roc/compiler/can/src/builtins.rs
2020-07-18 21:30:51 -04:00

1236 lines
34 KiB
Rust

use crate::def::Def;
use crate::expr::Expr::*;
use crate::expr::{Expr, Recursive};
use crate::pattern::Pattern;
use roc_collections::all::{MutMap, SendMap};
use roc_module::ident::TagName;
use roc_module::low_level::LowLevel;
use roc_module::symbol::Symbol;
use roc_region::all::{Located, Region};
use roc_types::subs::{VarStore, Variable};
macro_rules! defs {
(@single $($x:tt)*) => (());
(@count $($rest:expr),*) => (<[()]>::len(&[$(defs!(@single $rest)),*]));
($var_store:expr; $($key:expr => $func:expr,)+) => { defs!($var_store; $($key => $func),+) };
($var_store:expr; $($key:expr => $func:expr),*) => {
{
let _cap = defs!(@count $($key),*);
let mut _map = ::std::collections::HashMap::with_capacity_and_hasher(_cap, roc_collections::all::default_hasher());
$(
let _ = _map.insert($key, $func($key, $var_store));
)*
_map
}
};
}
/// Some builtins cannot be constructed in code gen alone, and need to be defined
/// as separate Roc defs. For example, List.get has this type:
///
/// List.get : List elem, Int -> Result elem [ OutOfBounds ]*
///
/// Because this returns an open tag union for its Err type, it's not possible
/// for code gen to return a hardcoded value for OutOfBounds. For example,
/// if this Result unifies to [ Foo, OutOfBounds ] then OutOfBOunds will
/// get assigned the number 1 (because Foo got 0 alphabetically), whereas
/// if it unifies to [ OutOfBounds, Qux ] then OutOfBounds will get the number 0.
///
/// Getting these numbers right requires having List.get participate in the
/// normal type-checking and monomorphization processes. As such, this function
/// returns a normal def for List.get, which performs a bounds check and then
/// delegates to the compiler-internal List.getUnsafe function to do the actual
/// lookup (if the bounds check passed). That internal function is hardcoded in code gen,
/// which works fine because it doesn't involve any open tag unions.
pub fn builtin_defs(var_store: &mut VarStore) -> MutMap<Symbol, Def> {
defs! { var_store;
Symbol::BOOL_EQ => bool_eq,
Symbol::BOOL_NEQ => bool_neq,
Symbol::BOOL_AND => bool_and,
Symbol::BOOL_OR => bool_or,
Symbol::BOOL_NOT => bool_not,
Symbol::LIST_LEN => list_len,
Symbol::LIST_GET => list_get,
Symbol::LIST_SET => list_set,
Symbol::LIST_PUSH => list_push,
Symbol::LIST_FIRST => list_first,
Symbol::LIST_IS_EMPTY => list_is_empty,
Symbol::LIST_SINGLE => list_single,
Symbol::LIST_REPEAT => list_repeat,
Symbol::LIST_REVERSE => list_reverse,
Symbol::LIST_APPEND => list_append,
Symbol::NUM_ADD => num_add,
Symbol::NUM_SUB => num_sub,
Symbol::NUM_MUL => num_mul,
Symbol::NUM_GT => num_gt,
Symbol::NUM_GTE => num_gte,
Symbol::NUM_LT => num_lt,
Symbol::NUM_LTE => num_lte,
Symbol::NUM_SIN => num_sin,
Symbol::NUM_COS => num_cos,
Symbol::NUM_TAN => num_tan,
Symbol::NUM_DIV_FLOAT => num_div_float,
Symbol::NUM_DIV_INT => num_div_int,
Symbol::NUM_ABS => num_abs,
Symbol::NUM_NEG => num_neg,
Symbol::NUM_REM => num_rem,
Symbol::NUM_SQRT => num_sqrt,
Symbol::NUM_ROUND => num_round,
Symbol::NUM_IS_ODD => num_is_odd,
Symbol::NUM_IS_EVEN => num_is_even,
Symbol::NUM_IS_ZERO => num_is_zero,
Symbol::NUM_IS_POSITIVE => num_is_positive,
Symbol::NUM_IS_NEGATIVE => num_is_negative,
Symbol::NUM_TO_FLOAT => num_to_float,
}
}
/// Bool.isEq : val, val -> Bool
fn bool_eq(symbol: Symbol, var_store: &mut VarStore) -> Def {
let arg_var = var_store.fresh();
let bool_var = var_store.fresh();
let body = RunLowLevel {
op: LowLevel::Eq,
args: vec![(arg_var, Var(Symbol::ARG_1)), (arg_var, Var(Symbol::ARG_2))],
ret_var: bool_var,
};
defn(
symbol,
vec![(arg_var, Symbol::ARG_1), (arg_var, Symbol::ARG_2)],
var_store,
body,
bool_var,
)
}
/// Bool.isNotEq : val, val -> Bool
fn bool_neq(symbol: Symbol, var_store: &mut VarStore) -> Def {
let arg_var = var_store.fresh();
let bool_var = var_store.fresh();
let body = RunLowLevel {
op: LowLevel::NotEq,
args: vec![(arg_var, Var(Symbol::ARG_1)), (arg_var, Var(Symbol::ARG_2))],
ret_var: bool_var,
};
defn(
symbol,
vec![(arg_var, Symbol::ARG_1), (arg_var, Symbol::ARG_2)],
var_store,
body,
bool_var,
)
}
/// Bool.or : Bool, Bool -> Bool
fn bool_or(symbol: Symbol, var_store: &mut VarStore) -> Def {
let bool_var = var_store.fresh();
let body = RunLowLevel {
op: LowLevel::Or,
args: vec![
(bool_var, Var(Symbol::ARG_1)),
(bool_var, Var(Symbol::ARG_2)),
],
ret_var: bool_var,
};
defn(
symbol,
vec![(bool_var, Symbol::ARG_1), (bool_var, Symbol::ARG_2)],
var_store,
body,
bool_var,
)
}
/// Bool.not : Bool -> Bool
fn bool_not(symbol: Symbol, var_store: &mut VarStore) -> Def {
let bool_var = var_store.fresh();
let body = RunLowLevel {
op: LowLevel::Not,
args: vec![(bool_var, Var(Symbol::ARG_1))],
ret_var: bool_var,
};
defn(
symbol,
vec![(bool_var, Symbol::ARG_1)],
var_store,
body,
bool_var,
)
}
/// Bool.and : Bool, Bool -> Bool
fn bool_and(symbol: Symbol, var_store: &mut VarStore) -> Def {
let bool_var = var_store.fresh();
let body = RunLowLevel {
op: LowLevel::And,
args: vec![
(bool_var, Var(Symbol::ARG_1)),
(bool_var, Var(Symbol::ARG_2)),
],
ret_var: var_store.fresh(),
};
defn(
symbol,
vec![(bool_var, Symbol::ARG_1), (bool_var, Symbol::ARG_2)],
var_store,
body,
bool_var,
)
}
/// Num a, Num a -> Num a
fn num_binop(symbol: Symbol, var_store: &mut VarStore, op: LowLevel) -> Def {
let num_var = var_store.fresh();
let body = RunLowLevel {
op,
args: vec![(num_var, Var(Symbol::ARG_1)), (num_var, Var(Symbol::ARG_2))],
ret_var: num_var,
};
defn(
symbol,
vec![(num_var, Symbol::ARG_1), (num_var, Symbol::ARG_2)],
var_store,
body,
num_var,
)
}
/// Num a, Num a -> Bool
fn num_bool_binop(symbol: Symbol, var_store: &mut VarStore, op: LowLevel) -> Def {
let num_var = var_store.fresh();
let bool_var = var_store.fresh();
let body = RunLowLevel {
op,
args: vec![(num_var, Var(Symbol::ARG_1)), (num_var, Var(Symbol::ARG_2))],
ret_var: bool_var,
};
defn(
symbol,
vec![(num_var, Symbol::ARG_1), (num_var, Symbol::ARG_2)],
var_store,
body,
bool_var,
)
}
/// Num.add : Num a, Num a -> Num a
fn num_add(symbol: Symbol, var_store: &mut VarStore) -> Def {
num_binop(symbol, var_store, LowLevel::NumAdd)
}
/// Num.sub : Num a, Num a -> Num a
fn num_sub(symbol: Symbol, var_store: &mut VarStore) -> Def {
num_binop(symbol, var_store, LowLevel::NumSub)
}
/// Num.mul : Num a, Num a -> Num a
fn num_mul(symbol: Symbol, var_store: &mut VarStore) -> Def {
num_binop(symbol, var_store, LowLevel::NumMul)
}
/// Num.isGt : Num a, Num a -> Bool
fn num_gt(symbol: Symbol, var_store: &mut VarStore) -> Def {
num_bool_binop(symbol, var_store, LowLevel::NumGt)
}
/// Num.isGte : Num a, Num a -> Bool
fn num_gte(symbol: Symbol, var_store: &mut VarStore) -> Def {
num_bool_binop(symbol, var_store, LowLevel::NumGte)
}
/// Num.isLt : Num a, Num a -> Bool
fn num_lt(symbol: Symbol, var_store: &mut VarStore) -> Def {
num_bool_binop(symbol, var_store, LowLevel::NumLt)
}
/// Num.isLte : Num a, Num a -> Num a
fn num_lte(symbol: Symbol, var_store: &mut VarStore) -> Def {
num_bool_binop(symbol, var_store, LowLevel::NumLte)
}
/// Num.sin : Float -> Float
fn num_sin(symbol: Symbol, var_store: &mut VarStore) -> Def {
let float_var = var_store.fresh();
let body = RunLowLevel {
op: LowLevel::NumSin,
args: vec![(float_var, Var(Symbol::ARG_1))],
ret_var: float_var,
};
defn(
symbol,
vec![(float_var, Symbol::ARG_1)],
var_store,
body,
float_var,
)
}
/// Num.cos : Float -> Float
fn num_cos(symbol: Symbol, var_store: &mut VarStore) -> Def {
let float_var = var_store.fresh();
let body = RunLowLevel {
op: LowLevel::NumCos,
args: vec![(float_var, Var(Symbol::ARG_1))],
ret_var: float_var,
};
defn(
symbol,
vec![(float_var, Symbol::ARG_1)],
var_store,
body,
float_var,
)
}
/// Num.tan : Float -> Float
fn num_tan(symbol: Symbol, var_store: &mut VarStore) -> Def {
let float_var = var_store.fresh();
let body = RunLowLevel {
op: LowLevel::NumDivUnchecked,
args: vec![
(
float_var,
RunLowLevel {
op: LowLevel::NumSin,
args: vec![(float_var, Var(Symbol::ARG_1))],
ret_var: float_var,
},
),
(
float_var,
RunLowLevel {
op: LowLevel::NumCos,
args: vec![(float_var, Var(Symbol::ARG_1))],
ret_var: float_var,
},
),
],
ret_var: float_var,
};
defn(
symbol,
vec![(float_var, Symbol::ARG_1)],
var_store,
body,
float_var,
)
}
/// Num.isZero : Num * -> Bool
fn num_is_zero(symbol: Symbol, var_store: &mut VarStore) -> Def {
let arg_var = var_store.fresh();
let bool_var = var_store.fresh();
let unbound_zero_var = var_store.fresh();
let body = RunLowLevel {
op: LowLevel::Eq,
args: vec![
(arg_var, Var(Symbol::ARG_1)),
(arg_var, Num(unbound_zero_var, 0)),
],
ret_var: bool_var,
};
defn(
symbol,
vec![(arg_var, Symbol::ARG_1)],
var_store,
body,
bool_var,
)
}
/// Num.isNegative : Num * -> Bool
fn num_is_negative(symbol: Symbol, var_store: &mut VarStore) -> Def {
let arg_var = var_store.fresh();
let bool_var = var_store.fresh();
let unbound_zero_var = var_store.fresh();
let body = RunLowLevel {
op: LowLevel::NumGt,
args: vec![
(arg_var, Num(unbound_zero_var, 0)),
(arg_var, Var(Symbol::ARG_1)),
],
ret_var: bool_var,
};
defn(
symbol,
vec![(arg_var, Symbol::ARG_1)],
var_store,
body,
bool_var,
)
}
/// Num.isPositive : Num * -> Bool
fn num_is_positive(symbol: Symbol, var_store: &mut VarStore) -> Def {
let arg_var = var_store.fresh();
let bool_var = var_store.fresh();
let unbound_zero_var = var_store.fresh();
let body = RunLowLevel {
op: LowLevel::NumGt,
args: vec![
(arg_var, Var(Symbol::ARG_1)),
(arg_var, Num(unbound_zero_var, 0)),
],
ret_var: bool_var,
};
defn(
symbol,
vec![(arg_var, Symbol::ARG_1)],
var_store,
body,
bool_var,
)
}
/// Num.isOdd : Num * -> Bool
fn num_is_odd(symbol: Symbol, var_store: &mut VarStore) -> Def {
let arg_var = var_store.fresh();
let bool_var = var_store.fresh();
let unbound_two_var = var_store.fresh();
let body = RunLowLevel {
op: LowLevel::Eq,
args: vec![
(arg_var, Int(var_store.fresh(), 1)),
(
arg_var,
RunLowLevel {
op: LowLevel::NumRemUnchecked,
args: vec![
(arg_var, Var(Symbol::ARG_1)),
(arg_var, Num(unbound_two_var, 2)),
],
ret_var: arg_var,
},
),
],
ret_var: bool_var,
};
defn(
symbol,
vec![(arg_var, Symbol::ARG_1)],
var_store,
body,
bool_var,
)
}
/// Num.isEven : Num * -> Bool
fn num_is_even(symbol: Symbol, var_store: &mut VarStore) -> Def {
let arg_var = var_store.fresh();
let arg_num_var = var_store.fresh();
let bool_var = var_store.fresh();
let body = RunLowLevel {
op: LowLevel::Eq,
args: vec![
(arg_var, Num(arg_num_var, 0)),
(
arg_var,
RunLowLevel {
op: LowLevel::NumRemUnchecked,
args: vec![
(arg_var, Var(Symbol::ARG_1)),
(arg_var, Num(arg_num_var, 2)),
],
ret_var: arg_var,
},
),
],
ret_var: bool_var,
};
defn(
symbol,
vec![(arg_var, Symbol::ARG_1)],
var_store,
body,
bool_var,
)
}
/// Num.toFloat : Num * -> Float
fn num_to_float(symbol: Symbol, var_store: &mut VarStore) -> Def {
let arg_var = var_store.fresh();
let float_var = var_store.fresh();
let body = RunLowLevel {
op: LowLevel::NumToFloat,
args: vec![(arg_var, Var(Symbol::ARG_1))],
ret_var: float_var,
};
defn(
symbol,
vec![(arg_var, Symbol::ARG_1)],
var_store,
body,
float_var,
)
}
/// Num.sqrt : Float -> Result Float [ SqrtOfNegative ]*
fn num_sqrt(symbol: Symbol, var_store: &mut VarStore) -> Def {
let bool_var = var_store.fresh();
let float_var = var_store.fresh();
let unbound_zero_var = var_store.fresh();
let ret_var = var_store.fresh();
let body = If {
branch_var: ret_var,
cond_var: bool_var,
branches: vec![(
// if-condition
no_region(
// Num.neq denominator 0
RunLowLevel {
op: LowLevel::NotEq,
args: vec![
(float_var, Var(Symbol::ARG_1)),
(float_var, Float(unbound_zero_var, 0.0)),
],
ret_var: bool_var,
},
),
// denominator was not zero
no_region(
// Ok (Float.#divUnchecked numerator denominator)
tag(
"Ok",
vec![
// Num.#divUnchecked numerator denominator
RunLowLevel {
op: LowLevel::NumSqrtUnchecked,
args: vec![(float_var, Var(Symbol::ARG_1))],
ret_var: float_var,
},
],
var_store,
),
),
)],
final_else: Box::new(
// denominator was zero
no_region(tag(
"Err",
vec![tag("DivByZero", Vec::new(), var_store)],
var_store,
)),
),
};
defn(
symbol,
vec![(float_var, Symbol::ARG_1)],
var_store,
body,
ret_var,
)
}
/// Num.round : Float -> Int
fn num_round(symbol: Symbol, var_store: &mut VarStore) -> Def {
let float_var = var_store.fresh();
let int_var = var_store.fresh();
let body = RunLowLevel {
op: LowLevel::NumRound,
args: vec![(float_var, Var(Symbol::ARG_1))],
ret_var: int_var,
};
defn(
symbol,
vec![(float_var, Symbol::ARG_1)],
var_store,
body,
int_var,
)
}
/// List.isEmpty : List * -> Bool
fn list_is_empty(symbol: Symbol, var_store: &mut VarStore) -> Def {
let list_var = var_store.fresh();
let bool_var = var_store.fresh();
let len_var = var_store.fresh();
let unbound_zero_var = var_store.fresh();
let body = RunLowLevel {
op: LowLevel::Eq,
args: vec![
(len_var, Num(unbound_zero_var, 0)),
(
len_var,
RunLowLevel {
op: LowLevel::ListLen,
args: vec![(list_var, Var(Symbol::ARG_1))],
ret_var: len_var,
},
),
],
ret_var: bool_var,
};
defn(
symbol,
vec![(list_var, Symbol::ARG_1)],
var_store,
body,
bool_var,
)
}
/// List.reverse : List elem -> List elem
fn list_reverse(symbol: Symbol, var_store: &mut VarStore) -> Def {
let list_var = var_store.fresh();
let body = RunLowLevel {
op: LowLevel::ListReverse,
args: vec![(list_var, Var(Symbol::ARG_1))],
ret_var: list_var,
};
defn(
symbol,
vec![(list_var, Symbol::ARG_1)],
var_store,
body,
list_var,
)
}
/// List.append : List elem, List elem -> List elem
fn list_append(symbol: Symbol, var_store: &mut VarStore) -> Def {
let list_var = var_store.fresh();
let body = RunLowLevel {
op: LowLevel::ListAppend,
args: vec![
(list_var, Var(Symbol::ARG_1)),
(list_var, Var(Symbol::ARG_2)),
],
ret_var: list_var,
};
defn(
symbol,
vec![(list_var, Symbol::ARG_1), (list_var, Symbol::ARG_2)],
var_store,
body,
list_var,
)
}
/// List.repeat : elem, Int -> List elem
fn list_repeat(symbol: Symbol, var_store: &mut VarStore) -> Def {
let elem_var = var_store.fresh();
let len_var = var_store.fresh();
let list_var = var_store.fresh();
let body = RunLowLevel {
op: LowLevel::ListRepeat,
args: vec![
(elem_var, Var(Symbol::ARG_1)),
(len_var, Var(Symbol::ARG_2)),
],
ret_var: list_var,
};
defn(
symbol,
vec![(elem_var, Symbol::ARG_1), (len_var, Symbol::ARG_2)],
var_store,
body,
list_var,
)
}
/// List.single : elem -> List elem
fn list_single(symbol: Symbol, var_store: &mut VarStore) -> Def {
let elem_var = var_store.fresh();
let list_var = var_store.fresh();
let body = RunLowLevel {
op: LowLevel::ListSingle,
args: vec![(elem_var, Var(Symbol::ARG_1))],
ret_var: list_var,
};
defn(
symbol,
vec![(elem_var, Symbol::ARG_1)],
var_store,
body,
list_var,
)
}
/// List.len : List * -> Int
fn list_len(symbol: Symbol, var_store: &mut VarStore) -> Def {
let len_var = var_store.fresh();
let list_var = var_store.fresh();
let body = RunLowLevel {
op: LowLevel::ListLen,
args: vec![(list_var, Var(Symbol::ARG_1))],
ret_var: len_var,
};
defn(
symbol,
vec![(list_var, Symbol::ARG_1)],
var_store,
body,
len_var,
)
}
/// List.get : List elem, Int -> Result elem [ OutOfBounds ]*
///
/// List.get :
/// Attr (* | u) (List (Attr u a)),
/// Attr * Int
/// -> Attr * (Result (Attr u a) (Attr * [ OutOfBounds ]*))
fn list_get(symbol: Symbol, var_store: &mut VarStore) -> Def {
let arg_list = Symbol::ARG_1;
let arg_index = Symbol::ARG_2;
let bool_var = var_store.fresh();
let len_var = var_store.fresh();
let list_var = var_store.fresh();
let elem_var = var_store.fresh();
let ret_var = var_store.fresh();
// Perform a bounds check. If it passes, run LowLevel::ListGetUnsafe
let body = If {
cond_var: bool_var,
branch_var: var_store.fresh(),
branches: vec![(
// if-condition
no_region(
// index < List.len list
RunLowLevel {
op: LowLevel::NumLt,
args: vec![
(len_var, Var(arg_index)),
(
len_var,
RunLowLevel {
op: LowLevel::ListLen,
args: vec![(list_var, Var(arg_list))],
ret_var: len_var,
},
),
],
ret_var: bool_var,
},
),
// then-branch
no_region(
// Ok
tag(
"Ok",
vec![
// List#getUnsafe list index
RunLowLevel {
op: LowLevel::ListGetUnsafe,
args: vec![(list_var, Var(arg_list)), (len_var, Var(arg_index))],
ret_var: elem_var,
},
],
var_store,
),
),
)],
final_else: Box::new(
// else-branch
no_region(
// Err
tag(
"Err",
vec![tag("OutOfBounds", Vec::new(), var_store)],
var_store,
),
),
),
};
defn(
symbol,
vec![(list_var, Symbol::ARG_1), (len_var, Symbol::ARG_2)],
var_store,
body,
ret_var,
)
}
/// List.set : List elem, Int, elem -> List elem
///
/// List.set :
/// Attr (w | u | v) (List (Attr u a)),
/// Attr * Int,
/// Attr (u | v) a
/// -> Attr * (List (Attr u a))
fn list_set(symbol: Symbol, var_store: &mut VarStore) -> Def {
let arg_list = Symbol::ARG_1;
let arg_index = Symbol::ARG_2;
let arg_elem = Symbol::ARG_3;
let bool_var = var_store.fresh();
let len_var = var_store.fresh();
let elem_var = var_store.fresh();
let list_arg_var = var_store.fresh(); // Uniqueness type Attr differs between
let list_ret_var = var_store.fresh(); // the arg list and the returned list
// Perform a bounds check. If it passes, run LowLevel::ListSet.
// Otherwise, return the list unmodified.
let body = If {
cond_var: bool_var,
branch_var: list_ret_var,
branches: vec![(
// if-condition
no_region(
// index < List.len list
RunLowLevel {
op: LowLevel::NumLt,
args: vec![
(len_var, Var(arg_index)),
(
len_var,
RunLowLevel {
op: LowLevel::ListLen,
args: vec![(list_arg_var, Var(arg_list))],
ret_var: len_var,
},
),
],
ret_var: bool_var,
},
),
// then-branch
no_region(
// List.setUnsafe list index
RunLowLevel {
op: LowLevel::ListSet,
args: vec![
(list_arg_var, Var(arg_list)),
(len_var, Var(arg_index)),
(elem_var, Var(arg_elem)),
],
ret_var: list_ret_var,
},
),
)],
final_else: Box::new(
// else-branch
no_region(Var(arg_list)),
),
};
defn(
symbol,
vec![
(list_arg_var, Symbol::ARG_1),
(len_var, Symbol::ARG_2),
(elem_var, Symbol::ARG_3),
],
var_store,
body,
list_ret_var,
)
}
/// List.push : List elem, elem -> List elem
fn list_push(symbol: Symbol, var_store: &mut VarStore) -> Def {
let list_var = var_store.fresh();
let elem_var = var_store.fresh();
let body = RunLowLevel {
op: LowLevel::ListPush,
args: vec![
(list_var, Var(Symbol::ARG_1)),
(elem_var, Var(Symbol::ARG_2)),
],
ret_var: list_var,
};
defn(
symbol,
vec![(list_var, Symbol::ARG_1), (elem_var, Symbol::ARG_2)],
var_store,
body,
list_var,
)
}
/// Num.rem : Int, Int -> Result Int [ DivByZero ]*
fn num_rem(symbol: Symbol, var_store: &mut VarStore) -> Def {
let num_var = var_store.fresh();
let unbound_zero_var = var_store.fresh();
let bool_var = var_store.fresh();
let ret_var = var_store.fresh();
let body = If {
branch_var: ret_var,
cond_var: bool_var,
branches: vec![(
// if condition
no_region(
// Num.isNeq arg2 0
RunLowLevel {
op: LowLevel::NotEq,
args: vec![
(num_var, Var(Symbol::ARG_2)),
(num_var, Num(unbound_zero_var, 0)),
],
ret_var: bool_var,
},
),
// arg1 was not zero
no_region(
// Ok (Int.#remUnsafe arg1 arg2)
tag(
"Ok",
vec![
// Num.#remUnsafe arg1 arg2
RunLowLevel {
op: LowLevel::NumRemUnchecked,
args: vec![
(num_var, Var(Symbol::ARG_1)),
(num_var, Var(Symbol::ARG_2)),
],
ret_var: num_var,
},
],
var_store,
),
),
)],
final_else: Box::new(no_region(tag(
"Err",
vec![tag("DivByZero", Vec::new(), var_store)],
var_store,
))),
};
defn(
symbol,
vec![(num_var, Symbol::ARG_1), (num_var, Symbol::ARG_2)],
var_store,
body,
ret_var,
)
}
/// Num.neg : Num a -> Num a
fn num_neg(symbol: Symbol, var_store: &mut VarStore) -> Def {
let num_var = var_store.fresh();
let body = RunLowLevel {
op: LowLevel::NumNeg,
args: vec![(num_var, Var(Symbol::ARG_1))],
ret_var: num_var,
};
defn(
symbol,
vec![(num_var, Symbol::ARG_1)],
var_store,
body,
num_var,
)
}
/// Num.abs : Num a -> Num a
fn num_abs(symbol: Symbol, var_store: &mut VarStore) -> Def {
let num_var = var_store.fresh();
let body = RunLowLevel {
op: LowLevel::NumAbs,
args: vec![(num_var, Var(Symbol::ARG_1))],
ret_var: num_var,
};
defn(
symbol,
vec![(num_var, Symbol::ARG_1)],
var_store,
body,
num_var,
)
}
/// Num.div : Float, Float -> Result Float [ DivByZero ]*
fn num_div_float(symbol: Symbol, var_store: &mut VarStore) -> Def {
let bool_var = var_store.fresh();
let num_var = var_store.fresh();
let unbound_zero_var = var_store.fresh();
let ret_var = var_store.fresh();
let body = If {
branch_var: ret_var,
cond_var: bool_var,
branches: vec![(
// if-condition
no_region(
// Num.neq denominator 0
RunLowLevel {
op: LowLevel::NotEq,
args: vec![
(num_var, Var(Symbol::ARG_2)),
(num_var, Float(unbound_zero_var, 0.0)),
],
ret_var: bool_var,
},
),
// denominator was not zero
no_region(
// Ok (Float.#divUnchecked numerator denominator)
tag(
"Ok",
vec![
// Num.#divUnchecked numerator denominator
RunLowLevel {
op: LowLevel::NumDivUnchecked,
args: vec![
(num_var, Var(Symbol::ARG_1)),
(num_var, Var(Symbol::ARG_2)),
],
ret_var: num_var,
},
],
var_store,
),
),
)],
final_else: Box::new(
// denominator was zero
no_region(tag(
"Err",
vec![tag("DivByZero", Vec::new(), var_store)],
var_store,
)),
),
};
defn(
symbol,
vec![(num_var, Symbol::ARG_1), (num_var, Symbol::ARG_2)],
var_store,
body,
ret_var,
)
}
/// Num.div : Int, Int -> Result Int [ DivByZero ]*
fn num_div_int(symbol: Symbol, var_store: &mut VarStore) -> Def {
let bool_var = var_store.fresh();
let num_var = var_store.fresh();
let unbound_zero_var = var_store.fresh();
let ret_var = var_store.fresh();
let body = If {
branch_var: ret_var,
cond_var: bool_var,
branches: vec![(
// if-condition
no_region(
// Num.neq denominator 0
RunLowLevel {
op: LowLevel::NotEq,
args: vec![
(num_var, Var(Symbol::ARG_2)),
(num_var, Int(unbound_zero_var, 0)),
],
ret_var: bool_var,
},
),
// denominator was not zero
no_region(
// Ok (Int.#divUnchecked numerator denominator)
tag(
"Ok",
vec![
// Num.#divUnchecked numerator denominator
RunLowLevel {
op: LowLevel::NumDivUnchecked,
args: vec![
(num_var, Var(Symbol::ARG_1)),
(num_var, Var(Symbol::ARG_2)),
],
ret_var: num_var,
},
],
var_store,
),
),
)],
final_else: Box::new(
// denominator was zero
no_region(tag(
"Err",
vec![tag("DivByZero", Vec::new(), var_store)],
var_store,
)),
),
};
defn(
symbol,
vec![(num_var, Symbol::ARG_1), (num_var, Symbol::ARG_2)],
var_store,
body,
ret_var,
)
}
/// List.first : List elem -> Result elem [ ListWasEmpty ]*
///
/// List.first :
/// Attr (* | u) (List (Attr u a)),
/// -> Attr * (Result (Attr u a) (Attr * [ OutOfBounds ]*))
fn list_first(symbol: Symbol, var_store: &mut VarStore) -> Def {
let bool_var = var_store.fresh();
let list_var = var_store.fresh();
let len_var = var_store.fresh();
let zero_var = var_store.fresh();
let list_elem_var = var_store.fresh();
let ret_var = var_store.fresh();
// Perform a bounds check. If it passes, delegate to List.getUnsafe.
let body = If {
cond_var: bool_var,
branch_var: var_store.fresh(),
branches: vec![(
// if-condition
no_region(
// List.len list != 0
RunLowLevel {
op: LowLevel::NotEq,
args: vec![
(len_var, Int(zero_var, 0)),
(
len_var,
RunLowLevel {
op: LowLevel::ListLen,
args: vec![(list_var, Var(Symbol::ARG_1))],
ret_var: len_var,
},
),
],
ret_var: bool_var,
},
),
// list was not empty
no_region(
// Ok (List.#getUnsafe list 0)
tag(
"Ok",
vec![
// List.#getUnsafe list 0
RunLowLevel {
op: LowLevel::ListGetUnsafe,
args: vec![(list_var, Var(Symbol::ARG_1)), (len_var, Int(zero_var, 0))],
ret_var: list_elem_var,
},
],
var_store,
),
),
)],
final_else: Box::new(
// list was empty
no_region(
// Err ListWasEmpty
tag(
"Err",
vec![tag("ListWasEmpty", Vec::new(), var_store)],
var_store,
),
),
),
};
defn(
symbol,
vec![(list_var, Symbol::ARG_1)],
var_store,
body,
ret_var,
)
}
#[inline(always)]
fn no_region<T>(value: T) -> Located<T> {
Located {
region: Region::zero(),
value,
}
}
#[inline(always)]
fn tag(name: &'static str, args: Vec<Expr>, var_store: &mut VarStore) -> Expr {
Expr::Tag {
variant_var: var_store.fresh(),
ext_var: var_store.fresh(),
name: TagName::Global(name.into()),
arguments: args
.into_iter()
.map(|expr| (var_store.fresh(), no_region(expr)))
.collect::<Vec<(Variable, Located<Expr>)>>(),
}
}
#[inline(always)]
fn defn(
fn_name: Symbol,
args: Vec<(Variable, Symbol)>,
var_store: &mut VarStore,
body: Expr,
ret_var: Variable,
) -> Def {
use crate::pattern::Pattern::*;
let closure_args = args
.into_iter()
.map(|(var, symbol)| (var, no_region(Identifier(symbol))))
.collect();
let expr = Closure(
var_store.fresh(),
fn_name,
Recursive::NotRecursive,
closure_args,
Box::new((no_region(body), ret_var)),
);
Def {
loc_pattern: Located {
region: Region::zero(),
value: Pattern::Identifier(fn_name),
},
loc_expr: Located {
region: Region::zero(),
value: expr,
},
expr_var: var_store.fresh(),
pattern_vars: SendMap::default(),
annotation: None,
}
}