roc/compiler/builtins/src/std.rs
2020-12-05 23:26:00 -05:00

749 lines
20 KiB
Rust

use roc_collections::all::{default_hasher, MutMap, MutSet};
use roc_module::ident::TagName;
use roc_module::symbol::Symbol;
use roc_region::all::Region;
use roc_types::builtin_aliases::{
bool_type, dict_type, float_type, int_type, list_type, num_type, ordering_type, result_type,
set_type, str_type,
};
use roc_types::solved_types::SolvedType;
use roc_types::subs::VarId;
use std::collections::HashMap;
#[derive(Clone, Copy, Debug)]
pub enum Mode {
Standard,
Uniqueness,
}
#[derive(Debug, Clone)]
pub struct StdLib {
pub mode: Mode,
pub types: MutMap<Symbol, (SolvedType, Region)>,
pub applies: MutSet<Symbol>,
}
pub fn standard_stdlib() -> StdLib {
StdLib {
mode: Mode::Standard,
types: types(),
applies: vec![
Symbol::LIST_LIST,
Symbol::SET_SET,
Symbol::DICT_DICT,
Symbol::STR_STR,
]
.into_iter()
.collect(),
}
}
/// Keep this up to date by hand! It's the number of builtin aliases that are imported by default.
const NUM_BUILTIN_IMPORTS: usize = 7;
/// These can be shared between definitions, they will get instantiated when converted to Type
const TVAR1: VarId = VarId::from_u32(1);
const TVAR2: VarId = VarId::from_u32(2);
const TVAR3: VarId = VarId::from_u32(3);
const TVAR4: VarId = VarId::from_u32(4);
const TOP_LEVEL_CLOSURE_VAR: VarId = VarId::from_u32(5);
pub fn types() -> MutMap<Symbol, (SolvedType, Region)> {
let mut types = HashMap::with_capacity_and_hasher(NUM_BUILTIN_IMPORTS, default_hasher());
let mut add_type = |symbol, typ| {
debug_assert!(
!types.contains_key(&symbol),
"Duplicate type definition for {:?}",
symbol
);
// TODO instead of using Region::zero for all of these,
// instead use the Region where they were defined in their
// source .roc files! This can give nicer error messages.
types.insert(symbol, (typ, Region::zero()));
};
// Num module
// add or (+) : Num a, Num a -> Num a
add_type(
Symbol::NUM_ADD,
top_level_function(
vec![num_type(flex(TVAR1)), num_type(flex(TVAR1))],
Box::new(num_type(flex(TVAR1))),
),
);
// addChecked : Num a, Num a -> Result (Num a) [ IntOverflow ]*
let overflow = SolvedType::TagUnion(
vec![(TagName::Global("Overflow".into()), vec![])],
Box::new(SolvedType::Wildcard),
);
add_type(
Symbol::NUM_ADD_CHECKED,
top_level_function(
vec![num_type(flex(TVAR1)), num_type(flex(TVAR1))],
Box::new(result_type(num_type(flex(TVAR1)), overflow)),
),
);
// addWrap : Int, Int -> Int
add_type(
Symbol::NUM_ADD_WRAP,
top_level_function(vec![int_type(), int_type()], Box::new(int_type())),
);
// sub or (-) : Num a, Num a -> Num a
add_type(
Symbol::NUM_SUB,
top_level_function(
vec![num_type(flex(TVAR1)), num_type(flex(TVAR1))],
Box::new(num_type(flex(TVAR1))),
),
);
// mul or (*) : Num a, Num a -> Num a
add_type(
Symbol::NUM_MUL,
top_level_function(
vec![num_type(flex(TVAR1)), num_type(flex(TVAR1))],
Box::new(num_type(flex(TVAR1))),
),
);
// abs : Num a -> Num a
add_type(
Symbol::NUM_ABS,
top_level_function(vec![num_type(flex(TVAR1))], Box::new(num_type(flex(TVAR1)))),
);
// neg : Num a -> Num a
add_type(
Symbol::NUM_NEG,
top_level_function(vec![num_type(flex(TVAR1))], Box::new(num_type(flex(TVAR1)))),
);
// isEq or (==) : a, a -> Bool
add_type(
Symbol::BOOL_EQ,
top_level_function(vec![flex(TVAR1), flex(TVAR1)], Box::new(bool_type())),
);
// isNeq or (!=) : a, a -> Bool
add_type(
Symbol::BOOL_NEQ,
top_level_function(vec![flex(TVAR1), flex(TVAR1)], Box::new(bool_type())),
);
// isLt or (<) : Num a, Num a -> Bool
add_type(
Symbol::NUM_LT,
top_level_function(
vec![num_type(flex(TVAR1)), num_type(flex(TVAR1))],
Box::new(bool_type()),
),
);
// isLte or (<=) : Num a, Num a -> Bool
add_type(
Symbol::NUM_LTE,
top_level_function(
vec![num_type(flex(TVAR1)), num_type(flex(TVAR1))],
Box::new(bool_type()),
),
);
// isGt or (>) : Num a, Num a -> Bool
add_type(
Symbol::NUM_GT,
top_level_function(
vec![num_type(flex(TVAR1)), num_type(flex(TVAR1))],
Box::new(bool_type()),
),
);
// isGte or (>=) : Num a, Num a -> Bool
add_type(
Symbol::NUM_GTE,
top_level_function(
vec![num_type(flex(TVAR1)), num_type(flex(TVAR1))],
Box::new(bool_type()),
),
);
// compare : Num a, Num a -> [ LT, EQ, GT ]
add_type(
Symbol::NUM_COMPARE,
top_level_function(
vec![num_type(flex(TVAR1)), num_type(flex(TVAR1))],
Box::new(ordering_type()),
),
);
// toFloat : Num a -> Float
add_type(
Symbol::NUM_TO_FLOAT,
top_level_function(vec![num_type(flex(TVAR1))], Box::new(float_type())),
);
// isNegative : Num a -> Bool
add_type(
Symbol::NUM_IS_NEGATIVE,
top_level_function(vec![num_type(flex(TVAR1))], Box::new(bool_type())),
);
// isPositive : Num a -> Bool
add_type(
Symbol::NUM_IS_POSITIVE,
top_level_function(vec![num_type(flex(TVAR1))], Box::new(bool_type())),
);
// isZero : Num a -> Bool
add_type(
Symbol::NUM_IS_ZERO,
top_level_function(vec![num_type(flex(TVAR1))], Box::new(bool_type())),
);
// isEven : Num a -> Bool
add_type(
Symbol::NUM_IS_EVEN,
top_level_function(vec![num_type(flex(TVAR1))], Box::new(bool_type())),
);
// isOdd : Num a -> Bool
add_type(
Symbol::NUM_IS_ODD,
top_level_function(vec![num_type(flex(TVAR1))], Box::new(bool_type())),
);
// maxInt : Int
add_type(Symbol::NUM_MAX_INT, int_type());
// minInt : Int
add_type(Symbol::NUM_MIN_INT, int_type());
// div : Int, Int -> Result Int [ DivByZero ]*
let div_by_zero = SolvedType::TagUnion(
vec![(TagName::Global("DivByZero".into()), vec![])],
Box::new(SolvedType::Wildcard),
);
add_type(
Symbol::NUM_DIV_INT,
top_level_function(
vec![int_type(), int_type()],
Box::new(result_type(int_type(), div_by_zero.clone())),
),
);
// rem : Int, Int -> Result Int [ DivByZero ]*
add_type(
Symbol::NUM_REM,
top_level_function(
vec![int_type(), int_type()],
Box::new(result_type(int_type(), div_by_zero.clone())),
),
);
// mod : Int, Int -> Result Int [ DivByZero ]*
add_type(
Symbol::NUM_MOD_INT,
top_level_function(
vec![int_type(), int_type()],
Box::new(result_type(int_type(), div_by_zero.clone())),
),
);
// Float module
// div : Float, Float -> Float
add_type(
Symbol::NUM_DIV_FLOAT,
top_level_function(
vec![float_type(), float_type()],
Box::new(result_type(float_type(), div_by_zero.clone())),
),
);
// mod : Float, Float -> Result Int [ DivByZero ]*
add_type(
Symbol::NUM_MOD_FLOAT,
top_level_function(
vec![float_type(), float_type()],
Box::new(result_type(float_type(), div_by_zero)),
),
);
// sqrt : Float -> Float
let sqrt_of_negative = SolvedType::TagUnion(
vec![(TagName::Global("SqrtOfNegative".into()), vec![])],
Box::new(SolvedType::Wildcard),
);
add_type(
Symbol::NUM_SQRT,
top_level_function(
vec![float_type()],
Box::new(result_type(float_type(), sqrt_of_negative)),
),
);
// round : Float -> Int
add_type(
Symbol::NUM_ROUND,
top_level_function(vec![float_type()], Box::new(int_type())),
);
// sin : Float -> Float
add_type(
Symbol::NUM_SIN,
top_level_function(vec![float_type()], Box::new(float_type())),
);
// cos : Float -> Float
add_type(
Symbol::NUM_COS,
top_level_function(vec![float_type()], Box::new(float_type())),
);
// tan : Float -> Float
add_type(
Symbol::NUM_TAN,
top_level_function(vec![float_type()], Box::new(float_type())),
);
// maxFloat : Float
add_type(Symbol::NUM_MAX_FLOAT, float_type());
// minFloat : Float
add_type(Symbol::NUM_MIN_FLOAT, float_type());
// pow : Float, Float -> Float
add_type(
Symbol::NUM_POW,
top_level_function(vec![float_type(), float_type()], Box::new(float_type())),
);
// ceiling : Float -> Int
add_type(
Symbol::NUM_CEILING,
top_level_function(vec![float_type()], Box::new(int_type())),
);
// powInt : Int, Int -> Int
add_type(
Symbol::NUM_POW_INT,
top_level_function(vec![int_type(), int_type()], Box::new(int_type())),
);
// floor : Float -> Int
add_type(
Symbol::NUM_FLOOR,
top_level_function(vec![float_type()], Box::new(int_type())),
);
// atan : Float -> Float
add_type(
Symbol::NUM_ATAN,
top_level_function(vec![float_type()], Box::new(float_type())),
);
// acos : Float -> Float
add_type(
Symbol::NUM_ACOS,
top_level_function(vec![float_type()], Box::new(float_type())),
);
// asin : Float -> Float
add_type(
Symbol::NUM_ASIN,
top_level_function(vec![float_type()], Box::new(float_type())),
);
// Bool module
// and : Bool, Bool -> Bool
add_type(
Symbol::BOOL_AND,
top_level_function(vec![bool_type(), bool_type()], Box::new(bool_type())),
);
// or : Bool, Bool -> Bool
add_type(
Symbol::BOOL_OR,
top_level_function(vec![bool_type(), bool_type()], Box::new(bool_type())),
);
// xor : Bool, Bool -> Bool
add_type(
Symbol::BOOL_XOR,
top_level_function(vec![bool_type(), bool_type()], Box::new(bool_type())),
);
// not : Bool -> Bool
add_type(
Symbol::BOOL_NOT,
top_level_function(vec![bool_type()], Box::new(bool_type())),
);
// Str module
// Str.split : Str, Str -> List Str
add_type(
Symbol::STR_SPLIT,
top_level_function(
vec![str_type(), str_type()],
Box::new(list_type(str_type())),
),
);
// Str.concat : Str, Str -> Str
add_type(
Symbol::STR_CONCAT,
top_level_function(vec![str_type(), str_type()], Box::new(str_type())),
);
// isEmpty : Str -> Bool
add_type(
Symbol::STR_IS_EMPTY,
top_level_function(vec![str_type()], Box::new(bool_type())),
);
// startsWith : Str, Str -> Bool
add_type(
Symbol::STR_STARTS_WITH,
top_level_function(vec![str_type(), str_type()], Box::new(bool_type())),
);
// endsWith : Str, Str -> Bool
add_type(
Symbol::STR_ENDS_WITH,
top_level_function(vec![str_type(), str_type()], Box::new(bool_type())),
);
// countGraphemes : Str -> Int
add_type(
Symbol::STR_COUNT_GRAPHEMES,
top_level_function(vec![str_type()], Box::new(int_type())),
);
// fromInt : Int -> Str
add_type(
Symbol::STR_FROM_INT,
top_level_function(vec![int_type()], Box::new(str_type())),
);
// List module
// get : List elem, Int -> Result elem [ OutOfBounds ]*
let index_out_of_bounds = SolvedType::TagUnion(
vec![(TagName::Global("OutOfBounds".into()), vec![])],
Box::new(SolvedType::Wildcard),
);
add_type(
Symbol::LIST_GET,
top_level_function(
vec![list_type(flex(TVAR1)), int_type()],
Box::new(result_type(flex(TVAR1), index_out_of_bounds)),
),
);
// first : List elem -> Result elem [ ListWasEmpty ]*
let list_was_empty = SolvedType::TagUnion(
vec![(TagName::Global("ListWasEmpty".into()), vec![])],
Box::new(SolvedType::Wildcard),
);
add_type(
Symbol::LIST_FIRST,
top_level_function(
vec![list_type(flex(TVAR1))],
Box::new(result_type(flex(TVAR1), list_was_empty)),
),
);
// set : List elem, Int, elem -> List elem
add_type(
Symbol::LIST_SET,
top_level_function(
vec![list_type(flex(TVAR1)), int_type(), flex(TVAR1)],
Box::new(list_type(flex(TVAR1))),
),
);
// concat : List elem, List elem -> List elem
add_type(
Symbol::LIST_CONCAT,
top_level_function(
vec![list_type(flex(TVAR1)), list_type(flex(TVAR1))],
Box::new(list_type(flex(TVAR1))),
),
);
// contains : List elem, elem -> Bool
add_type(
Symbol::LIST_CONTAINS,
top_level_function(
vec![list_type(flex(TVAR1)), flex(TVAR1)],
Box::new(bool_type()),
),
);
// sum : List (Num a) -> Num a
add_type(
Symbol::LIST_SUM,
top_level_function(
vec![list_type(num_type(flex(TVAR1)))],
Box::new(num_type(flex(TVAR1))),
),
);
// walk : List elem, (elem -> accum -> accum), accum -> accum
add_type(
Symbol::LIST_WALK,
top_level_function(
vec![
list_type(flex(TVAR1)),
closure(vec![flex(TVAR1), flex(TVAR2)], TVAR3, Box::new(flex(TVAR2))),
flex(TVAR2),
],
Box::new(flex(TVAR2)),
),
);
// walkBackwards : List elem, (elem -> accum -> accum), accum -> accum
add_type(
Symbol::LIST_WALK_BACKWARDS,
top_level_function(
vec![
list_type(flex(TVAR1)),
closure(vec![flex(TVAR1), flex(TVAR2)], TVAR3, Box::new(flex(TVAR2))),
flex(TVAR2),
],
Box::new(flex(TVAR2)),
),
);
// keepIf : List elem, (elem -> Bool) -> List elem
add_type(
Symbol::LIST_KEEP_IF,
top_level_function(
vec![
list_type(flex(TVAR1)),
closure(vec![flex(TVAR1)], TVAR2, Box::new(bool_type())),
],
Box::new(list_type(flex(TVAR1))),
),
);
// map : List before, (before -> after) -> List after
add_type(
Symbol::LIST_MAP,
top_level_function(
vec![
list_type(flex(TVAR1)),
closure(vec![flex(TVAR1)], TVAR3, Box::new(flex(TVAR2))),
],
Box::new(list_type(flex(TVAR2))),
),
);
// append : List elem, elem -> List elem
add_type(
Symbol::LIST_APPEND,
top_level_function(
vec![list_type(flex(TVAR1)), flex(TVAR1)],
Box::new(list_type(flex(TVAR1))),
),
);
// prepend : List elem, elem -> List elem
add_type(
Symbol::LIST_PREPEND,
top_level_function(
vec![list_type(flex(TVAR1)), flex(TVAR1)],
Box::new(list_type(flex(TVAR1))),
),
);
// join : List (List elem) -> List elem
add_type(
Symbol::LIST_JOIN,
top_level_function(
vec![list_type(list_type(flex(TVAR1)))],
Box::new(list_type(flex(TVAR1))),
),
);
// single : a -> List a
add_type(
Symbol::LIST_SINGLE,
top_level_function(vec![flex(TVAR1)], Box::new(list_type(flex(TVAR1)))),
);
// repeat : Int, elem -> List elem
add_type(
Symbol::LIST_REPEAT,
top_level_function(
vec![int_type(), flex(TVAR1)],
Box::new(list_type(flex(TVAR1))),
),
);
// reverse : List elem -> List elem
add_type(
Symbol::LIST_REVERSE,
top_level_function(
vec![list_type(flex(TVAR1))],
Box::new(list_type(flex(TVAR1))),
),
);
// len : List * -> Int
add_type(
Symbol::LIST_LEN,
top_level_function(vec![list_type(flex(TVAR1))], Box::new(int_type())),
);
// isEmpty : List * -> Bool
add_type(
Symbol::LIST_IS_EMPTY,
top_level_function(vec![list_type(flex(TVAR1))], Box::new(bool_type())),
);
// Dict module
// empty : Dict k v
add_type(Symbol::DICT_EMPTY, dict_type(flex(TVAR1), flex(TVAR2)));
// singleton : k, v -> Dict k v
add_type(
Symbol::DICT_SINGLETON,
top_level_function(
vec![flex(TVAR1), flex(TVAR2)],
Box::new(dict_type(flex(TVAR1), flex(TVAR2))),
),
);
// get : Dict k v, k -> Result v [ KeyNotFound ]*
let key_not_found = SolvedType::TagUnion(
vec![(TagName::Global("KeyNotFound".into()), vec![])],
Box::new(SolvedType::Wildcard),
);
add_type(
Symbol::DICT_GET,
top_level_function(
vec![dict_type(flex(TVAR1), flex(TVAR2)), flex(TVAR1)],
Box::new(result_type(flex(TVAR2), key_not_found)),
),
);
add_type(
Symbol::DICT_INSERT,
top_level_function(
vec![
dict_type(flex(TVAR1), flex(TVAR2)),
flex(TVAR1),
flex(TVAR2),
],
Box::new(dict_type(flex(TVAR1), flex(TVAR2))),
),
);
// Set module
// empty : Set a
add_type(Symbol::SET_EMPTY, set_type(flex(TVAR1)));
// singleton : a -> Set a
add_type(
Symbol::SET_SINGLETON,
top_level_function(vec![flex(TVAR1)], Box::new(set_type(flex(TVAR1)))),
);
// union : Set a, Set a -> Set a
add_type(
Symbol::SET_UNION,
top_level_function(
vec![set_type(flex(TVAR1)), set_type(flex(TVAR1))],
Box::new(set_type(flex(TVAR1))),
),
);
// diff : Set a, Set a -> Set a
add_type(
Symbol::SET_DIFF,
top_level_function(
vec![set_type(flex(TVAR1)), set_type(flex(TVAR1))],
Box::new(set_type(flex(TVAR1))),
),
);
// foldl : Set a, (a -> b -> b), b -> b
add_type(
Symbol::SET_FOLDL,
top_level_function(
vec![
set_type(flex(TVAR1)),
closure(vec![flex(TVAR1), flex(TVAR2)], TVAR3, Box::new(flex(TVAR2))),
flex(TVAR2),
],
Box::new(flex(TVAR2)),
),
);
add_type(
Symbol::SET_INSERT,
top_level_function(
vec![set_type(flex(TVAR1)), flex(TVAR1)],
Box::new(set_type(flex(TVAR1))),
),
);
add_type(
Symbol::SET_REMOVE,
top_level_function(
vec![set_type(flex(TVAR1)), flex(TVAR1)],
Box::new(set_type(flex(TVAR1))),
),
);
// Result module
// map : Result a err, (a -> b) -> Result b err
add_type(
Symbol::RESULT_MAP,
top_level_function(
vec![
result_type(flex(TVAR1), flex(TVAR3)),
closure(vec![flex(TVAR1)], TVAR4, Box::new(flex(TVAR2))),
],
Box::new(result_type(flex(TVAR2), flex(TVAR3))),
),
);
types
}
#[inline(always)]
fn flex(tvar: VarId) -> SolvedType {
SolvedType::Flex(tvar)
}
#[inline(always)]
fn top_level_function(arguments: Vec<SolvedType>, ret: Box<SolvedType>) -> SolvedType {
SolvedType::Func(
arguments,
Box::new(SolvedType::Flex(TOP_LEVEL_CLOSURE_VAR)),
ret,
)
}
#[inline(always)]
fn closure(arguments: Vec<SolvedType>, closure_var: VarId, ret: Box<SolvedType>) -> SolvedType {
SolvedType::Func(arguments, Box::new(SolvedType::Flex(closure_var)), ret)
}