roc/compiler/builtins/src/std.rs
2020-05-01 21:59:38 -04:00

923 lines
26 KiB
Rust

use roc_can::def::Def;
use roc_can::expr::Expr;
use roc_can::expr::Recursive;
use roc_collections::all::SendMap;
use roc_collections::all::{default_hasher, MutMap, MutSet};
use roc_module::ident::TagName;
use roc_module::operator::CalledVia;
use roc_module::symbol::Symbol;
use roc_region::all::{Located, Region};
use roc_types::solved_types::{BuiltinAlias, SolvedType};
use roc_types::subs::VarId;
use roc_types::subs::Variable;
use std::collections::HashMap;
#[derive(Clone, Copy, Debug)]
pub enum Mode {
Standard,
Uniqueness,
}
pub struct StdLib {
pub mode: Mode,
pub types: MutMap<Symbol, (SolvedType, Region)>,
pub aliases: MutMap<Symbol, BuiltinAlias>,
pub applies: MutSet<Symbol>,
}
pub fn standard_stdlib() -> StdLib {
StdLib {
mode: Mode::Standard,
types: types(),
aliases: aliases(),
applies: vec![
Symbol::LIST_LIST,
Symbol::SET_SET,
Symbol::MAP_MAP,
Symbol::STR_STR,
]
.into_iter()
.collect(),
}
}
/// Keep this up to date by hand! It's the number of builtin aliases that are imported by default.
const NUM_BUILTIN_IMPORTS: usize = 7;
/// These can be shared between definitions, they will get instantiated when converted to Type
const TVAR_NONE: VarId = VarId::from_u32(0);
const TVAR1: VarId = VarId::from_u32(1);
const TVAR2: VarId = VarId::from_u32(2);
const TVAR3: VarId = VarId::from_u32(3);
/// Some builtins cannot be constructed in code gen alone, and need to be defined
/// as separate Roc defs. For example, List.get has this type:
///
/// List.get : List elem, Int -> Result elem [ OutOfBounds ]*
///
/// Because this returns an open tag union for its Err type, it's not possible
/// for code gen to return a hardcoded value for OutOfBounds. For example,
/// if this Result unifies to [ Foo, OutOfBounds ] then OutOfBOunds will
/// get assigned the number 1 (because Foo got 0 alphabetically), whereas
/// if it unifies to [ OutOfBounds, Qux ] then OutOfBounds will get the number 0.
///
/// Getting these numbers right requires having List.get participate in the
/// normal type-checking and monomorphization processes. As such, this function
/// returns a normal def for List.get, which performs a bounds check and then
/// delegates to the compiler-internal List.getUnsafe function to do the actual
/// lookup (if the bounds check passed). That internal function is hardcoded in code gen,
/// which works fine because it doesn't involve any open tag unions.
pub fn builtin_defs() -> Vec<Def> {
vec![list_get(), list_first(), int_div()]
}
pub fn aliases() -> MutMap<Symbol, BuiltinAlias> {
let mut aliases = HashMap::with_capacity_and_hasher(NUM_BUILTIN_IMPORTS, default_hasher());
let mut add_alias = |symbol, alias| {
debug_assert!(
!aliases.contains_key(&symbol),
"Duplicate alias definition for {:?}",
symbol
);
// TODO instead of using Region::zero for all of these,
// instead use the Region where they were defined in their
// source .roc files! This can give nicer error messages.
aliases.insert(symbol, alias);
};
let single_private_tag = |symbol, targs| {
SolvedType::TagUnion(
vec![(TagName::Private(symbol), targs)],
Box::new(SolvedType::EmptyTagUnion),
)
};
// Num range : [ @Num range ]
add_alias(
Symbol::NUM_NUM,
BuiltinAlias {
region: Region::zero(),
vars: vec![Located::at(Region::zero(), "range".into())],
typ: single_private_tag(Symbol::NUM_AT_NUM, vec![flex(TVAR1)]),
},
);
// Integer : [ @Integer ]
add_alias(
Symbol::INT_INTEGER,
BuiltinAlias {
region: Region::zero(),
vars: Vec::new(),
typ: single_private_tag(Symbol::INT_AT_INTEGER, Vec::new()),
},
);
// Int : Num Integer
add_alias(
Symbol::INT_INT,
BuiltinAlias {
region: Region::zero(),
vars: Vec::new(),
typ: SolvedType::Apply(
Symbol::NUM_NUM,
vec![SolvedType::Apply(Symbol::INT_INTEGER, Vec::new())],
),
},
);
// FloatingPoint : [ @FloatingPoint ]
add_alias(
Symbol::FLOAT_FLOATINGPOINT,
BuiltinAlias {
region: Region::zero(),
vars: Vec::new(),
typ: single_private_tag(Symbol::FLOAT_AT_FLOATINGPOINT, Vec::new()),
},
);
// Float : Num FloatingPoint
add_alias(
Symbol::FLOAT_FLOAT,
BuiltinAlias {
region: Region::zero(),
vars: Vec::new(),
typ: SolvedType::Apply(
Symbol::NUM_NUM,
vec![SolvedType::Apply(Symbol::FLOAT_FLOATINGPOINT, Vec::new())],
),
},
);
// Bool : [ True, False ]
add_alias(
Symbol::BOOL_BOOL,
BuiltinAlias {
region: Region::zero(),
vars: Vec::new(),
typ: SolvedType::TagUnion(
vec![
(TagName::Global("True".into()), Vec::new()),
(TagName::Global("False".into()), Vec::new()),
],
Box::new(SolvedType::EmptyTagUnion),
),
},
);
// Result a e : [ Ok a, Err e ]
add_alias(
Symbol::RESULT_RESULT,
BuiltinAlias {
region: Region::zero(),
vars: vec![
Located::at(Region::zero(), "a".into()),
Located::at(Region::zero(), "e".into()),
],
typ: SolvedType::TagUnion(
vec![
(TagName::Global("Ok".into()), vec![flex(TVAR1)]),
(TagName::Global("Err".into()), vec![flex(TVAR2)]),
],
Box::new(SolvedType::EmptyTagUnion),
),
},
);
aliases
}
pub fn types() -> MutMap<Symbol, (SolvedType, Region)> {
let mut types = HashMap::with_capacity_and_hasher(NUM_BUILTIN_IMPORTS, default_hasher());
let mut add_type = |symbol, typ| {
debug_assert!(
!types.contains_key(&symbol),
"Duplicate type definition for {:?}",
symbol
);
// TODO instead of using Region::zero for all of these,
// instead use the Region where they were defined in their
// source .roc files! This can give nicer error messages.
types.insert(symbol, (typ, Region::zero()));
};
// Num module
// add or (+) : Num a, Num a -> Num a
add_type(
Symbol::NUM_ADD,
SolvedType::Func(
vec![num_type(flex(TVAR1)), num_type(flex(TVAR1))],
Box::new(num_type(flex(TVAR1))),
),
);
// sub or (-) : Num a, Num a -> Num a
add_type(
Symbol::NUM_SUB,
SolvedType::Func(
vec![num_type(flex(TVAR1)), num_type(flex(TVAR1))],
Box::new(num_type(flex(TVAR1))),
),
);
// mul or (*) : Num a, Num a -> Num a
add_type(
Symbol::NUM_MUL,
SolvedType::Func(
vec![num_type(flex(TVAR1)), num_type(flex(TVAR1))],
Box::new(num_type(flex(TVAR1))),
),
);
// abs : Num a -> Num a
add_type(
Symbol::NUM_ABS,
SolvedType::Func(vec![num_type(flex(TVAR1))], Box::new(num_type(flex(TVAR1)))),
);
// neg : Num a -> Num a
add_type(
Symbol::NUM_NEG,
SolvedType::Func(vec![num_type(flex(TVAR1))], Box::new(num_type(flex(TVAR1)))),
);
// isEq or (==) : a, a -> Bool
add_type(
Symbol::BOOL_EQ,
SolvedType::Func(vec![flex(TVAR1), flex(TVAR1)], Box::new(bool_type())),
);
// isNeq or (!=) : a, a -> Bool
add_type(
Symbol::BOOL_NEQ,
SolvedType::Func(vec![flex(TVAR1), flex(TVAR1)], Box::new(bool_type())),
);
// isLt or (<) : Num a, Num a -> Bool
add_type(
Symbol::NUM_LT,
SolvedType::Func(
vec![num_type(flex(TVAR1)), num_type(flex(TVAR1))],
Box::new(bool_type()),
),
);
// isLte or (<=) : Num a, Num a -> Bool
add_type(
Symbol::NUM_LTE,
SolvedType::Func(
vec![num_type(flex(TVAR1)), num_type(flex(TVAR1))],
Box::new(bool_type()),
),
);
// isGt or (>) : Num a, Num a -> Bool
add_type(
Symbol::NUM_GT,
SolvedType::Func(
vec![num_type(flex(TVAR1)), num_type(flex(TVAR1))],
Box::new(bool_type()),
),
);
// isGte or (>=) : Num a, Num a -> Bool
add_type(
Symbol::NUM_GTE,
SolvedType::Func(
vec![num_type(flex(TVAR1)), num_type(flex(TVAR1))],
Box::new(bool_type()),
),
);
// toFloat : Num a -> Float
add_type(
Symbol::NUM_TO_FLOAT,
SolvedType::Func(vec![num_type(flex(TVAR1))], Box::new(float_type())),
);
// Int module
// equals : Int, Int -> Bool
add_type(
Symbol::INT_EQ_I64,
SolvedType::Func(vec![int_type(), int_type()], Box::new(bool_type())),
);
// notEquals : Int, Int -> Bool
add_type(
Symbol::INT_NEQ_I64,
SolvedType::Func(vec![int_type(), int_type()], Box::new(bool_type())),
);
// highest : Int
add_type(Symbol::INT_HIGHEST, int_type());
// lowest : Int
add_type(Symbol::INT_LOWEST, int_type());
// div : Int, Int -> Int
add_type(
Symbol::INT_DIV_UNSAFE,
SolvedType::Func(vec![int_type(), int_type()], Box::new(int_type())),
);
let div_by_zero = SolvedType::TagUnion(
vec![(TagName::Global("DivByZero".into()), vec![])],
Box::new(SolvedType::Wildcard),
);
// mod : Int, Int -> Result Int [ DivByZero ]*
add_type(
Symbol::INT_MOD,
SolvedType::Func(
vec![int_type(), int_type()],
Box::new(result_type(flex(TVAR1), div_by_zero)),
),
);
// Float module
// div : Float, Float -> Float
add_type(
Symbol::FLOAT_DIV,
SolvedType::Func(vec![float_type(), float_type()], Box::new(float_type())),
);
// mod : Float, Float -> Float
add_type(
Symbol::FLOAT_MOD,
SolvedType::Func(vec![float_type(), float_type()], Box::new(float_type())),
);
// sqrt : Float -> Float
add_type(
Symbol::FLOAT_SQRT,
SolvedType::Func(vec![float_type()], Box::new(float_type())),
);
// round : Float -> Int
add_type(
Symbol::FLOAT_ROUND,
SolvedType::Func(vec![float_type()], Box::new(int_type())),
);
// highest : Float
add_type(Symbol::FLOAT_HIGHEST, float_type());
// lowest : Float
add_type(Symbol::FLOAT_LOWEST, float_type());
// Bool module
// and : Bool, Bool -> Bool
add_type(
Symbol::BOOL_AND,
SolvedType::Func(vec![bool_type(), bool_type()], Box::new(bool_type())),
);
// or : Bool, Bool -> Bool
add_type(
Symbol::BOOL_OR,
SolvedType::Func(vec![bool_type(), bool_type()], Box::new(bool_type())),
);
// xor : Bool, Bool -> Bool
add_type(
Symbol::BOOL_XOR,
SolvedType::Func(vec![bool_type(), bool_type()], Box::new(bool_type())),
);
// not : Bool -> Bool
add_type(
Symbol::BOOL_NOT,
SolvedType::Func(vec![bool_type()], Box::new(bool_type())),
);
// Str module
// isEmpty : Str -> Bool
add_type(
Symbol::STR_ISEMPTY,
SolvedType::Func(vec![str_type()], Box::new(bool_type())),
);
// List module
// get : List elem, Int -> Result elem [ OutOfBounds ]*
let index_out_of_bounds = SolvedType::TagUnion(
vec![(TagName::Global("OutOfBounds".into()), vec![])],
Box::new(SolvedType::Wildcard),
);
add_type(
Symbol::LIST_GET,
SolvedType::Func(
vec![list_type(flex(TVAR1)), int_type()],
Box::new(result_type(flex(TVAR1), index_out_of_bounds)),
),
);
add_type(
Symbol::LIST_GET_UNSAFE,
SolvedType::Func(
vec![list_type(flex(TVAR1)), int_type()],
Box::new(flex(TVAR1)),
),
);
// set : List elem, Int, elem -> List elem
add_type(
Symbol::LIST_SET,
SolvedType::Func(
vec![list_type(flex(TVAR1)), int_type(), flex(TVAR1)],
Box::new(list_type(flex(TVAR1))),
),
);
// concat : List elem, List elem -> List elem
add_type(
Symbol::LIST_CONCAT,
SolvedType::Func(
vec![list_type(flex(TVAR1)), list_type(flex(TVAR1))],
Box::new(list_type(flex(TVAR1))),
),
);
// map : List before, (before -> after) -> List after
add_type(
Symbol::LIST_MAP,
SolvedType::Func(
vec![
list_type(flex(TVAR1)),
SolvedType::Func(vec![flex(TVAR1)], Box::new(flex(TVAR2))),
],
Box::new(list_type(flex(TVAR2))),
),
);
// foldr : List a, (a -> b -> b), b -> b
add_type(
Symbol::LIST_FOLDR,
SolvedType::Func(
vec![
list_type(flex(TVAR1)),
SolvedType::Func(vec![flex(TVAR1), flex(TVAR2)], Box::new(flex(TVAR2))),
flex(TVAR2),
],
Box::new(flex(TVAR2)),
),
);
// push : List a -> a -> List a
add_type(
Symbol::LIST_PUSH,
SolvedType::Func(
vec![list_type(flex(TVAR1)), flex(TVAR1)],
Box::new(list_type(flex(TVAR1))),
),
);
// len : List * -> Int
add_type(
Symbol::LIST_LEN,
SolvedType::Func(vec![list_type(flex(TVAR1))], Box::new(int_type())),
);
// isEmpty : List * -> Bool
add_type(
Symbol::LIST_IS_EMPTY,
SolvedType::Func(vec![list_type(flex(TVAR1))], Box::new(bool_type())),
);
// Map module
// empty : Map k v
add_type(Symbol::MAP_EMPTY, map_type(flex(TVAR1), flex(TVAR2)));
// singleton : k, v -> Map k v
add_type(
Symbol::MAP_SINGLETON,
SolvedType::Func(
vec![flex(TVAR1), flex(TVAR2)],
Box::new(map_type(flex(TVAR1), flex(TVAR2))),
),
);
// get : Map k v, k -> Result v [ KeyNotFound ]*
let key_not_found = SolvedType::TagUnion(
vec![(TagName::Global("KeyNotFound".into()), vec![])],
Box::new(SolvedType::Wildcard),
);
add_type(
Symbol::MAP_GET,
SolvedType::Func(
vec![map_type(flex(TVAR1), flex(TVAR2)), flex(TVAR1)],
Box::new(result_type(flex(TVAR2), key_not_found)),
),
);
add_type(
Symbol::MAP_INSERT,
SolvedType::Func(
vec![map_type(flex(TVAR1), flex(TVAR2)), flex(TVAR1), flex(TVAR2)],
Box::new(map_type(flex(TVAR1), flex(TVAR2))),
),
);
// Set module
// empty : Set a
add_type(Symbol::SET_EMPTY, set_type(flex(TVAR1)));
// singleton : a -> Set a
add_type(
Symbol::SET_SINGLETON,
SolvedType::Func(vec![flex(TVAR1)], Box::new(set_type(flex(TVAR1)))),
);
// union : Set a, Set a -> Set a
add_type(
Symbol::SET_UNION,
SolvedType::Func(
vec![set_type(flex(TVAR1)), set_type(flex(TVAR1))],
Box::new(set_type(flex(TVAR1))),
),
);
// diff : Set a, Set a -> Set a
add_type(
Symbol::SET_DIFF,
SolvedType::Func(
vec![set_type(flex(TVAR1)), set_type(flex(TVAR1))],
Box::new(set_type(flex(TVAR1))),
),
);
// foldl : Set a, (a -> b -> b), b -> b
add_type(
Symbol::SET_FOLDL,
SolvedType::Func(
vec![
set_type(flex(TVAR1)),
SolvedType::Func(vec![flex(TVAR1), flex(TVAR2)], Box::new(flex(TVAR2))),
flex(TVAR2),
],
Box::new(flex(TVAR2)),
),
);
add_type(
Symbol::SET_INSERT,
SolvedType::Func(
vec![set_type(flex(TVAR1)), flex(TVAR1)],
Box::new(set_type(flex(TVAR1))),
),
);
add_type(
Symbol::SET_REMOVE,
SolvedType::Func(
vec![set_type(flex(TVAR1)), flex(TVAR1)],
Box::new(set_type(flex(TVAR1))),
),
);
// Result module
// map : Result a err, (a -> b) -> Result b err
add_type(
Symbol::RESULT_MAP,
SolvedType::Func(
vec![
result_type(flex(TVAR1), flex(TVAR3)),
SolvedType::Func(vec![flex(TVAR1)], Box::new(flex(TVAR2))),
],
Box::new(result_type(flex(TVAR2), flex(TVAR3))),
),
);
types
}
#[inline(always)]
fn flex(tvar: VarId) -> SolvedType {
SolvedType::Flex(tvar)
}
#[inline(always)]
fn float_type() -> SolvedType {
SolvedType::Apply(Symbol::FLOAT_FLOAT, Vec::new())
}
#[inline(always)]
fn int_type() -> SolvedType {
SolvedType::Apply(Symbol::INT_INT, Vec::new())
}
#[inline(always)]
fn bool_type() -> SolvedType {
SolvedType::Apply(Symbol::BOOL_BOOL, Vec::new())
}
#[inline(always)]
fn str_type() -> SolvedType {
SolvedType::Apply(Symbol::STR_STR, Vec::new())
}
#[inline(always)]
fn num_type(a: SolvedType) -> SolvedType {
SolvedType::Apply(Symbol::NUM_NUM, vec![a])
}
#[inline(always)]
fn result_type(a: SolvedType, e: SolvedType) -> SolvedType {
SolvedType::Apply(Symbol::RESULT_RESULT, vec![a, e])
}
#[inline(always)]
fn list_type(a: SolvedType) -> SolvedType {
SolvedType::Apply(Symbol::LIST_LIST, vec![a])
}
#[inline(always)]
fn set_type(a: SolvedType) -> SolvedType {
SolvedType::Apply(Symbol::SET_SET, vec![a])
}
#[inline(always)]
fn map_type(key: SolvedType, value: SolvedType) -> SolvedType {
SolvedType::Apply(Symbol::MAP_MAP, vec![key, value])
}
#[inline(always)]
fn no_region<T>(value: T) -> Located<T> {
Located {
region: Region::zero(),
value,
}
}
#[inline(always)]
fn tag(name: &'static str, args: Vec<Expr>, var_store: &VarStore) -> Expr {
Expr::Tag {
variant_var: var_store.fresh(),
ext_var: var_store.fresh(),
name: TagName::Global(name.into()),
arguments: args
.into_iter()
.map(|expr| (var_store.fresh(), no_region(expr)))
.collect::<Vec<(Variable, Located<Expr>)>>(),
}
}
#[inline(always)]
fn call(symbol: Symbol, args: Vec<Expr>, var_store: &VarStore) -> Expr {
Expr::Call(
Box::new((
var_store.fresh(),
no_region(Expr::Var(symbol)),
var_store.fresh(),
)),
args.into_iter()
.map(|expr| (var_store.fresh(), no_region(expr)))
.collect::<Vec<(Variable, Located<Expr>)>>(),
CalledVia::Space,
)
}
#[inline(always)]
fn defn(fn_name: Symbol, args: Vec<Symbol>, var_store: &VarStore, body: Expr) -> Def {
use roc_can::expr::Expr::*;
use roc_can::pattern::Pattern::*;
let closure_args = args
.into_iter()
.map(|symbol| (var_store.fresh(), no_region(Identifier(symbol))))
.collect();
let expr = Closure(
var_store.fresh(),
fn_name,
Recursive::NotRecursive,
closure_args,
Box::new((no_region(body), var_store.fresh())),
);
Def {
loc_pattern: no_region(Identifier(fn_name)),
loc_expr: no_region(expr),
expr_var: var_store.fresh(),
pattern_vars: SendMap::default(),
annotation: None,
}
}
/// List.get : List elem, Int -> Result elem [ OutOfBounds ]*
fn list_get(var_store: &VarStore) -> Def {
use roc_can::expr::Expr::*;
defn(
Symbol::LIST_GET,
vec![Symbol::LIST_GET_ARG_LIST, Symbol::LIST_GET_ARG_INDEX],
var_store,
// Perform a bounds check. If it passes, delegate to List.#getUnsafe
If {
cond_var: var_store.fresh(),
branch_var: var_store.fresh(),
branches: vec![(
// if-condition
no_region(
// index < List.len list
call(
Symbol::NUM_LT,
vec![
Var(Symbol::LIST_GET_ARG_INDEX),
call(
Symbol::LIST_LEN,
vec![Var(Symbol::LIST_GET_ARG_LIST)],
var_store,
),
],
var_store,
),
),
// then-branch
no_region(
// Ok
tag(
"Ok",
vec![
// List.getUnsafe list index
Call(
Box::new((
var_store.fresh(),
no_region(Var(Symbol::LIST_GET_UNSAFE)),
var_store.fresh(),
)),
vec![
(var_store.fresh(), no_region(Var(Symbol::LIST_GET_ARG_LIST))),
(
var_store.fresh(),
no_region(Var(Symbol::LIST_GET_ARG_INDEX)),
),
],
CalledVia::Space,
),
],
var_store,
),
),
)],
final_else: Box::new(
// else-branch
no_region(
// Err
tag(
"Err",
vec![tag("OutOfBounds", Vec::new(), var_store)],
var_store,
),
),
),
},
)
}
/// Int.div : Int, Int -> Result Int [ DivByZero ]*
fn int_div(var_store: &VarStore) -> Def {
use roc_can::expr::Expr::*;
use roc_can::pattern::Pattern::*;
let args = vec![
(
var_store.fresh(),
no_region(Identifier(Symbol::INT_DIV_ARG_NUMERATOR)),
),
(
var_store.fresh(),
no_region(Identifier(Symbol::INT_DIV_ARG_DENOMINATOR)),
),
];
let body = If {
branch_var: var_store.fresh(),
cond_var: var_store.fresh(),
branches: vec![(
// if-condition
no_region(
// Int.eq denominator 0
call(
Symbol::INT_NEQ_I64,
vec![
Var(Symbol::INT_DIV_ARG_DENOMINATOR),
(Int(var_store.fresh(), 0)),
],
var_store,
),
),
// denominator was not zero
no_region(
// Ok (Int.#divUnsafe numerator denominator)
tag(
"Ok",
vec![
// Int.#divUnsafe numerator denominator
call(
Symbol::INT_DIV_UNSAFE,
vec![
(Var(Symbol::INT_DIV_ARG_NUMERATOR)),
(Var(Symbol::INT_DIV_ARG_DENOMINATOR)),
],
var_store,
),
],
var_store,
),
),
)],
final_else: Box::new(
// denominator was zero
no_region(tag(
"Err",
vec![tag("DivByZero", Vec::new(), var_store)],
var_store,
)),
),
};
let expr = Closure(
var_store.fresh(),
Symbol::INT_DIV,
Recursive::NotRecursive,
args,
Box::new((no_region(body), var_store.fresh())),
);
Def {
loc_pattern: no_region(Identifier(Symbol::INT_DIV)),
loc_expr: no_region(expr),
expr_var: var_store.fresh(),
pattern_vars: SendMap::default(),
annotation: None,
}
}
/// List.first : List elem -> Result elem [ ListWasEmpty ]*
fn list_first(var_store: &VarStore) -> Def {
use roc_can::expr::Expr::*;
defn(
Symbol::LIST_FIRST,
vec![Symbol::LIST_FIRST_ARG],
var_store,
// Perform a bounds check. If it passes, delegate to List.getUnsafe.
If {
// TODO Use "when" instead of "if" so that we can have False be the first branch.
// We want that for branch prediction; usually we expect the list to be nonempty.
cond_var: var_store.fresh(),
branch_var: var_store.fresh(),
branches: vec![(
// if-condition
no_region(
// List.isEmpty list
call(
Symbol::LIST_IS_EMPTY,
vec![Var(Symbol::LIST_FIRST_ARG)],
var_store,
),
),
// list was empty
no_region(
// Err ListWasEmpty
tag(
"Err",
vec![tag("ListWasEmpty", Vec::new(), var_store)],
var_store,
),
),
)],
final_else: Box::new(
// list was not empty
no_region(
// Ok (List.#getUnsafe list 0)
tag(
"Ok",
vec![
// List.#getUnsafe list 0
call(
Symbol::LIST_GET_UNSAFE,
vec![(Var(Symbol::LIST_FIRST_ARG)), (Int(var_store.fresh(), 0))],
var_store,
),
],
var_store,
),
),
),
},
)
}