasicValueEnum<'ctx> {
|
|
use inkwell::FloatPredicate::*;
|
|
use roc_module::low_level::LowLevel::*;
|
|
|
|
let bd = env.builder;
|
|
|
|
match op {
|
|
NumAdd => bd.build_float_add(lhs, rhs, "add_float").into(),
|
|
NumAddChecked => {
|
|
let context = env.context;
|
|
|
|
let result = bd.build_float_add(lhs, rhs, "add_float");
|
|
|
|
let is_finite =
|
|
call_bitcode_fn(env, &[result.into()], &bitcode::NUM_IS_FINITE[float_width])
|
|
.into_int_value();
|
|
let is_infinite = bd.build_not(is_finite, "negate");
|
|
|
|
let struct_type = context.struct_type(
|
|
&[context.f64_type().into(), context.bool_type().into()],
|
|
false,
|
|
);
|
|
|
|
let struct_value = {
|
|
let v1 = struct_type.const_zero();
|
|
let v2 = bd.build_insert_value(v1, result, 0, "set_result").unwrap();
|
|
let v3 = bd
|
|
.build_insert_value(v2, is_infinite, 1, "set_is_infinite")
|
|
.unwrap();
|
|
|
|
v3.into_struct_value()
|
|
};
|
|
|
|
struct_value.into()
|
|
}
|
|
NumAddWrap => unreachable!("wrapping addition is not defined on floats"),
|
|
NumSub => bd.build_float_sub(lhs, rhs, "sub_float").into(),
|
|
NumSubChecked => {
|
|
let context = env.context;
|
|
|
|
let result = bd.build_float_sub(lhs, rhs, "sub_float");
|
|
|
|
let is_finite =
|
|
call_bitcode_fn(env, &[result.into()], &bitcode::NUM_IS_FINITE[float_width])
|
|
.into_int_value();
|
|
let is_infinite = bd.build_not(is_finite, "negate");
|
|
|
|
let struct_type = context.struct_type(
|
|
&[context.f64_type().into(), context.bool_type().into()],
|
|
false,
|
|
);
|
|
|
|
let struct_value = {
|
|
let v1 = struct_type.const_zero();
|
|
let v2 = bd.build_insert_value(v1, result, 0, "set_result").unwrap();
|
|
let v3 = bd
|
|
.build_insert_value(v2, is_infinite, 1, "set_is_infinite")
|
|
.unwrap();
|
|
|
|
v3.into_struct_value()
|
|
};
|
|
|
|
struct_value.into()
|
|
}
|
|
NumSubWrap => unreachable!("wrapping subtraction is not defined on floats"),
|
|
NumMul => bd.build_float_mul(lhs, rhs, "mul_float").into(),
|
|
NumMulSaturated => bd.build_float_mul(lhs, rhs, "mul_float").into(),
|
|
NumMulChecked => {
|
|
let context = env.context;
|
|
|
|
let result = bd.build_float_mul(lhs, rhs, "mul_float");
|
|
|
|
let is_finite =
|
|
call_bitcode_fn(env, &[result.into()], &bitcode::NUM_IS_FINITE[float_width])
|
|
.into_int_value();
|
|
let is_infinite = bd.build_not(is_finite, "negate");
|
|
|
|
let struct_type = context.struct_type(
|
|
&[context.f64_type().into(), context.bool_type().into()],
|
|
false,
|
|
);
|
|
|
|
let struct_value = {
|
|
let v1 = struct_type.const_zero();
|
|
let v2 = bd.build_insert_value(v1, result, 0, "set_result").unwrap();
|
|
let v3 = bd
|
|
.build_insert_value(v2, is_infinite, 1, "set_is_infinite")
|
|
.unwrap();
|
|
|
|
v3.into_struct_value()
|
|
};
|
|
|
|
struct_value.into()
|
|
}
|
|
NumMulWrap => unreachable!("wrapping multiplication is not defined on floats"),
|
|
NumGt => bd.build_float_compare(OGT, lhs, rhs, "float_gt").into(),
|
|
NumGte => bd.build_float_compare(OGE, lhs, rhs, "float_gte").into(),
|
|
NumLt => bd.build_float_compare(OLT, lhs, rhs, "float_lt").into(),
|
|
NumLte => bd.build_float_compare(OLE, lhs, rhs, "float_lte").into(),
|
|
NumDivUnchecked => bd.build_float_div(lhs, rhs, "div_float").into(),
|
|
NumPow => env.call_intrinsic(&LLVM_POW[float_width], &[lhs.into(), rhs.into()]),
|
|
_ => {
|
|
unreachable!("Unrecognized int binary operation: {:?}", op);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn dec_binop_with_overflow<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
fn_name: &str,
|
|
lhs: BasicValueEnum<'ctx>,
|
|
rhs: BasicValueEnum<'ctx>,
|
|
) -> StructValue<'ctx> {
|
|
let lhs = lhs.into_int_value();
|
|
let rhs = rhs.into_int_value();
|
|
|
|
let return_type = zig_with_overflow_roc_dec(env);
|
|
let return_alloca = env.builder.build_alloca(return_type, "return_alloca");
|
|
|
|
let int_64 = env.context.i128_type().const_int(64, false);
|
|
let int_64_type = env.context.i64_type();
|
|
|
|
let lhs1 = env
|
|
.builder
|
|
.build_right_shift(lhs, int_64, false, "lhs_left_bits");
|
|
let rhs1 = env
|
|
.builder
|
|
.build_right_shift(rhs, int_64, false, "rhs_left_bits");
|
|
|
|
call_void_bitcode_fn(
|
|
env,
|
|
&[
|
|
return_alloca.into(),
|
|
env.builder.build_int_cast(lhs, int_64_type, "").into(),
|
|
env.builder.build_int_cast(lhs1, int_64_type, "").into(),
|
|
env.builder.build_int_cast(rhs, int_64_type, "").into(),
|
|
env.builder.build_int_cast(rhs1, int_64_type, "").into(),
|
|
],
|
|
fn_name,
|
|
);
|
|
|
|
env.builder
|
|
.build_load(return_alloca, "load_dec")
|
|
.into_struct_value()
|
|
}
|
|
|
|
pub fn dec_binop_with_unchecked<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
fn_name: &str,
|
|
lhs: BasicValueEnum<'ctx>,
|
|
rhs: BasicValueEnum<'ctx>,
|
|
) -> BasicValueEnum<'ctx> {
|
|
let lhs = lhs.into_int_value();
|
|
let rhs = rhs.into_int_value();
|
|
|
|
let int_64 = env.context.i128_type().const_int(64, false);
|
|
let int_64_type = env.context.i64_type();
|
|
|
|
let lhs1 = env
|
|
.builder
|
|
.build_right_shift(lhs, int_64, false, "lhs_left_bits");
|
|
let rhs1 = env
|
|
.builder
|
|
.build_right_shift(rhs, int_64, false, "rhs_left_bits");
|
|
|
|
call_bitcode_fn(
|
|
env,
|
|
&[
|
|
env.builder.build_int_cast(lhs, int_64_type, "").into(),
|
|
env.builder.build_int_cast(lhs1, int_64_type, "").into(),
|
|
env.builder.build_int_cast(rhs, int_64_type, "").into(),
|
|
env.builder.build_int_cast(rhs1, int_64_type, "").into(),
|
|
],
|
|
fn_name,
|
|
)
|
|
}
|
|
|
|
fn build_dec_binop<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
parent: FunctionValue<'ctx>,
|
|
lhs: BasicValueEnum<'ctx>,
|
|
_lhs_layout: &Layout<'a>,
|
|
rhs: BasicValueEnum<'ctx>,
|
|
_rhs_layout: &Layout<'a>,
|
|
op: LowLevel,
|
|
) -> BasicValueEnum<'ctx> {
|
|
use roc_module::low_level::LowLevel::*;
|
|
|
|
match op {
|
|
NumAddChecked => call_bitcode_fn(env, &[lhs, rhs], bitcode::DEC_ADD_WITH_OVERFLOW),
|
|
NumSubChecked => call_bitcode_fn(env, &[lhs, rhs], bitcode::DEC_SUB_WITH_OVERFLOW),
|
|
NumMulChecked => call_bitcode_fn(env, &[lhs, rhs], bitcode::DEC_MUL_WITH_OVERFLOW),
|
|
NumAdd => build_dec_binop_throw_on_overflow(
|
|
env,
|
|
parent,
|
|
bitcode::DEC_ADD_WITH_OVERFLOW,
|
|
lhs,
|
|
rhs,
|
|
"decimal addition overflowed",
|
|
),
|
|
NumSub => build_dec_binop_throw_on_overflow(
|
|
env,
|
|
parent,
|
|
bitcode::DEC_SUB_WITH_OVERFLOW,
|
|
lhs,
|
|
rhs,
|
|
"decimal subtraction overflowed",
|
|
),
|
|
NumMul => build_dec_binop_throw_on_overflow(
|
|
env,
|
|
parent,
|
|
bitcode::DEC_MUL_WITH_OVERFLOW,
|
|
lhs,
|
|
rhs,
|
|
"decimal multiplication overflowed",
|
|
),
|
|
NumDivUnchecked => dec_binop_with_unchecked(env, bitcode::DEC_DIV, lhs, rhs),
|
|
_ => {
|
|
unreachable!("Unrecognized int binary operation: {:?}", op);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn build_dec_binop_throw_on_overflow<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
parent: FunctionValue<'ctx>,
|
|
operation: &str,
|
|
lhs: BasicValueEnum<'ctx>,
|
|
rhs: BasicValueEnum<'ctx>,
|
|
message: &str,
|
|
) -> BasicValueEnum<'ctx> {
|
|
let result = dec_binop_with_overflow(env, operation, lhs, rhs);
|
|
|
|
let value = throw_on_overflow(env, parent, result, message).into_struct_value();
|
|
|
|
env.builder.build_extract_value(value, 0, "num").unwrap()
|
|
}
|
|
|
|
fn int_type_signed_min(int_type: IntType) -> IntValue {
|
|
let width = int_type.get_bit_width();
|
|
|
|
debug_assert!(width <= 128);
|
|
let shift = 128 - width as usize;
|
|
|
|
if shift < 64 {
|
|
let min = i128::MIN >> shift;
|
|
let a = min as u64;
|
|
let b = (min >> 64) as u64;
|
|
|
|
int_type.const_int_arbitrary_precision(&[b, a])
|
|
} else {
|
|
int_type.const_int((i128::MIN >> shift) as u64, false)
|
|
}
|
|
}
|
|
|
|
fn build_int_unary_op<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
arg: IntValue<'ctx>,
|
|
arg_width: IntWidth,
|
|
arg_int_type: IntType<'ctx>,
|
|
op: LowLevel,
|
|
return_layout: &Layout<'a>,
|
|
) -> BasicValueEnum<'ctx> {
|
|
use roc_module::low_level::LowLevel::*;
|
|
|
|
let bd = env.builder;
|
|
|
|
match op {
|
|
NumNeg => {
|
|
// integer abs overflows when applied to the minimum value of a signed type
|
|
int_neg_raise_on_overflow(env, arg, arg_int_type)
|
|
}
|
|
NumAbs => {
|
|
// integer abs overflows when applied to the minimum value of a signed type
|
|
int_abs_raise_on_overflow(env, arg, arg_int_type)
|
|
}
|
|
NumToFrac => {
|
|
// This is an Int, so we need to convert it.
|
|
|
|
let target_float_type = match return_layout {
|
|
Layout::Builtin(Builtin::Float(float_width)) => {
|
|
convert::float_type_from_float_width(env, *float_width)
|
|
}
|
|
_ => internal_error!("There can only be floats here!"),
|
|
};
|
|
|
|
bd.build_cast(
|
|
InstructionOpcode::SIToFP,
|
|
arg,
|
|
target_float_type,
|
|
"i64_to_f64",
|
|
)
|
|
}
|
|
NumToIntChecked => {
|
|
// return_layout : Result N [OutOfBounds]* ~ { result: N, out_of_bounds: bool }
|
|
|
|
let target_int_width = match return_layout {
|
|
Layout::Struct { field_layouts, .. } if field_layouts.len() == 2 => {
|
|
debug_assert!(matches!(field_layouts[1], Layout::Builtin(Builtin::Bool)));
|
|
match field_layouts[0] {
|
|
Layout::Builtin(Builtin::Int(iw)) => iw,
|
|
layout => internal_error!(
|
|
"There can only be an int layout here, found {:?}!",
|
|
layout
|
|
),
|
|
}
|
|
}
|
|
layout => internal_error!(
|
|
"There can only be a result layout here, found {:?}!",
|
|
layout
|
|
),
|
|
};
|
|
|
|
let arg_always_fits_in_target = (arg_width.stack_size() < target_int_width.stack_size()
|
|
&& (
|
|
// If the arg is unsigned, it will always fit in either a signed or unsigned
|
|
// int of a larger width.
|
|
!arg_width.is_signed()
|
|
||
|
|
// Otherwise if the arg is signed, it will always fit in a signed int of a
|
|
// larger width.
|
|
(target_int_width.is_signed() )
|
|
) )
|
|
|| // Or if the two types are the same, they trivially fit.
|
|
arg_width == target_int_width;
|
|
|
|
let return_type =
|
|
convert::basic_type_from_layout(env, return_layout).into_struct_type();
|
|
|
|
if arg_always_fits_in_target {
|
|
// This is guaranteed to succeed so we can just make it an int cast and let LLVM
|
|
// optimize it away.
|
|
let target_int_type = convert::int_type_from_int_width(env, target_int_width);
|
|
let target_int_val: BasicValueEnum<'ctx> = env
|
|
.builder
|
|
.build_int_cast_sign_flag(
|
|
arg,
|
|
target_int_type,
|
|
target_int_width.is_signed(),
|
|
"int_cast",
|
|
)
|
|
.into();
|
|
|
|
let r = return_type.const_zero();
|
|
let r = bd
|
|
.build_insert_value(r, target_int_val, 0, "converted_int")
|
|
.unwrap();
|
|
let r = bd
|
|
.build_insert_value(r, env.context.bool_type().const_zero(), 1, "out_of_bounds")
|
|
.unwrap();
|
|
|
|
r.into_struct_value().into()
|
|
} else {
|
|
let bitcode_fn = if !arg_width.is_signed() {
|
|
// We are trying to convert from unsigned to signed/unsigned of same or lesser width, e.g.
|
|
// u16 -> i16, u16 -> i8, or u16 -> u8. We only need to check that the argument
|
|
// value fits in the MAX target type value.
|
|
&bitcode::NUM_INT_TO_INT_CHECKING_MAX[target_int_width][arg_width]
|
|
} else {
|
|
// We are trying to convert from signed to signed/unsigned of same or lesser width, e.g.
|
|
// i16 -> u16, i16 -> i8, or i16 -> u8. We need to check that the argument value fits in
|
|
// the MAX and MIN target type.
|
|
&bitcode::NUM_INT_TO_INT_CHECKING_MAX_AND_MIN[target_int_width][arg_width]
|
|
};
|
|
|
|
let result = call_bitcode_fn_fixing_for_convention(
|
|
env,
|
|
&[arg.into()],
|
|
return_layout,
|
|
bitcode_fn,
|
|
);
|
|
|
|
complex_bitcast_check_size(env, result, return_type.into(), "cast_bitpacked")
|
|
}
|
|
}
|
|
_ => {
|
|
unreachable!("Unrecognized int unary operation: {:?}", op);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn int_neg_raise_on_overflow<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
arg: IntValue<'ctx>,
|
|
int_type: IntType<'ctx>,
|
|
) -> BasicValueEnum<'ctx> {
|
|
let builder = env.builder;
|
|
|
|
let min_val = int_type_signed_min(int_type);
|
|
let condition = builder.build_int_compare(IntPredicate::EQ, arg, min_val, "is_min_val");
|
|
|
|
let block = env.builder.get_insert_block().expect("to be in a function");
|
|
let parent = block.get_parent().expect("to be in a function");
|
|
let then_block = env.context.append_basic_block(parent, "then");
|
|
let else_block = env.context.append_basic_block(parent, "else");
|
|
|
|
env.builder
|
|
.build_conditional_branch(condition, then_block, else_block);
|
|
|
|
builder.position_at_end(then_block);
|
|
|
|
throw_exception(
|
|
env,
|
|
"integer negation overflowed because its argument is the minimum value",
|
|
);
|
|
|
|
builder.position_at_end(else_block);
|
|
|
|
builder.build_int_neg(arg, "negate_int").into()
|
|
}
|
|
|
|
fn int_abs_raise_on_overflow<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
arg: IntValue<'ctx>,
|
|
int_type: IntType<'ctx>,
|
|
) -> BasicValueEnum<'ctx> {
|
|
let builder = env.builder;
|
|
|
|
let min_val = int_type_signed_min(int_type);
|
|
let condition = builder.build_int_compare(IntPredicate::EQ, arg, min_val, "is_min_val");
|
|
|
|
let block = env.builder.get_insert_block().expect("to be in a function");
|
|
let parent = block.get_parent().expect("to be in a function");
|
|
let then_block = env.context.append_basic_block(parent, "then");
|
|
let else_block = env.context.append_basic_block(parent, "else");
|
|
|
|
env.builder
|
|
.build_conditional_branch(condition, then_block, else_block);
|
|
|
|
builder.position_at_end(then_block);
|
|
|
|
throw_exception(
|
|
env,
|
|
"integer absolute overflowed because its argument is the minimum value",
|
|
);
|
|
|
|
builder.position_at_end(else_block);
|
|
|
|
int_abs_with_overflow(env, arg, int_type)
|
|
}
|
|
|
|
fn int_abs_with_overflow<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
arg: IntValue<'ctx>,
|
|
int_type: IntType<'ctx>,
|
|
) -> BasicValueEnum<'ctx> {
|
|
// This is how libc's abs() is implemented - it uses no branching!
|
|
//
|
|
// abs = \arg ->
|
|
// shifted = arg >>> 63
|
|
//
|
|
// (xor arg shifted) - shifted
|
|
|
|
let bd = env.builder;
|
|
let ctx = env.context;
|
|
let shifted_name = "abs_shift_right";
|
|
let shifted_alloca = {
|
|
let bits_to_shift = int_type.get_bit_width() as u64 - 1;
|
|
let shift_val = ctx.i64_type().const_int(bits_to_shift, false);
|
|
let shifted = bd.build_right_shift(arg, shift_val, true, shifted_name);
|
|
let alloca = bd.build_alloca(int_type, "#int_abs_help");
|
|
|
|
// shifted = arg >>> 63
|
|
bd.build_store(alloca, shifted);
|
|
|
|
alloca
|
|
};
|
|
|
|
let xored_arg = bd.build_xor(
|
|
arg,
|
|
bd.build_load(shifted_alloca, shifted_name).into_int_value(),
|
|
"xor_arg_shifted",
|
|
);
|
|
|
|
BasicValueEnum::IntValue(bd.build_int_sub(
|
|
xored_arg,
|
|
bd.build_load(shifted_alloca, shifted_name).into_int_value(),
|
|
"sub_xored_shifted",
|
|
))
|
|
}
|
|
|
|
fn build_float_unary_op<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
layout: &Layout<'a>,
|
|
arg: FloatValue<'ctx>,
|
|
op: LowLevel,
|
|
float_width: FloatWidth, // arg width
|
|
) -> BasicValueEnum<'ctx> {
|
|
use roc_module::low_level::LowLevel::*;
|
|
|
|
let bd = env.builder;
|
|
|
|
// TODO: Handle different sized floats
|
|
match op {
|
|
NumNeg => bd.build_float_neg(arg, "negate_float").into(),
|
|
NumAbs => env.call_intrinsic(&LLVM_FABS[float_width], &[arg.into()]),
|
|
NumSqrtUnchecked => env.call_intrinsic(&LLVM_SQRT[float_width], &[arg.into()]),
|
|
NumLogUnchecked => env.call_intrinsic(&LLVM_LOG[float_width], &[arg.into()]),
|
|
NumToFrac => {
|
|
let return_width = match layout {
|
|
Layout::Builtin(Builtin::Float(return_width)) => *return_width,
|
|
_ => internal_error!("Layout for returning is not Float : {:?}", layout),
|
|
};
|
|
match (float_width, return_width) {
|
|
(FloatWidth::F32, FloatWidth::F32) => arg.into(),
|
|
(FloatWidth::F32, FloatWidth::F64) => bd.build_cast(
|
|
InstructionOpcode::FPExt,
|
|
arg,
|
|
env.context.f64_type(),
|
|
"f32_to_f64",
|
|
),
|
|
(FloatWidth::F64, FloatWidth::F32) => bd.build_cast(
|
|
InstructionOpcode::FPTrunc,
|
|
arg,
|
|
env.context.f32_type(),
|
|
"f64_to_f32",
|
|
),
|
|
(FloatWidth::F64, FloatWidth::F64) => arg.into(),
|
|
(FloatWidth::F128, FloatWidth::F128) => arg.into(),
|
|
(FloatWidth::F128, _) => {
|
|
unimplemented!("I cannot handle F128 with Num.toFrac yet")
|
|
}
|
|
(_, FloatWidth::F128) => {
|
|
unimplemented!("I cannot handle F128 with Num.toFrac yet")
|
|
}
|
|
}
|
|
}
|
|
NumCeiling => {
|
|
let (return_signed, return_type) = match layout {
|
|
Layout::Builtin(Builtin::Int(int_width)) => (
|
|
int_width.is_signed(),
|
|
convert::int_type_from_int_width(env, *int_width),
|
|
),
|
|
_ => internal_error!("Ceiling return layout is not int: {:?}", layout),
|
|
};
|
|
let opcode = if return_signed {
|
|
InstructionOpcode::FPToSI
|
|
} else {
|
|
InstructionOpcode::FPToUI
|
|
};
|
|
env.builder.build_cast(
|
|
opcode,
|
|
env.call_intrinsic(&LLVM_CEILING[float_width], &[arg.into()]),
|
|
return_type,
|
|
"num_ceiling",
|
|
)
|
|
}
|
|
NumFloor => {
|
|
let (return_signed, return_type) = match layout {
|
|
Layout::Builtin(Builtin::Int(int_width)) => (
|
|
int_width.is_signed(),
|
|
convert::int_type_from_int_width(env, *int_width),
|
|
),
|
|
_ => internal_error!("Ceiling return layout is not int: {:?}", layout),
|
|
};
|
|
let opcode = if return_signed {
|
|
InstructionOpcode::FPToSI
|
|
} else {
|
|
InstructionOpcode::FPToUI
|
|
};
|
|
env.builder.build_cast(
|
|
opcode,
|
|
env.call_intrinsic(&LLVM_FLOOR[float_width], &[arg.into()]),
|
|
return_type,
|
|
"num_floor",
|
|
)
|
|
}
|
|
NumRound => {
|
|
let (return_signed, return_type) = match layout {
|
|
Layout::Builtin(Builtin::Int(int_width)) => (
|
|
int_width.is_signed(),
|
|
convert::int_type_from_int_width(env, *int_width),
|
|
),
|
|
_ => internal_error!("Ceiling return layout is not int: {:?}", layout),
|
|
};
|
|
let opcode = if return_signed {
|
|
InstructionOpcode::FPToSI
|
|
} else {
|
|
InstructionOpcode::FPToUI
|
|
};
|
|
env.builder.build_cast(
|
|
opcode,
|
|
env.call_intrinsic(&LLVM_ROUND[float_width], &[arg.into()]),
|
|
return_type,
|
|
"num_round",
|
|
)
|
|
}
|
|
NumIsFinite => call_bitcode_fn(env, &[arg.into()], &bitcode::NUM_IS_FINITE[float_width]),
|
|
|
|
// trigonometry
|
|
NumSin => env.call_intrinsic(&LLVM_SIN[float_width], &[arg.into()]),
|
|
NumCos => env.call_intrinsic(&LLVM_COS[float_width], &[arg.into()]),
|
|
|
|
NumAtan => call_bitcode_fn(env, &[arg.into()], &bitcode::NUM_ATAN[float_width]),
|
|
NumAcos => call_bitcode_fn(env, &[arg.into()], &bitcode::NUM_ACOS[float_width]),
|
|
NumAsin => call_bitcode_fn(env, &[arg.into()], &bitcode::NUM_ASIN[float_width]),
|
|
|
|
_ => {
|
|
unreachable!("Unrecognized int unary operation: {:?}", op);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn define_global_str_literal_ptr<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
message: &str,
|
|
) -> PointerValue<'ctx> {
|
|
let global = define_global_str_literal(env, message);
|
|
|
|
let ptr = env
|
|
.builder
|
|
.build_bitcast(
|
|
global,
|
|
env.context.i8_type().ptr_type(AddressSpace::Generic),
|
|
"to_opaque",
|
|
)
|
|
.into_pointer_value();
|
|
|
|
// a pointer to the first actual data (skipping over the refcount)
|
|
let ptr = unsafe {
|
|
env.builder.build_in_bounds_gep(
|
|
ptr,
|
|
&[env
|
|
.ptr_int()
|
|
.const_int(env.target_info.ptr_width() as u64, false)],
|
|
"get_rc_ptr",
|
|
)
|
|
};
|
|
|
|
ptr
|
|
}
|
|
|
|
fn define_global_str_literal<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
message: &str,
|
|
) -> inkwell::values::GlobalValue<'ctx> {
|
|
let module = env.module;
|
|
|
|
// hash the name so we don't re-define existing messages
|
|
let name = {
|
|
use std::collections::hash_map::DefaultHasher;
|
|
use std::hash::{Hash, Hasher};
|
|
|
|
let mut hasher = DefaultHasher::new();
|
|
message.hash(&mut hasher);
|
|
let hash = hasher.finish();
|
|
|
|
format!("_str_literal_{}", hash)
|
|
};
|
|
|
|
match module.get_global(&name) {
|
|
Some(current) => current,
|
|
|
|
None => {
|
|
let size = message.bytes().len() + env.target_info.ptr_width() as usize;
|
|
let mut bytes = Vec::with_capacity_in(size, env.arena);
|
|
|
|
// insert NULL bytes for the refcount
|
|
for _ in 0..env.target_info.ptr_width() as usize {
|
|
bytes.push(env.context.i8_type().const_zero());
|
|
}
|
|
|
|
// then add the data bytes
|
|
for b in message.bytes() {
|
|
bytes.push(env.context.i8_type().const_int(b as u64, false));
|
|
}
|
|
|
|
// use None for the address space (e.g. Const does not work)
|
|
let typ = env.context.i8_type().array_type(bytes.len() as u32);
|
|
let global = module.add_global(typ, None, &name);
|
|
|
|
global.set_initializer(&env.context.i8_type().const_array(bytes.into_bump_slice()));
|
|
|
|
// mimic the `global_string` function; we cannot use it directly because it assumes
|
|
// strings are NULL-terminated, which means we can't store the refcount (which is 8
|
|
// NULL bytes)
|
|
global.set_constant(true);
|
|
global.set_alignment(env.target_info.ptr_width() as u32);
|
|
global.set_unnamed_addr(true);
|
|
global.set_linkage(inkwell::module::Linkage::Private);
|
|
|
|
global
|
|
}
|
|
}
|
|
}
|
|
|
|
fn define_global_error_str<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
message: &str,
|
|
) -> inkwell::values::GlobalValue<'ctx> {
|
|
let module = env.module;
|
|
|
|
// hash the name so we don't re-define existing messages
|
|
let name = {
|
|
use std::collections::hash_map::DefaultHasher;
|
|
use std::hash::{Hash, Hasher};
|
|
|
|
let mut hasher = DefaultHasher::new();
|
|
message.hash(&mut hasher);
|
|
let hash = hasher.finish();
|
|
|
|
format!("_Error_message_{}", hash)
|
|
};
|
|
|
|
match module.get_global(&name) {
|
|
Some(current) => current,
|
|
None => unsafe { env.builder.build_global_string(message, name.as_str()) },
|
|
}
|
|
}
|
|
|
|
fn throw_exception<'a, 'ctx, 'env>(env: &Env<'a, 'ctx, 'env>, message: &str) {
|
|
let builder = env.builder;
|
|
|
|
// define the error message as a global
|
|
// (a hash is used such that the same value is not defined repeatedly)
|
|
let error_msg_global = define_global_error_str(env, message);
|
|
|
|
let cast = env
|
|
.builder
|
|
.build_bitcast(
|
|
error_msg_global.as_pointer_value(),
|
|
env.context.i8_type().ptr_type(AddressSpace::Generic),
|
|
"cast_void",
|
|
)
|
|
.into_pointer_value();
|
|
|
|
env.call_panic(cast, PanicTagId::NullTerminatedString);
|
|
|
|
builder.build_unreachable();
|
|
}
|
|
|
|
fn get_foreign_symbol<'a, 'ctx, 'env>(
|
|
env: &Env<'a, 'ctx, 'env>,
|
|
foreign_symbol: roc_module::ident::ForeignSymbol,
|
|
function_spec: FunctionSpec<'ctx>,
|
|
) -> FunctionValue<'ctx> {
|
|
let module = env.module;
|
|
|
|
match module.get_function(foreign_symbol.as_str()) {
|
|
Some(gvalue) => gvalue,
|
|
None => {
|
|
let foreign_function = add_func(
|
|
env.context,
|
|
module,
|
|
foreign_symbol.as_str(),
|
|
function_spec,
|
|
Linkage::External,
|
|
);
|
|
|
|
foreign_function
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Add a function to a module, after asserting that the function is unique.
|
|
/// We never want to define the same function twice in the same module!
|
|
/// The result can be bugs that are difficult to track down.
|
|
pub fn add_func<'ctx>(
|
|
ctx: &Context,
|
|
module: &Module<'ctx>,
|
|
name: &str,
|
|
spec: FunctionSpec<'ctx>,
|
|
linkage: Linkage,
|
|
) -> FunctionValue<'ctx> {
|
|
if cfg!(debug_assertions) {
|
|
if let Some(func) = module.get_function(name) {
|
|
panic!("Attempting to redefine LLVM function {}, which was already defined in this module as:\n\n{:?}", name, func);
|
|
}
|
|
}
|
|
|
|
let fn_val = module.add_function(name, spec.typ, Some(linkage));
|
|
|
|
spec.attach_attributes(ctx, fn_val);
|
|
|
|
fn_val
|
|
}
|