roc/compiler/gen_wasm/src/code_builder.rs

688 lines
27 KiB
Rust

use bumpalo::collections::Vec;
use bumpalo::Bump;
use core::panic;
use std::fmt::Debug;
use roc_module::symbol::Symbol;
use crate::{
encode_f32, encode_f64, encode_i32, encode_i64, encode_u32, round_up_to_alignment, LocalId,
FRAME_ALIGNMENT_BYTES, STACK_POINTER_GLOBAL_ID,
};
use crate::{opcodes::*, overwrite_padded_u32};
const DEBUG_LOG: bool = false;
/// Wasm value type. (Rust representation matches Wasm encoding)
#[repr(u8)]
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
pub enum ValueType {
I32 = 0x7f,
I64 = 0x7e,
F32 = 0x7d,
F64 = 0x7c,
}
// This is a bit unfortunate. Will go away if we generate our own Types section.
impl ValueType {
pub fn to_parity_wasm(&self) -> parity_wasm::elements::ValueType {
match self {
Self::I32 => parity_wasm::elements::ValueType::I32,
Self::I64 => parity_wasm::elements::ValueType::I64,
Self::F32 => parity_wasm::elements::ValueType::F32,
Self::F64 => parity_wasm::elements::ValueType::F64,
}
}
}
pub enum BlockType {
NoResult,
Value(ValueType),
}
impl BlockType {
pub fn as_byte(&self) -> u8 {
match self {
Self::NoResult => 0x40,
Self::Value(t) => *t as u8,
}
}
}
/// Wasm memory alignment. (Rust representation matches Wasm encoding)
#[repr(u8)]
#[derive(Clone, Copy, Debug)]
pub enum Align {
Bytes1 = 0,
Bytes2 = 1,
Bytes4 = 2,
Bytes8 = 3,
Bytes16 = 4,
Bytes32 = 5,
Bytes64 = 6,
// ... we can add more if we need them ...
}
impl From<u32> for Align {
fn from(x: u32) -> Align {
match x {
1 => Align::Bytes1,
2 => Align::Bytes2,
4 => Align::Bytes4,
8 => Align::Bytes8,
16 => Align::Bytes16,
32 => Align::Bytes32,
64 => Align::Bytes64,
_ => panic!("{:?}-byte alignment not supported", x),
}
}
}
#[derive(Debug, Clone, PartialEq, Copy)]
pub enum VirtualMachineSymbolState {
/// Value doesn't exist yet
NotYetPushed,
/// Value has been pushed onto the VM stack but not yet popped
/// Remember where it was pushed, in case we need to insert another instruction there later
Pushed { pushed_at: usize },
/// Value has been pushed and popped, so it's not on the VM stack any more.
/// If we want to use it again later, we will have to create a local for it,
/// by going back to insert a local.tee instruction at pushed_at
Popped { pushed_at: usize },
}
// An instruction (local.set or local.tee) to be inserted into the function code
#[derive(Debug)]
struct InsertLocation {
insert_at: usize,
start: usize,
end: usize,
}
macro_rules! instruction_no_args {
($method_name: ident, $opcode: expr, $pops: expr, $push: expr) => {
pub fn $method_name(&mut self) {
self.inst($opcode, $pops, $push);
}
};
}
macro_rules! instruction_memargs {
($method_name: ident, $opcode: expr, $pops: expr, $push: expr) => {
pub fn $method_name(&mut self, align: Align, offset: u32) {
self.inst_mem($opcode, $pops, $push, align, offset);
}
};
}
#[derive(Debug)]
pub struct CodeBuilder<'a> {
/// The main container for the instructions
code: Vec<'a, u8>,
/// Instruction bytes to be inserted into the code when finalizing the function
/// (Used for setting locals when we realise they are used multiple times)
insert_bytes: Vec<'a, u8>,
/// Code locations where the insert_bytes should go
insert_locations: Vec<'a, InsertLocation>,
/// Bytes for local variable declarations and stack-frame setup code.
/// We can't write this until we've finished the main code. But it goes
/// before it in the final output, so we need a separate vector.
preamble: Vec<'a, u8>,
/// Encoded bytes for the inner length of the function, locals + code.
/// ("inner" because it doesn't include its own length!)
/// Again, we can't write this until we've finished the code and preamble,
/// but it goes before them in the binary, so it's a separate vector.
inner_length: Vec<'a, u8>,
/// Our simulation model of the Wasm stack machine
/// Keeps track of where Symbol values are in the VM stack
vm_stack: Vec<'a, Symbol>,
}
#[allow(clippy::new_without_default)]
impl<'a> CodeBuilder<'a> {
pub fn new(arena: &'a Bump) -> Self {
CodeBuilder {
code: Vec::with_capacity_in(1024, arena),
insert_locations: Vec::with_capacity_in(32, arena),
insert_bytes: Vec::with_capacity_in(64, arena),
preamble: Vec::with_capacity_in(32, arena),
inner_length: Vec::with_capacity_in(5, arena),
vm_stack: Vec::with_capacity_in(32, arena),
}
}
pub fn clear(&mut self) {
self.code.clear();
self.insert_locations.clear();
self.insert_bytes.clear();
self.preamble.clear();
self.inner_length.clear();
self.vm_stack.clear();
}
/**********************************************************
SYMBOLS
The Wasm VM stores temporary values in its stack machine.
We track which stack positions correspond to IR Symbols,
because it helps to generate more efficient code.
***********************************************************/
/// Set the Symbol that is at the top of the VM stack right now
/// We will use this later when we need to load the Symbol
pub fn set_top_symbol(&mut self, sym: Symbol) -> VirtualMachineSymbolState {
let len = self.vm_stack.len();
let pushed_at = self.code.len();
if len == 0 {
panic!(
"trying to set symbol with nothing on stack, code = {:?}",
self.code
);
}
self.vm_stack[len - 1] = sym;
VirtualMachineSymbolState::Pushed { pushed_at }
}
/// Verify if a sequence of symbols is at the top of the stack
pub fn verify_stack_match(&self, symbols: &[Symbol]) -> bool {
let n_symbols = symbols.len();
let stack_depth = self.vm_stack.len();
if n_symbols > stack_depth {
return false;
}
let offset = stack_depth - n_symbols;
for (i, sym) in symbols.iter().enumerate() {
if self.vm_stack[offset + i] != *sym {
return false;
}
}
true
}
fn add_insertion(&mut self, insert_at: usize, opcode: u8, immediate: u32) {
let start = self.insert_bytes.len();
self.insert_bytes.push(opcode);
encode_u32(&mut self.insert_bytes, immediate);
self.insert_locations.push(InsertLocation {
insert_at,
start,
end: self.insert_bytes.len(),
});
}
/// Load a Symbol that is stored in the VM stack
/// If it's already at the top of the stack, no code will be generated.
/// Otherwise, local.set and local.get instructions will be inserted, using the LocalId provided.
///
/// If the return value is `Some(s)`, `s` should be stored by the caller, and provided in the next call.
/// If the return value is `None`, the Symbol is no longer stored in the VM stack, but in a local.
/// (In this case, the caller must remember to declare the local in the function header.)
pub fn load_symbol(
&mut self,
symbol: Symbol,
vm_state: VirtualMachineSymbolState,
next_local_id: LocalId,
) -> Option<VirtualMachineSymbolState> {
use VirtualMachineSymbolState::*;
match vm_state {
NotYetPushed => panic!("Symbol {:?} has no value yet. Nothing to load.", symbol),
Pushed { pushed_at } => {
let &top = self.vm_stack.last().unwrap();
if top == symbol {
// We're lucky, the symbol is already on top of the VM stack
// No code to generate! (This reduces code size by up to 25% in tests.)
// Just let the caller know what happened
Some(Popped { pushed_at })
} else {
// Symbol is not on top of the stack. Find it.
if let Some(found_index) = self.vm_stack.iter().rposition(|&s| s == symbol) {
// Insert a local.set where the value was created
self.add_insertion(pushed_at, SETLOCAL, next_local_id.0);
// Take the value out of the stack where local.set was inserted
self.vm_stack.remove(found_index);
// Insert a local.get at the current position
self.get_local(next_local_id);
self.vm_stack.push(symbol);
// This Symbol is no longer stored in the VM stack, but in a local
None
} else {
panic!(
"{:?} has state {:?} but not found in VM stack",
symbol, vm_state
);
}
}
}
Popped { pushed_at } => {
// This Symbol is being used for a second time
// Insert a local.tee where it was pushed, so we don't interfere with the first usage
self.add_insertion(pushed_at, TEELOCAL, next_local_id.0);
// Insert a local.get at the current position
self.get_local(next_local_id);
self.vm_stack.push(symbol);
// This symbol has been promoted to a Local
// Tell the caller it no longer has a VirtualMachineSymbolState
None
}
}
}
/**********************************************************
FINALIZE AND SERIALIZE
***********************************************************/
/// Generate bytes to declare the function's local variables
fn build_local_declarations(&mut self, local_types: &[ValueType]) {
// reserve one byte for num_batches
self.preamble.push(0);
if local_types.is_empty() {
return;
}
// Write declarations in batches of the same ValueType
let mut num_batches: u32 = 0;
let mut batch_type = local_types[0];
let mut batch_size = 0;
for t in local_types {
if *t == batch_type {
batch_size += 1;
} else {
encode_u32(&mut self.preamble, batch_size);
self.preamble.push(batch_type as u8);
batch_type = *t;
batch_size = 1;
num_batches += 1;
}
}
encode_u32(&mut self.preamble, batch_size);
self.preamble.push(batch_type as u8);
num_batches += 1;
// Go back and write the number of batches at the start
if num_batches < 128 {
self.preamble[0] = num_batches as u8;
} else {
// We need more than 1 byte to encode num_batches!
// This is a ridiculous edge case, so just pad to 5 bytes for simplicity
let old_len = self.preamble.len();
self.preamble.resize(old_len + 4, 0);
self.preamble.copy_within(1..old_len, 5);
overwrite_padded_u32(&mut self.preamble[0..5], num_batches);
}
}
/// Generate instruction bytes to grab a frame of stack memory on entering the function
fn build_stack_frame_push(&mut self, frame_size: i32, frame_pointer: LocalId) {
// Can't use the usual instruction methods because they push to self.code.
// This is the only case where we push instructions somewhere different.
self.preamble.push(GETGLOBAL);
encode_u32(&mut self.preamble, STACK_POINTER_GLOBAL_ID);
self.preamble.push(I32CONST);
encode_i32(&mut self.preamble, frame_size);
self.preamble.push(I32SUB);
self.preamble.push(TEELOCAL);
encode_u32(&mut self.preamble, frame_pointer.0);
self.preamble.push(SETGLOBAL);
encode_u32(&mut self.preamble, STACK_POINTER_GLOBAL_ID);
}
/// Generate instruction bytes to release a frame of stack memory on leaving the function
fn build_stack_frame_pop(&mut self, frame_size: i32, frame_pointer: LocalId) {
self.get_local(frame_pointer);
self.i32_const(frame_size);
self.i32_add();
self.set_global(STACK_POINTER_GLOBAL_ID);
}
/// Finalize the function
/// Generate all the "extra" bytes: local declarations, stack frame push/pop code, and function length
/// After this, bytes will have been _generated_, but not yet _serialized_ into a single stream.
/// Returns the final number of bytes the function will occupy in the target binary
pub fn finalize(
&mut self,
local_types: &[ValueType],
frame_size: i32,
frame_pointer: Option<LocalId>,
) {
self.build_local_declarations(local_types);
if let Some(frame_ptr_id) = frame_pointer {
let aligned_size = round_up_to_alignment(frame_size, FRAME_ALIGNMENT_BYTES);
self.build_stack_frame_push(aligned_size, frame_ptr_id);
self.build_stack_frame_pop(aligned_size, frame_ptr_id);
}
self.code.push(END);
let inner_len = self.preamble.len() + self.code.len() + self.insert_bytes.len();
encode_u32(&mut self.inner_length, inner_len as u32);
}
/// Write out all the bytes in the right order
pub fn serialize<W: std::io::Write>(&mut self, writer: &mut W) -> std::io::Result<()> {
writer.write_all(&self.inner_length)?;
writer.write_all(&self.preamble)?;
// We created each insertion when a local was used for the _second_ time.
// But we want them in the order they were first assigned, which may not be the same.
self.insert_locations.sort_by_key(|loc| loc.insert_at);
let mut pos: usize = 0;
for location in self.insert_locations.iter() {
writer.write_all(&self.code[pos..location.insert_at])?;
writer.write_all(&self.insert_bytes[location.start..location.end])?;
pos = location.insert_at;
}
let len = self.code.len();
writer.write_all(&self.code[pos..len])
}
/**********************************************************
INSTRUCTION HELPER METHODS
***********************************************************/
/// Base method for generating instructions
/// Emits the opcode and simulates VM stack push/pop
fn inst(&mut self, opcode: u8, pops: usize, push: bool) {
let new_len = self.vm_stack.len() - pops as usize;
self.vm_stack.truncate(new_len);
if push {
self.vm_stack.push(Symbol::WASM_ANONYMOUS_STACK_VALUE);
}
self.code.push(opcode);
}
fn inst_imm8(&mut self, opcode: u8, pops: usize, push: bool, immediate: u8) {
self.inst(opcode, pops, push);
self.code.push(immediate);
}
fn inst_imm32(&mut self, opcode: u8, pops: usize, push: bool, immediate: u32) {
self.inst(opcode, pops, push);
encode_u32(&mut self.code, immediate);
}
fn inst_mem(&mut self, opcode: u8, pops: usize, push: bool, align: Align, offset: u32) {
self.inst(opcode, pops, push);
self.code.push(align as u8);
encode_u32(&mut self.code, offset);
}
/**********************************************************
INSTRUCTION METHODS
One method for each Wasm instruction (in same order as the spec)
macros are for compactness & readability for the most common cases
Patterns that don't repeat very much don't have macros
***********************************************************/
instruction_no_args!(unreachable_, UNREACHABLE, 0, false);
instruction_no_args!(nop, NOP, 0, false);
pub fn block(&mut self, ty: BlockType) {
self.inst_imm8(BLOCK, 0, false, ty.as_byte());
}
pub fn loop_(&mut self, ty: BlockType) {
self.inst_imm8(LOOP, 0, false, ty.as_byte());
}
pub fn if_(&mut self, ty: BlockType) {
self.inst_imm8(IF, 1, false, ty.as_byte());
}
instruction_no_args!(else_, ELSE, 0, false);
instruction_no_args!(end, END, 0, false);
pub fn br(&mut self, levels: u32) {
self.inst_imm32(BR, 0, false, levels);
}
pub fn br_if(&mut self, levels: u32) {
self.inst_imm32(BRIF, 1, false, levels);
}
fn br_table() {
panic!("TODO");
}
instruction_no_args!(return_, RETURN, 0, false);
pub fn call(&mut self, function_index: u32, n_args: usize, has_return_val: bool) {
let stack_depth = self.vm_stack.len();
if n_args > stack_depth {
panic!(
"Trying to call to call function {:?} with {:?} values but only {:?} on the VM stack\n{:?}",
function_index, n_args, stack_depth, self
);
}
self.vm_stack.truncate(stack_depth - n_args);
if has_return_val {
self.vm_stack.push(Symbol::WASM_ANONYMOUS_STACK_VALUE);
}
self.code.push(CALL);
encode_u32(&mut self.code, function_index);
}
fn call_indirect() {
panic!("Not implemented. Roc doesn't use function pointers");
}
instruction_no_args!(drop_, DROP, 1, false);
instruction_no_args!(select, SELECT, 3, true);
pub fn get_local(&mut self, id: LocalId) {
self.inst_imm32(GETLOCAL, 0, true, id.0);
}
pub fn set_local(&mut self, id: LocalId) {
self.inst_imm32(SETLOCAL, 1, false, id.0);
}
pub fn tee_local(&mut self, id: LocalId) {
self.inst_imm32(TEELOCAL, 0, false, id.0);
}
pub fn get_global(&mut self, id: u32) {
self.inst_imm32(GETGLOBAL, 0, true, id);
}
pub fn set_global(&mut self, id: u32) {
self.inst_imm32(SETGLOBAL, 1, false, id);
}
instruction_memargs!(i32_load, I32LOAD, 1, true);
instruction_memargs!(i64_load, I64LOAD, 1, true);
instruction_memargs!(f32_load, F32LOAD, 1, true);
instruction_memargs!(f64_load, F64LOAD, 1, true);
instruction_memargs!(i32_load8_s, I32LOAD8S, 1, true);
instruction_memargs!(i32_load8_u, I32LOAD8U, 1, true);
instruction_memargs!(i32_load16_s, I32LOAD16S, 1, true);
instruction_memargs!(i32_load16_u, I32LOAD16U, 1, true);
instruction_memargs!(i64_load8_s, I64LOAD8S, 1, true);
instruction_memargs!(i64_load8_u, I64LOAD8U, 1, true);
instruction_memargs!(i64_load16_s, I64LOAD16S, 1, true);
instruction_memargs!(i64_load16_u, I64LOAD16U, 1, true);
instruction_memargs!(i64_load32_s, I64LOAD32S, 1, true);
instruction_memargs!(i64_load32_u, I64LOAD32U, 1, true);
instruction_memargs!(i32_store, I32STORE, 2, false);
instruction_memargs!(i64_store, I64STORE, 2, false);
instruction_memargs!(f32_store, F32STORE, 2, false);
instruction_memargs!(f64_store, F64STORE, 2, false);
instruction_memargs!(i32_store8, I32STORE8, 2, false);
instruction_memargs!(i32_store16, I32STORE16, 2, false);
instruction_memargs!(i64_store8, I64STORE8, 2, false);
instruction_memargs!(i64_store16, I64STORE16, 2, false);
instruction_memargs!(i64_store32, I64STORE32, 2, false);
pub fn memory_size(&mut self) {
self.inst_imm8(CURRENTMEMORY, 0, true, 0);
}
pub fn memory_grow(&mut self) {
self.inst_imm8(GROWMEMORY, 1, true, 0);
}
pub fn i32_const(&mut self, x: i32) {
self.inst(I32CONST, 0, true);
encode_i32(&mut self.code, x);
}
pub fn i64_const(&mut self, x: i64) {
self.inst(I64CONST, 0, true);
encode_i64(&mut self.code, x);
}
pub fn f32_const(&mut self, x: f32) {
self.inst(F32CONST, 0, true);
encode_f32(&mut self.code, x);
}
pub fn f64_const(&mut self, x: f64) {
self.inst(F64CONST, 0, true);
encode_f64(&mut self.code, x);
}
// TODO: Consider creating unified methods for numerical ops like 'eq' and 'add',
// passing the ValueType as an argument. Could simplify lowlevel code gen.
instruction_no_args!(i32_eqz, I32EQZ, 1, true);
instruction_no_args!(i32_eq, I32EQ, 2, true);
instruction_no_args!(i32_ne, I32NE, 2, true);
instruction_no_args!(i32_lt_s, I32LTS, 2, true);
instruction_no_args!(i32_lt_u, I32LTU, 2, true);
instruction_no_args!(i32_gt_s, I32GTS, 2, true);
instruction_no_args!(i32_gt_u, I32GTU, 2, true);
instruction_no_args!(i32_le_s, I32LES, 2, true);
instruction_no_args!(i32_le_u, I32LEU, 2, true);
instruction_no_args!(i32_ge_s, I32GES, 2, true);
instruction_no_args!(i32_ge_u, I32GEU, 2, true);
instruction_no_args!(i64_eqz, I64EQZ, 1, true);
instruction_no_args!(i64_eq, I64EQ, 2, true);
instruction_no_args!(i64_ne, I64NE, 2, true);
instruction_no_args!(i64_lt_s, I64LTS, 2, true);
instruction_no_args!(i64_lt_u, I64LTU, 2, true);
instruction_no_args!(i64_gt_s, I64GTS, 2, true);
instruction_no_args!(i64_gt_u, I64GTU, 2, true);
instruction_no_args!(i64_le_s, I64LES, 2, true);
instruction_no_args!(i64_le_u, I64LEU, 2, true);
instruction_no_args!(i64_ge_s, I64GES, 2, true);
instruction_no_args!(i64_ge_u, I64GEU, 2, true);
instruction_no_args!(f32_eq, F32EQ, 2, true);
instruction_no_args!(f32_ne, F32NE, 2, true);
instruction_no_args!(f32_lt, F32LT, 2, true);
instruction_no_args!(f32_gt, F32GT, 2, true);
instruction_no_args!(f32_le, F32LE, 2, true);
instruction_no_args!(f32_ge, F32GE, 2, true);
instruction_no_args!(f64_eq, F64EQ, 2, true);
instruction_no_args!(f64_ne, F64NE, 2, true);
instruction_no_args!(f64_lt, F64LT, 2, true);
instruction_no_args!(f64_gt, F64GT, 2, true);
instruction_no_args!(f64_le, F64LE, 2, true);
instruction_no_args!(f64_ge, F64GE, 2, true);
instruction_no_args!(i32_clz, I32CLZ, 1, true);
instruction_no_args!(i32_ctz, I32CTZ, 1, true);
instruction_no_args!(i32_popcnt, I32POPCNT, 1, true);
instruction_no_args!(i32_add, I32ADD, 2, true);
instruction_no_args!(i32_sub, I32SUB, 2, true);
instruction_no_args!(i32_mul, I32MUL, 2, true);
instruction_no_args!(i32_div_s, I32DIVS, 2, true);
instruction_no_args!(i32_div_u, I32DIVU, 2, true);
instruction_no_args!(i32_rem_s, I32REMS, 2, true);
instruction_no_args!(i32_rem_u, I32REMU, 2, true);
instruction_no_args!(i32_and, I32AND, 2, true);
instruction_no_args!(i32_or, I32OR, 2, true);
instruction_no_args!(i32_xor, I32XOR, 2, true);
instruction_no_args!(i32_shl, I32SHL, 2, true);
instruction_no_args!(i32_shr_s, I32SHRS, 2, true);
instruction_no_args!(i32_shr_u, I32SHRU, 2, true);
instruction_no_args!(i32_rotl, I32ROTL, 2, true);
instruction_no_args!(i32_rotr, I32ROTR, 2, true);
instruction_no_args!(i64_clz, I64CLZ, 1, true);
instruction_no_args!(i64_ctz, I64CTZ, 1, true);
instruction_no_args!(i64_popcnt, I64POPCNT, 1, true);
instruction_no_args!(i64_add, I64ADD, 2, true);
instruction_no_args!(i64_sub, I64SUB, 2, true);
instruction_no_args!(i64_mul, I64MUL, 2, true);
instruction_no_args!(i64_div_s, I64DIVS, 2, true);
instruction_no_args!(i64_div_u, I64DIVU, 2, true);
instruction_no_args!(i64_rem_s, I64REMS, 2, true);
instruction_no_args!(i64_rem_u, I64REMU, 2, true);
instruction_no_args!(i64_and, I64AND, 2, true);
instruction_no_args!(i64_or, I64OR, 2, true);
instruction_no_args!(i64_xor, I64XOR, 2, true);
instruction_no_args!(i64_shl, I64SHL, 2, true);
instruction_no_args!(i64_shr_s, I64SHRS, 2, true);
instruction_no_args!(i64_shr_u, I64SHRU, 2, true);
instruction_no_args!(i64_rotl, I64ROTL, 2, true);
instruction_no_args!(i64_rotr, I64ROTR, 2, true);
instruction_no_args!(f32_abs, F32ABS, 1, true);
instruction_no_args!(f32_neg, F32NEG, 1, true);
instruction_no_args!(f32_ceil, F32CEIL, 1, true);
instruction_no_args!(f32_floor, F32FLOOR, 1, true);
instruction_no_args!(f32_trunc, F32TRUNC, 1, true);
instruction_no_args!(f32_nearest, F32NEAREST, 1, true);
instruction_no_args!(f32_sqrt, F32SQRT, 1, true);
instruction_no_args!(f32_add, F32ADD, 2, true);
instruction_no_args!(f32_sub, F32SUB, 2, true);
instruction_no_args!(f32_mul, F32MUL, 2, true);
instruction_no_args!(f32_div, F32DIV, 2, true);
instruction_no_args!(f32_min, F32MIN, 2, true);
instruction_no_args!(f32_max, F32MAX, 2, true);
instruction_no_args!(f32_copysign, F32COPYSIGN, 2, true);
instruction_no_args!(f64_abs, F64ABS, 1, true);
instruction_no_args!(f64_neg, F64NEG, 1, true);
instruction_no_args!(f64_ceil, F64CEIL, 1, true);
instruction_no_args!(f64_floor, F64FLOOR, 1, true);
instruction_no_args!(f64_trunc, F64TRUNC, 1, true);
instruction_no_args!(f64_nearest, F64NEAREST, 1, true);
instruction_no_args!(f64_sqrt, F64SQRT, 1, true);
instruction_no_args!(f64_add, F64ADD, 2, true);
instruction_no_args!(f64_sub, F64SUB, 2, true);
instruction_no_args!(f64_mul, F64MUL, 2, true);
instruction_no_args!(f64_div, F64DIV, 2, true);
instruction_no_args!(f64_min, F64MIN, 2, true);
instruction_no_args!(f64_max, F64MAX, 2, true);
instruction_no_args!(f64_copysign, F64COPYSIGN, 2, true);
instruction_no_args!(i32_wrap_i64, I32WRAPI64, 1, true);
instruction_no_args!(i32_trunc_s_f32, I32TRUNCSF32, 1, true);
instruction_no_args!(i32_trunc_u_f32, I32TRUNCUF32, 1, true);
instruction_no_args!(i32_trunc_s_f64, I32TRUNCSF64, 1, true);
instruction_no_args!(i32_trunc_u_f64, I32TRUNCUF64, 1, true);
instruction_no_args!(i64_extend_s_i32, I64EXTENDSI32, 1, true);
instruction_no_args!(i64_extend_u_i32, I64EXTENDUI32, 1, true);
instruction_no_args!(i64_trunc_s_f32, I64TRUNCSF32, 1, true);
instruction_no_args!(i64_trunc_u_f32, I64TRUNCUF32, 1, true);
instruction_no_args!(i64_trunc_s_f64, I64TRUNCSF64, 1, true);
instruction_no_args!(i64_trunc_u_f64, I64TRUNCUF64, 1, true);
instruction_no_args!(f32_convert_s_i32, F32CONVERTSI32, 1, true);
instruction_no_args!(f32_convert_u_i32, F32CONVERTUI32, 1, true);
instruction_no_args!(f32_convert_s_i64, F32CONVERTSI64, 1, true);
instruction_no_args!(f32_convert_u_i64, F32CONVERTUI64, 1, true);
instruction_no_args!(f32_demote_f64, F32DEMOTEF64, 1, true);
instruction_no_args!(f64_convert_s_i32, F64CONVERTSI32, 1, true);
instruction_no_args!(f64_convert_u_i32, F64CONVERTUI32, 1, true);
instruction_no_args!(f64_convert_s_i64, F64CONVERTSI64, 1, true);
instruction_no_args!(f64_convert_u_i64, F64CONVERTUI64, 1, true);
instruction_no_args!(f64_promote_f32, F64PROMOTEF32, 1, true);
instruction_no_args!(i32_reinterpret_f32, I32REINTERPRETF32, 1, true);
instruction_no_args!(i64_reinterpret_f64, I64REINTERPRETF64, 1, true);
instruction_no_args!(f32_reinterpret_i32, F32REINTERPRETI32, 1, true);
instruction_no_args!(f64_reinterpret_i64, F64REINTERPRETI64, 1, true);
}