roc/crates/compiler/mono/src/ir.rs
Brendan Hansknecht 6dc5bfb1b7
Use roc_target over target_lexicon
Tailors a target class for our needs.
Replaces tons of uses across the entire compiler.
This is a base for later adding new targets like thumb.
2024-03-31 10:50:26 -07:00

10507 lines
365 KiB
Rust

#![allow(clippy::manual_map)]
use crate::ir::erased::{build_erased_function, ResolvedErasedLambda};
use crate::ir::literal::{make_num_literal, IntOrFloatValue};
use crate::layout::{
self, Builtin, ClosureCallOptions, ClosureDataKind, ClosureRepresentation, EnumDispatch,
InLayout, LambdaName, LambdaSet, Layout, LayoutCache, LayoutInterner, LayoutProblem,
LayoutRepr, Niche, RawFunctionLayout, TLLayoutInterner, TagIdIntType, UnionLayout,
WrappedVariant,
};
use bumpalo::collections::{CollectIn, Vec};
use bumpalo::Bump;
use roc_can::abilities::SpecializationId;
use roc_can::expr::{AnnotatedMark, ClosureData, ExpectLookup};
use roc_can::module::ExposedByModule;
use roc_collections::all::{default_hasher, BumpMap, BumpMapDefault, MutMap};
use roc_collections::VecMap;
use roc_debug_flags::dbg_do;
#[cfg(debug_assertions)]
use roc_debug_flags::{
ROC_PRINT_IR_AFTER_DROP_SPECIALIZATION, ROC_PRINT_IR_AFTER_REFCOUNT,
ROC_PRINT_IR_AFTER_RESET_REUSE, ROC_PRINT_IR_AFTER_SPECIALIZATION, ROC_PRINT_RUNTIME_ERROR_GEN,
};
use roc_derive::SharedDerivedModule;
use roc_error_macros::{internal_error, todo_abilities, todo_lambda_erasure};
use roc_late_solve::storage::{ExternalModuleStorage, ExternalModuleStorageSnapshot};
use roc_late_solve::{resolve_ability_specialization, AbilitiesView, Resolved, UnificationFailed};
use roc_module::ident::{ForeignSymbol, Lowercase, TagName};
use roc_module::low_level::{LowLevel, LowLevelWrapperType};
use roc_module::symbol::{IdentIds, ModuleId, Symbol};
use roc_problem::can::{RuntimeError, ShadowKind};
use roc_region::all::{Loc, Region};
use roc_std::RocDec;
use roc_target::Target;
use roc_types::subs::{
instantiate_rigids, storage_copy_var_to, Content, ExhaustiveMark, FlatType, RedundantMark,
StorageSubs, Subs, Variable, VariableSubsSlice,
};
use std::collections::HashMap;
use ven_pretty::{text, BoxAllocator, DocAllocator, DocBuilder};
use pattern::{from_can_pattern, store_pattern, Pattern};
pub use literal::{ListLiteralElement, Literal};
mod boxed;
mod decision_tree;
mod erased;
mod literal;
mod pattern;
#[inline(always)]
pub fn pretty_print_ir_symbols() -> bool {
dbg_do!(ROC_PRINT_IR_AFTER_SPECIALIZATION, {
return true;
});
dbg_do!(ROC_PRINT_IR_AFTER_RESET_REUSE, {
return true;
});
dbg_do!(ROC_PRINT_IR_AFTER_REFCOUNT, {
return true;
});
dbg_do!(ROC_PRINT_IR_AFTER_DROP_SPECIALIZATION, {
return true;
});
false
}
// if your changes cause this number to go down, great!
// please change it to the lower number.
// if it went up, maybe check that the change is really required
roc_error_macros::assert_sizeof_wasm!(Literal, 24);
roc_error_macros::assert_sizeof_wasm!(Expr, 48);
roc_error_macros::assert_sizeof_wasm!(Stmt, 64);
roc_error_macros::assert_sizeof_wasm!(ProcLayout, 20);
roc_error_macros::assert_sizeof_wasm!(Call, 44);
roc_error_macros::assert_sizeof_wasm!(CallType, 36);
roc_error_macros::assert_sizeof_non_wasm!(Literal, 3 * 8);
roc_error_macros::assert_sizeof_non_wasm!(Expr, 9 * 8);
roc_error_macros::assert_sizeof_non_wasm!(Stmt, 12 * 8);
roc_error_macros::assert_sizeof_non_wasm!(ProcLayout, 5 * 8);
roc_error_macros::assert_sizeof_non_wasm!(Call, 9 * 8);
roc_error_macros::assert_sizeof_non_wasm!(CallType, 7 * 8);
fn runtime_error<'a>(env: &mut Env<'a, '_>, msg: &'a str) -> Stmt<'a> {
let sym = env.unique_symbol();
Stmt::Let(
sym,
Expr::Literal(Literal::Str(msg)),
Layout::STR,
env.arena.alloc(Stmt::Crash(sym, CrashTag::Roc)),
)
}
macro_rules! return_on_layout_error {
($env:expr, $layout_result:expr, $context_msg:expr) => {
match $layout_result {
Ok(cached) => cached,
Err(error) => return_on_layout_error_help!($env, error, $context_msg),
}
};
}
macro_rules! return_on_layout_error_help {
($env:expr, $error:expr, $context_msg:expr) => {{
match $error {
LayoutProblem::UnresolvedTypeVar(_) => {
return runtime_error(
$env,
$env.arena
.alloc(format!("UnresolvedTypeVar: {}", $context_msg,)),
)
}
LayoutProblem::Erroneous => {
return runtime_error(
$env,
$env.arena.alloc(format!("Erroneous: {}", $context_msg,)),
)
}
}
}};
}
#[derive(Debug, Clone, Copy)]
pub enum OptLevel {
Development,
Normal,
Size,
Optimize,
}
#[derive(Debug, Clone, Copy)]
pub struct SingleEntryPoint<'a> {
pub symbol: Symbol,
pub layout: ProcLayout<'a>,
}
#[derive(Debug, Clone, Copy)]
pub enum EntryPoint<'a> {
Single(SingleEntryPoint<'a>),
Expects { symbols: &'a [Symbol] },
}
#[derive(Clone, Copy, Debug)]
pub struct PartialProcId(usize);
#[derive(Clone, Debug)]
pub struct PartialProcs<'a> {
/// maps a function name (symbol) to an index
symbols: Vec<'a, Symbol>,
partial_procs: Vec<'a, PartialProc<'a>>,
}
impl<'a> PartialProcs<'a> {
fn new_in(arena: &'a Bump) -> Self {
Self {
symbols: Vec::new_in(arena),
partial_procs: Vec::new_in(arena),
}
}
fn contains_key(&self, symbol: Symbol) -> bool {
self.symbol_to_id(symbol).is_some()
}
fn symbol_to_id(&self, symbol: Symbol) -> Option<PartialProcId> {
self.symbols
.iter()
.position(|s| *s == symbol)
.map(PartialProcId)
}
fn get_symbol(&self, symbol: Symbol) -> Option<&PartialProc<'a>> {
let id = self.symbol_to_id(symbol)?;
Some(self.get_id(id))
}
fn get_id(&self, id: PartialProcId) -> &PartialProc<'a> {
&self.partial_procs[id.0]
}
pub fn insert(&mut self, symbol: Symbol, partial_proc: PartialProc<'a>) -> PartialProcId {
debug_assert!(
!self.contains_key(symbol),
"The {symbol:?} is inserted as a partial proc twice: that's a bug!",
);
let id = PartialProcId(self.symbols.len());
self.symbols.push(symbol);
self.partial_procs.push(partial_proc);
id
}
pub fn drain(self) -> impl Iterator<Item = (Symbol, PartialProc<'a>)> {
debug_assert_eq!(self.symbols.len(), self.partial_procs.len());
self.symbols.into_iter().zip(self.partial_procs)
}
}
#[derive(Clone, Debug)]
pub struct PartialProc<'a> {
pub annotation: Variable,
pub pattern_symbols: &'a [Symbol],
pub captured_symbols: CapturedSymbols<'a>,
pub body: roc_can::expr::Expr,
pub body_var: Variable,
pub is_self_recursive: bool,
}
impl<'a> PartialProc<'a> {
#[allow(clippy::too_many_arguments)]
pub fn from_named_function(
env: &mut Env<'a, '_>,
annotation: Variable,
loc_args: std::vec::Vec<(Variable, AnnotatedMark, Loc<roc_can::pattern::Pattern>)>,
loc_body: Loc<roc_can::expr::Expr>,
captured_symbols: CapturedSymbols<'a>,
is_self_recursive: bool,
ret_var: Variable,
) -> PartialProc<'a> {
let number_of_arguments = loc_args.len();
match patterns_to_when(env, loc_args, ret_var, loc_body) {
Ok((_, pattern_symbols, body)) => {
// a named closure. Since these aren't specialized by the surrounding
// context, we can't add pending specializations for them yet.
// (If we did, all named polymorphic functions would immediately error
// on trying to convert a flex var to a Layout.)
let pattern_symbols = pattern_symbols.into_bump_slice();
PartialProc {
annotation,
pattern_symbols,
captured_symbols,
body: body.value,
body_var: ret_var,
is_self_recursive,
}
}
Err(error) => {
let mut pattern_symbols = Vec::with_capacity_in(number_of_arguments, env.arena);
for _ in 0..number_of_arguments {
pattern_symbols.push(env.unique_symbol());
}
PartialProc {
annotation,
pattern_symbols: pattern_symbols.into_bump_slice(),
captured_symbols: CapturedSymbols::None,
body: roc_can::expr::Expr::RuntimeError(error.value),
body_var: ret_var,
is_self_recursive: false,
}
}
}
}
}
#[derive(Clone, Copy, Debug)]
struct AbilityMember(Symbol);
/// A table of aliases of ability member symbols.
#[derive(Clone, Debug)]
struct AbilityAliases(BumpMap<Symbol, AbilityMember>);
impl AbilityAliases {
fn new_in(arena: &Bump) -> Self {
Self(BumpMap::new_in(arena))
}
fn insert(&mut self, symbol: Symbol, member: AbilityMember) {
self.0.insert(symbol, member);
}
fn get(&self, symbol: Symbol) -> Option<&AbilityMember> {
self.0.get(&symbol)
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Default)]
pub enum CapturedSymbols<'a> {
#[default]
None,
Captured(&'a [(Symbol, Variable)]),
}
impl<'a> CapturedSymbols<'a> {
fn captures(&self) -> bool {
match self {
CapturedSymbols::None => false,
CapturedSymbols::Captured(_) => true,
}
}
}
#[derive(Clone, Debug, PartialEq)]
pub struct Proc<'a> {
pub name: LambdaName<'a>,
pub args: &'a [(InLayout<'a>, Symbol)],
pub body: Stmt<'a>,
pub closure_data_layout: Option<InLayout<'a>>,
pub ret_layout: InLayout<'a>,
pub is_self_recursive: SelfRecursive,
pub is_erased: bool,
}
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct HostExposedLambdaSet<'a> {
pub id: LambdaSetId,
/// Symbol of the exposed function
pub symbol: Symbol,
pub proc_layout: ProcLayout<'a>,
pub raw_function_layout: RawFunctionLayout<'a>,
}
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum SelfRecursive {
NotSelfRecursive,
SelfRecursive(JoinPointId),
}
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum Parens {
NotNeeded,
InTypeParam,
InFunction,
}
impl<'a> Proc<'a> {
pub fn to_doc<'b, D, A, I>(
&'b self,
alloc: &'b D,
interner: &'b I,
pretty: bool,
_parens: Parens,
) -> DocBuilder<'b, D, A>
where
D: DocAllocator<'b, A>,
D::Doc: Clone,
A: Clone,
I: LayoutInterner<'a>,
{
let args_doc = self.args.iter().map(|(layout, symbol)| {
let arg_doc = symbol_to_doc(alloc, *symbol, pretty);
if pretty_print_ir_symbols() {
arg_doc
.append(alloc.reflow(": "))
.append(interner.to_doc_top(*layout, alloc))
} else {
arg_doc
}
});
if pretty_print_ir_symbols() {
alloc
.text("procedure : ")
.append(symbol_to_doc(alloc, self.name.name(), pretty))
.append(" ")
.append(interner.to_doc_top(self.ret_layout, alloc))
.append(alloc.hardline())
.append(alloc.text("procedure = "))
.append(symbol_to_doc(alloc, self.name.name(), pretty))
.append(" (")
.append(alloc.intersperse(args_doc, ", "))
.append("):")
.append(alloc.hardline())
.append(self.body.to_doc(alloc, interner, pretty).indent(4))
} else {
alloc
.text("procedure ")
.append(symbol_to_doc(alloc, self.name.name(), pretty))
.append(" (")
.append(alloc.intersperse(args_doc, ", "))
.append("):")
.append(alloc.hardline())
.append(self.body.to_doc(alloc, interner, pretty).indent(4))
}
}
pub fn to_pretty<I>(&self, interner: &I, width: usize, pretty: bool) -> String
where
I: LayoutInterner<'a>,
{
let allocator = BoxAllocator;
let mut w = std::vec::Vec::new();
self.to_doc::<_, (), _>(&allocator, interner, pretty, Parens::NotNeeded)
.1
.render(width, &mut w)
.unwrap();
w.push(b'\n');
String::from_utf8(w).unwrap()
}
}
/// A host-exposed function must be specialized; it's a seed for subsequent specializations
#[derive(Clone, Debug)]
pub struct HostSpecializations<'a> {
/// Not a bumpalo vec because bumpalo is not thread safe
/// Separate array so we can search for membership quickly
/// If it's a value and not a lambda, the value is recorded as LambdaName::no_niche.
symbol_or_lambdas: std::vec::Vec<LambdaName<'a>>,
/// For each symbol, a variable that stores the unsolved (!) annotation
annotations: std::vec::Vec<Option<Variable>>,
/// For each symbol, what types to specialize it for, points into the storage_subs
types_to_specialize: std::vec::Vec<Variable>,
storage_subs: StorageSubs,
}
impl Default for HostSpecializations<'_> {
fn default() -> Self {
Self::new()
}
}
impl<'a> HostSpecializations<'a> {
pub fn new() -> Self {
Self {
symbol_or_lambdas: std::vec::Vec::new(),
annotations: std::vec::Vec::new(),
storage_subs: StorageSubs::new(Subs::default()),
types_to_specialize: std::vec::Vec::new(),
}
}
pub fn is_empty(&self) -> bool {
self.symbol_or_lambdas.is_empty()
}
pub fn insert_host_exposed(
&mut self,
env_subs: &mut Subs,
symbol_or_lambda: LambdaName<'a>,
annotation: Option<Variable>,
variable: Variable,
) {
let variable = self.storage_subs.extend_with_variable(env_subs, variable);
match self
.symbol_or_lambdas
.iter()
.position(|s| *s == symbol_or_lambda)
{
None => {
self.symbol_or_lambdas.push(symbol_or_lambda);
self.types_to_specialize.push(variable);
self.annotations.push(annotation);
}
Some(_) => {
// we assume that only one specialization of a function is directly exposed to the
// host. Other host-exposed symbols may (transitively) specialize this symbol,
// but then the existing specialization mechanism will find those specializations
panic!("A host-exposed symbol can only be exposed once");
}
}
}
fn decompose(
self,
) -> (
StorageSubs,
impl Iterator<Item = (LambdaName<'a>, Variable, Option<Variable>)>,
) {
let it1 = self.symbol_or_lambdas.into_iter();
let it2 = self.types_to_specialize.into_iter();
let it3 = self.annotations.into_iter();
(
self.storage_subs,
it1.zip(it2).zip(it3).map(|((a, b), c)| (a, b, c)),
)
}
}
/// Specializations of this module's symbols that other modules need.
/// One struct represents one pair of modules, e.g. what module A wants of module B.
#[derive(Clone, Debug)]
pub struct ExternalSpecializations<'a> {
/// Not a bumpalo vec because bumpalo is not thread safe
/// Separate array so we can search for membership quickly
/// If it's a value and not a lambda, the value is recorded as LambdaName::no_niche.
pub symbol_or_lambda: std::vec::Vec<LambdaName<'a>>,
storage: ExternalModuleStorage,
/// For each symbol, what types to specialize it for, points into the storage_subs
types_to_specialize: std::vec::Vec<std::vec::Vec<Variable>>,
}
impl Default for ExternalSpecializations<'_> {
fn default() -> Self {
Self::new()
}
}
impl<'a> ExternalSpecializations<'a> {
pub fn new() -> Self {
Self {
symbol_or_lambda: std::vec::Vec::new(),
storage: ExternalModuleStorage::new(Subs::default()),
types_to_specialize: std::vec::Vec::new(),
}
}
fn insert_external(
&mut self,
symbol_or_lambda: LambdaName<'a>,
env_subs: &mut Subs,
variable: Variable,
) {
let stored_variable = self.storage.extend_with_variable(env_subs, variable);
roc_tracing::debug!(original = ?variable, stored = ?stored_variable, "stored needed external");
match self
.symbol_or_lambda
.iter()
.position(|s| *s == symbol_or_lambda)
{
None => {
self.symbol_or_lambda.push(symbol_or_lambda);
self.types_to_specialize.push(vec![stored_variable]);
}
Some(index) => {
let types_to_specialize = &mut self.types_to_specialize[index];
types_to_specialize.push(stored_variable);
}
}
}
fn decompose(
self,
) -> (
StorageSubs,
impl Iterator<Item = (LambdaName<'a>, std::vec::Vec<Variable>)>,
) {
(
self.storage.into_storage_subs(),
self.symbol_or_lambda
.into_iter()
.zip(self.types_to_specialize),
)
}
fn snapshot_cache(&mut self) -> ExternalModuleStorageSnapshot {
self.storage.snapshot_cache()
}
fn rollback_cache(&mut self, snapshot: ExternalModuleStorageSnapshot) {
self.storage.rollback_cache(snapshot)
}
fn invalidate_cache(&mut self, changed_variables: &[Variable]) {
self.storage.invalidate_cache(changed_variables)
}
fn invalidate_whole_cache(&mut self) {
self.storage.invalidate_whole_cache()
}
}
#[derive(Clone, Debug)]
pub struct Suspended<'a> {
pub store: StorageSubs,
/// LambdaName::no_niche if it's a value
pub symbol_or_lambdas: Vec<'a, LambdaName<'a>>,
pub layouts: Vec<'a, ProcLayout<'a>>,
pub variables: Vec<'a, Variable>,
}
impl<'a> Suspended<'a> {
fn new_in(arena: &'a Bump) -> Self {
Self {
store: StorageSubs::new(Subs::new_from_varstore(Default::default())),
symbol_or_lambdas: Vec::new_in(arena),
layouts: Vec::new_in(arena),
variables: Vec::new_in(arena),
}
}
fn is_empty(&self) -> bool {
self.symbol_or_lambdas.is_empty()
}
fn specialization(
&mut self,
subs: &mut Subs,
symbol_or_lambda: LambdaName<'a>,
proc_layout: ProcLayout<'a>,
variable: Variable,
) {
// de-duplicate
for (i, s) in self.symbol_or_lambdas.iter().enumerate() {
if *s == symbol_or_lambda {
let existing = &self.layouts[i];
if &proc_layout == existing {
// symbol + layout combo exists
return;
}
}
}
self.symbol_or_lambdas.push(symbol_or_lambda);
self.layouts.push(proc_layout);
let variable = self.store.import_variable_from(subs, variable).variable;
self.variables.push(variable);
}
}
#[derive(Clone, Debug)]
enum PendingSpecializations<'a> {
/// We are finding specializations we need. This is a separate step so
/// that we can give specializations we need to modules higher up in the dependency chain, so
/// that they can start making specializations too
Finding(Suspended<'a>),
/// We are making specializations.
/// If any new one comes up while specializing a body, we can do one of two things:
/// - if the new specialization is for a symbol that is not in the current stack of symbols
/// being specialized, make it immediately
/// - if it is, we must suspend the specialization, and we'll do it once the stack is clear
/// again.
Making(Suspended<'a>),
}
impl<'a> PendingSpecializations<'a> {
fn is_empty(&self) -> bool {
match self {
PendingSpecializations::Finding(suspended)
| PendingSpecializations::Making(suspended) => suspended.is_empty(),
}
}
}
#[derive(Clone, Debug, Default)]
struct Specialized<'a> {
symbols: std::vec::Vec<Symbol>,
proc_layouts: std::vec::Vec<ProcLayout<'a>>,
procedures: std::vec::Vec<InProgressProc<'a>>,
}
impl<'a> Specialized<'a> {
fn len(&self) -> usize {
self.symbols.len()
}
#[allow(dead_code)]
fn is_empty(&self) -> bool {
self.symbols.is_empty()
}
fn into_iter_assert_done(self) -> impl Iterator<Item = (Symbol, ProcLayout<'a>, Proc<'a>)> {
self.symbols
.into_iter()
.zip(self.proc_layouts)
.zip(self.procedures)
.filter_map(|((s, l), in_progress)| {
if let Symbol::REMOVED_SPECIALIZATION = s {
None
} else {
match in_progress {
InProgressProc::InProgress => {
panic!("Function {s:?} ({l:?}) is not done specializing")
}
InProgressProc::Done(proc) => Some((s, l, proc)),
}
}
})
}
fn is_specialized(&self, symbol: Symbol, layout: &ProcLayout<'a>) -> bool {
for (i, s) in self.symbols.iter().enumerate() {
if *s == symbol && &self.proc_layouts[i] == layout {
return true;
}
}
false
}
fn mark_in_progress(&mut self, symbol: Symbol, layout: ProcLayout<'a>) {
for (i, s) in self.symbols.iter().enumerate() {
if *s == symbol && self.proc_layouts[i] == layout {
match &self.procedures[i] {
InProgressProc::InProgress => {
return;
}
InProgressProc::Done(_) => {
panic!("marking in progress, but this proc is already done!")
}
}
}
}
// the key/layout combo was not found; insert it
self.symbols.push(symbol);
self.proc_layouts.push(layout);
self.procedures.push(InProgressProc::InProgress);
}
fn remove_specialized(&mut self, symbol: Symbol, layout: &ProcLayout<'a>) -> bool {
let mut index = None;
for (i, s) in self.symbols.iter().enumerate() {
if *s == symbol && &self.proc_layouts[i] == layout {
index = Some(i);
}
}
if let Some(index) = index {
self.symbols[index] = Symbol::REMOVED_SPECIALIZATION;
true
} else {
false
}
}
fn insert_specialized(
&mut self,
symbol: Symbol,
layout: ProcLayout<'a>,
proc: Proc<'a>,
) -> SpecializedIndex {
for (i, s) in self.symbols.iter().enumerate() {
if *s == symbol && self.proc_layouts[i] == layout {
match &self.procedures[i] {
InProgressProc::InProgress => {
self.procedures[i] = InProgressProc::Done(proc);
return SpecializedIndex(i);
}
InProgressProc::Done(_) => {
// overwrite existing! this is important in practice
// TODO investigate why we generate the wrong proc in some cases and then
// correct later
self.procedures[i] = InProgressProc::Done(proc);
return SpecializedIndex(i);
}
}
}
}
// the key/layout combo was not found; insert it
let i = self.symbols.len();
self.symbols.push(symbol);
self.proc_layouts.push(layout);
self.procedures.push(InProgressProc::Done(proc));
SpecializedIndex(i)
}
}
struct SpecializedIndex(usize);
/// Uniquely determines the specialization of a polymorphic (non-proc) value symbol.
/// Two specializations are equivalent if their [`SpecializationMark`]s are equal.
#[derive(PartialEq, Eq, Debug, Clone, Copy)]
struct SpecializationMark<'a> {
/// The layout of the symbol itself.
layout: InLayout<'a>,
/// If this symbol is a closure def, we must also keep track of what function it specializes,
/// because the [`layout`] field will only keep track of its closure and lambda set - which can
/// be the same for two different function specializations. For example,
///
/// id = if True then \x -> x else \y -> y
/// { a: id "", b: id 1u8 }
///
/// The lambda set and captures of `id` is the same in both usages inside the record, but the
/// reified specializations of `\x -> x` and `\y -> y` must be for Str and U8.
///
/// Note that this field is not relevant for anything that is not a function.
function_mark: Option<RawFunctionLayout<'a>>,
}
/// The deepest closure in the current stack of procedures under specialization a symbol specialization
/// was used in.
///
/// This is necessary to understand what symbol specializations are used in what capture sets. For
/// example, consider
///
/// main =
/// x = 1
///
/// y = \{} -> 1u8 + x
/// z = \{} -> 1u16 + x
///
/// Here, we have a two specializations of `x` to U8 and U16 with deepest uses of
/// (2, y) and (2, z), respectively. This tells us that both of those specializations must be
/// preserved by `main` (which is at depth 1), but that `y` and `z` respectively only need to
/// capture one particular specialization of `x` each.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
struct UseDepth {
depth: usize,
symbol: Symbol,
}
impl UseDepth {
fn is_nested_use_in(&self, outer: &Self) -> bool {
if self.symbol == outer.symbol {
debug_assert!(self.depth == outer.depth);
return true;
}
self.depth > outer.depth
}
}
type NumberSpecializations<'a> = VecMap<InLayout<'a>, (Symbol, UseDepth)>;
/// When walking a function body, we may encounter specialized usages of polymorphic number symbols.
/// For example
///
/// n = 1
/// use1 : U8
/// use1 = 1
/// use2 : Dec
/// use2 = 2
///
/// We keep track of the specializations of `myTag` and create fresh symbols when there is more
/// than one, so that a unique def can be created for each.
#[derive(Default, Debug, Clone)]
struct SymbolSpecializations<'a>(
// THEORY:
// 1. the number of symbols in a def is very small
// 2. the number of specializations of a symbol in a def is even smaller (almost always only one)
// So, a linear VecMap is preferrable. Use a two-layered one to make (1) extraction of defs easy
// and (2) reads of a certain symbol be determined by its first occurrence, not its last.
VecMap<Symbol, NumberSpecializations<'a>>,
);
impl<'a> SymbolSpecializations<'a> {
/// Mark a let-generalized symbol eligible for specialization.
/// Only those bound to number literals can be compiled polymorphically.
fn mark_eligible(&mut self, symbol: Symbol) {
let _old = self.0.insert(symbol, VecMap::with_capacity(1));
debug_assert!(_old.is_none(), "overwriting specializations for {symbol:?}");
}
/// Removes all specializations for a symbol, returning the type and symbol of each specialization.
fn remove(&mut self, symbol: Symbol) -> Option<NumberSpecializations<'a>> {
self.0
.remove(&symbol)
.map(|(_, specializations)| specializations)
}
fn is_empty(&self) -> bool {
self.0.is_empty()
}
fn maybe_get_specialized(&self, symbol: Symbol, layout: InLayout) -> Symbol {
self.0
.get(&symbol)
.and_then(|m| m.get(&layout))
.map(|x| x.0)
.unwrap_or(symbol)
}
}
#[derive(Clone, Debug, Default)]
pub struct ProcsBase<'a> {
pub partial_procs: BumpMap<Symbol, PartialProc<'a>>,
pub module_thunks: &'a [Symbol],
/// A host-exposed function must be specialized; it's a seed for subsequent specializations
pub host_specializations: HostSpecializations<'a>,
pub runtime_errors: BumpMap<Symbol, &'a str>,
pub imported_module_thunks: &'a [Symbol],
}
impl<'a> ProcsBase<'a> {
pub fn get_host_exposed_symbols(&self) -> impl Iterator<Item = Symbol> + '_ {
self.host_specializations
.symbol_or_lambdas
.iter()
.copied()
.map(|n| n.name())
}
}
/// The current set of functions under specialization. They form a stack where the latest
/// specialization to be seen is at the head of the stack.
#[derive(Clone, Debug)]
struct SpecializationStack<'a>(Vec<'a, Symbol>);
impl<'a> SpecializationStack<'a> {
fn current_use_depth(&self) -> UseDepth {
UseDepth {
depth: self.0.len(),
symbol: *self.0.last().unwrap(),
}
}
}
pub type HostExposedLambdaSets<'a> =
std::vec::Vec<(LambdaName<'a>, Symbol, HostExposedLambdaSet<'a>)>;
#[derive(Clone, Debug)]
pub struct Procs<'a> {
pub partial_procs: PartialProcs<'a>,
ability_member_aliases: AbilityAliases,
pending_specializations: PendingSpecializations<'a>,
specialized: Specialized<'a>,
host_exposed_lambda_sets: HostExposedLambdaSets<'a>,
pub runtime_errors: BumpMap<Symbol, &'a str>,
pub externals_we_need: BumpMap<ModuleId, ExternalSpecializations<'a>>,
symbol_specializations: SymbolSpecializations<'a>,
specialization_stack: SpecializationStack<'a>,
pub imported_module_thunks: &'a [Symbol],
pub module_thunks: &'a [Symbol],
pub host_exposed_symbols: &'a [Symbol],
}
impl<'a> Procs<'a> {
pub fn new_in(arena: &'a Bump) -> Self {
Self {
partial_procs: PartialProcs::new_in(arena),
ability_member_aliases: AbilityAliases::new_in(arena),
pending_specializations: PendingSpecializations::Finding(Suspended::new_in(arena)),
specialized: Specialized::default(),
runtime_errors: BumpMap::new_in(arena),
externals_we_need: BumpMap::new_in(arena),
host_exposed_lambda_sets: std::vec::Vec::new(),
symbol_specializations: Default::default(),
specialization_stack: SpecializationStack(Vec::with_capacity_in(16, arena)),
imported_module_thunks: &[],
module_thunks: &[],
host_exposed_symbols: &[],
}
}
fn push_active_specialization(&mut self, specialization: Symbol) {
self.specialization_stack.0.push(specialization);
}
fn pop_active_specialization(&mut self, specialization: Symbol) {
let popped = self
.specialization_stack
.0
.pop()
.expect("specialization stack is empty");
debug_assert_eq!(
popped, specialization,
"incorrect popped specialization: passed {specialization:?}, but was {popped:?}"
);
}
/// If we need to specialize a function that is already in the stack, we must wait to do so
/// until that function is popped off. That's because the type environment will be configured
/// for the existing specialization on the stack.
///
/// For example, in
///
/// foo = \val, b -> if b then "done" else bar val
/// bar = \_ -> foo {} True
/// foo "" False
///
/// During the specialization of `foo : Str False -> Str`, we specialize `bar : Str -> Str`,
/// which in turn needs a specialization of `foo : {} False -> Str`. However, we can't
/// specialize both `foo : Str False -> Str` and `foo : {} False -> Str` at the same time, so
/// the latter specialization must be deferred.
fn symbol_needs_suspended_specialization(&self, specialization: Symbol) -> bool {
self.specialization_stack.0.contains(&specialization)
}
}
#[derive(Clone, Debug, PartialEq)]
pub enum InProgressProc<'a> {
InProgress,
Done(Proc<'a>),
}
impl<'a> Procs<'a> {
fn is_imported_module_thunk(&self, symbol: Symbol) -> bool {
self.imported_module_thunks.iter().any(|x| *x == symbol)
}
fn is_module_thunk(&self, symbol: Symbol) -> bool {
self.module_thunks.iter().any(|x| *x == symbol)
}
fn get_partial_proc<'b>(&'b self, symbol: Symbol) -> Option<&'b PartialProc<'a>> {
self.partial_procs.get_symbol(symbol)
}
pub fn get_specialized_procs_without_rc(
self,
) -> (
MutMap<(Symbol, ProcLayout<'a>), Proc<'a>>,
HostExposedLambdaSets<'a>,
ProcsBase<'a>,
) {
let mut specialized_procs =
MutMap::with_capacity_and_hasher(self.specialized.len(), default_hasher());
for (symbol, layout, proc) in self.specialized.into_iter_assert_done() {
let key = (symbol, layout);
specialized_procs.insert(key, proc);
}
let restored_procs_base = ProcsBase {
partial_procs: self.partial_procs.drain().collect(),
module_thunks: self.module_thunks,
// This must now be empty
host_specializations: HostSpecializations::default(),
runtime_errors: self.runtime_errors,
imported_module_thunks: self.imported_module_thunks,
};
(
specialized_procs,
self.host_exposed_lambda_sets,
restored_procs_base,
)
}
// TODO trim these down
#[allow(clippy::too_many_arguments)]
fn insert_anonymous(
&mut self,
env: &mut Env<'a, '_>,
name: LambdaName<'a>,
annotation: Variable,
loc_args: std::vec::Vec<(Variable, AnnotatedMark, Loc<roc_can::pattern::Pattern>)>,
loc_body: Loc<roc_can::expr::Expr>,
captured_symbols: CapturedSymbols<'a>,
ret_var: Variable,
layout_cache: &mut LayoutCache<'a>,
) -> Result<ProcLayout<'a>, RuntimeError> {
let raw_layout = layout_cache.raw_from_var(env.arena, annotation, env.subs)?;
let top_level = ProcLayout::from_raw_named(env.arena, name, raw_layout);
// anonymous functions cannot reference themselves, therefore cannot be tail-recursive
// EXCEPT when the closure conversion makes it tail-recursive.
let is_self_recursive = match top_level
.arguments
.last()
.map(|l| layout_cache.get_repr(*l))
{
Some(LayoutRepr::LambdaSet(lambda_set)) => lambda_set.contains(name.name()),
_ => false,
};
match patterns_to_when(env, loc_args, ret_var, loc_body) {
Ok((_, pattern_symbols, body)) => {
// an anonymous closure. These will always be specialized already
// by the surrounding context, so we can add pending specializations
// for them immediately.
let already_specialized = self.specialized.is_specialized(name.name(), &top_level);
let layout = top_level;
// if we've already specialized this one, no further work is needed.
if !already_specialized {
if self.is_module_thunk(name.name()) {
debug_assert!(layout.arguments.is_empty(), "{name:?}");
}
let needs_suspended_specialization =
self.symbol_needs_suspended_specialization(name.name());
match (
&mut self.pending_specializations,
needs_suspended_specialization,
) {
(PendingSpecializations::Finding(suspended), _)
| (PendingSpecializations::Making(suspended), true) => {
// register the pending specialization, so this gets code genned later
suspended.specialization(env.subs, name, layout, annotation);
match self.partial_procs.symbol_to_id(name.name()) {
Some(occupied) => {
let existing = self.partial_procs.get_id(occupied);
// if we're adding the same partial proc twice, they must be the actual same!
//
// NOTE we can't skip extra work! we still need to make the specialization for this
// invocation. The content of the `annotation` can be different, even if the variable
// number is the same
debug_assert_eq!(annotation, existing.annotation);
debug_assert_eq!(captured_symbols, existing.captured_symbols);
debug_assert_eq!(is_self_recursive, existing.is_self_recursive);
// the partial proc is already in there, do nothing
}
None => {
let pattern_symbols = pattern_symbols.into_bump_slice();
let partial_proc = PartialProc {
annotation,
pattern_symbols,
captured_symbols,
body: body.value,
body_var: ret_var,
is_self_recursive,
};
self.partial_procs.insert(name.name(), partial_proc);
}
}
}
(PendingSpecializations::Making(_), false) => {
// Mark this proc as in-progress, so if we're dealing with
// mutually recursive functions, we don't loop forever.
// (We had a bug around this before this system existed!)
self.specialized.mark_in_progress(name.name(), layout);
let partial_proc_id = if let Some(partial_proc_id) =
self.partial_procs.symbol_to_id(name.name())
{
// NOTE we can't skip extra work! We still need to make the specialization for this
// invocation.
partial_proc_id
} else {
let pattern_symbols = pattern_symbols.into_bump_slice();
let partial_proc = PartialProc {
annotation,
pattern_symbols,
captured_symbols,
body: body.value,
body_var: ret_var,
is_self_recursive,
};
self.partial_procs.insert(name.name(), partial_proc)
};
match specialize_variable(
env,
self,
name,
layout_cache,
annotation,
partial_proc_id,
) {
Ok((proc, layout)) => {
let proc_name = proc.name;
let function_layout =
ProcLayout::from_raw_named(env.arena, proc_name, layout);
self.specialized.insert_specialized(
proc_name.name(),
function_layout,
proc,
);
}
Err(error) => {
panic!("TODO generate a RuntimeError message for {error:?}");
}
}
}
}
}
Ok(layout)
}
Err(loc_error) => Err(loc_error.value),
}
}
fn insert_passed_by_name(
&mut self,
env: &mut Env<'a, '_>,
fn_var: Variable,
name: LambdaName<'a>,
layout: ProcLayout<'a>,
layout_cache: &mut LayoutCache<'a>,
) {
// If we've already specialized this one, no further work is needed.
if self.specialized.is_specialized(name.name(), &layout) {
return;
}
// If this is an imported symbol, let its home module make this specialization
if env.is_imported_symbol(name.name()) || env.is_unloaded_derived_symbol(name.name(), self)
{
add_needed_external(self, env, fn_var, name);
return;
}
// register the pending specialization, so this gets code genned later
if self.module_thunks.contains(&name.name()) {
debug_assert!(layout.arguments.is_empty());
}
// This should only be called when pending_specializations is Some.
// Otherwise, it's being called in the wrong pass!
let needs_suspended_specialization =
self.symbol_needs_suspended_specialization(name.name());
match (
&mut self.pending_specializations,
needs_suspended_specialization,
) {
(PendingSpecializations::Finding(suspended), _)
| (PendingSpecializations::Making(suspended), true) => {
suspended.specialization(env.subs, name, layout, fn_var);
}
(PendingSpecializations::Making(_), false) => {
let proc_name = name;
let partial_proc_id = match self.partial_procs.symbol_to_id(proc_name.name()) {
Some(p) => p,
None => panic!(
"no partial_proc for {:?} in module {:?}",
proc_name, env.home
),
};
// Mark this proc as in-progress, so if we're dealing with
// mutually recursive functions, we don't loop forever.
// (We had a bug around this before this system existed!)
self.specialized.mark_in_progress(proc_name.name(), layout);
// See https://github.com/roc-lang/roc/issues/1600
//
// The annotation variable is the generic/lifted/top-level annotation.
// It is connected to the variables of the function's body
//
// fn_var is the variable representing the type that we actually need for the
// function right here.
match specialize_variable(
env,
self,
proc_name,
layout_cache,
fn_var,
partial_proc_id,
) {
Ok((proc, raw_layout)) => {
let proc_layout =
ProcLayout::from_raw_named(env.arena, proc_name, raw_layout);
self.specialized
.insert_specialized(proc_name.name(), proc_layout, proc);
}
Err(error) => {
panic!("TODO generate a RuntimeError message for {error:?}");
}
}
}
}
}
/// Gets a specialization for a symbol, or creates a new one.
#[inline(always)]
fn get_or_insert_symbol_specialization(
&mut self,
env: &mut Env<'a, '_>,
layout_cache: &mut LayoutCache<'a>,
symbol: Symbol,
specialization_var: Variable,
) -> Symbol {
let symbol_specializations = match self.symbol_specializations.0.get_mut(&symbol) {
Some(m) => m,
None => {
// Not eligible for multiple specializations
return symbol;
}
};
let arena = env.arena;
let subs: &Subs = env.subs;
let layout = match layout_cache.from_var(arena, specialization_var, subs) {
Ok(layout) => layout,
// This can happen when the def symbol has a type error. In such cases just use the
// def symbol, which is erroring.
Err(_) => return symbol,
};
// For the first specialization, always reuse the current symbol. The vast majority of defs
// only have one instance type, so this preserves readability of the IR.
// TODO: turn me off and see what breaks.
let needs_fresh_symbol = !symbol_specializations.is_empty();
let mut make_specialized_symbol = || {
if needs_fresh_symbol {
env.unique_symbol()
} else {
symbol
}
};
let current_use = self.specialization_stack.current_use_depth();
let (specialized_symbol, deepest_use) = symbol_specializations
.get_or_insert(layout, || (make_specialized_symbol(), current_use));
if deepest_use.is_nested_use_in(&current_use) {
*deepest_use = current_use;
}
*specialized_symbol
}
/// Get the symbol specializations used in the active specialization's body.
pub fn get_symbol_specializations_used_in_body(
&self,
symbol: Symbol,
) -> Option<impl Iterator<Item = Symbol> + '_> {
let this_use = self.specialization_stack.current_use_depth();
self.symbol_specializations.0.get(&symbol).map(move |l| {
l.iter().filter_map(move |(_, (sym, deepest_use))| {
if deepest_use.is_nested_use_in(&this_use) {
Some(*sym)
} else {
None
}
})
})
}
}
#[derive(Default)]
pub struct Specializations<'a> {
by_symbol: MutMap<Symbol, MutMap<InLayout<'a>, Proc<'a>>>,
}
impl<'a> Specializations<'a> {
pub fn insert(&mut self, symbol: Symbol, layout: InLayout<'a>, proc: Proc<'a>) {
let procs_by_layout = self
.by_symbol
.entry(symbol)
.or_insert_with(|| HashMap::with_capacity_and_hasher(1, default_hasher()));
// If we already have an entry for this, it should be no different
// from what we're about to insert.
debug_assert!(
!procs_by_layout.contains_key(&layout) || procs_by_layout.get(&layout) == Some(&proc)
);
procs_by_layout.insert(layout, proc);
}
pub fn len(&self) -> usize {
self.by_symbol.len()
}
pub fn is_empty(&self) -> bool {
self.by_symbol.is_empty()
}
}
pub struct Env<'a, 'i> {
pub arena: &'a Bump,
pub subs: &'i mut Subs,
/// [Subs] to write specialized variables of lookups in expects.
/// [None] if this module doesn't produce any expects.
pub expectation_subs: Option<&'i mut Subs>,
pub home: ModuleId,
pub ident_ids: &'i mut IdentIds,
pub target: Target,
pub update_mode_ids: &'i mut UpdateModeIds,
pub call_specialization_counter: u32,
// TODO: WorldAbilities and exposed_by_module share things, think about how to combine them
pub abilities: AbilitiesView<'i>,
pub exposed_by_module: &'i ExposedByModule,
pub derived_module: &'i SharedDerivedModule,
pub struct_indexing: UsageTrackingMap<(Symbol, u64), Symbol>,
}
impl<'a, 'i> Env<'a, 'i> {
pub fn unique_symbol(&mut self) -> Symbol {
let ident_id = self.ident_ids.gen_unique();
Symbol::new(self.home, ident_id)
}
pub fn named_unique_symbol(&mut self, name: &str) -> Symbol {
let ident_id = self.ident_ids.add_str(name);
Symbol::new(self.home, ident_id)
}
pub fn next_update_mode_id(&mut self) -> UpdateModeId {
self.update_mode_ids.next_id()
}
pub fn next_call_specialization_id(&mut self) -> CallSpecId {
let id = CallSpecId {
id: self.call_specialization_counter,
};
self.call_specialization_counter += 1;
id
}
pub fn is_imported_symbol(&self, symbol: Symbol) -> bool {
let sym_module = symbol.module_id();
sym_module != self.home
// The Derived_gen module takes responsibility for code-generating symbols in the
// Derived_synth module.
&& !(self.home == ModuleId::DERIVED_GEN && sym_module == ModuleId::DERIVED_SYNTH)
}
/// While specializing the Derived_gen module, derived implementation symbols from the
/// Derived_synth module may be discovered. These implementations may not have yet been loaded
/// into the Derived_gen module, because we only load them before making specializations, and
/// not during mono itself (yet).
///
/// When this procedure returns `true`, the symbol should be marked as an external specialization,
/// so that a subsequent specializations pass loads the derived implementation into Derived_gen
/// and then code-generates appropriately.
pub fn is_unloaded_derived_symbol(&self, symbol: Symbol, procs: &Procs<'a>) -> bool {
self.home == ModuleId::DERIVED_GEN
&& symbol.module_id() == ModuleId::DERIVED_SYNTH
&& !procs.partial_procs.contains_key(symbol)
// TODO: locking to find the answer in the `Derived_gen` module is not great, since
// Derived_gen also blocks other modules specializing. Improve this later.
&& self
.derived_module
.lock()
.expect("derived module is poisoned")
.is_derived_def(symbol)
}
/// Unifies two variables and performs lambda set compaction.
/// Use this rather than [roc_unify::unify] directly!
fn unify<'b, 'c: 'b>(
&mut self,
external_specializations: impl IntoIterator<Item = &'b mut ExternalSpecializations<'c>>,
layout_cache: &mut LayoutCache,
left: Variable,
right: Variable,
) -> Result<(), UnificationFailed> {
debug_assert_ne!(
self.home,
ModuleId::DERIVED_SYNTH,
"should never be monomorphizing the derived synth module!"
);
let changed_variables = roc_late_solve::unify(
self.home,
self.arena,
self.subs,
&self.abilities,
self.derived_module,
self.exposed_by_module,
left,
right,
)?;
layout_cache.invalidate(self.subs, changed_variables.iter().copied());
external_specializations
.into_iter()
.for_each(|e| e.invalidate_cache(&changed_variables));
Ok(())
}
}
#[derive(Clone, Debug, PartialEq, Copy, Eq, Hash)]
pub struct JoinPointId(pub Symbol);
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct Param<'a> {
pub symbol: Symbol,
pub layout: InLayout<'a>,
}
impl<'a> Param<'a> {
pub const EMPTY: Self = Param {
symbol: Symbol::EMPTY_PARAM,
layout: Layout::UNIT,
};
}
pub fn cond<'a>(
env: &mut Env<'a, '_>,
cond_symbol: Symbol,
cond_layout: InLayout<'a>,
pass: Stmt<'a>,
fail: Stmt<'a>,
ret_layout: InLayout<'a>,
) -> Stmt<'a> {
let branches = env.arena.alloc([(1u64, BranchInfo::None, pass)]);
let default_branch = (BranchInfo::None, &*env.arena.alloc(fail));
Stmt::Switch {
cond_symbol,
cond_layout,
ret_layout,
branches,
default_branch,
}
}
pub type Stores<'a> = &'a [(Symbol, Layout<'a>, Expr<'a>)];
/// The specialized type of a lookup. Represented as a type-variable.
pub type LookupType = Variable;
#[derive(Clone, Debug, PartialEq)]
pub enum Stmt<'a> {
Let(Symbol, Expr<'a>, InLayout<'a>, &'a Stmt<'a>),
Switch {
/// This *must* stand for an integer, because Switch potentially compiles to a jump table.
cond_symbol: Symbol,
cond_layout: InLayout<'a>,
/// The u64 in the tuple will be compared directly to the condition Expr.
/// If they are equal, this branch will be taken.
branches: &'a [(u64, BranchInfo<'a>, Stmt<'a>)],
/// If no other branches pass, this default branch will be taken.
default_branch: (BranchInfo<'a>, &'a Stmt<'a>),
/// Each branch must return a value of this type.
ret_layout: InLayout<'a>,
},
Ret(Symbol),
Refcounting(ModifyRc, &'a Stmt<'a>),
Expect {
condition: Symbol,
region: Region,
lookups: &'a [Symbol],
variables: &'a [LookupType],
/// what happens after the expect
remainder: &'a Stmt<'a>,
},
ExpectFx {
condition: Symbol,
region: Region,
lookups: &'a [Symbol],
variables: &'a [LookupType],
/// what happens after the expect
remainder: &'a Stmt<'a>,
},
Dbg {
/// The location this dbg is in source as a printable string.
source_location: &'a str,
/// The source code of the expression being debugged.
source: &'a str,
/// The expression we're displaying
symbol: Symbol,
/// The specialized variable of the expression
variable: Variable,
/// What happens after the dbg
remainder: &'a Stmt<'a>,
},
/// a join point `join f <params> = <continuation> in remainder`
Join {
id: JoinPointId,
parameters: &'a [Param<'a>],
/// body of the join point
/// what happens after _jumping to_ the join point
body: &'a Stmt<'a>,
/// what happens after _defining_ the join point
remainder: &'a Stmt<'a>,
},
Jump(JoinPointId, &'a [Symbol]),
Crash(Symbol, CrashTag),
}
/// Source of crash, and its runtime representation to roc_panic.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
#[repr(u32)]
pub enum CrashTag {
/// The crash is due to Roc, either via a builtin or type error.
Roc = 0,
/// The crash is user-defined.
User = 1,
}
impl TryFrom<u32> for CrashTag {
type Error = ();
fn try_from(value: u32) -> Result<Self, Self::Error> {
match value {
0 => Ok(Self::Roc),
1 => Ok(Self::User),
_ => Err(()),
}
}
}
/// in the block below, symbol `scrutinee` is assumed be be of shape `tag_id`
#[derive(Clone, Debug, PartialEq, Eq)]
pub enum BranchInfo<'a> {
None,
Constructor {
scrutinee: Symbol,
layout: InLayout<'a>,
tag_id: TagIdIntType,
},
List {
scrutinee: Symbol,
len: u64,
},
Unique {
scrutinee: Symbol,
unique: bool,
},
}
impl<'a> BranchInfo<'a> {
pub fn to_doc<'b, D, A>(&'b self, alloc: &'b D, _pretty: bool) -> DocBuilder<'b, D, A>
where
D: DocAllocator<'b, A>,
D::Doc: Clone,
A: Clone,
{
alloc.text("")
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum ModifyRc {
/// Increment a reference count
Inc(Symbol, u64),
/// Decrement a reference count
Dec(Symbol),
/// A DecRef is a non-recursive reference count decrement
/// e.g. If we Dec a list of lists, then if the reference count of the outer list is one,
/// a Dec will recursively decrement all elements, then free the memory of the outer list.
/// A DecRef would just free the outer list.
/// That is dangerous because you may not free the elements, but in our Zig builtins,
/// sometimes we know we already dealt with the elements (e.g. by copying them all over
/// to a new list) and so we can just do a DecRef, which is much cheaper in such a case.
DecRef(Symbol),
/// Unconditionally deallocate the memory. For tag union that do pointer tagging (store the tag
/// id in the pointer) the backend has to clear the tag id!
Free(Symbol),
}
impl ModifyRc {
pub fn to_doc<'a, D, A>(self, alloc: &'a D, pretty: bool) -> DocBuilder<'a, D, A>
where
D: DocAllocator<'a, A>,
D::Doc: Clone,
A: Clone,
{
use ModifyRc::*;
match self {
Inc(symbol, 1) => alloc
.text("inc ")
.append(symbol_to_doc(alloc, symbol, pretty))
.append(";"),
Inc(symbol, n) => alloc
.text("inc ")
.append(text!(alloc, "{} ", n))
.append(symbol_to_doc(alloc, symbol, pretty))
.append(";"),
Dec(symbol) => alloc
.text("dec ")
.append(symbol_to_doc(alloc, symbol, pretty))
.append(";"),
DecRef(symbol) => alloc
.text("decref ")
.append(symbol_to_doc(alloc, symbol, pretty))
.append(";"),
Free(symbol) => alloc
.text("free ")
.append(symbol_to_doc(alloc, symbol, pretty))
.append(";"),
}
}
pub fn get_symbol(&self) -> Symbol {
use ModifyRc::*;
match self {
Inc(symbol, _) => *symbol,
Dec(symbol) => *symbol,
DecRef(symbol) => *symbol,
Free(symbol) => *symbol,
}
}
}
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct Call<'a> {
pub call_type: CallType<'a>,
pub arguments: &'a [Symbol],
}
impl<'a> Call<'a> {
pub fn to_doc<'b, D, A>(&'b self, alloc: &'b D, pretty: bool) -> DocBuilder<'b, D, A>
where
D: DocAllocator<'b, A>,
D::Doc: Clone,
A: Clone,
{
use CallType::*;
let arguments = self.arguments;
match self.call_type {
CallType::ByName { name, .. } => {
let it = std::iter::once(name.name())
.chain(arguments.iter().copied())
.map(|s| symbol_to_doc(alloc, s, pretty));
alloc.text("CallByName ").append(alloc.intersperse(it, " "))
}
CallType::ByPointer { pointer, .. } => {
let it = std::iter::once(pointer)
.chain(arguments.iter().copied())
.map(|s| symbol_to_doc(alloc, s, pretty));
alloc.text("CallByPtr ").append(alloc.intersperse(it, " "))
}
LowLevel { op: lowlevel, .. } => {
let it = arguments.iter().map(|s| symbol_to_doc(alloc, *s, pretty));
text!(alloc, "lowlevel {:?} ", lowlevel).append(alloc.intersperse(it, " "))
}
HigherOrder(higher_order) => {
let it = arguments.iter().map(|s| symbol_to_doc(alloc, *s, pretty));
text!(alloc, "lowlevel {:?} ", higher_order.op).append(alloc.intersperse(it, " "))
}
Foreign {
ref foreign_symbol, ..
} => {
let it = arguments.iter().map(|s| symbol_to_doc(alloc, *s, pretty));
text!(alloc, "foreign {:?} ", foreign_symbol.as_str())
.append(alloc.intersperse(it, " "))
}
}
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct CallSpecId {
id: u32,
}
impl CallSpecId {
pub fn to_bytes(self) -> [u8; 4] {
self.id.to_ne_bytes()
}
/// Dummy value for generating refcount helper procs in the backends
/// This happens *after* specialization so it's safe
pub const BACKEND_DUMMY: Self = Self { id: 0 };
}
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct UpdateModeId {
id: u32,
}
impl UpdateModeId {
pub fn to_bytes(self) -> [u8; 4] {
self.id.to_ne_bytes()
}
/// Dummy value for generating refcount helper procs in the backends
/// This happens *after* alias analysis so it's safe
pub const BACKEND_DUMMY: Self = Self { id: 0 };
}
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct UpdateModeIds {
next: u32,
}
impl UpdateModeIds {
pub const fn new() -> Self {
Self { next: 0 }
}
pub fn next_id(&mut self) -> UpdateModeId {
let id = UpdateModeId { id: self.next };
self.next += 1;
id
}
}
#[derive(Clone, Debug, PartialEq, Eq)]
pub enum CallType<'a> {
ByName {
name: LambdaName<'a>,
ret_layout: InLayout<'a>,
arg_layouts: &'a [InLayout<'a>],
specialization_id: CallSpecId,
},
ByPointer {
pointer: Symbol,
ret_layout: InLayout<'a>,
arg_layouts: &'a [InLayout<'a>],
},
Foreign {
foreign_symbol: ForeignSymbol,
ret_layout: InLayout<'a>,
},
LowLevel {
op: LowLevel,
update_mode: UpdateModeId,
},
HigherOrder(&'a HigherOrderLowLevel<'a>),
}
impl<'a> CallType<'a> {
/**
Replace calls to wrappers of lowlevel functions with the lowlevel function itself
*/
pub fn replace_lowlevel_wrapper(self) -> Self {
match self {
CallType::ByName { name, .. } => match LowLevelWrapperType::from_symbol(name.name()) {
LowLevelWrapperType::CanBeReplacedBy(lowlevel) => CallType::LowLevel {
op: lowlevel,
update_mode: UpdateModeId::BACKEND_DUMMY,
},
LowLevelWrapperType::NotALowLevelWrapper => self,
},
_ => self,
}
}
}
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub struct PassedFunction<'a> {
/// name of the top-level function that is passed as an argument
/// e.g. in `List.map xs Num.abs` this would be `Num.abs`
pub name: LambdaName<'a>,
pub argument_layouts: &'a [InLayout<'a>],
pub return_layout: InLayout<'a>,
pub specialization_id: CallSpecId,
/// Symbol of the environment captured by the function argument
pub captured_environment: Symbol,
pub owns_captured_environment: bool,
}
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct HigherOrderLowLevel<'a> {
pub op: crate::low_level::HigherOrder,
/// TODO I _think_ we can get rid of this, perhaps only keeping track of
/// the layout of the closure argument, if any
pub closure_env_layout: Option<InLayout<'a>>,
/// update mode of the higher order lowlevel itself
pub update_mode: UpdateModeId,
pub passed_function: PassedFunction<'a>,
}
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct ReuseToken {
pub symbol: Symbol,
pub update_tag_id: bool,
pub update_mode: UpdateModeId,
}
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum ErasedField {
/// Load a dereferenceable pointer to the value.
Value,
/// Load a non-dereferenceable pointer to the value.
ValuePtr,
Callee,
}
#[derive(Clone, Debug, PartialEq)]
pub enum Expr<'a> {
Literal(Literal<'a>),
// Functions
Call(Call<'a>),
Tag {
tag_layout: UnionLayout<'a>,
tag_id: TagIdIntType,
arguments: &'a [Symbol],
reuse: Option<ReuseToken>,
},
Struct(&'a [Symbol]),
NullPointer,
StructAtIndex {
index: u64,
field_layouts: &'a [InLayout<'a>],
structure: Symbol,
},
GetTagId {
structure: Symbol,
union_layout: UnionLayout<'a>,
},
UnionAtIndex {
structure: Symbol,
tag_id: TagIdIntType,
union_layout: UnionLayout<'a>,
index: u64,
},
GetElementPointer {
structure: Symbol,
union_layout: UnionLayout<'a>,
indices: &'a [u64],
},
Array {
elem_layout: InLayout<'a>,
elems: &'a [ListLiteralElement<'a>],
},
EmptyArray,
/// Creates a type-erased value.
ErasedMake {
/// The erased value. If this is an erased function, the value are the function captures,
/// or `None` if the function is not a closure.
value: Option<Symbol>,
/// The function pointer of the erased value, if it's an erased function.
callee: Symbol,
},
/// Loads a field from a type-erased value.
ErasedLoad {
/// The erased symbol.
symbol: Symbol,
/// The field to load.
field: ErasedField,
},
/// Returns a pointer to the given function.
FunctionPointer {
lambda_name: LambdaName<'a>,
},
Alloca {
element_layout: InLayout<'a>,
initializer: Option<Symbol>,
},
Reset {
symbol: Symbol,
update_mode: UpdateModeId,
},
// Just like Reset, but does not recursively decrement the children.
// Used in reuse analysis to replace a decref with a resetRef to avoid decrementing when the dec ref didn't.
ResetRef {
symbol: Symbol,
update_mode: UpdateModeId,
},
RuntimeErrorFunction(&'a str),
}
impl<'a> Literal<'a> {
pub fn to_doc<'b, D, A>(&'b self, alloc: &'b D) -> DocBuilder<'b, D, A>
where
D: DocAllocator<'b, A>,
D::Doc: Clone,
A: Clone,
{
use Literal::*;
match self {
Int(bytes) => text!(alloc, "{}i64", i128::from_ne_bytes(*bytes)),
U128(bytes) => text!(alloc, "{}u128", u128::from_ne_bytes(*bytes)),
Float(lit) => text!(alloc, "{}f64", lit),
Decimal(bytes) => text!(alloc, "{}dec", RocDec::from_ne_bytes(*bytes)),
Bool(lit) => text!(alloc, "{}", lit),
Byte(lit) => text!(alloc, "{}u8", lit),
Str(lit) => text!(alloc, "{:?}", lit),
}
}
}
pub(crate) fn symbol_to_doc_string(symbol: Symbol, force_pretty: bool) -> String {
use roc_module::ident::ModuleName;
if pretty_print_ir_symbols() || force_pretty {
format!("{symbol:?}")
} else {
let text = format!("{symbol}");
if text.starts_with(ModuleName::APP) {
let name: String = text.trim_start_matches(ModuleName::APP).into();
format!("Test{name}")
} else {
text
}
}
}
fn symbol_to_doc<'b, D, A>(alloc: &'b D, symbol: Symbol, force_pretty: bool) -> DocBuilder<'b, D, A>
where
D: DocAllocator<'b, A>,
D::Doc: Clone,
A: Clone,
{
alloc.text(symbol_to_doc_string(symbol, force_pretty))
}
fn join_point_to_doc<'b, D, A>(
alloc: &'b D,
symbol: JoinPointId,
pretty: bool,
) -> DocBuilder<'b, D, A>
where
D: DocAllocator<'b, A>,
D::Doc: Clone,
A: Clone,
{
symbol_to_doc(alloc, symbol.0, pretty)
}
impl<'a> Expr<'a> {
pub fn to_doc<'b, D, A>(&'b self, alloc: &'b D, pretty: bool) -> DocBuilder<'b, D, A>
where
D: DocAllocator<'b, A>,
D::Doc: Clone,
A: Clone,
{
use Expr::*;
match self {
Literal(lit) => lit.to_doc(alloc),
Call(call) => call.to_doc(alloc, pretty),
Tag {
tag_id,
arguments,
reuse: None,
..
} => {
let doc_tag = alloc
.text("TagId(")
.append(alloc.text(tag_id.to_string()))
.append(")");
let it = arguments.iter().map(|s| symbol_to_doc(alloc, *s, pretty));
doc_tag
.append(alloc.space())
.append(alloc.intersperse(it, " "))
}
Tag {
tag_id,
arguments,
reuse: Some(reuse_token),
..
} => {
let doc_tag = alloc
.text("TagId(")
.append(alloc.text(tag_id.to_string()))
.append(")");
let it = arguments.iter().map(|s| symbol_to_doc(alloc, *s, pretty));
alloc
.text("Reuse ")
.append(symbol_to_doc(alloc, reuse_token.symbol, pretty))
.append(alloc.space())
.append(format!("{:?}", reuse_token.update_mode))
.append(alloc.space())
.append(doc_tag)
.append(alloc.space())
.append(alloc.intersperse(it, " "))
}
NullPointer => alloc.text("NullPointer"),
Reset {
symbol,
update_mode,
} => alloc
.text("Reset { symbol: ")
.append(symbol_to_doc(alloc, *symbol, pretty))
.append(", id: ")
.append(format!("{update_mode:?}"))
.append(" }"),
ResetRef {
symbol,
update_mode,
} => alloc
.text("ResetRef { symbol: ")
.append(symbol_to_doc(alloc, *symbol, pretty))
.append(", id: ")
.append(format!("{update_mode:?}"))
.append(" }"),
Struct(args) => {
let it = args.iter().map(|s| symbol_to_doc(alloc, *s, pretty));
alloc
.text("Struct {")
.append(alloc.intersperse(it, ", "))
.append(alloc.text("}"))
}
Array { elems, .. } => {
let it = elems.iter().map(|e| match e {
ListLiteralElement::Literal(l) => l.to_doc(alloc),
ListLiteralElement::Symbol(s) => symbol_to_doc(alloc, *s, pretty),
});
alloc
.text("Array [")
.append(alloc.intersperse(it, ", "))
.append(alloc.text("]"))
}
EmptyArray => alloc.text("Array []"),
StructAtIndex {
index, structure, ..
} => text!(alloc, "StructAtIndex {} ", index)
.append(symbol_to_doc(alloc, *structure, pretty)),
RuntimeErrorFunction(s) => text!(alloc, "ErrorFunction {}", s),
GetTagId { structure, .. } => alloc
.text("GetTagId ")
.append(symbol_to_doc(alloc, *structure, pretty)),
ErasedMake { value, callee } => {
let value = match value {
Some(v) => symbol_to_doc(alloc, *v, pretty),
None => alloc.text("<null>"),
};
let callee = symbol_to_doc(alloc, *callee, pretty);
alloc
.text("ErasedMake { value: ")
.append(value)
.append(", callee: ")
.append(callee)
.append(" }")
}
ErasedLoad { symbol, field } => {
let field = match field {
ErasedField::Value => ".Value",
ErasedField::ValuePtr => ".ValuePtr",
ErasedField::Callee => ".Callee",
};
alloc
.text("ErasedLoad ")
.append(symbol_to_doc(alloc, *symbol, pretty))
.append(alloc.text(" "))
.append(field)
}
FunctionPointer { lambda_name } => alloc
.text("FunctionPointer ")
.append(symbol_to_doc(alloc, lambda_name.name(), pretty)),
UnionAtIndex {
tag_id,
structure,
index,
..
} => text!(alloc, "UnionAtIndex (Id {tag_id}) (Index {index}) ")
.append(symbol_to_doc(alloc, *structure, pretty)),
GetElementPointer {
structure, indices, ..
} => {
let it = indices.iter().map(|num| alloc.as_string(num));
let it = alloc.intersperse(it, ", ");
text!(alloc, "GetElementPointer (Indices [",)
.append(it)
.append(alloc.text("]) "))
.append(symbol_to_doc(alloc, *structure, pretty))
}
// .append(alloc.intersperse(index.iter(), ", "))},
Alloca { initializer, .. } => match initializer {
Some(initializer) => {
text!(alloc, "Alloca ").append(symbol_to_doc(alloc, *initializer, pretty))
}
None => text!(alloc, "Alloca <uninitialized>"),
},
}
}
pub fn to_pretty(&self, width: usize, pretty: bool) -> String {
let allocator = BoxAllocator;
let mut w = std::vec::Vec::new();
self.to_doc::<_, ()>(&allocator, pretty)
.1
.render(width, &mut w)
.unwrap();
w.push(b'\n');
String::from_utf8(w).unwrap()
}
pub(crate) fn ptr_load(symbol: &'a Symbol) -> Expr<'a> {
Expr::Call(Call {
call_type: CallType::LowLevel {
op: LowLevel::PtrLoad,
update_mode: UpdateModeId::BACKEND_DUMMY,
},
arguments: std::slice::from_ref(symbol),
})
}
pub(crate) fn ptr_store(arguments: &'a [Symbol]) -> Expr<'a> {
Expr::Call(Call {
call_type: CallType::LowLevel {
op: LowLevel::PtrStore,
update_mode: UpdateModeId::BACKEND_DUMMY,
},
arguments,
})
}
}
impl<'a> Stmt<'a> {
pub fn new(
env: &mut Env<'a, '_>,
can_expr: roc_can::expr::Expr,
var: Variable,
procs: &mut Procs<'a>,
layout_cache: &mut LayoutCache<'a>,
) -> Self {
from_can(env, var, can_expr, procs, layout_cache)
}
pub fn to_doc<'b, D, A, I>(
&'b self,
alloc: &'b D,
interner: &I,
pretty: bool,
) -> DocBuilder<'b, D, A>
where
D: DocAllocator<'b, A>,
D::Doc: Clone,
A: Clone,
I: LayoutInterner<'a>,
{
use Stmt::*;
match self {
Let(symbol, expr, layout, cont) => alloc
.text("let ")
.append(symbol_to_doc(alloc, *symbol, pretty))
.append(" : ")
.append(interner.to_doc_top(*layout, alloc))
.append(" = ")
.append(expr.to_doc(alloc, pretty))
.append(";")
.append(alloc.hardline())
.append(cont.to_doc(alloc, interner, pretty)),
Refcounting(modify, cont) => modify
.to_doc(alloc, pretty)
.append(alloc.hardline())
.append(cont.to_doc(alloc, interner, pretty)),
Dbg {
symbol, remainder, ..
} => alloc
.text("dbg ")
.append(symbol_to_doc(alloc, *symbol, pretty))
.append(";")
.append(alloc.hardline())
.append(remainder.to_doc(alloc, interner, pretty)),
Expect {
condition,
remainder,
..
} => alloc
.text("expect ")
.append(symbol_to_doc(alloc, *condition, pretty))
.append(";")
.append(alloc.hardline())
.append(remainder.to_doc(alloc, interner, pretty)),
ExpectFx {
condition,
remainder,
..
} => alloc
.text("expect-fx ")
.append(symbol_to_doc(alloc, *condition, pretty))
.append(";")
.append(alloc.hardline())
.append(remainder.to_doc(alloc, interner, pretty)),
Ret(symbol) => alloc
.text("ret ")
.append(symbol_to_doc(alloc, *symbol, pretty))
.append(";"),
Switch {
cond_symbol,
branches,
default_branch,
..
} => {
match branches {
[(1, info, pass)] => {
let fail = default_branch.1;
alloc
.text("if ")
.append(symbol_to_doc(alloc, *cond_symbol, pretty))
.append(" then")
.append(info.to_doc(alloc, pretty))
.append(alloc.hardline())
.append(pass.to_doc(alloc, interner, pretty).indent(4))
.append(alloc.hardline())
.append(alloc.text("else"))
.append(default_branch.0.to_doc(alloc, pretty))
.append(alloc.hardline())
.append(fail.to_doc(alloc, interner, pretty).indent(4))
}
_ => {
let default_doc = alloc
.text("default:")
.append(alloc.hardline())
.append(default_branch.1.to_doc(alloc, interner, pretty).indent(4))
.indent(4);
let branches_docs = branches
.iter()
.map(|(tag, _info, expr)| {
text!(alloc, "case {}:", tag)
.append(alloc.hardline())
.append(expr.to_doc(alloc, interner, pretty).indent(4))
.indent(4)
})
.chain(std::iter::once(default_doc));
//
alloc
.text("switch ")
.append(symbol_to_doc(alloc, *cond_symbol, pretty))
.append(":")
.append(alloc.hardline())
.append(alloc.intersperse(
branches_docs,
alloc.hardline().append(alloc.hardline()),
))
.append(alloc.hardline())
}
}
}
Crash(s, _src) => alloc
.text("Crash ")
.append(symbol_to_doc(alloc, *s, pretty)),
Join {
id,
parameters,
body: continuation,
remainder,
} => {
let it = parameters
.iter()
.map(|p| symbol_to_doc(alloc, p.symbol, pretty));
alloc.intersperse(
vec![
alloc
.text("joinpoint ")
.append(join_point_to_doc(alloc, *id, pretty))
.append(" ".repeat(parameters.len().min(1)))
.append(alloc.intersperse(it, alloc.space()))
.append(":"),
continuation.to_doc(alloc, interner, pretty).indent(4),
alloc.text("in"),
remainder.to_doc(alloc, interner, pretty),
],
alloc.hardline(),
)
}
Jump(id, arguments) => {
let it = arguments.iter().map(|s| symbol_to_doc(alloc, *s, pretty));
alloc
.text("jump ")
.append(join_point_to_doc(alloc, *id, pretty))
.append(" ".repeat(arguments.len().min(1)))
.append(alloc.intersperse(it, alloc.space()))
.append(";")
}
}
}
pub fn to_pretty<I>(&self, interner: &I, width: usize, pretty: bool) -> String
where
I: LayoutInterner<'a>,
{
let allocator = BoxAllocator;
let mut w = std::vec::Vec::new();
self.to_doc::<_, (), _>(&allocator, interner, pretty)
.1
.render(width, &mut w)
.unwrap();
w.push(b'\n');
String::from_utf8(w).unwrap()
}
pub fn if_then_else(
arena: &'a Bump,
condition_symbol: Symbol,
return_layout: InLayout<'a>,
then_branch_stmt: Stmt<'a>,
else_branch_stmt: &'a Stmt<'a>,
) -> Self {
let then_branch_info = BranchInfo::Constructor {
scrutinee: condition_symbol,
layout: Layout::BOOL,
tag_id: 1,
};
let then_branch = (1u64, then_branch_info, then_branch_stmt);
let else_branch_info = BranchInfo::Constructor {
scrutinee: condition_symbol,
layout: Layout::BOOL,
tag_id: 0,
};
let else_branch = (else_branch_info, else_branch_stmt);
Stmt::Switch {
cond_symbol: condition_symbol,
cond_layout: Layout::BOOL,
branches: &*arena.alloc([then_branch]),
default_branch: else_branch,
ret_layout: return_layout,
}
}
}
fn from_can_let<'a>(
env: &mut Env<'a, '_>,
procs: &mut Procs<'a>,
layout_cache: &mut LayoutCache<'a>,
def: Box<roc_can::def::Def>,
cont: Box<Loc<roc_can::expr::Expr>>,
variable: Variable,
opt_assigned_and_hole: Option<(Symbol, &'a Stmt<'a>)>,
) -> Stmt<'a> {
use roc_can::expr::Expr::*;
macro_rules! lower_rest {
($variable:expr, $expr:expr) => {
lower_rest!(env, procs, layout_cache, $variable, $expr)
};
($env:expr, $procs:expr, $layout_cache:expr, $variable:expr, $expr:expr) => {
match opt_assigned_and_hole {
None => from_can($env, $variable, $expr, $procs, $layout_cache),
Some((assigned, hole)) => with_hole(
$env,
$expr,
$variable,
$procs,
$layout_cache,
assigned,
hole,
),
}
};
}
if let roc_can::pattern::Pattern::Identifier(symbol) = &def.loc_pattern.value {
return match def.loc_expr.value {
Closure(closure_data) => {
register_capturing_closure(env, procs, layout_cache, *symbol, closure_data);
lower_rest!(variable, cont.value)
}
RecordAccessor(accessor_data) => {
let fresh_record_symbol = env.unique_symbol();
let closure_data = accessor_data.to_closure_data(fresh_record_symbol);
debug_assert_eq!(*symbol, closure_data.name);
register_noncapturing_closure(env, procs, *symbol, closure_data);
lower_rest!(variable, cont.value)
}
Var(original, _) | AbilityMember(original, _, _)
if procs.get_partial_proc(original).is_none() =>
{
// a variable is aliased, e.g.
//
// foo = bar
//
// We need to generate an IR that is free of local lvalue aliasing, as this aids in
// refcounting. As such, variable aliasing usually involves renaming the LHS in the
// rest of the program with the RHS (i.e. [foo->bar]); see `handle_variable_aliasing`
// below for the exact algorithm.
//
// However, do not attempt to eliminate aliasing to procedures
// (either a function pointer or a thunk) here. Doing so is not necessary - if we
// have `var = f` where `f` is either a proc or thunk, in either case, `f` will be
// resolved to an rvalue, not an lvalue:
//
// - If `f` is a proc, we assign to `var` its closure data (even if the lambda set
// of `f` is unary with no captures, we leave behind the empty closure data)
//
// - If `f` is a thunk, we force the thunk and assign to `var` its value.
//
// With this in mind, when `f` is a thunk or proper function, we are free to follow
// the usual (non-lvalue-aliasing) branch of assignment, and end up with correct
// code.
//
// ===
//
// Recording that an lvalue references a procedure or a thunk may open up
// opportunities for optimization - and indeed, recording this information may
// sometimes eliminate such unused lvalues, or inline closure data. However, in
// general, making sure this kind of aliasing works correctly is very difficult. As
// illustration, consider
//
// getNum1 = \{} -> 1u64
// getNum2 = \{} -> 2u64
//
// dispatch = \fun -> fun {}
//
// main =
// myFun1 = getNum1
// myFun2 = getNum2
// dispatch (if Bool.true then myFun1 else myFun2)
//
// Suppose we leave nothing behind for the assignments `myFun* = getNum*`, and
// instead simply associate that they reference procs. In the if-then-else
// expression, we then need to construct the closure data for both getNum1 and
// getNum2 - but we do not know what lambdas they represent, as we only have access
// to the symbols `myFun1` and `myFun2`.
//
// While associations of `myFun1 -> getNum1` could be propogated, the story gets
// more complicated when the referenced proc itself resolves a lambda set with
// indirection; for example consider the amendment
//
// getNum1 = @Dispatcher \{} -> 1u64
// getNum2 = @Dispatcher \{} -> 2u64
//
// Now, even the association of `myFun1 -> getNum1` is not enough, as the lambda
// set of (if Bool.true then myFun1 else myFun2) would not be { getNum1, getNum2 }
// - it would be the binary lambda set of the anonymous closures created under the
// `@Dispatcher` wrappers.
//
// Trying to keep all this information in line has been error prone, and is not
// attempted.
// TODO: right now we need help out rustc with the closure types;
// it isn't able to infer the right lifetime bounds. See if we
// can remove the annotations in the future.
let build_rest =
|env: &mut Env<'a, '_>,
procs: &mut Procs<'a>,
layout_cache: &mut LayoutCache<'a>| {
lower_rest!(env, procs, layout_cache, variable, cont.value)
};
return handle_variable_aliasing(
env,
procs,
layout_cache,
def.expr_var,
*symbol,
original,
build_rest,
);
}
LetNonRec(nested_def, nested_cont) => {
use roc_can::expr::Expr::*;
// We must transform
//
// let answer = 1337
// in
// let unused =
// let nested = 17
// in
// nested
// in
// answer
//
// into
//
// let answer = 1337
// in
// let nested = 17
// in
// let unused = nested
// in
// answer
use roc_can::{def::Def, expr::Expr, pattern::Pattern};
let new_outer = match &nested_cont.value {
&Expr::Closure(ClosureData {
name: anon_name, ..
}) => {
// A wrinkle:
//
// let f =
// let n = 1 in
// \{} -[#lam]-> n
//
// must become
//
// let n = 1 in
// let #lam = \{} -[#lam]-> n in
// let f = #lam
debug_assert_ne!(*symbol, anon_name);
// #lam = \...
let def_anon_closure = Box::new(Def {
loc_pattern: Loc::at_zero(Pattern::Identifier(anon_name)),
loc_expr: *nested_cont,
expr_var: def.expr_var,
pattern_vars: std::iter::once((anon_name, def.expr_var)).collect(),
annotation: None,
});
// f = #lam
let new_def = Box::new(Def {
loc_pattern: def.loc_pattern,
loc_expr: Loc::at_zero(Expr::Var(anon_name, def.expr_var)),
expr_var: def.expr_var,
pattern_vars: def.pattern_vars,
annotation: def.annotation,
});
let new_inner = LetNonRec(new_def, cont);
LetNonRec(
nested_def,
Box::new(Loc::at_zero(LetNonRec(
def_anon_closure,
Box::new(Loc::at_zero(new_inner)),
))),
)
}
_ => {
let new_def = Def {
loc_pattern: def.loc_pattern,
loc_expr: *nested_cont,
pattern_vars: def.pattern_vars,
annotation: def.annotation,
expr_var: def.expr_var,
};
let new_inner = LetNonRec(Box::new(new_def), cont);
LetNonRec(nested_def, Box::new(Loc::at_zero(new_inner)))
}
};
lower_rest!(variable, new_outer)
}
LetRec(nested_defs, nested_cont, cycle_mark) => {
use roc_can::expr::Expr::*;
// We must transform
//
// let answer = 1337
// in
// let unused =
// let nested = \{} -> nested {}
// in
// nested
// in
// answer
//
// into
//
// let answer = 1337
// in
// let nested = \{} -> nested {}
// in
// let unused = nested
// in
// answer
let new_def = roc_can::def::Def {
loc_pattern: def.loc_pattern,
loc_expr: *nested_cont,
pattern_vars: def.pattern_vars,
annotation: def.annotation,
expr_var: def.expr_var,
};
let new_inner = LetNonRec(Box::new(new_def), cont);
let new_outer = LetRec(nested_defs, Box::new(Loc::at_zero(new_inner)), cycle_mark);
lower_rest!(variable, new_outer)
}
e @ (Int(..) | Float(..) | Num(..)) => {
let (str, val): (Box<str>, IntOrFloatValue) = match e {
Int(_, _, str, val, _) => (str, IntOrFloatValue::Int(val)),
Float(_, _, str, val, _) => (str, IntOrFloatValue::Float(val)),
Num(_, str, val, _) => (str, IntOrFloatValue::Int(val)),
_ => unreachable!(),
};
procs.symbol_specializations.mark_eligible(*symbol);
let mut stmt = lower_rest!(variable, cont.value);
let needed_specializations = procs.symbol_specializations.remove(*symbol).unwrap();
let zero_specialization = if needed_specializations.is_empty() {
let layout = layout_cache
.from_var(env.arena, def.expr_var, env.subs)
.unwrap();
Some((layout, *symbol))
} else {
None
};
// Layer on the specialized numbers
for (layout, sym) in needed_specializations
.into_iter()
.map(|(lay, (sym, _))| (lay, sym))
.chain(zero_specialization)
{
let literal = make_num_literal(&layout_cache.interner, layout, &str, val);
stmt = Stmt::Let(
sym,
Expr::Literal(literal.to_expr_literal()),
layout,
env.arena.alloc(stmt),
);
}
stmt
}
_ => {
let rest = lower_rest!(variable, cont.value);
with_hole(
env,
def.loc_expr.value,
def.expr_var,
procs,
layout_cache,
*symbol,
env.arena.alloc(rest),
)
}
};
}
// this may be a destructure pattern
let (mono_pattern, assignments) =
match from_can_pattern(env, procs, layout_cache, &def.loc_pattern.value) {
Ok(v) => v,
Err(_) => todo!(),
};
// convert the continuation
let mut stmt = lower_rest!(variable, cont.value);
// layer on any default record fields
for (symbol, variable, expr) in assignments {
let hole = env.arena.alloc(stmt);
stmt = with_hole(env, expr, variable, procs, layout_cache, symbol, hole);
}
match def.loc_expr.value {
roc_can::expr::Expr::Var(outer_symbol, _) if !procs.is_module_thunk(outer_symbol) => {
store_pattern(env, procs, layout_cache, &mono_pattern, outer_symbol, stmt)
}
_ => {
let outer_symbol = env.unique_symbol();
stmt = store_pattern(env, procs, layout_cache, &mono_pattern, outer_symbol, stmt);
// convert the def body, store in outer_symbol
with_hole(
env,
def.loc_expr.value,
def.expr_var,
procs,
layout_cache,
outer_symbol,
env.arena.alloc(stmt),
)
}
}
}
/// turn record/tag patterns into a when expression, e.g.
///
/// foo = \{ x } -> body
///
/// becomes
///
/// foo = \r -> when r is { x } -> body
///
/// conversion of one-pattern when expressions will do the most optimal thing
#[allow(clippy::type_complexity)]
fn patterns_to_when<'a>(
env: &mut Env<'a, '_>,
patterns: std::vec::Vec<(Variable, AnnotatedMark, Loc<roc_can::pattern::Pattern>)>,
body_var: Variable,
body: Loc<roc_can::expr::Expr>,
) -> Result<(Vec<'a, Variable>, Vec<'a, Symbol>, Loc<roc_can::expr::Expr>), Loc<RuntimeError>> {
let mut arg_vars = Vec::with_capacity_in(patterns.len(), env.arena);
let mut symbols = Vec::with_capacity_in(patterns.len(), env.arena);
let mut body = Ok(body);
// patterns that are not yet in a when (e.g. in let or function arguments) must be irrefutable
// to pass type checking. So the order in which we add them to the body does not matter: there
// are only stores anyway, no branches.
//
// NOTE this fails if the pattern contains rigid variables,
// see https://github.com/roc-lang/roc/issues/786
// this must be fixed when moving exhaustiveness checking to the new canonical AST
for (pattern_var, annotated_mark, pattern) in patterns.into_iter() {
if annotated_mark.exhaustive.is_non_exhaustive(env.subs) {
// Even if the body was Ok, replace it with this Err.
// If it was already an Err, leave it at that Err, so the first
// RuntimeError we encountered remains the first.
let value = RuntimeError::UnsupportedPattern(pattern.region);
body = body.and({
Err(Loc {
region: pattern.region,
value,
})
});
} else if let Ok(unwrapped_body) = body {
let (new_symbol, new_body) =
pattern_to_when(env, pattern_var, pattern, body_var, unwrapped_body);
symbols.push(new_symbol);
arg_vars.push(pattern_var);
body = Ok(new_body)
}
}
match body {
Ok(body) => Ok((arg_vars, symbols, body)),
Err(loc_error) => Err(loc_error),
}
}
/// turn irrefutable patterns into when. For example
///
/// foo = \{ x } -> body
///
/// Assuming the above program typechecks, the pattern match cannot fail
/// (it is irrefutable). It becomes
///
/// foo = \r ->
/// when r is
/// { x } -> body
///
/// conversion of one-pattern when expressions will do the most optimal thing
fn pattern_to_when(
env: &mut Env<'_, '_>,
pattern_var: Variable,
pattern: Loc<roc_can::pattern::Pattern>,
body_var: Variable,
body: Loc<roc_can::expr::Expr>,
) -> (Symbol, Loc<roc_can::expr::Expr>) {
use roc_can::expr::Expr::*;
use roc_can::expr::{WhenBranch, WhenBranchPattern};
use roc_can::pattern::Pattern::{self, *};
match &pattern.value {
Identifier(symbol) => (*symbol, body),
Underscore => {
// for underscore we generate a dummy Symbol
(env.unique_symbol(), body)
}
Shadowed(region, loc_ident, new_symbol) => {
let error = roc_problem::can::RuntimeError::Shadowing {
original_region: *region,
shadow: loc_ident.clone(),
kind: ShadowKind::Variable,
};
(*new_symbol, Loc::at_zero(RuntimeError(error)))
}
As(_, _) => todo!("as bindings are not supported yet"),
UnsupportedPattern(region) => {
// create the runtime error here, instead of delegating to When.
// UnsupportedPattern should then never occur in When
let error = roc_problem::can::RuntimeError::UnsupportedPattern(*region);
(env.unique_symbol(), Loc::at_zero(RuntimeError(error)))
}
MalformedPattern(problem, region) => {
// create the runtime error here, instead of delegating to When.
let error = roc_problem::can::RuntimeError::MalformedPattern(*problem, *region);
(env.unique_symbol(), Loc::at_zero(RuntimeError(error)))
}
OpaqueNotInScope(loc_ident) => {
// create the runtime error here, instead of delegating to When.
// TODO(opaques) should be `RuntimeError::OpaqueNotDefined`
let error = roc_problem::can::RuntimeError::UnsupportedPattern(loc_ident.region);
(env.unique_symbol(), Loc::at_zero(RuntimeError(error)))
}
AppliedTag { .. }
| RecordDestructure { .. }
| TupleDestructure { .. }
| UnwrappedOpaque { .. } => {
let symbol = env.unique_symbol();
let wrapped_body = When {
cond_var: pattern_var,
expr_var: body_var,
region: Region::zero(),
loc_cond: Box::new(Loc::at_zero(Var(symbol, pattern_var))),
branches: vec![WhenBranch {
patterns: vec![WhenBranchPattern {
pattern,
degenerate: false,
}],
value: body,
guard: None,
// If this type-checked, it's non-redundant
redundant: RedundantMark::known_non_redundant(),
}],
branches_cond_var: pattern_var,
// If this type-checked, it's exhaustive
exhaustive: ExhaustiveMark::known_exhaustive(),
};
(symbol, Loc::at_zero(wrapped_body))
}
Pattern::List { .. } => todo!(),
IntLiteral(..)
| NumLiteral(..)
| FloatLiteral(..)
| StrLiteral(..)
| roc_can::pattern::Pattern::SingleQuote(..) => {
// These patters are refutable, and thus should never occur outside a `when` expression
// They should have been replaced with `UnsupportedPattern` during canonicalization
unreachable!("refutable pattern {:?} where irrefutable pattern is expected. This should never happen!", pattern.value)
}
AbilityMemberSpecialization { .. } => {
unreachable!(
"Ability member specialization {:?} should never appear in a when!",
pattern.value
)
}
}
}
fn specialize_suspended<'a>(
env: &mut Env<'a, '_>,
procs: &mut Procs<'a>,
layout_cache: &mut LayoutCache<'a>,
suspended: Suspended<'a>,
) {
let offset_variable = StorageSubs::merge_into(suspended.store, env.subs);
for (i, (symbol_or_lambda, var)) in suspended
.symbol_or_lambdas
.iter()
.zip(suspended.variables.iter())
.enumerate()
{
let name = *symbol_or_lambda;
let outside_layout = suspended.layouts[i];
let var = offset_variable(*var);
// TODO define our own Entry for Specialized?
let partial_proc = if procs
.specialized
.is_specialized(name.name(), &outside_layout)
{
// already specialized, just continue
continue;
} else {
match procs.partial_procs.symbol_to_id(name.name()) {
Some(v) => {
// Mark this proc as in-progress, so if we're dealing with
// mutually recursive functions, we don't loop forever.
// (We had a bug around this before this system existed!)
procs
.specialized
.mark_in_progress(name.name(), outside_layout);
v
}
None => {
// TODO this assumes the specialization is done by another module
// make sure this does not become a problem down the road!
debug_assert!(name.name().module_id() != name.name().module_id());
continue;
}
}
};
match specialize_variable(env, procs, name, layout_cache, var, partial_proc) {
Ok((proc, raw_layout)) => {
let proc_layout = ProcLayout::from_raw_named(env.arena, name, raw_layout);
procs
.specialized
.insert_specialized(name.name(), proc_layout, proc);
}
Err(SpecializeFailure {
attempted_layout, ..
}) => {
let proc = generate_runtime_error_function(env, name, attempted_layout);
let top_level = ProcLayout::from_raw_named(env.arena, name, attempted_layout);
procs
.specialized
.insert_specialized(name.name(), top_level, proc);
}
}
}
}
pub fn specialize_all<'a>(
env: &mut Env<'a, '_>,
mut procs: Procs<'a>,
externals_others_need: std::vec::Vec<ExternalSpecializations<'a>>,
specializations_for_host: HostSpecializations<'a>,
layout_cache: &mut LayoutCache<'a>,
) -> Procs<'a> {
// When calling from_can, pending_specializations should be unavailable.
// This must be a single pass, and we must not add any more entries to it!
let pending_specializations = std::mem::replace(
&mut procs.pending_specializations,
PendingSpecializations::Making(Suspended::new_in(env.arena)),
);
// Add all of our existing pending specializations.
match pending_specializations {
PendingSpecializations::Finding(suspended) => {
specialize_suspended(env, &mut procs, layout_cache, suspended)
}
PendingSpecializations::Making(suspended) => {
debug_assert!(
suspended.is_empty(),
"suspended specializations cannot ever start off non-empty when making"
);
}
}
// Specialize all the symbols everyone else needs.
for externals in externals_others_need {
specialize_external_specializations(env, &mut procs, layout_cache, externals);
}
// Specialize any symbols the host needs.
specialize_host_specializations(env, &mut procs, layout_cache, specializations_for_host);
// Now, we must go through and continuously complete any new suspended specializations that were
// discovered in specializing the other demanded symbols.
while !procs.pending_specializations.is_empty() {
let pending_specializations = std::mem::replace(
&mut procs.pending_specializations,
PendingSpecializations::Making(Suspended::new_in(env.arena)),
);
match pending_specializations {
PendingSpecializations::Making(suspended) => {
specialize_suspended(env, &mut procs, layout_cache, suspended);
}
PendingSpecializations::Finding(_) => {
internal_error!("should not have this variant after making specializations")
}
}
}
debug_assert!(
procs.symbol_specializations.is_empty(),
"{:?}",
&procs.symbol_specializations
);
procs
}
fn specialize_host_specializations<'a>(
env: &mut Env<'a, '_>,
procs: &mut Procs<'a>,
layout_cache: &mut LayoutCache<'a>,
host_specializations: HostSpecializations<'a>,
) {
let (store, it) = host_specializations.decompose();
let offset_variable = StorageSubs::merge_into(store, env.subs);
for (lambda_name, from_app, opt_from_platform) in it {
let from_app = offset_variable(from_app);
let index = specialize_external_help(env, procs, layout_cache, lambda_name, from_app);
let Some(from_platform) = opt_from_platform else {
continue;
};
// now run the lambda set numbering scheme
let hels = find_lambda_sets(env.arena, env.subs, from_platform);
// now unify
let mut unify_env = roc_unify::Env::new(
env.subs,
#[cfg(debug_assertions)]
None,
);
let unified = roc_unify::unify::unify(
&mut unify_env,
from_platform,
from_app,
roc_solve_schema::UnificationMode::EQ,
roc_types::types::Polarity::Pos,
);
{
use roc_unify::unify::Unified::*;
match unified {
Success { .. } => { /* great */ }
Failure(..) => internal_error!("unification here should never fail"),
}
}
for (var, id) in hels {
let symbol = env.unique_symbol();
let lambda_name = LambdaName::no_niche(symbol);
let mut layout_env = layout::Env::from_components(layout_cache, env.subs, env.arena);
let lambda_set = env.subs.get_lambda_set(var);
let raw_function_layout =
RawFunctionLayout::from_var(&mut layout_env, lambda_set.ambient_function)
.value()
.unwrap();
let (key, (top_level, proc)) = generate_host_exposed_function(
env,
procs,
layout_cache,
lambda_name,
raw_function_layout,
);
procs
.specialized
.insert_specialized(symbol, top_level, proc);
let hels = HostExposedLambdaSet {
id,
symbol,
proc_layout: top_level,
raw_function_layout,
};
let in_progress = &mut procs.specialized.procedures[index.0];
let InProgressProc::Done(proc) = in_progress else {
unreachable!()
};
procs.host_exposed_lambda_sets.push((proc.name, key, hels));
}
}
}
fn specialize_external_specializations<'a>(
env: &mut Env<'a, '_>,
procs: &mut Procs<'a>,
layout_cache: &mut LayoutCache<'a>,
externals_others_need: ExternalSpecializations<'a>,
) {
let (store, it) = externals_others_need.decompose();
let offset_variable = StorageSubs::merge_into(store, env.subs);
for (symbol, solved_types) in it {
for store_variable in solved_types {
let imported_variable = offset_variable(store_variable);
roc_tracing::debug!(proc_name = ?symbol, ?store_variable, ?imported_variable, "specializing needed external");
// historical note: we used to deduplicate with a hash here,
// but the cost of that hash is very high. So for now we make
// duplicate specializations, and the insertion into a hash map
// below will deduplicate them.
specialize_external_help(env, procs, layout_cache, symbol, imported_variable);
}
}
}
fn specialize_external_help<'a>(
env: &mut Env<'a, '_>,
procs: &mut Procs<'a>,
layout_cache: &mut LayoutCache<'a>,
name: LambdaName<'a>,
variable: Variable,
) -> SpecializedIndex {
let partial_proc_id = match procs.partial_procs.symbol_to_id(name.name()) {
Some(v) => v,
None => {
panic!("Cannot find a partial proc for {name:?}");
}
};
let specialization_result =
specialize_variable(env, procs, name, layout_cache, variable, partial_proc_id);
match specialization_result {
Ok((proc, layout)) => {
let top_level = ProcLayout::from_raw_named(env.arena, name, layout);
if procs.is_module_thunk(name.name()) {
debug_assert!(top_level.arguments.is_empty());
}
if procs.host_exposed_symbols.contains(&proc.name.name()) {
// layouts that are (transitively) used in the type of `mainForHost`.
let mut host_exposed_layouts: Vec<_> = top_level
.arguments
.iter()
.copied()
.chain([top_level.result])
.collect_in(env.arena);
// it is very likely we see the same types across functions, or in multiple arguments
host_exposed_layouts.sort();
host_exposed_layouts.dedup();
// Computer the getter procs for every host-exposed layout.
for in_layout in host_exposed_layouts {
let layout = layout_cache.interner.get(in_layout);
let all_glue_procs = generate_glue_procs(
env.home,
env.ident_ids,
env.arena,
&mut layout_cache.interner,
env.arena.alloc(layout),
);
let GlueProcs {
getters,
legacy_layout_based_extern_names: _,
} = all_glue_procs;
for (_layout, glue_procs) in getters {
for glue_proc in glue_procs {
procs.specialized.insert_specialized(
glue_proc.proc.name.name(),
glue_proc.proc_layout,
glue_proc.proc,
);
}
}
}
}
procs
.specialized
.insert_specialized(name.name(), top_level, proc)
}
Err(SpecializeFailure { attempted_layout }) => {
let proc = generate_runtime_error_function(env, name, attempted_layout);
let top_level = ProcLayout::from_raw_named(env.arena, name, attempted_layout);
procs
.specialized
.insert_specialized(name.name(), top_level, proc)
}
}
}
fn generate_runtime_error_function<'a>(
env: &mut Env<'a, '_>,
lambda_name: LambdaName<'a>,
layout: RawFunctionLayout<'a>,
) -> Proc<'a> {
let mut msg = bumpalo::collections::string::String::with_capacity_in(80, env.arena);
use std::fmt::Write;
write!(
&mut msg,
"The {:?} function could not be generated, likely due to a type error.",
lambda_name.name(),
)
.unwrap();
dbg_do!(ROC_PRINT_RUNTIME_ERROR_GEN, {
eprintln!(
"emitted runtime error function {:?} for layout {:?}",
&msg, layout
);
});
let runtime_error = runtime_error(env, msg.into_bump_str());
let is_erased = layout.is_erased_function();
let (args, ret_layout) = match layout {
RawFunctionLayout::Function(arg_layouts, lambda_set, ret_layout) => {
let real_arg_layouts =
lambda_set.extend_argument_list_for_named(env.arena, lambda_name, arg_layouts);
let mut args = Vec::with_capacity_in(real_arg_layouts.len(), env.arena);
for arg in arg_layouts {
args.push((*arg, env.unique_symbol()));
}
if real_arg_layouts.len() != arg_layouts.len() {
let lambda_set_layout = lambda_set.full_layout;
args.push((lambda_set_layout, Symbol::ARG_CLOSURE));
}
(args.into_bump_slice(), ret_layout)
}
RawFunctionLayout::ErasedFunction(..) => {
todo_lambda_erasure!()
}
RawFunctionLayout::ZeroArgumentThunk(ret_layout) => (&[] as &[_], ret_layout),
};
Proc {
name: lambda_name,
args,
body: runtime_error,
closure_data_layout: None,
ret_layout,
is_self_recursive: SelfRecursive::NotSelfRecursive,
is_erased,
}
}
/// A snapshot of the state of types at a moment in time.
/// Includes the exact types, but also auxiliary information like layouts.
struct TypeStateSnapshot {
subs_snapshot: roc_types::subs::SubsSnapshot,
layout_snapshot: crate::layout::CacheSnapshot,
external_storage_snapshot: VecMap<ModuleId, ExternalModuleStorageSnapshot>,
}
/// Takes a snapshot of the type state. Snapshots should be taken before new specializations, and
/// accordingly [rolled back][rollback_typestate] a specialization is complete, so as to not
/// interfere with other specializations.
fn snapshot_typestate(
subs: &mut Subs,
procs: &mut Procs,
layout_cache: &mut LayoutCache<'_>,
) -> TypeStateSnapshot {
TypeStateSnapshot {
subs_snapshot: subs.snapshot(),
layout_snapshot: layout_cache.snapshot(),
external_storage_snapshot: procs
.externals_we_need
.iter_mut()
.map(|(module, es)| (*module, es.snapshot_cache()))
.collect(),
}
}
/// Rolls back the type state to the given [snapshot].
/// Should be called after a specialization is complete to avoid interfering with other
/// specializations.
fn rollback_typestate(
subs: &mut Subs,
procs: &mut Procs,
layout_cache: &mut LayoutCache<'_>,
snapshot: TypeStateSnapshot,
) {
let TypeStateSnapshot {
subs_snapshot,
layout_snapshot,
mut external_storage_snapshot,
} = snapshot;
subs.rollback_to(subs_snapshot);
layout_cache.rollback_to(layout_snapshot);
for (module, es) in procs.externals_we_need.iter_mut() {
if let Some((_, snapshot)) = external_storage_snapshot.remove(module) {
es.rollback_cache(snapshot);
} else {
es.invalidate_whole_cache();
}
}
}
fn generate_host_exposed_function<'a>(
env: &mut Env<'a, '_>,
procs: &mut Procs<'a>,
layout_cache: &mut LayoutCache<'a>,
lambda_name: LambdaName<'a>,
layout: RawFunctionLayout<'a>,
) -> (Symbol, (ProcLayout<'a>, Proc<'a>)) {
let function_name = lambda_name.name();
match layout {
RawFunctionLayout::Function(_, lambda_set, _) => {
let (proc, top_level) = generate_host_exposed_lambda_set(
env,
procs,
layout_cache,
function_name,
lambda_set,
);
(function_name, (top_level, proc))
}
RawFunctionLayout::ErasedFunction(..) => {
todo_lambda_erasure!()
}
RawFunctionLayout::ZeroArgumentThunk(result) => {
let assigned = env.unique_symbol();
let hole = env.arena.alloc(Stmt::Ret(assigned));
let forced = force_thunk(env, function_name, result, assigned, hole);
let lambda_name = LambdaName::no_niche(function_name);
let proc = Proc {
name: lambda_name,
args: &[],
body: forced,
closure_data_layout: None,
ret_layout: result,
is_self_recursive: SelfRecursive::NotSelfRecursive,
is_erased: false,
};
let top_level = ProcLayout::from_raw_named(env.arena, lambda_name, layout);
(function_name, (top_level, proc))
}
}
}
fn generate_host_exposed_lambda_set<'a>(
env: &mut Env<'a, '_>,
procs: &mut Procs<'a>,
layout_cache: &mut LayoutCache<'a>,
name: Symbol,
lambda_set: LambdaSet<'a>,
) -> (Proc<'a>, ProcLayout<'a>) {
let assigned = env.unique_symbol();
let argument_layouts = *lambda_set.args;
let return_layout = lambda_set.ret;
let mut argument_symbols = Vec::with_capacity_in(argument_layouts.len(), env.arena);
let mut proc_arguments = Vec::with_capacity_in(argument_layouts.len() + 1, env.arena);
let mut top_level_arguments = Vec::with_capacity_in(argument_layouts.len() + 1, env.arena);
for layout in *lambda_set.args {
let symbol = env.unique_symbol();
proc_arguments.push((*layout, symbol));
argument_symbols.push(symbol);
top_level_arguments.push(*layout);
}
// the proc needs to take an extra closure argument
let lambda_set_layout = lambda_set.full_layout;
proc_arguments.push((lambda_set_layout, Symbol::ARG_CLOSURE));
// this should also be reflected in the TopLevel signature
top_level_arguments.push(lambda_set_layout);
let hole = env.arena.alloc(Stmt::Ret(assigned));
let body = match_on_lambda_set(
env,
layout_cache,
procs,
lambda_set,
Symbol::ARG_CLOSURE,
argument_symbols.into_bump_slice(),
argument_layouts,
return_layout,
assigned,
hole,
);
let proc = Proc {
name: LambdaName::no_niche(name),
args: proc_arguments.into_bump_slice(),
body,
closure_data_layout: None,
ret_layout: return_layout,
is_self_recursive: SelfRecursive::NotSelfRecursive,
is_erased: false,
};
let top_level = ProcLayout::new(
env.arena,
top_level_arguments.into_bump_slice(),
Niche::NONE,
return_layout,
);
(proc, top_level)
}
/// Specialize a single proc.
///
/// The caller should snapshot and rollback the type state before and after calling this function,
/// respectively. This function will not take snapshots itself, but will modify the type state.
fn specialize_proc_help<'a>(
env: &mut Env<'a, '_>,
procs: &mut Procs<'a>,
lambda_name: LambdaName<'a>,
layout_cache: &mut LayoutCache<'a>,
fn_var: Variable,
partial_proc_id: PartialProcId,
) -> Result<Proc<'a>, LayoutProblem> {
let partial_proc = procs.partial_procs.get_id(partial_proc_id);
let captured_symbols = partial_proc.captured_symbols;
let _unified = env.unify(
procs.externals_we_need.values_mut(),
layout_cache,
partial_proc.annotation,
fn_var,
);
// This will not hold for programs with type errors
// let is_valid = matches!(unified, roc_unify::unify::Unified::Success(_));
// debug_assert!(is_valid, "unificaton failure for {:?}", proc_name);
// if this is a closure, add the closure record argument
let pattern_symbols = match partial_proc.captured_symbols {
CapturedSymbols::None => partial_proc.pattern_symbols,
CapturedSymbols::Captured([]) => partial_proc.pattern_symbols,
CapturedSymbols::Captured(_) => {
let mut temp =
Vec::from_iter_in(partial_proc.pattern_symbols.iter().copied(), env.arena);
temp.push(Symbol::ARG_CLOSURE);
temp.into_bump_slice()
}
};
let specialized =
build_specialized_proc_from_var(env, layout_cache, lambda_name, pattern_symbols, fn_var)?;
let recursivity = if partial_proc.is_self_recursive {
SelfRecursive::SelfRecursive(JoinPointId(env.unique_symbol()))
} else {
SelfRecursive::NotSelfRecursive
};
let body = partial_proc.body.clone();
let body_var = partial_proc.body_var;
let mut specialized_body = from_can(env, body_var, body, procs, layout_cache);
let specialized_proc = match specialized {
SpecializedLayout::FunctionPointerBody {
ret_layout,
closure: opt_closure_layout,
is_erased,
} => {
// this is a function body like
//
// foo = Num.add
//
// we need to expand this to
//
// foo = \x,y -> Num.add x y
let closure_data_layout = match opt_closure_layout {
Some(lambda_set) => lambda_set.full_layout,
None => Layout::UNIT,
};
// I'm not sure how to handle the closure case, does it ever occur?
debug_assert!(matches!(captured_symbols, CapturedSymbols::None));
Proc {
name: lambda_name,
args: &[],
body: specialized_body,
closure_data_layout: Some(closure_data_layout),
ret_layout,
is_self_recursive: recursivity,
is_erased,
}
}
SpecializedLayout::FunctionBody {
arguments: proc_args,
closure: opt_closure_layout,
ret_layout,
is_erased,
} => {
let mut proc_args = Vec::from_iter_in(proc_args.iter().copied(), env.arena);
// unpack the closure symbols, if any
match (opt_closure_layout, captured_symbols) {
(
Some(ClosureDataKind::LambdaSet(closure_layout)),
CapturedSymbols::Captured(captured),
) => {
// debug_assert!(!captured.is_empty());
// An argument from the closure list may have taken on a specialized symbol
// name during the evaluation of the def body. If this is the case, load the
// specialized name rather than the original captured name!
let get_specialized_name = |symbol| {
let specs_used_in_body =
procs.get_symbol_specializations_used_in_body(symbol);
match specs_used_in_body {
Some(mut specs) => {
let spec_symbol = specs.next().unwrap_or(symbol);
if specs.next().is_some() {
internal_error!(
"polymorphic symbol captures not supported yet"
);
}
spec_symbol
}
None => symbol,
}
};
match closure_layout
.layout_for_member_with_lambda_name(&layout_cache.interner, lambda_name)
{
ClosureRepresentation::Union {
alphabetic_order_fields: field_layouts,
union_layout,
tag_id,
..
} => {
debug_assert!(matches!(
union_layout,
UnionLayout::NonRecursive(_)
| UnionLayout::Recursive(_)
| UnionLayout::NullableUnwrapped { .. }
| UnionLayout::NullableWrapped { .. }
));
debug_assert_eq!(field_layouts.len(), captured.len());
// captured variables are in symbol-alphabetic order, but now we want
// them ordered by their alignment requirements
let mut combined = Vec::from_iter_in(
captured.iter().map(|(x, _)| x).zip(field_layouts.iter()),
env.arena,
);
combined.sort_by(|(_, layout1), (_, layout2)| {
let size1 = layout_cache
.get_repr(**layout1)
.alignment_bytes(&layout_cache.interner);
let size2 = layout_cache
.get_repr(**layout2)
.alignment_bytes(&layout_cache.interner);
size2.cmp(&size1)
});
for (index, (symbol, _)) in combined.iter().enumerate() {
let layout = union_layout.layout_at(
&mut layout_cache.interner,
tag_id,
index,
);
let expr = Expr::UnionAtIndex {
tag_id,
structure: Symbol::ARG_CLOSURE,
index: index as u64,
union_layout,
};
let symbol = get_specialized_name(**symbol);
let fresh_symbol =
env.named_unique_symbol(&format!("{:?}_closure", symbol));
specialized_body = Stmt::Let(
fresh_symbol,
expr,
layout,
env.arena.alloc(specialized_body),
);
// the same symbol may be used where
// - the closure is created
// - the closure is consumed
substitute_in_exprs(
env.arena,
&mut specialized_body,
symbol,
fresh_symbol,
);
}
}
ClosureRepresentation::AlphabeticOrderStruct(field_layouts) => {
// captured variables are in symbol-alphabetic order, but now we want
// them ordered by their alignment requirements
//
// TODO: sort only the fields and apply the found permutation to the symbols
// TODO: can we move this ordering to `layout_for_member`?
let mut combined = Vec::from_iter_in(
captured.iter().map(|(x, _)| x).zip(field_layouts.iter()),
env.arena,
);
combined.sort_by(|(_, layout1), (_, layout2)| {
let size1 = layout_cache
.get_repr(**layout1)
.alignment_bytes(&layout_cache.interner);
let size2 = layout_cache
.get_repr(**layout2)
.alignment_bytes(&layout_cache.interner);
size2.cmp(&size1)
});
let ordered_field_layouts = Vec::from_iter_in(
combined.iter().map(|(_, layout)| **layout),
env.arena,
);
let ordered_field_layouts = ordered_field_layouts.into_bump_slice();
debug_assert_eq!(
captured.len(),
ordered_field_layouts.len(),
"{:?} captures {:?} but has layout {:?}",
lambda_name,
&captured,
&ordered_field_layouts
);
for (index, (symbol, layout)) in combined.iter().enumerate() {
let expr = Expr::StructAtIndex {
index: index as _,
field_layouts: ordered_field_layouts,
structure: Symbol::ARG_CLOSURE,
};
let symbol = get_specialized_name(**symbol);
specialized_body = Stmt::Let(
symbol,
expr,
**layout,
env.arena.alloc(specialized_body),
);
}
}
ClosureRepresentation::UnwrappedCapture(_layout) => {
debug_assert_eq!(captured.len(), 1);
let (captured_symbol, _captured_layout) = captured[0];
// The capture set is unwrapped, so simply replace the closure argument
// to the function with the unwrapped capture name.
let captured_symbol = get_specialized_name(captured_symbol);
let closure_arg = proc_args.last_mut().unwrap();
debug_assert_eq!(closure_arg.1, Symbol::ARG_CLOSURE);
closure_arg.1 = captured_symbol;
}
ClosureRepresentation::EnumDispatch(_) => {
// just ignore this value, since it's not a capture
// IDEA don't pass this value in the future
}
}
}
(Some(ClosureDataKind::Erased), CapturedSymbols::Captured(captured)) => {
specialized_body = erased::unpack_closure_data(
env,
layout_cache,
Symbol::ARG_CLOSURE,
captured,
specialized_body,
);
}
(None, CapturedSymbols::None) | (None, CapturedSymbols::Captured([])) => {}
_ => unreachable!("to closure or not to closure?"),
}
proc_args.iter_mut().for_each(|(layout, symbol)| {
// Grab the specialization symbol, if it exists.
*symbol = procs
.symbol_specializations
.maybe_get_specialized(*symbol, *layout)
});
let closure_data_layout = opt_closure_layout.map(|clos| clos.data_layout());
Proc {
name: lambda_name,
args: proc_args.into_bump_slice(),
body: specialized_body,
closure_data_layout,
ret_layout,
is_self_recursive: recursivity,
is_erased,
}
}
};
Ok(specialized_proc)
}
#[derive(Debug)]
enum SpecializedLayout<'a> {
/// A body like `foo = \a,b,c -> ...`
FunctionBody {
arguments: &'a [(InLayout<'a>, Symbol)],
closure: Option<ClosureDataKind<'a>>,
ret_layout: InLayout<'a>,
is_erased: bool,
},
/// A body like `foo = Num.add`
FunctionPointerBody {
closure: Option<LambdaSet<'a>>,
ret_layout: InLayout<'a>,
is_erased: bool,
},
}
#[allow(clippy::type_complexity)]
fn build_specialized_proc_from_var<'a>(
env: &mut Env<'a, '_>,
layout_cache: &mut LayoutCache<'a>,
lambda_name: LambdaName<'a>,
pattern_symbols: &[Symbol],
fn_var: Variable,
) -> Result<SpecializedLayout<'a>, LayoutProblem> {
match layout_cache.raw_from_var(env.arena, fn_var, env.subs)? {
RawFunctionLayout::Function(pattern_layouts, closure_layout, ret_layout) => {
let mut pattern_layouts_vec = Vec::with_capacity_in(pattern_layouts.len(), env.arena);
pattern_layouts_vec.extend_from_slice(pattern_layouts);
build_specialized_proc(
env.arena,
lambda_name,
pattern_symbols,
pattern_layouts_vec,
Some(ClosureDataKind::LambdaSet(closure_layout)),
ret_layout,
)
}
RawFunctionLayout::ErasedFunction(pattern_layouts, ret_layout) => {
let mut pattern_layouts_vec = Vec::with_capacity_in(pattern_layouts.len(), env.arena);
pattern_layouts_vec.extend_from_slice(pattern_layouts);
build_specialized_proc(
env.arena,
lambda_name,
pattern_symbols,
pattern_layouts_vec,
Some(ClosureDataKind::Erased),
ret_layout,
)
}
RawFunctionLayout::ZeroArgumentThunk(ret_layout) => {
// a top-level constant 0-argument thunk
build_specialized_proc(
env.arena,
lambda_name,
pattern_symbols,
Vec::new_in(env.arena),
None,
ret_layout,
)
}
}
}
#[allow(clippy::type_complexity)]
fn build_specialized_proc<'a>(
arena: &'a Bump,
lambda_name: LambdaName<'a>,
pattern_symbols: &[Symbol],
pattern_layouts: Vec<'a, InLayout<'a>>,
closure_data: Option<ClosureDataKind<'a>>,
ret_layout: InLayout<'a>,
) -> Result<SpecializedLayout<'a>, LayoutProblem> {
use SpecializedLayout::*;
let mut proc_args = Vec::with_capacity_in(pattern_layouts.len(), arena);
let pattern_layouts_len = pattern_layouts.len();
for (arg_layout, arg_name) in pattern_layouts.into_iter().zip(pattern_symbols.iter()) {
proc_args.push((arg_layout, *arg_name));
}
let is_erased = matches!(closure_data, Some(ClosureDataKind::Erased));
// Given
//
// foo =
// x = 42
//
// f = \{} -> x
//
// We desugar that into
//
// f = \{}, x -> x
//
// foo =
// x = 42
//
// f_closure = { ptr: f, closure: x }
//
// then
let proc_name = lambda_name.name();
match closure_data {
Some(closure_data) if pattern_symbols.last() == Some(&Symbol::ARG_CLOSURE) => {
// here we define the lifted (now top-level) f function. Its final argument is `Symbol::ARG_CLOSURE`,
// it stores the closure structure (just an integer in this case)
let closure_data_layout = closure_data.data_layout();
proc_args.push((closure_data_layout, Symbol::ARG_CLOSURE));
debug_assert_eq!(
pattern_layouts_len + 1,
pattern_symbols.len(),
"Tried to zip two vecs with different lengths in {proc_name:?}!",
);
let proc_args = proc_args.into_bump_slice();
Ok(FunctionBody {
arguments: proc_args,
closure: Some(closure_data),
ret_layout,
is_erased,
})
}
Some(closure_data) => {
// a function that returns a function, but is not itself a closure
// e.g. f = Num.add
// make sure there is not arg_closure argument without a closure layout
debug_assert!(pattern_symbols.last() != Some(&Symbol::ARG_CLOSURE));
use std::cmp::Ordering;
match pattern_layouts_len.cmp(&pattern_symbols.len()) {
Ordering::Equal => {
let proc_args = proc_args.into_bump_slice();
Ok(FunctionBody {
arguments: proc_args,
closure: None,
ret_layout,
is_erased,
})
}
Ordering::Greater => {
if pattern_symbols.is_empty() {
let ret_layout = closure_data.data_layout();
Ok(FunctionPointerBody {
closure: None,
ret_layout,
is_erased,
})
} else {
// so far, the problem when hitting this branch was always somewhere else
// I think this branch should not be reachable in a bugfree compiler
panic!(
"more arguments (according to the layout) than argument symbols for {proc_name:?}"
)
}
}
Ordering::Less => panic!(
"more argument symbols than arguments (according to the layout) for {proc_name:?}"
),
}
}
None => {
// else we're making a normal function, no closure problems to worry about
// we'll just assert some things
// make sure there is not arg_closure argument without a closure layout
debug_assert!(pattern_symbols.last() != Some(&Symbol::ARG_CLOSURE));
use std::cmp::Ordering;
match pattern_layouts_len.cmp(&pattern_symbols.len()) {
Ordering::Equal => {
let proc_args = proc_args.into_bump_slice();
Ok(FunctionBody {
arguments: proc_args,
closure: None,
ret_layout,
is_erased,
})
}
Ordering::Greater => {
if pattern_symbols.is_empty() {
Ok(FunctionPointerBody {
closure: None,
ret_layout,
is_erased,
})
} else {
// so far, the problem when hitting this branch was always somewhere else
// I think this branch should not be reachable in a bugfree compiler
panic!(
"more arguments (according to the layout) than argument symbols for {proc_name:?}"
)
}
}
Ordering::Less => panic!(
"more argument symbols than arguments (according to the layout) for {proc_name:?}. Pattern symbols: {:?}\n\nPattern layouts: {:?}", pattern_symbols, pattern_layouts_len,
),
}
}
}
}
#[derive(Debug)]
struct SpecializeFailure<'a> {
/// The layout we attempted to create
attempted_layout: RawFunctionLayout<'a>,
}
type SpecializeSuccess<'a> = (Proc<'a>, RawFunctionLayout<'a>);
fn specialize_variable<'a>(
env: &mut Env<'a, '_>,
procs: &mut Procs<'a>,
proc_name: LambdaName<'a>,
layout_cache: &mut LayoutCache<'a>,
fn_var: Variable,
partial_proc_id: PartialProcId,
) -> Result<SpecializeSuccess<'a>, SpecializeFailure<'a>> {
let snapshot = snapshot_typestate(env.subs, procs, layout_cache);
// for debugging only
// TODO: can we get rid of raw entirely?
let raw = layout_cache
.raw_from_var(env.arena, fn_var, env.subs)
.unwrap_or_else(|err| panic!("TODO handle invalid function {err:?}"));
let raw = if procs.is_module_thunk(proc_name.name()) {
match raw {
RawFunctionLayout::Function(_, lambda_set, _) => {
let lambda_set_layout = lambda_set.full_layout;
RawFunctionLayout::ZeroArgumentThunk(lambda_set_layout)
}
_ => raw,
}
} else {
raw
};
// make sure rigid variables in the annotation are converted to flex variables
let annotation_var = procs.partial_procs.get_id(partial_proc_id).annotation;
instantiate_rigids(env.subs, annotation_var);
procs.push_active_specialization(proc_name.name());
roc_tracing::debug!(?proc_name, ?fn_var, fn_content = ?roc_types::subs::SubsFmtContent(env.subs.get_content_without_compacting(fn_var), env.subs), "specialization start");
let specialized =
specialize_proc_help(env, procs, proc_name, layout_cache, fn_var, partial_proc_id);
roc_tracing::debug!(
?proc_name,
succeeded = specialized.is_ok(),
"specialization end"
);
procs.pop_active_specialization(proc_name.name());
let result = match specialized {
Ok(proc) => {
// when successful, the layout after unification should be the layout before unification
// debug_assert_eq!(
// attempted_layout,
// layout_cache
// .from_var(env.arena, fn_var, env.subs)
// .unwrap_or_else(|err| panic!("TODO handle invalid function {:?}", err))
// );
Ok((proc, raw))
}
Err(error) => {
// earlier we made this information available where we handle the failure
// but we didn't do anything useful with it. So it's here if we ever need it again
let _ = error;
Err(SpecializeFailure {
attempted_layout: raw,
})
}
};
rollback_typestate(env.subs, procs, layout_cache, snapshot);
result
}
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub struct ProcLayout<'a> {
pub arguments: &'a [InLayout<'a>],
pub result: InLayout<'a>,
pub niche: Niche<'a>,
}
impl<'a> ProcLayout<'a> {
pub(crate) fn new(
arena: &'a Bump,
old_arguments: &'a [InLayout<'a>],
old_niche: Niche<'a>,
result: InLayout<'a>,
) -> Self {
let mut arguments = Vec::with_capacity_in(old_arguments.len(), arena);
for old in old_arguments {
let other = old;
arguments.push(*other);
}
let other = result;
let new_result = other;
ProcLayout {
arguments: arguments.into_bump_slice(),
niche: old_niche,
result: new_result,
}
}
fn from_raw_named(
arena: &'a Bump,
lambda_name: LambdaName<'a>,
raw: RawFunctionLayout<'a>,
) -> Self {
match raw {
RawFunctionLayout::Function(arguments, lambda_set, result) => {
let arguments =
lambda_set.extend_argument_list_for_named(arena, lambda_name, arguments);
ProcLayout::new(arena, arguments, lambda_name.niche(), result)
}
RawFunctionLayout::ErasedFunction(arguments, result) => {
let arguments = if lambda_name.no_captures() {
arguments
} else {
let mut extended_args = Vec::with_capacity_in(arguments.len(), arena);
extended_args.extend(arguments.iter().chain(&[Layout::ERASED]).copied());
extended_args.into_bump_slice()
};
ProcLayout::new(arena, arguments, lambda_name.niche(), result)
}
RawFunctionLayout::ZeroArgumentThunk(result) => {
ProcLayout::new(arena, &[], Niche::NONE, result)
}
}
}
pub fn dbg_deep<'r, I: LayoutInterner<'a>>(&self, interner: &'r I) -> DbgProcLayout<'a, 'r, I> {
DbgProcLayout {
layout: *self,
interner,
}
}
}
pub struct DbgProcLayout<'a, 'r, I: LayoutInterner<'a>> {
layout: ProcLayout<'a>,
interner: &'r I,
}
impl<'a, 'r, I: LayoutInterner<'a>> std::fmt::Debug for DbgProcLayout<'a, 'r, I> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let ProcLayout {
arguments,
result,
niche,
} = self.layout;
f.debug_struct("ProcLayout")
.field("arguments", &self.interner.dbg_deep_iter(arguments))
.field("result", &self.interner.dbg_deep(result))
.field("niche", &niche.dbg_deep(self.interner))
.finish()
}
}
fn specialize_naked_symbol<'a>(
env: &mut Env<'a, '_>,
variable: Variable,
procs: &mut Procs<'a>,
layout_cache: &mut LayoutCache<'a>,
assigned: Symbol,
hole: &'a Stmt<'a>,
symbol: Symbol,
) -> Stmt<'a> {
if procs.is_module_thunk(symbol) {
let fn_var = variable;
// This is a top-level declaration, which will code gen to a 0-arity thunk.
let result = call_by_name(
env,
procs,
fn_var,
symbol,
std::vec::Vec::new(),
layout_cache,
assigned,
hole,
);
return result;
} else if env.is_imported_symbol(symbol) {
match layout_cache.from_var(env.arena, variable, env.subs) {
Err(e) => panic!("invalid layout {e:?}"),
Ok(_) => {
// this is a 0-arity thunk
let result = call_by_name(
env,
procs,
variable,
symbol,
std::vec::Vec::new(),
layout_cache,
assigned,
hole,
);
return result;
}
}
}
// if the symbol is a function symbol, ensure it is properly specialized!
let original = symbol;
let opt_fn_var = Some(variable);
// if this is a function symbol, ensure that it's properly specialized!
specialize_symbol(
env,
procs,
layout_cache,
opt_fn_var,
assigned,
hole,
original,
)
}
fn try_make_literal<'a>(
interner: &TLLayoutInterner<'a>,
can_expr: &roc_can::expr::Expr,
layout: InLayout<'a>,
) -> Option<Literal<'a>> {
use roc_can::expr::Expr::*;
match can_expr {
Int(_, _, int_str, int, _bound) => Some(
make_num_literal(interner, layout, int_str, IntOrFloatValue::Int(*int))
.to_expr_literal(),
),
Float(_, _, float_str, float, _bound) => Some(
make_num_literal(interner, layout, float_str, IntOrFloatValue::Float(*float))
.to_expr_literal(),
),
// TODO investigate lifetime trouble
// Str(string) => Some(Literal::Str(env.arena.alloc(string))),
Num(_, num_str, num, _bound) => Some(
make_num_literal(interner, layout, num_str, IntOrFloatValue::Int(*num))
.to_expr_literal(),
),
_ => None,
}
}
pub fn with_hole<'a>(
env: &mut Env<'a, '_>,
can_expr: roc_can::expr::Expr,
variable: Variable,
procs: &mut Procs<'a>,
layout_cache: &mut LayoutCache<'a>,
assigned: Symbol,
hole: &'a Stmt<'a>,
) -> Stmt<'a> {
use roc_can::expr::Expr::*;
let arena = env.arena;
match can_expr {
Int(_, _, int_str, int, _bound) => {
match assign_num_literal_expr(
env,
layout_cache,
assigned,
variable,
&int_str,
IntOrFloatValue::Int(int),
hole,
) {
Ok(stmt) => stmt,
Err(_) => hole.clone(),
}
}
Float(_, _, float_str, float, _bound) => {
match assign_num_literal_expr(
env,
layout_cache,
assigned,
variable,
&float_str,
IntOrFloatValue::Float(float),
hole,
) {
Ok(stmt) => stmt,
Err(_) => hole.clone(),
}
}
Num(_, num_str, num, _bound) => {
match assign_num_literal_expr(
env,
layout_cache,
assigned,
variable,
&num_str,
IntOrFloatValue::Int(num),
hole,
) {
Ok(stmt) => stmt,
Err(_) => hole.clone(),
}
}
Str(string) => Stmt::Let(
assigned,
Expr::Literal(Literal::Str(arena.alloc(string))),
Layout::STR,
hole,
),
IngestedFile(_, bytes, var) => {
let interned = layout_cache.from_var(env.arena, var, env.subs).unwrap();
let layout = layout_cache.get_repr(interned);
match layout {
LayoutRepr::Builtin(Builtin::List(elem_layout)) if elem_layout == Layout::U8 => {
let mut elements = Vec::with_capacity_in(bytes.len(), env.arena);
for byte in bytes.iter() {
elements.push(ListLiteralElement::Literal(Literal::Byte(*byte)));
}
let expr = Expr::Array {
elem_layout,
elems: elements.into_bump_slice(),
};
Stmt::Let(assigned, expr, interned, hole)
}
LayoutRepr::Builtin(Builtin::Str) => Stmt::Let(
assigned,
Expr::Literal(Literal::Str(
// This is safe because we ensure the utf8 bytes are valid earlier in the compiler pipeline.
arena.alloc(
unsafe { std::str::from_utf8_unchecked(bytes.as_ref()) }.to_owned(),
),
)),
Layout::STR,
hole,
),
_ => {
// This will not manifest as a real runtime error and is just returned to have a value here.
// The actual type error during solve will be fatal.
runtime_error(env, "Invalid type for ingested file")
}
}
}
SingleQuote(_, _, character, _) => {
let layout = layout_cache
.from_var(env.arena, variable, env.subs)
.unwrap();
Stmt::Let(
assigned,
Expr::Literal(Literal::Int((character as i128).to_ne_bytes())),
layout,
hole,
)
}
LetNonRec(def, cont) => from_can_let(
env,
procs,
layout_cache,
def,
cont,
variable,
Some((assigned, hole)),
),
LetRec(defs, cont, _cycle_mark) => {
// because Roc is strict, only functions can be recursive!
for def in defs.into_iter() {
if let roc_can::pattern::Pattern::Identifier(symbol) = &def.loc_pattern.value {
if let Closure(closure_data) = def.loc_expr.value {
register_noncapturing_closure(env, procs, *symbol, closure_data);
continue;
}
}
unreachable!("recursive value does not have Identifier pattern")
}
with_hole(
env,
cont.value,
variable,
procs,
layout_cache,
assigned,
hole,
)
}
Var(mut symbol, _) => {
// If this symbol is a raw value, find the real name we gave to its specialized usage.
if let ReuseSymbol::Value(_symbol) = can_reuse_symbol(
env,
layout_cache,
procs,
&roc_can::expr::Expr::Var(symbol, variable),
variable,
) {
let real_symbol =
procs.get_or_insert_symbol_specialization(env, layout_cache, symbol, variable);
symbol = real_symbol;
}
specialize_naked_symbol(env, variable, procs, layout_cache, assigned, hole, symbol)
}
AbilityMember(member, specialization_id, specialization_var) => {
let specialization_symbol = late_resolve_ability_specialization(
env,
member,
specialization_id,
specialization_var,
);
specialize_naked_symbol(
env,
variable,
procs,
layout_cache,
assigned,
hole,
specialization_symbol,
)
}
Tag {
tag_union_var: variant_var,
name: tag_name,
arguments: args,
..
} => {
let arena = env.arena;
debug_assert!(!matches!(
env.subs.get_content_without_compacting(variant_var),
Content::Structure(FlatType::Func(_, _, _))
));
convert_tag_union(
env,
variant_var,
assigned,
hole,
tag_name,
procs,
layout_cache,
args,
arena,
)
}
ZeroArgumentTag {
variant_var: _,
name: tag_name,
ext_var,
closure_name,
} => {
let arena = env.arena;
let content = env.subs.get_content_without_compacting(variable);
if let Content::Structure(FlatType::Func(arg_vars, _, ret_var)) = content {
let ret_var = *ret_var;
let arg_vars = *arg_vars;
tag_union_to_function(
env,
arg_vars,
ret_var,
tag_name,
closure_name,
ext_var,
procs,
variable,
layout_cache,
assigned,
hole,
)
} else {
convert_tag_union(
env,
variable,
assigned,
hole,
tag_name,
procs,
layout_cache,
std::vec::Vec::new(),
arena,
)
}
}
OpaqueRef { argument, .. } => {
let (arg_var, loc_arg_expr) = *argument;
match can_reuse_symbol(env, layout_cache, procs, &loc_arg_expr.value, arg_var) {
// Opaques decay to their argument.
ReuseSymbol::Value(symbol) => {
let real_name = procs.get_or_insert_symbol_specialization(
env,
layout_cache,
symbol,
arg_var,
);
let mut result = hole.clone();
substitute_in_exprs(arena, &mut result, assigned, real_name);
result
}
_ => with_hole(
env,
loc_arg_expr.value,
arg_var,
procs,
layout_cache,
assigned,
hole,
),
}
}
Tuple {
tuple_var, elems, ..
} => {
let sorted_elems_result = {
let mut layout_env =
layout::Env::from_components(layout_cache, env.subs, env.arena);
layout::sort_tuple_elems(&mut layout_env, tuple_var)
};
let sorted_elems = match sorted_elems_result {
Ok(elems) => elems,
Err(_) => return runtime_error(env, "Can't create tuple with improper layout"),
};
// Hacky way to let us remove the owned elements from the vector, possibly out-of-order.
let mut elems = Vec::from_iter_in(elems.into_iter().map(Some), env.arena);
let take_elem_expr = move |index: usize| elems[index].take();
compile_struct_like(
env,
procs,
layout_cache,
sorted_elems,
take_elem_expr,
tuple_var,
hole,
assigned,
)
}
Record {
record_var,
mut fields,
..
} => {
let sorted_fields_result = {
let mut layout_env =
layout::Env::from_components(layout_cache, env.subs, env.arena);
layout::sort_record_fields(&mut layout_env, record_var)
};
let sorted_fields = match sorted_fields_result {
Ok(fields) => fields,
Err(_) => return runtime_error(env, "Can't create record with improper layout"),
};
let take_field_expr =
move |field: Lowercase| fields.remove(&field).map(|f| (f.var, f.loc_expr));
compile_struct_like(
env,
procs,
layout_cache,
sorted_fields,
take_field_expr,
record_var,
hole,
assigned,
)
}
EmptyRecord => let_empty_struct(assigned, hole),
Expect { .. } => unreachable!("I think this is unreachable"),
ExpectFx { .. } => unreachable!("I think this is unreachable"),
Dbg {
source_location,
source,
loc_message,
loc_continuation,
variable: cond_variable,
symbol: dbg_symbol,
} => {
let rest = with_hole(
env,
loc_continuation.value,
variable,
procs,
layout_cache,
assigned,
hole,
);
compile_dbg(
env,
procs,
layout_cache,
&*arena.alloc(source_location),
&*arena.alloc(source),
dbg_symbol,
*loc_message,
cond_variable,
rest,
)
}
If {
cond_var,
branch_var,
branches,
final_else,
} => {
match (
layout_cache.from_var(env.arena, branch_var, env.subs),
layout_cache.from_var(env.arena, cond_var, env.subs),
) {
(Ok(ret_layout), Ok(cond_layout)) => {
// if the hole is a return, then we don't need to merge the two
// branches together again, we can just immediately return
let is_terminated = matches!(hole, Stmt::Ret(_));
if is_terminated {
let terminator = hole;
let mut stmt = with_hole(
env,
final_else.value,
branch_var,
procs,
layout_cache,
assigned,
terminator,
);
for (loc_cond, loc_then) in branches.into_iter().rev() {
let branching_symbol = env.unique_symbol();
let then = with_hole(
env,
loc_then.value,
branch_var,
procs,
layout_cache,
assigned,
terminator,
);
stmt = cond(env, branching_symbol, cond_layout, then, stmt, ret_layout);
// add condition
stmt = with_hole(
env,
loc_cond.value,
cond_var,
procs,
layout_cache,
branching_symbol,
env.arena.alloc(stmt),
);
}
stmt
} else {
let assigned_in_jump = env.unique_symbol();
let id = JoinPointId(env.unique_symbol());
let terminator = env
.arena
.alloc(Stmt::Jump(id, env.arena.alloc([assigned_in_jump])));
let mut stmt = with_hole(
env,
final_else.value,
branch_var,
procs,
layout_cache,
assigned_in_jump,
terminator,
);
for (loc_cond, loc_then) in branches.into_iter().rev() {
let branching_symbol = possible_reuse_symbol_or_specialize(
env,
procs,
layout_cache,
&loc_cond.value,
cond_var,
);
let then = with_hole(
env,
loc_then.value,
branch_var,
procs,
layout_cache,
assigned_in_jump,
terminator,
);
stmt = cond(env, branching_symbol, cond_layout, then, stmt, ret_layout);
// add condition
stmt = assign_to_symbol(
env,
procs,
layout_cache,
cond_var,
loc_cond,
branching_symbol,
stmt,
);
}
let layout = layout_cache
.from_var(env.arena, branch_var, env.subs)
.unwrap_or_else(|err| {
panic!("TODO turn fn_var into a RuntimeError {err:?}")
});
let param = Param {
symbol: assigned,
layout,
};
Stmt::Join {
id,
parameters: env.arena.alloc([param]),
remainder: env.arena.alloc(stmt),
body: hole,
}
}
}
(Err(_), _) => runtime_error(env, "invalid ret_layout"),
(_, Err(_)) => runtime_error(env, "invalid cond_layout"),
}
}
When {
cond_var,
expr_var,
region: _,
loc_cond,
branches,
branches_cond_var: _,
exhaustive,
} => {
let cond_symbol = possible_reuse_symbol_or_specialize(
env,
procs,
layout_cache,
&loc_cond.value,
cond_var,
);
let id = JoinPointId(env.unique_symbol());
let mut stmt = from_can_when(
env,
cond_var,
expr_var,
cond_symbol,
branches,
exhaustive,
layout_cache,
procs,
Some(id),
);
// define the `when` condition
stmt = assign_to_symbol(
env,
procs,
layout_cache,
cond_var,
*loc_cond,
cond_symbol,
stmt,
);
let layout = layout_cache
.from_var(env.arena, expr_var, env.subs)
.unwrap_or_else(|err| panic!("TODO turn fn_var into a RuntimeError {err:?}"));
let param = Param {
symbol: assigned,
layout,
};
Stmt::Join {
id,
parameters: env.arena.alloc([param]),
remainder: env.arena.alloc(stmt),
body: env.arena.alloc(hole),
}
}
List {
loc_elems,
elem_var,
..
} if loc_elems.is_empty() => {
// because an empty list has an unknown element type, it is handled differently
let opt_elem_layout = layout_cache.from_var(env.arena, elem_var, env.subs);
match opt_elem_layout {
Ok(elem_layout) => {
let expr = Expr::EmptyArray;
let list_layout = layout_cache
.put_in_direct_no_semantic(LayoutRepr::Builtin(Builtin::List(elem_layout)));
Stmt::Let(assigned, expr, list_layout, hole)
}
Err(LayoutProblem::UnresolvedTypeVar(_)) => {
let expr = Expr::EmptyArray;
let list_layout = layout_cache.put_in_direct_no_semantic(LayoutRepr::Builtin(
Builtin::List(Layout::VOID),
));
Stmt::Let(assigned, expr, list_layout, hole)
}
Err(LayoutProblem::Erroneous) => panic!("list element is error type"),
}
}
List {
elem_var,
loc_elems,
} => {
let mut arg_symbols = Vec::with_capacity_in(loc_elems.len(), env.arena);
let mut elements = Vec::with_capacity_in(loc_elems.len(), env.arena);
let mut symbol_exprs = Vec::with_capacity_in(loc_elems.len(), env.arena);
let elem_layout = match layout_cache.from_var(env.arena, elem_var, env.subs) {
Ok(elem_layout) => elem_layout,
Err(_) => return runtime_error(env, "invalid list element type"),
};
for arg_expr in loc_elems.into_iter() {
if let Some(literal) =
try_make_literal(&layout_cache.interner, &arg_expr.value, elem_layout)
{
elements.push(ListLiteralElement::Literal(literal));
} else {
let symbol = possible_reuse_symbol_or_specialize(
env,
procs,
layout_cache,
&arg_expr.value,
elem_var,
);
elements.push(ListLiteralElement::Symbol(symbol));
arg_symbols.push(symbol);
symbol_exprs.push(arg_expr);
}
}
let arg_symbols = arg_symbols.into_bump_slice();
let expr = Expr::Array {
elem_layout,
elems: elements.into_bump_slice(),
};
let list_layout = layout_cache
.put_in_direct_no_semantic(LayoutRepr::Builtin(Builtin::List(elem_layout)));
let stmt = Stmt::Let(assigned, expr, list_layout, hole);
let iter = symbol_exprs
.into_iter()
.rev()
.map(|e| (elem_var, e))
.zip(arg_symbols.iter().rev());
assign_to_symbols(env, procs, layout_cache, iter, stmt)
}
RecordAccess {
record_var,
field_var,
field,
loc_expr,
..
} => {
let sorted_fields_result = {
let mut layout_env =
layout::Env::from_components(layout_cache, env.subs, env.arena);
layout::sort_record_fields(&mut layout_env, record_var)
};
let sorted_fields = match sorted_fields_result {
Ok(fields) => fields,
Err(_) => return runtime_error(env, "Can't access record with improper layout"),
};
let mut index = None;
let mut field_layouts = Vec::with_capacity_in(sorted_fields.len(), env.arena);
let mut current = 0;
for (label, _, opt_field_layout) in sorted_fields.into_iter() {
match opt_field_layout {
Err(_) => {
// this was an optional field, and now does not exist!
// do not increment `current`!
}
Ok(field_layout) => {
field_layouts.push(field_layout);
if label == field {
index = Some(current);
}
current += 1;
}
}
}
compile_struct_like_access(
env,
procs,
layout_cache,
field_layouts,
index.expect("field not in its own type") as _,
*loc_expr,
record_var,
hole,
assigned,
field_var,
)
}
RecordAccessor(accessor_data) => {
let field_var = accessor_data.field_var;
let fresh_record_symbol = env.unique_symbol();
let ClosureData {
name,
function_type,
arguments,
loc_body,
..
} = accessor_data.to_closure_data(fresh_record_symbol);
match procs.insert_anonymous(
env,
LambdaName::no_niche(name),
function_type,
arguments,
*loc_body,
CapturedSymbols::None,
field_var,
layout_cache,
) {
Ok(_) => {
let raw_layout = return_on_layout_error!(
env,
layout_cache.raw_from_var(env.arena, function_type, env.subs),
"Expr::Accessor"
);
match raw_layout {
RawFunctionLayout::Function(_, lambda_set, _) => {
let lambda_name =
find_lambda_name(env, layout_cache, lambda_set, name, &[]);
construct_closure_data(
env,
procs,
layout_cache,
lambda_set,
lambda_name,
&[],
assigned,
hole,
)
}
RawFunctionLayout::ErasedFunction(_, _) => todo_lambda_erasure!(),
RawFunctionLayout::ZeroArgumentThunk(_) => unreachable!(),
}
}
Err(_error) => runtime_error(
env,
"TODO convert anonymous function error to a RuntimeError string",
),
}
}
TupleAccess {
tuple_var,
elem_var,
index: accessed_index,
loc_expr,
..
} => {
let sorted_elems_result = {
let mut layout_env =
layout::Env::from_components(layout_cache, env.subs, env.arena);
layout::sort_tuple_elems(&mut layout_env, tuple_var)
};
let sorted_elems = match sorted_elems_result {
Ok(fields) => fields,
Err(_) => return runtime_error(env, "Can't access tuple with improper layout"),
};
let mut field_layouts = Vec::with_capacity_in(sorted_elems.len(), env.arena);
let mut final_index = None;
for (current, (index, _, elem_layout)) in sorted_elems.into_iter().enumerate() {
field_layouts.push(elem_layout);
if index == accessed_index {
final_index = Some(current);
}
}
compile_struct_like_access(
env,
procs,
layout_cache,
field_layouts,
final_index.expect("elem not in its own type") as u64,
*loc_expr,
tuple_var,
hole,
assigned,
elem_var,
)
}
OpaqueWrapFunction(wrap_fn_data) => {
let opaque_var = wrap_fn_data.opaque_var;
let arg_symbol = env.unique_symbol();
let ClosureData {
name,
function_type,
arguments,
loc_body,
..
} = wrap_fn_data.to_closure_data(arg_symbol);
match procs.insert_anonymous(
env,
LambdaName::no_niche(name),
function_type,
arguments,
*loc_body,
CapturedSymbols::None,
opaque_var,
layout_cache,
) {
Ok(_) => {
let raw_layout = return_on_layout_error!(
env,
layout_cache.raw_from_var(env.arena, function_type, env.subs),
"Expr::OpaqueWrapFunction"
);
match raw_layout {
RawFunctionLayout::Function(_, lambda_set, _) => {
let lambda_name =
find_lambda_name(env, layout_cache, lambda_set, name, &[]);
construct_closure_data(
env,
procs,
layout_cache,
lambda_set,
lambda_name,
&[],
assigned,
hole,
)
}
RawFunctionLayout::ErasedFunction(..) => todo_lambda_erasure!(),
RawFunctionLayout::ZeroArgumentThunk(_) => {
internal_error!("should not be a thunk!")
}
}
}
Err(_error) => runtime_error(
env,
"TODO convert anonymous function error to a RuntimeError string",
),
}
}
RecordUpdate {
record_var,
symbol: structure,
ref updates,
..
} => {
use FieldType::*;
enum FieldType<'a> {
CopyExisting,
UpdateExisting(&'a roc_can::expr::Field),
}
// Strategy: turn a record update into the creation of a new record.
// This has the benefit that we don't need to do anything special for reference
// counting
let sorted_fields_result = {
let mut layout_env =
layout::Env::from_components(layout_cache, env.subs, env.arena);
layout::sort_record_fields(&mut layout_env, record_var)
};
let sorted_fields = match sorted_fields_result {
Ok(fields) => fields,
Err(_) => return runtime_error(env, "Can't update record with improper layout"),
};
let sorted_fields_filtered =
sorted_fields
.iter()
.filter_map(|(label, _, opt_field_layout)| {
match opt_field_layout {
Ok(_) => Some(label),
Err(_) => {
debug_assert!(!updates.contains_key(label));
// this was an optional field, and now does not exist!
None
}
}
});
let sorted_fields = Vec::from_iter_in(sorted_fields_filtered, env.arena);
let single_field_struct = sorted_fields.len() == 1;
// The struct indexing generated by the current context
let mut current_struct_indexing = Vec::with_capacity_in(sorted_fields.len(), env.arena);
// The symbols that are used to create the new struct
let mut new_struct_symbols = Vec::with_capacity_in(sorted_fields.len(), env.arena);
// Information about the fields that are being updated
let mut fields = Vec::with_capacity_in(sorted_fields.len(), env.arena);
// Create a symbol for each of the fields as they might be referenced later.
// The struct with a single field is optimized in such a way that replacing later indexing will cause an incorrect IR.
// Thus, only insert these struct_indices if there is more than one field in the struct.
if !single_field_struct {
for index in 0..sorted_fields.len() {
let record_index = (structure, index as u64);
current_struct_indexing.push(record_index);
let original_struct_symbol = env.unique_symbol();
env.struct_indexing
.insert(record_index, original_struct_symbol);
}
}
for (index, label) in sorted_fields.iter().enumerate() {
let record_index = (structure, index as u64);
if let Some(field) = updates.get(label) {
let new_struct_symbol = possible_reuse_symbol_or_specialize(
env,
procs,
layout_cache,
&field.loc_expr.value,
field.var,
);
new_struct_symbols.push(new_struct_symbol);
fields.push(UpdateExisting(field));
} else {
new_struct_symbols.push(*env.struct_indexing.get(record_index).unwrap());
fields.push(CopyExisting);
}
}
let new_struct_symbols = new_struct_symbols.into_bump_slice();
let record_layout = layout_cache
.from_var(env.arena, record_var, env.subs)
.unwrap_or_else(|err| panic!("TODO turn fn_var into a RuntimeError {err:?}"));
let field_layouts = match layout_cache.get_repr(record_layout) {
LayoutRepr::Struct(field_layouts) => field_layouts,
_ => arena.alloc([record_layout]),
};
if single_field_struct {
// TODO we can probably special-case this more, skipping the generation of
// UpdateExisting
let mut stmt = hole.clone();
let what_to_do = &fields[0];
match what_to_do {
UpdateExisting(field) => {
substitute_in_exprs(env.arena, &mut stmt, assigned, new_struct_symbols[0]);
stmt = assign_to_symbol(
env,
procs,
layout_cache,
field.var,
*field.loc_expr.clone(),
new_struct_symbols[0],
stmt,
);
}
CopyExisting => {
unreachable!(
r"when a record has just one field and is updated, it must update that one field"
);
}
}
stmt
} else {
let expr = Expr::Struct(new_struct_symbols);
let mut stmt = Stmt::Let(assigned, expr, record_layout, hole);
for (new_struct_symbol, what_to_do) in new_struct_symbols.iter().zip(fields) {
match what_to_do {
UpdateExisting(field) => {
stmt = assign_to_symbol(
env,
procs,
layout_cache,
field.var,
*field.loc_expr.clone(),
*new_struct_symbol,
stmt,
);
}
CopyExisting => {
// When a field is copied, the indexing symbol is already placed in new_struct_symbols
// Thus, we don't need additional logic here.
}
}
}
let structure_needs_specialization =
procs.ability_member_aliases.get(structure).is_some()
|| procs.is_module_thunk(structure)
|| procs.is_imported_module_thunk(structure);
let specialized_structure_sym = if structure_needs_specialization {
// We need to specialize the record now; create a new one for it.
env.unique_symbol()
} else {
// The record is already good.
structure
};
for record_index in current_struct_indexing.into_iter().rev() {
if let Some(symbol) = env.struct_indexing.get_used(&record_index) {
let layout = field_layouts[record_index.1 as usize];
let access_expr = Expr::StructAtIndex {
structure: specialized_structure_sym,
index: record_index.1,
field_layouts,
};
stmt = Stmt::Let(symbol, access_expr, layout, arena.alloc(stmt));
};
}
if structure_needs_specialization {
stmt = specialize_symbol(
env,
procs,
layout_cache,
Some(record_var),
specialized_structure_sym,
env.arena.alloc(stmt),
structure,
);
}
stmt
}
}
Closure(ClosureData {
function_type,
return_type,
name,
arguments,
captured_symbols,
loc_body: boxed_body,
..
}) => {
let loc_body = *boxed_body;
let raw = layout_cache.raw_from_var(env.arena, function_type, env.subs);
match return_on_layout_error!(env, raw, "Expr::Closure") {
RawFunctionLayout::ZeroArgumentThunk(_) => {
unreachable!("a closure syntactically always must have at least one argument")
}
RawFunctionLayout::ErasedFunction(argument_layouts, ret_layout) => {
let captured_symbols = if captured_symbols.is_empty() {
CapturedSymbols::None
} else {
let captured_symbols = Vec::from_iter_in(captured_symbols, env.arena);
let captured_symbols = captured_symbols.into_bump_slice();
CapturedSymbols::Captured(captured_symbols)
};
let resolved_erased_lambda = ResolvedErasedLambda::new(
env,
layout_cache,
name,
captured_symbols,
argument_layouts,
ret_layout,
);
let inserted = procs.insert_anonymous(
env,
resolved_erased_lambda.lambda_name(),
function_type,
arguments,
loc_body,
captured_symbols,
return_type,
layout_cache,
);
if let Err(e) = inserted {
return runtime_error(env, env.arena.alloc(format!("RuntimeError: {e:?}")));
}
drop(inserted);
build_erased_function(env, layout_cache, resolved_erased_lambda, assigned, hole)
}
RawFunctionLayout::Function(_argument_layouts, lambda_set, _ret_layout) => {
let mut captured_symbols = Vec::from_iter_in(captured_symbols, env.arena);
captured_symbols.sort();
let captured_symbols = captured_symbols.into_bump_slice();
let symbols =
Vec::from_iter_in(captured_symbols.iter(), env.arena).into_bump_slice();
let lambda_name = find_lambda_name(
env,
layout_cache,
lambda_set,
name,
symbols.iter().copied(),
);
let inserted = procs.insert_anonymous(
env,
lambda_name,
function_type,
arguments,
loc_body,
CapturedSymbols::Captured(captured_symbols),
return_type,
layout_cache,
);
if let Err(e) = inserted {
return runtime_error(
env,
env.arena.alloc(format!("RuntimeError: {e:?}",)),
);
}
drop(inserted);
// define the closure data
construct_closure_data(
env,
procs,
layout_cache,
lambda_set,
lambda_name,
symbols.iter().copied(),
assigned,
hole,
)
}
}
}
Call(boxed, loc_args, _) => {
let (fn_var, loc_expr, _lambda_set_var, _ret_var) = *boxed;
// even if a call looks like it's by name, it may in fact be by-pointer.
// E.g. in `(\f, x -> f x)` the call is in fact by pointer.
// So we check the function name against the list of partial procedures,
// the procedures that we have lifted to the top-level and can call by name
// if it's in there, it's a call by name, otherwise it's a call by pointer
let is_known = |key| {
// a proc in this module, or an imported symbol
procs.partial_procs.contains_key(key)
|| (env.is_imported_symbol(key) && !procs.is_imported_module_thunk(key))
};
match loc_expr.value {
roc_can::expr::Expr::Var(proc_name, _) if is_known(proc_name) => {
// a call by a known name
call_by_name(
env,
procs,
fn_var,
proc_name,
loc_args,
layout_cache,
assigned,
hole,
)
}
roc_can::expr::Expr::AbilityMember(member, specialization_id, _) => {
let specialization_proc_name =
late_resolve_ability_specialization(env, member, specialization_id, fn_var);
call_by_name(
env,
procs,
fn_var,
specialization_proc_name,
loc_args,
layout_cache,
assigned,
hole,
)
}
_ => {
// Call by pointer - the closure was anonymous, e.g.
//
// ((\a -> a) 5)
//
// It might even be the anonymous result of a conditional:
//
// ((if x > 0 then \a -> a else \_ -> 0) 5)
//
// It could be named too:
//
// ((if x > 0 then foo else bar) 5)
//
// also this occurs for functions passed in as arguments, e.g.
//
// (\f, x -> f x)
let arg_symbols = Vec::from_iter_in(
loc_args.iter().map(|(var, arg_expr)| {
possible_reuse_symbol_or_specialize(
env,
procs,
layout_cache,
&arg_expr.value,
*var,
)
}),
arena,
)
.into_bump_slice();
let full_layout = return_on_layout_error!(
env,
layout_cache.raw_from_var(env.arena, fn_var, env.subs),
"Expr::Call"
);
// if the function expression (loc_expr) is already a symbol,
// re-use that symbol, and don't define its value again
let mut result;
use ReuseSymbol::*;
match can_reuse_symbol(env, layout_cache, procs, &loc_expr.value, fn_var) {
LocalFunction(_) => {
unreachable!("if this was known to be a function, we would not be here")
}
Imported(thunk_name) => {
debug_assert!(procs.is_imported_module_thunk(thunk_name));
add_needed_external(
procs,
env,
fn_var,
LambdaName::no_niche(thunk_name),
);
let function_symbol = env.unique_symbol();
match full_layout {
RawFunctionLayout::Function(
arg_layouts,
lambda_set,
ret_layout,
) => {
let closure_data_symbol = function_symbol;
result = match_on_lambda_set(
env,
layout_cache,
procs,
lambda_set,
closure_data_symbol,
arg_symbols,
arg_layouts,
ret_layout,
assigned,
hole,
);
let lambda_set_layout = lambda_set.full_layout;
result = force_thunk(
env,
thunk_name,
lambda_set_layout,
function_symbol,
env.arena.alloc(result),
);
}
RawFunctionLayout::ErasedFunction(..) => todo_lambda_erasure!(),
RawFunctionLayout::ZeroArgumentThunk(_) => {
unreachable!("calling a non-closure layout")
}
}
}
Value(function_symbol) => {
let function_symbol = procs.get_or_insert_symbol_specialization(
env,
layout_cache,
function_symbol,
fn_var,
);
match full_layout {
RawFunctionLayout::Function(
arg_layouts,
lambda_set,
ret_layout,
) => {
let closure_data_symbol = function_symbol;
result = match_on_lambda_set(
env,
layout_cache,
procs,
lambda_set,
closure_data_symbol,
arg_symbols,
arg_layouts,
ret_layout,
assigned,
hole,
);
}
RawFunctionLayout::ErasedFunction(..) => todo_lambda_erasure!(),
RawFunctionLayout::ZeroArgumentThunk(_) => {
unreachable!("calling a non-closure layout")
}
}
}
UnspecializedExpr(symbol) => {
match procs.ability_member_aliases.get(symbol).unwrap() {
&self::AbilityMember(member) => {
let resolved_proc = resolve_ability_specialization(env.home, env.subs, &env.abilities, member, fn_var)
.expect("Recorded as an ability member, but it doesn't have a specialization");
let resolved_proc = match resolved_proc {
Resolved::Specialization(symbol) => symbol,
Resolved::Derive(_) => {
todo_abilities!("Generate impls for structural types")
}
};
// a call by a known name
return call_by_name(
env,
procs,
fn_var,
resolved_proc,
loc_args,
layout_cache,
assigned,
hole,
);
}
}
}
NotASymbol => {
// the expression is not a symbol. That means it's an expression
// evaluating to a function value.
match full_layout {
RawFunctionLayout::Function(
arg_layouts,
lambda_set,
ret_layout,
) => {
let closure_data_symbol = env.unique_symbol();
result = match_on_lambda_set(
env,
layout_cache,
procs,
lambda_set,
closure_data_symbol,
arg_symbols,
arg_layouts,
ret_layout,
assigned,
hole,
);
result = with_hole(
env,
loc_expr.value,
fn_var,
procs,
layout_cache,
closure_data_symbol,
env.arena.alloc(result),
);
}
RawFunctionLayout::ErasedFunction(arg_layouts, ret_layout) => {
let hole_layout =
layout_cache.from_var(env.arena, fn_var, env.subs).unwrap();
result = erased::call_erased_function(
env,
layout_cache,
procs,
loc_expr.value,
fn_var,
(arg_layouts, ret_layout),
arg_symbols,
assigned,
hole,
hole_layout,
);
}
RawFunctionLayout::ZeroArgumentThunk(_) => {
unreachable!(
"{:?} cannot be called in the source language",
full_layout
)
}
}
}
}
let iter = loc_args.into_iter().rev().zip(arg_symbols.iter().rev());
assign_to_symbols(env, procs, layout_cache, iter, result)
}
}
}
ForeignCall {
foreign_symbol,
args,
ret_var,
} => {
let mut arg_symbols = Vec::with_capacity_in(args.len(), env.arena);
for (var, arg_expr) in args.iter() {
arg_symbols.push(possible_reuse_symbol_or_specialize(
env,
procs,
layout_cache,
arg_expr,
*var,
));
}
let arg_symbols = arg_symbols.into_bump_slice();
// layout of the return type
let layout = return_on_layout_error!(
env,
layout_cache.from_var(env.arena, ret_var, env.subs),
"ForeignCall"
);
let call = self::Call {
call_type: CallType::Foreign {
foreign_symbol,
ret_layout: layout,
},
arguments: arg_symbols,
};
let result = build_call(env, call, assigned, layout, hole);
let iter = args
.into_iter()
.rev()
.map(|(a, b)| (a, Loc::at_zero(b)))
.zip(arg_symbols.iter().rev());
assign_to_symbols(env, procs, layout_cache, iter, result)
}
RunLowLevel { op, args, ret_var } => {
let mut arg_symbols = Vec::with_capacity_in(args.len(), env.arena);
for (var, arg_expr) in args.iter() {
arg_symbols.push(possible_reuse_symbol_or_specialize(
env,
procs,
layout_cache,
arg_expr,
*var,
));
}
let arg_symbols = arg_symbols.into_bump_slice();
// layout of the return type
let layout = return_on_layout_error!(
env,
layout_cache.from_var(env.arena, ret_var, env.subs),
"RunLowLevel"
);
macro_rules! match_on_closure_argument {
( $ho:ident, [$($x:ident),* $(,)?]) => {{
let closure_index = op.function_argument_position();
let closure_data_symbol = arg_symbols[closure_index];
let closure_data_var = args[closure_index].0;
let closure_data_layout = return_on_layout_error!(
env,
layout_cache.raw_from_var(env.arena, closure_data_var, env.subs),
"match_on_closure_argument"
);
let arena = env.arena;
match closure_data_layout {
RawFunctionLayout::Function(_, lambda_set, _) => {
lowlevel_match_on_lambda_set(
env,
layout_cache,
lambda_set,
op,
closure_data_symbol,
|(lambda_name, closure_data, closure_env_layout, specialization_id, update_mode)| {
// Build a call for a specific lambda in the set
let top_level = ProcLayout::from_raw_named(env.arena, lambda_name, closure_data_layout);
let arg_layouts = top_level.arguments;
let ret_layout = top_level.result;
let passed_function = PassedFunction {
name: lambda_name,
captured_environment: closure_data_symbol,
owns_captured_environment: true,
specialization_id,
argument_layouts: arg_layouts,
return_layout: ret_layout,
};
let higher_order = HigherOrderLowLevel {
op: crate::low_level::HigherOrder::$ho { $($x,)* },
closure_env_layout,
update_mode,
passed_function,
};
self::Call {
call_type: CallType::HigherOrder(arena.alloc(higher_order)),
arguments: arena.alloc([$($x,)* lambda_name.name(), closure_data]),
}
},
layout,
assigned,
hole,
)
}
RawFunctionLayout::ErasedFunction(..) => todo_lambda_erasure!(),
RawFunctionLayout::ZeroArgumentThunk(_) => unreachable!("match_on_closure_argument received a zero-argument thunk"),
}
}};
}
use LowLevel::*;
match op {
ListMap => {
debug_assert_eq!(arg_symbols.len(), 2);
let xs = arg_symbols[0];
match_on_closure_argument!(ListMap, [xs])
}
ListSortWith => {
debug_assert_eq!(arg_symbols.len(), 2);
let xs = arg_symbols[0];
match_on_closure_argument!(ListSortWith, [xs])
}
ListMap2 => {
debug_assert_eq!(arg_symbols.len(), 3);
let xs = arg_symbols[0];
let ys = arg_symbols[1];
match_on_closure_argument!(ListMap2, [xs, ys])
}
ListMap3 => {
debug_assert_eq!(arg_symbols.len(), 4);
let xs = arg_symbols[0];
let ys = arg_symbols[1];
let zs = arg_symbols[2];
match_on_closure_argument!(ListMap3, [xs, ys, zs])
}
ListMap4 => {
debug_assert_eq!(arg_symbols.len(), 5);
let xs = arg_symbols[0];
let ys = arg_symbols[1];
let zs = arg_symbols[2];
let ws = arg_symbols[3];
match_on_closure_argument!(ListMap4, [xs, ys, zs, ws])
}
BoxExpr => {
debug_assert_eq!(arg_symbols.len(), 1);
let x = arg_symbols[0];
let element_layout = match layout_cache.interner.get_repr(layout) {
LayoutRepr::Union(UnionLayout::NonNullableUnwrapped([l])) => l,
_ => unreachable!("invalid layout for a box expression"),
};
let expr = boxed::box_(arena.alloc(x), element_layout);
Stmt::Let(assigned, expr, layout, hole)
}
UnboxExpr => {
debug_assert_eq!(arg_symbols.len(), 1);
let x = arg_symbols[0];
let expr = boxed::unbox(x, arena.alloc(layout));
Stmt::Let(assigned, expr, layout, hole)
}
_ => {
let call = self::Call {
call_type: CallType::LowLevel {
op,
update_mode: env.next_update_mode_id(),
},
arguments: arg_symbols,
};
let result = build_call(env, call, assigned, layout, hole);
let iter = args
.into_iter()
.rev()
.map(|(a, b)| (a, Loc::at_zero(b)))
.zip(arg_symbols.iter().rev());
assign_to_symbols(env, procs, layout_cache, iter, result)
}
}
}
TypedHole(_) => runtime_error(env, "Hit a blank"),
RuntimeError(e) => runtime_error(env, env.arena.alloc(e.runtime_message())),
Crash { msg, ret_var: _ } => {
let msg_sym = possible_reuse_symbol_or_specialize(
env,
procs,
layout_cache,
&msg.value,
Variable::STR,
);
let stmt = Stmt::Crash(msg_sym, CrashTag::User);
assign_to_symbol(env, procs, layout_cache, Variable::STR, *msg, msg_sym, stmt)
}
}
}
/// Compiles a `dbg` expression.
fn compile_dbg<'a>(
env: &mut Env<'a, '_>,
procs: &mut Procs<'a>,
layout_cache: &mut LayoutCache<'a>,
source_location: &'a str,
source: &'a str,
dbg_symbol: Symbol,
loc_message: Loc<roc_can::expr::Expr>,
variable: Variable,
continuation: Stmt<'a>,
) -> Stmt<'a> {
let spec_var = env
.expectation_subs
.as_mut()
.unwrap()
.fresh_unnamed_flex_var();
let dbg_stmt = Stmt::Dbg {
source_location,
source,
symbol: dbg_symbol,
variable: spec_var,
remainder: env.arena.alloc(continuation),
};
// Now that the dbg value has been specialized, export its specialized type into the
// expectations subs.
store_specialized_expectation_lookups(env, [variable], &[spec_var]);
let symbol_is_reused = matches!(
can_reuse_symbol(env, layout_cache, procs, &loc_message.value, variable),
ReuseSymbol::Value(_)
);
// skip evaluating the message if it's just a symbol
if symbol_is_reused {
dbg_stmt
} else {
with_hole(
env,
loc_message.value,
variable,
procs,
layout_cache,
dbg_symbol,
env.arena.alloc(dbg_stmt),
)
}
}
/// Compiles an access into a tuple or record.
fn compile_struct_like_access<'a>(
env: &mut Env<'a, '_>,
procs: &mut Procs<'a>,
layout_cache: &mut LayoutCache<'a>,
field_layouts: Vec<'a, InLayout<'a>>,
index: u64,
loc_expr: Loc<roc_can::expr::Expr>,
struct_like_var: Variable,
hole: &'a Stmt<'a>,
assigned: Symbol,
elem_var: Variable,
) -> Stmt<'a> {
let struct_symbol = possible_reuse_symbol_or_specialize(
env,
procs,
layout_cache,
&loc_expr.value,
struct_like_var,
);
let mut stmt = match field_layouts.as_slice() {
[_] => {
let mut hole = hole.clone();
substitute_in_exprs(env.arena, &mut hole, assigned, struct_symbol);
hole
}
_ => {
let expr = Expr::StructAtIndex {
index,
field_layouts: field_layouts.into_bump_slice(),
structure: struct_symbol,
};
let layout = layout_cache
.from_var(env.arena, elem_var, env.subs)
.unwrap_or_else(|err| panic!("TODO turn fn_var into a RuntimeError {err:?}"));
Stmt::Let(assigned, expr, layout, hole)
}
};
stmt = assign_to_symbol(
env,
procs,
layout_cache,
struct_like_var,
loc_expr,
struct_symbol,
stmt,
);
stmt
}
/// Compiles a record or a tuple.
// TODO: UnusedLayout is because `sort_record_fields` currently returns a three-tuple, but is, in
// fact, unneeded for the compilation.
fn compile_struct_like<'a, L, UnusedLayout>(
env: &mut Env<'a, '_>,
procs: &mut Procs<'a>,
layout_cache: &mut LayoutCache<'a>,
sorted_elems: Vec<(L, Variable, UnusedLayout)>,
mut take_elem_expr: impl FnMut(L) -> Option<(Variable, Box<Loc<roc_can::expr::Expr>>)>,
struct_like_var: Variable,
hole: &'a Stmt<'a>,
assigned: Symbol,
) -> Stmt<'a> {
let mut elem_symbols = Vec::with_capacity_in(sorted_elems.len(), env.arena);
let mut can_elems = Vec::with_capacity_in(sorted_elems.len(), env.arena);
#[allow(clippy::enum_variant_names)]
enum Field {
// TODO: rename this since it can handle unspecialized expressions now too
FunctionOrUnspecialized(Symbol, Variable),
ValueSymbol,
Field(Variable, Loc<roc_can::expr::Expr>),
}
for (index, variable, _) in sorted_elems.into_iter() {
// TODO how should function pointers be handled here?
use ReuseSymbol::*;
match take_elem_expr(index) {
Some((var, loc_expr)) => {
match can_reuse_symbol(env, layout_cache, procs, &loc_expr.value, var) {
Imported(symbol) => {
// we cannot re-use the symbol in this case; it is used as a value, but defined as a thunk
elem_symbols.push(env.unique_symbol());
can_elems.push(Field::FunctionOrUnspecialized(symbol, variable));
}
LocalFunction(symbol) | UnspecializedExpr(symbol) => {
elem_symbols.push(symbol);
can_elems.push(Field::FunctionOrUnspecialized(symbol, variable));
}
Value(symbol) => {
let reusable = procs.get_or_insert_symbol_specialization(
env,
layout_cache,
symbol,
var,
);
elem_symbols.push(reusable);
can_elems.push(Field::ValueSymbol);
}
NotASymbol => {
elem_symbols.push(env.unique_symbol());
can_elems.push(Field::Field(var, *loc_expr));
}
}
}
None => {
// this field was optional, but not given
continue;
}
}
}
// creating a record from the var will unpack it if it's just a single field.
let layout = match layout_cache.from_var(env.arena, struct_like_var, env.subs) {
Ok(layout) => layout,
Err(_) => return runtime_error(env, "Can't create record with improper layout"),
};
let elem_symbols = elem_symbols.into_bump_slice();
let mut stmt = if let [only_field] = elem_symbols {
let mut hole = hole.clone();
substitute_in_exprs(env.arena, &mut hole, assigned, *only_field);
hole
} else {
Stmt::Let(assigned, Expr::Struct(elem_symbols), layout, hole)
};
for (opt_field, symbol) in can_elems.into_iter().rev().zip(elem_symbols.iter().rev()) {
match opt_field {
Field::ValueSymbol => {
// this symbol is already defined; nothing to do
}
Field::FunctionOrUnspecialized(can_symbol, variable) => {
stmt = specialize_symbol(
env,
procs,
layout_cache,
Some(variable),
*symbol,
env.arena.alloc(stmt),
can_symbol,
);
}
Field::Field(var, loc_expr) => {
stmt = with_hole(
env,
loc_expr.value,
var,
procs,
layout_cache,
*symbol,
env.arena.alloc(stmt),
);
}
}
}
stmt
}
#[inline(always)]
fn late_resolve_ability_specialization(
env: &mut Env<'_, '_>,
member: Symbol,
specialization_id: Option<SpecializationId>,
specialization_var: Variable,
) -> Symbol {
let opt_resolved = specialization_id.and_then(|id| {
env.abilities
.with_module_abilities_store(env.home, |store| store.get_resolved(id))
});
if let Some(spec_symbol) = opt_resolved {
// Fast path: specialization is monomorphic, was found during solving.
spec_symbol
} else if let Content::Structure(FlatType::Func(_, lambda_set, _)) =
env.subs.get_content_without_compacting(specialization_var)
{
// Fast path: the member is a function, so the lambda set will tell us the
// specialization.
use roc_types::subs::LambdaSet;
let LambdaSet {
solved,
unspecialized,
recursion_var: _,
ambient_function,
} = env.subs.get_lambda_set(*lambda_set);
debug_assert!(unspecialized.is_empty());
let mut iter_lambda_set = solved.iter_all();
debug_assert_eq!(
iter_lambda_set.len(),
1,
"{:?}",
(env.subs.dbg(*lambda_set), env.subs.dbg(ambient_function))
);
let spec_symbol_index = iter_lambda_set.next().unwrap().0;
env.subs[spec_symbol_index]
} else {
// Otherwise, resolve by checking the able var.
let specialization = resolve_ability_specialization(
env.home,
env.subs,
&env.abilities,
member,
specialization_var,
)
.expect("Ability specialization is unknown - code generation cannot proceed!");
match specialization {
Resolved::Specialization(symbol) => symbol,
Resolved::Derive(derive_key) => {
match derive_key {
roc_derive_key::Derived::Immediate(imm)
| roc_derive_key::Derived::SingleLambdaSetImmediate(imm) => {
// The immediate may be an ability member itself, so it must be resolved!
late_resolve_ability_specialization(env, imm, None, specialization_var)
}
roc_derive_key::Derived::Key(derive_key) => {
let mut derived_module = env
.derived_module
.lock()
.expect("derived module unavailable");
derived_module
.get_or_insert(env.exposed_by_module, derive_key)
.0
}
}
}
}
}
}
fn find_lambda_name<'a, I>(
env: &mut Env<'a, '_>,
layout_cache: &mut LayoutCache<'a>,
lambda_set: LambdaSet<'a>,
function_name: Symbol,
captures: I,
) -> LambdaName<'a>
where
I: IntoIterator<Item = &'a (Symbol, Variable)>,
{
let this_function_captures_layouts = captures
.into_iter()
.map(|(_, var)| {
layout_cache
.from_var(env.arena, *var, env.subs)
.expect("layout problem for capture")
})
.collect_in::<Vec<_>>(env.arena);
lambda_set.find_lambda_name(
&layout_cache.interner,
function_name,
&this_function_captures_layouts,
)
}
#[allow(clippy::too_many_arguments)]
fn construct_closure_data<'a, I>(
env: &mut Env<'a, '_>,
procs: &mut Procs<'a>,
layout_cache: &mut LayoutCache<'a>,
lambda_set: LambdaSet<'a>,
name: LambdaName<'a>,
symbols: I,
assigned: Symbol,
hole: &'a Stmt<'a>,
) -> Stmt<'a>
where
I: IntoIterator<Item = &'a (Symbol, Variable)>,
I::IntoIter: ExactSizeIterator,
{
let lambda_set_layout = lambda_set.full_layout;
let symbols = symbols.into_iter();
let result = match lambda_set.layout_for_member_with_lambda_name(&layout_cache.interner, name) {
ClosureRepresentation::Union {
tag_id,
alphabetic_order_fields: field_layouts,
union_layout,
closure_name: _,
} => {
// captured variables are in symbol-alphabetic order, but now we want
// them ordered by their alignment requirements
let mut combined = Vec::with_capacity_in(symbols.len(), env.arena);
for ((symbol, _variable), layout) in symbols.zip(field_layouts.iter()) {
combined.push((*symbol, layout))
}
combined.sort_by(|(_, layout1), (_, layout2)| {
let size1 = layout_cache
.get_repr(**layout1)
.alignment_bytes(&layout_cache.interner);
let size2 = layout_cache
.get_repr(**layout2)
.alignment_bytes(&layout_cache.interner);
size2.cmp(&size1)
});
let symbols =
Vec::from_iter_in(combined.iter().map(|(a, _)| *a), env.arena).into_bump_slice();
let expr = Expr::Tag {
tag_id,
tag_layout: union_layout,
arguments: symbols,
reuse: None,
};
Stmt::Let(assigned, expr, lambda_set_layout, env.arena.alloc(hole))
}
ClosureRepresentation::AlphabeticOrderStruct(field_layouts) => {
debug_assert_eq!(field_layouts.len(), symbols.len());
// captured variables are in symbol-alphabetic order, but now we want
// them ordered by their alignment requirements
let mut combined = Vec::with_capacity_in(symbols.len(), env.arena);
for ((symbol, _variable), layout) in symbols.zip(field_layouts.iter()) {
combined.push((*symbol, layout))
}
combined.sort_by(|(_, layout1), (_, layout2)| {
let size1 = layout_cache
.get_repr(**layout1)
.alignment_bytes(&layout_cache.interner);
let size2 = layout_cache
.get_repr(**layout2)
.alignment_bytes(&layout_cache.interner);
size2.cmp(&size1)
});
let symbols =
Vec::from_iter_in(combined.iter().map(|(a, _)| *a), env.arena).into_bump_slice();
let field_layouts =
Vec::from_iter_in(combined.iter().map(|(_, b)| **b), env.arena).into_bump_slice();
debug_assert_eq!(
LayoutRepr::struct_(field_layouts),
layout_cache.get_repr(lambda_set.runtime_representation())
);
let expr = Expr::Struct(symbols);
Stmt::Let(assigned, expr, lambda_set_layout, hole)
}
ClosureRepresentation::UnwrappedCapture(_layout) => {
debug_assert_eq!(symbols.len(), 1);
let mut symbols = symbols;
let (captured_symbol, captured_var) = symbols.next().unwrap();
let captured_symbol = procs.get_or_insert_symbol_specialization(
env,
layout_cache,
*captured_symbol,
*captured_var,
);
// The capture set is unwrapped, so just replaced the assigned capture symbol with the
// only capture.
let mut hole = hole.clone();
substitute_in_exprs(env.arena, &mut hole, assigned, captured_symbol);
hole
}
ClosureRepresentation::EnumDispatch(repr) => match repr {
EnumDispatch::Bool => {
debug_assert_eq!(symbols.len(), 0);
debug_assert_eq!(lambda_set.len(), 2);
let tag_id = name.name() != lambda_set.iter_set().next().unwrap().name();
let expr = Expr::Literal(Literal::Bool(tag_id));
Stmt::Let(assigned, expr, lambda_set_layout, hole)
}
EnumDispatch::U8 => {
debug_assert_eq!(symbols.len(), 0);
debug_assert!(lambda_set.len() > 2);
let tag_id = lambda_set
.iter_set()
.position(|s| s.name() == name.name())
.unwrap() as u8;
let expr = Expr::Literal(Literal::Byte(tag_id));
Stmt::Let(assigned, expr, lambda_set_layout, hole)
}
},
};
result
}
#[allow(clippy::too_many_arguments)]
fn convert_tag_union<'a>(
env: &mut Env<'a, '_>,
variant_var: Variable,
assigned: Symbol,
hole: &'a Stmt<'a>,
tag_name: TagName,
procs: &mut Procs<'a>,
layout_cache: &mut LayoutCache<'a>,
args: std::vec::Vec<(Variable, Loc<roc_can::expr::Expr>)>,
arena: &'a Bump,
) -> Stmt<'a> {
use crate::layout::UnionVariant::*;
let res_variant = {
let mut layout_env = layout::Env::from_components(layout_cache, env.subs, env.arena);
crate::layout::union_sorted_tags(&mut layout_env, variant_var)
};
let variant = match res_variant {
Ok(cached) => cached,
Err(LayoutProblem::UnresolvedTypeVar(_)) => {
return runtime_error(
env,
env.arena.alloc(format!(
"Unresolved type variable for tag {}",
tag_name.0.as_str()
)),
)
}
Err(LayoutProblem::Erroneous) => {
return runtime_error(
env,
env.arena.alloc(format!(
"Tag {} was part of a type error!",
tag_name.0.as_str()
)),
);
}
};
match variant {
Never => unreachable!(
"The `[]` type has no constructors, source var {:?}",
variant_var
),
Unit => Stmt::Let(assigned, Expr::Struct(&[]), Layout::UNIT, hole),
BoolUnion { ttrue, .. } => Stmt::Let(
assigned,
Expr::Literal(Literal::Bool(&tag_name == ttrue.expect_tag_ref())),
Layout::BOOL,
hole,
),
ByteUnion(tag_names) => {
let opt_tag_id = tag_names
.iter()
.position(|key| key.expect_tag_ref() == &tag_name);
match opt_tag_id {
Some(tag_id) => Stmt::Let(
assigned,
Expr::Literal(Literal::Byte(tag_id as u8)),
Layout::U8,
hole,
),
None => runtime_error(env, "tag must be in its own type"),
}
}
Newtype {
arguments: field_layouts,
..
} => {
let field_symbols_temp = sorted_field_symbols(env, procs, layout_cache, args);
let mut field_symbols = Vec::with_capacity_in(field_layouts.len(), env.arena);
field_symbols.extend(field_symbols_temp.iter().map(|r| r.1));
let field_symbols = field_symbols.into_bump_slice();
// Layout will unpack this unwrapped tack if it only has one (non-zero-sized) field
let layout = layout_cache
.from_var(env.arena, variant_var, env.subs)
.unwrap_or_else(|err| panic!("TODO turn fn_var into a RuntimeError {err:?}"));
// even though this was originally a Tag, we treat it as a Struct from now on
let stmt = if let [only_field] = field_symbols {
let mut hole = hole.clone();
substitute_in_exprs(env.arena, &mut hole, assigned, *only_field);
hole
} else {
Stmt::Let(assigned, Expr::Struct(field_symbols), layout, hole)
};
let iter = field_symbols_temp.into_iter().map(|(_, _, data)| data);
assign_to_symbols(env, procs, layout_cache, iter, stmt)
}
NewtypeByVoid {
data_tag_arguments: field_layouts,
data_tag_name,
..
} => {
let dataful_tag = data_tag_name.expect_tag();
if dataful_tag != tag_name {
// this tag is not represented, and hence will never be reached, at runtime.
runtime_error(env, "voided tag constructor is unreachable")
} else {
let field_symbols_temp = sorted_field_symbols(env, procs, layout_cache, args);
let mut field_symbols = Vec::with_capacity_in(field_layouts.len(), env.arena);
field_symbols.extend(field_symbols_temp.iter().map(|r| r.1));
let field_symbols = field_symbols.into_bump_slice();
// Layout will unpack this unwrapped tack if it only has one (non-zero-sized) field
let layout = layout_cache
.from_var(env.arena, variant_var, env.subs)
.unwrap_or_else(|err| panic!("TODO turn fn_var into a RuntimeError {err:?}"));
// even though this was originally a Tag, we treat it as a Struct from now on
let stmt = if let [only_field] = field_symbols {
let mut hole = hole.clone();
substitute_in_exprs(env.arena, &mut hole, assigned, *only_field);
hole
} else {
Stmt::Let(assigned, Expr::Struct(field_symbols), layout, hole)
};
let iter = field_symbols_temp.into_iter().map(|(_, _, data)| data);
assign_to_symbols(env, procs, layout_cache, iter, stmt)
}
}
Wrapped(variant) => {
let (tag_id, _) = variant.tag_name_to_id(&tag_name);
let field_symbols_temp = sorted_field_symbols(env, procs, layout_cache, args);
let field_symbols;
// we must derive the union layout from the whole_var, building it up
// from `layouts` would unroll recursive tag unions, and that leads to
// problems down the line because we hash layouts and an unrolled
// version is not the same as the minimal version.
let variant_layout = return_on_layout_error!(
env,
layout_cache.from_var(env.arena, variant_var, env.subs),
"Wrapped"
);
let union_layout = match layout_cache.interner.chase_recursive(variant_layout) {
LayoutRepr::Union(ul) => ul,
other => internal_error!(
"unexpected layout {:?} for {:?}",
other,
roc_types::subs::SubsFmtContent(
env.subs.get_content_without_compacting(variant_var),
env.subs
)
),
};
use WrappedVariant::*;
let (tag, union_layout) = match variant {
Recursive { sorted_tag_layouts } => {
debug_assert!(sorted_tag_layouts.len() > 1);
field_symbols = {
let mut temp = Vec::with_capacity_in(field_symbols_temp.len() + 1, arena);
temp.extend(field_symbols_temp.iter().map(|r| r.1));
temp.into_bump_slice()
};
let mut layouts: Vec<&'a [InLayout<'a>]> =
Vec::with_capacity_in(sorted_tag_layouts.len(), env.arena);
for (_, arg_layouts) in sorted_tag_layouts.into_iter() {
layouts.push(arg_layouts);
}
let tag = Expr::Tag {
tag_layout: union_layout,
tag_id: tag_id as _,
arguments: field_symbols,
reuse: None,
};
(tag, union_layout)
}
NonNullableUnwrapped {
tag_name: wrapped_tag_name,
..
} => {
debug_assert_eq!(wrapped_tag_name.expect_tag(), tag_name);
field_symbols = {
let mut temp = Vec::with_capacity_in(field_symbols_temp.len(), arena);
temp.extend(field_symbols_temp.iter().map(|r| r.1));
temp.into_bump_slice()
};
let tag = Expr::Tag {
tag_layout: union_layout,
tag_id: tag_id as _,
arguments: field_symbols,
reuse: None,
};
(tag, union_layout)
}
NonRecursive { sorted_tag_layouts } => {
field_symbols = {
let mut temp = Vec::with_capacity_in(field_symbols_temp.len(), arena);
temp.extend(field_symbols_temp.iter().map(|r| r.1));
temp.into_bump_slice()
};
let mut layouts: Vec<&'a [InLayout<'a>]> =
Vec::with_capacity_in(sorted_tag_layouts.len(), env.arena);
for (_, arg_layouts) in sorted_tag_layouts.into_iter() {
layouts.push(arg_layouts);
}
let tag = Expr::Tag {
tag_layout: union_layout,
tag_id: tag_id as _,
arguments: field_symbols,
reuse: None,
};
(tag, union_layout)
}
NullableWrapped {
sorted_tag_layouts, ..
} => {
field_symbols = {
let mut temp = Vec::with_capacity_in(field_symbols_temp.len() + 1, arena);
temp.extend(field_symbols_temp.iter().map(|r| r.1));
temp.into_bump_slice()
};
let mut layouts: Vec<&'a [InLayout<'a>]> =
Vec::with_capacity_in(sorted_tag_layouts.len(), env.arena);
for (_, arg_layouts) in sorted_tag_layouts.into_iter() {
layouts.push(arg_layouts);
}
let tag = Expr::Tag {
tag_layout: union_layout,
tag_id: tag_id as _,
arguments: field_symbols,
reuse: None,
};
(tag, union_layout)
}
NullableUnwrapped { .. } => {
field_symbols = {
let mut temp = Vec::with_capacity_in(field_symbols_temp.len() + 1, arena);
temp.extend(field_symbols_temp.iter().map(|r| r.1));
temp.into_bump_slice()
};
let tag = Expr::Tag {
tag_layout: union_layout,
tag_id: tag_id as _,
arguments: field_symbols,
reuse: None,
};
(tag, union_layout)
}
};
let union_layout =
layout_cache.put_in_direct_no_semantic(LayoutRepr::Union(union_layout));
let stmt = Stmt::Let(assigned, tag, union_layout, hole);
let iter = field_symbols_temp
.into_iter()
.map(|x| x.2 .0)
.rev()
.zip(field_symbols.iter().rev());
assign_to_symbols(env, procs, layout_cache, iter, stmt)
}
}
}
#[allow(clippy::too_many_arguments)]
fn tag_union_to_function<'a>(
env: &mut Env<'a, '_>,
argument_variables: VariableSubsSlice,
return_variable: Variable,
tag_name: TagName,
proc_symbol: Symbol,
ext_var: Variable,
procs: &mut Procs<'a>,
whole_var: Variable,
layout_cache: &mut LayoutCache<'a>,
assigned: Symbol,
hole: &'a Stmt<'a>,
) -> Stmt<'a> {
let mut loc_pattern_args = vec![];
let mut loc_expr_args = vec![];
for index in argument_variables {
let arg_var = env.subs[index];
let arg_symbol = env.unique_symbol();
let loc_pattern = Loc::at_zero(roc_can::pattern::Pattern::Identifier(arg_symbol));
let loc_expr = Loc::at_zero(roc_can::expr::Expr::Var(arg_symbol, arg_var));
loc_pattern_args.push((arg_var, AnnotatedMark::known_exhaustive(), loc_pattern));
loc_expr_args.push((arg_var, loc_expr));
}
let loc_body = Loc::at_zero(roc_can::expr::Expr::Tag {
tag_union_var: return_variable,
name: tag_name,
arguments: loc_expr_args,
ext_var,
});
// Lambda does not capture anything, can't have a captures niche
let lambda_name = LambdaName::no_niche(proc_symbol);
let inserted = procs.insert_anonymous(
env,
lambda_name,
whole_var,
loc_pattern_args,
loc_body,
CapturedSymbols::None,
return_variable,
layout_cache,
);
match inserted {
Ok(_layout) => {
// only need to construct closure data
let raw_layout = return_on_layout_error!(
env,
layout_cache.raw_from_var(env.arena, whole_var, env.subs),
"tag_union_to_function"
);
match raw_layout {
RawFunctionLayout::Function(_, lambda_set, _) => {
let lambda_name =
find_lambda_name(env, layout_cache, lambda_set, proc_symbol, &[]);
debug_assert!(lambda_name.no_captures());
construct_closure_data(
env,
procs,
layout_cache,
lambda_set,
lambda_name,
&[],
assigned,
hole,
)
}
RawFunctionLayout::ErasedFunction(..) => todo_lambda_erasure!(),
RawFunctionLayout::ZeroArgumentThunk(_) => unreachable!(),
}
}
Err(e) => runtime_error(
env,
env.arena.alloc(format!(
"Could not produce tag function due to a runtime error: {e:?}",
)),
),
}
}
#[allow(clippy::type_complexity)]
fn sorted_field_symbols<'a>(
env: &mut Env<'a, '_>,
procs: &mut Procs<'a>,
layout_cache: &mut LayoutCache<'a>,
mut args: std::vec::Vec<(Variable, Loc<roc_can::expr::Expr>)>,
) -> Vec<
'a,
(
u32,
Symbol,
((Variable, Loc<roc_can::expr::Expr>), &'a Symbol),
),
> {
let mut field_symbols_temp = Vec::with_capacity_in(args.len(), env.arena);
for (var, mut arg) in args.drain(..) {
// Layout will unpack this unwrapped tag if it only has one (non-zero-sized) field
let layout = match layout_cache.from_var(env.arena, var, env.subs) {
Ok(cached) => cached,
Err(LayoutProblem::UnresolvedTypeVar(_)) => {
// this argument has type `forall a. a`, which is isomorphic to
// the empty type (Void, Never, the empty tag union `[]`)
// Note it does not catch the use of `[]` currently.
use roc_can::expr::Expr;
arg.value = Expr::RuntimeError(RuntimeError::VoidValue);
Layout::UNIT
}
Err(LayoutProblem::Erroneous) => {
// something went very wrong
panic!("TODO turn fn_var into a RuntimeError")
}
};
let alignment = layout_cache
.get_repr(layout)
.alignment_bytes(&layout_cache.interner);
let symbol = possible_reuse_symbol_or_specialize(env, procs, layout_cache, &arg.value, var);
field_symbols_temp.push((alignment, symbol, ((var, arg), &*env.arena.alloc(symbol))));
}
field_symbols_temp.sort_by(|a, b| b.0.cmp(&a.0));
field_symbols_temp
}
/// Insert a closure that does capture symbols (because it is top-level) to the list of partial procs
fn register_noncapturing_closure<'a>(
env: &mut Env<'a, '_>,
procs: &mut Procs<'a>,
closure_name: Symbol,
closure_data: ClosureData,
) {
let ClosureData {
function_type,
return_type,
recursive,
arguments,
loc_body: boxed_body,
captured_symbols,
..
} = closure_data;
// Extract Procs, but discard the resulting Expr::Load.
// That Load looks up the pointer, which we won't use here!
let loc_body = *boxed_body;
let is_self_recursive = !matches!(recursive, roc_can::expr::Recursive::NotRecursive);
// this should be a top-level declaration, and hence have no captured symbols
// if we ever do hit this (and it's not a bug), we should make sure to put the
// captured symbols into a CapturedSymbols and give it to PartialProc::from_named_function
debug_assert!(captured_symbols.is_empty());
let partial_proc = PartialProc::from_named_function(
env,
function_type,
arguments,
loc_body,
CapturedSymbols::None,
is_self_recursive,
return_type,
);
procs.partial_procs.insert(closure_name, partial_proc);
}
/// Insert a closure that may capture symbols to the list of partial procs
fn register_capturing_closure<'a>(
env: &mut Env<'a, '_>,
procs: &mut Procs<'a>,
layout_cache: &mut LayoutCache<'a>,
closure_name: Symbol,
closure_data: ClosureData,
) {
// the function surrounding the closure definition may be specialized multiple times,
// hence in theory this partial proc may be added multiple times. That would be wasteful
// so we check whether this partial proc is already there.
//
// (the `gen_primitives::task_always_twice` test has this behavior)
if !procs.partial_procs.contains_key(closure_name) {
let ClosureData {
function_type,
return_type,
closure_type,
recursive,
arguments,
loc_body: boxed_body,
captured_symbols,
..
} = closure_data;
let loc_body = *boxed_body;
let is_self_recursive = !matches!(recursive, roc_can::expr::Recursive::NotRecursive);
let captured_symbols = match *env.subs.get_content_without_compacting(function_type) {
Content::Structure(FlatType::Func(args, closure_var, ret)) => {
let lambda_set_layout = {
LambdaSet::from_var_pub(
layout_cache,
env.arena,
env.subs,
args,
closure_var,
ret,
)
};
match lambda_set_layout {
Ok(lambda_set) => {
if lambda_set.is_represented(&layout_cache.interner).is_none() {
CapturedSymbols::None
} else {
let mut temp = Vec::from_iter_in(captured_symbols, env.arena);
temp.sort();
CapturedSymbols::Captured(temp.into_bump_slice())
}
}
Err(_) => {
// just allow this. see https://github.com/roc-lang/roc/issues/1585
if captured_symbols.is_empty() {
CapturedSymbols::None
} else {
let mut temp = Vec::from_iter_in(captured_symbols, env.arena);
temp.sort();
CapturedSymbols::Captured(temp.into_bump_slice())
}
}
}
}
_ => {
// This is a value (zero-argument thunk); it cannot capture any variables.
debug_assert!(
captured_symbols.is_empty(),
"{:?} with layout {:?} {:?} {:?}",
&captured_symbols,
layout_cache.raw_from_var(env.arena, function_type, env.subs,),
env.subs,
(function_type, closure_type),
);
CapturedSymbols::None
}
};
let partial_proc = PartialProc::from_named_function(
env,
function_type,
arguments,
loc_body,
captured_symbols,
is_self_recursive,
return_type,
);
procs.partial_procs.insert(closure_name, partial_proc);
}
}
pub fn from_can<'a>(
env: &mut Env<'a, '_>,
variable: Variable,
can_expr: roc_can::expr::Expr,
procs: &mut Procs<'a>,
layout_cache: &mut LayoutCache<'a>,
) -> Stmt<'a> {
use roc_can::expr::Expr::*;
match can_expr {
When {
cond_var,
expr_var,
region: _,
loc_cond,
branches,
branches_cond_var: _,
exhaustive,
} => {
let cond_symbol = possible_reuse_symbol_or_specialize(
env,
procs,
layout_cache,
&loc_cond.value,
cond_var,
);
let stmt = from_can_when(
env,
cond_var,
expr_var,
cond_symbol,
branches,
exhaustive,
layout_cache,
procs,
None,
);
// define the `when` condition
assign_to_symbol(
env,
procs,
layout_cache,
cond_var,
*loc_cond,
cond_symbol,
stmt,
)
}
If {
cond_var,
branch_var,
branches,
final_else,
} => {
let ret_layout = return_on_layout_error!(
env,
layout_cache.from_var(env.arena, branch_var, env.subs),
"invalid return type in if expression"
);
let cond_layout = return_on_layout_error!(
env,
layout_cache.from_var(env.arena, cond_var, env.subs),
"invalid condition type in if expression"
);
let mut stmt = from_can(env, branch_var, final_else.value, procs, layout_cache);
for (loc_cond, loc_then) in branches.into_iter().rev() {
let branching_symbol = possible_reuse_symbol_or_specialize(
env,
procs,
layout_cache,
&loc_cond.value,
cond_var,
);
let then = from_can(env, branch_var, loc_then.value, procs, layout_cache);
stmt = cond(env, branching_symbol, cond_layout, then, stmt, ret_layout);
stmt = assign_to_symbol(
env,
procs,
layout_cache,
cond_var,
loc_cond,
branching_symbol,
stmt,
);
}
stmt
}
Expect {
loc_condition,
loc_continuation,
lookups_in_cond,
} => {
let rest = from_can(env, variable, loc_continuation.value, procs, layout_cache);
let cond_symbol = env.unique_symbol();
let mut lookups = Vec::with_capacity_in(lookups_in_cond.len(), env.arena);
let mut lookup_variables = Vec::with_capacity_in(lookups_in_cond.len(), env.arena);
let mut specialized_variables = Vec::with_capacity_in(lookups_in_cond.len(), env.arena);
for ExpectLookup {
symbol,
var,
ability_info,
} in lookups_in_cond.iter().copied()
{
let symbol = match ability_info {
Some(specialization_id) => late_resolve_ability_specialization(
env,
symbol,
Some(specialization_id),
var,
),
None => symbol,
};
let expectation_subs = env
.expectation_subs
.as_deref_mut()
.expect("if expects are compiled, their subs should be available");
let spec_var = expectation_subs.fresh_unnamed_flex_var();
if !env.subs.is_function(var) {
// Exclude functions from lookups
lookups.push(symbol);
lookup_variables.push(var);
specialized_variables.push(spec_var);
}
}
let specialized_variables = specialized_variables.into_bump_slice();
let mut stmt = Stmt::Expect {
condition: cond_symbol,
region: loc_condition.region,
lookups: lookups.into_bump_slice(),
variables: specialized_variables,
remainder: env.arena.alloc(rest),
};
stmt = with_hole(
env,
loc_condition.value,
Variable::BOOL,
procs,
layout_cache,
cond_symbol,
env.arena.alloc(stmt),
);
// Now that the condition has been specialized, export the specialized types of our
// lookups into the expectation subs.
store_specialized_expectation_lookups(env, lookup_variables, specialized_variables);
stmt
}
ExpectFx {
loc_condition,
loc_continuation,
lookups_in_cond,
} => {
let rest = from_can(env, variable, loc_continuation.value, procs, layout_cache);
let cond_symbol = env.unique_symbol();
let mut lookups = Vec::with_capacity_in(lookups_in_cond.len(), env.arena);
let mut lookup_variables = Vec::with_capacity_in(lookups_in_cond.len(), env.arena);
let mut specialized_variables = Vec::with_capacity_in(lookups_in_cond.len(), env.arena);
for ExpectLookup {
symbol,
var,
ability_info,
} in lookups_in_cond.iter().copied()
{
let symbol = match ability_info {
Some(specialization_id) => late_resolve_ability_specialization(
env,
symbol,
Some(specialization_id),
var,
),
None => symbol,
};
let expectation_subs = env
.expectation_subs
.as_deref_mut()
.expect("if expects are compiled, their subs should be available");
let spec_var = expectation_subs.fresh_unnamed_flex_var();
if !env.subs.is_function(var) {
// Exclude functions from lookups
lookups.push(symbol);
lookup_variables.push(var);
specialized_variables.push(spec_var);
}
}
let specialized_variables = specialized_variables.into_bump_slice();
let mut stmt = Stmt::ExpectFx {
condition: cond_symbol,
region: loc_condition.region,
lookups: lookups.into_bump_slice(),
variables: specialized_variables,
remainder: env.arena.alloc(rest),
};
stmt = with_hole(
env,
loc_condition.value,
Variable::BOOL,
procs,
layout_cache,
cond_symbol,
env.arena.alloc(stmt),
);
store_specialized_expectation_lookups(env, lookup_variables, specialized_variables);
stmt
}
Dbg {
source_location,
source,
loc_message,
loc_continuation,
variable: cond_variable,
symbol: dbg_symbol,
} => {
let rest = from_can(env, variable, loc_continuation.value, procs, layout_cache);
compile_dbg(
env,
procs,
layout_cache,
&*env.arena.alloc(source_location),
&*env.arena.alloc(source),
dbg_symbol,
*loc_message,
cond_variable,
rest,
)
}
LetRec(defs, cont, _cycle_mark) => {
// because Roc is strict, only functions can be recursive!
for def in defs.into_iter() {
if let roc_can::pattern::Pattern::Identifier(symbol) = &def.loc_pattern.value {
// Now that we know for sure it's a closure, get an owned
// version of these variant args so we can use them properly.
match def.loc_expr.value {
Closure(closure_data) => {
register_capturing_closure(
env,
procs,
layout_cache,
*symbol,
closure_data,
);
continue;
}
_ => unreachable!("recursive value is not a function"),
}
}
unreachable!("recursive value does not have Identifier pattern")
}
from_can(env, variable, cont.value, procs, layout_cache)
}
LetNonRec(def, cont) => from_can_let(env, procs, layout_cache, def, cont, variable, None),
_ => {
let symbol = env.unique_symbol();
let hole = env.arena.alloc(Stmt::Ret(symbol));
with_hole(env, can_expr, variable, procs, layout_cache, symbol, hole)
}
}
}
fn store_specialized_expectation_lookups(
env: &mut Env,
lookup_variables: impl IntoIterator<Item = Variable>,
specialized_variables: &[Variable],
) {
let subs = &env.subs;
let expectation_subs = env.expectation_subs.as_deref_mut().unwrap();
for (lookup_var, stored_var) in lookup_variables.into_iter().zip(specialized_variables) {
let stored_specialized_var =
storage_copy_var_to(&mut Default::default(), subs, expectation_subs, lookup_var);
let stored_specialized_desc = expectation_subs.get(stored_specialized_var);
expectation_subs.union(*stored_var, stored_specialized_var, stored_specialized_desc);
}
}
fn to_opt_branches<'a>(
env: &mut Env<'a, '_>,
procs: &mut Procs<'a>,
branches: std::vec::Vec<roc_can::expr::WhenBranch>,
exhaustive_mark: ExhaustiveMark,
layout_cache: &mut LayoutCache<'a>,
) -> std::vec::Vec<(
Pattern<'a>,
Option<Loc<roc_can::expr::Expr>>,
roc_can::expr::Expr,
)> {
debug_assert!(!branches.is_empty());
let mut opt_branches = std::vec::Vec::new();
for when_branch in branches {
if when_branch.redundant.is_redundant(env.subs) {
// Don't codegen this branch since it's redundant.
continue;
}
for loc_pattern in when_branch.patterns {
match from_can_pattern(env, procs, layout_cache, &loc_pattern.pattern.value) {
Ok((mono_pattern, assignments)) => {
let loc_expr = if !loc_pattern.degenerate {
let mut loc_expr = when_branch.value.clone();
let region = loc_pattern.pattern.region;
for (symbol, variable, expr) in assignments.into_iter().rev() {
let def = roc_can::def::Def {
annotation: None,
expr_var: variable,
loc_expr: Loc::at(region, expr),
loc_pattern: Loc::at(
region,
roc_can::pattern::Pattern::Identifier(symbol),
),
pattern_vars: std::iter::once((symbol, variable)).collect(),
};
let new_expr =
roc_can::expr::Expr::LetNonRec(Box::new(def), Box::new(loc_expr));
loc_expr = Loc::at(region, new_expr);
}
loc_expr
} else {
// This pattern is degenerate; when it's reached we must emit a runtime
// error.
Loc::at_zero(roc_can::expr::Expr::RuntimeError(
RuntimeError::DegenerateBranch(loc_pattern.pattern.region),
))
};
// TODO remove clone?
opt_branches.push((mono_pattern, when_branch.guard.clone(), loc_expr.value));
}
Err(runtime_error) => {
// TODO remove clone?
opt_branches.push((
Pattern::Underscore,
when_branch.guard.clone(),
roc_can::expr::Expr::RuntimeError(runtime_error),
));
}
}
}
}
if exhaustive_mark.is_non_exhaustive(env.subs) {
// In contrast to elm (currently), we still do codegen even if a pattern is non-exhaustive.
// So we not only report exhaustiveness errors, but also correct them
opt_branches.push((
Pattern::Underscore,
None,
roc_can::expr::Expr::RuntimeError(roc_problem::can::RuntimeError::NonExhaustivePattern),
));
}
opt_branches
}
#[allow(clippy::too_many_arguments)]
fn from_can_when<'a>(
env: &mut Env<'a, '_>,
cond_var: Variable,
expr_var: Variable,
cond_symbol: Symbol,
branches: std::vec::Vec<roc_can::expr::WhenBranch>,
exhaustive_mark: ExhaustiveMark,
layout_cache: &mut LayoutCache<'a>,
procs: &mut Procs<'a>,
join_point: Option<JoinPointId>,
) -> Stmt<'a> {
if branches.is_empty() {
// A when-expression with no branches is a runtime error.
// We can't know what to return!
return runtime_error(env, "Hit a 0-branch when expression");
}
let opt_branches = to_opt_branches(env, procs, branches, exhaustive_mark, layout_cache);
let cond_layout = return_on_layout_error!(
env,
layout_cache.from_var(env.arena, cond_var, env.subs),
"from_can_when cond_layout"
);
let ret_layout = return_on_layout_error!(
env,
layout_cache.from_var(env.arena, expr_var, env.subs),
"from_can_when ret_layout"
);
let arena = env.arena;
let it = opt_branches
.into_iter()
.filter_map(|(pattern, opt_guard, can_expr)| {
// If the pattern has a void layout we can drop it; however, we must still perform the
// work of building the body, because that may contain specializations we must
// discover for use elsewhere. See
// `unreachable_branch_is_eliminated_but_produces_lambda_specializations` in test_mono
// for an example.
let should_eliminate_branch = pattern.is_voided();
// If we're going to eliminate the branch, we need to take a snapshot of the symbol
// specializations before we enter the branch, because any new specializations that
// will be added in the branch body will never need to be resolved!
let specialization_symbol_snapshot = if should_eliminate_branch {
Some(std::mem::take(&mut procs.symbol_specializations))
} else {
None
};
let branch_stmt = match join_point {
None => from_can(env, expr_var, can_expr, procs, layout_cache),
Some(id) => {
let symbol = env.unique_symbol();
let arguments = bumpalo::vec![in env.arena; symbol].into_bump_slice();
let jump = env.arena.alloc(Stmt::Jump(id, arguments));
with_hole(env, can_expr, expr_var, procs, layout_cache, symbol, jump)
}
};
use decision_tree::Guard;
let result = if let Some(loc_expr) = opt_guard {
let guard_spec = GuardStmtSpec {
guard_expr: loc_expr.value,
identity: env.next_call_specialization_id(),
};
(
pattern.clone(),
Guard::Guard {
pattern,
stmt_spec: guard_spec,
},
branch_stmt,
)
} else {
(pattern, Guard::NoGuard, branch_stmt)
};
if should_eliminate_branch {
procs.symbol_specializations = specialization_symbol_snapshot.unwrap();
None
} else {
Some(result)
}
});
let mono_branches = Vec::from_iter_in(it, arena);
decision_tree::optimize_when(
env,
procs,
layout_cache,
cond_symbol,
cond_layout,
ret_layout,
mono_branches,
)
}
/// A functor to generate IR for a guard under a `when` branch.
/// Used in the decision tree compiler, after building a decision tree and converting into IR.
///
/// A guard might appear more than once in various places in the compiled decision tree, so the
/// functor here may be called more than once. As such, it implements clone, which duplicates the
/// guard AST for subsequent IR-regeneration. This is a bit wasteful, but in practice, guard ASTs
/// are quite small. Moreoever, they must be generated on a per-case basis, since the guard may
/// have calls or joins, whose specialization IDs and joinpoint IDs, respectively, must be unique.
#[derive(Debug, Clone)]
pub(crate) struct GuardStmtSpec {
guard_expr: roc_can::expr::Expr,
/// Unique id to indentity identical guard statements, even across clones.
/// Needed so that we can implement [PartialEq] on this type. Re-uses call specialization IDs,
/// since the identity is kind of irrelevant.
identity: CallSpecId,
}
impl PartialEq for GuardStmtSpec {
fn eq(&self, other: &Self) -> bool {
self.identity == other.identity
}
}
impl std::hash::Hash for GuardStmtSpec {
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
self.identity.id.hash(state);
}
}
impl GuardStmtSpec {
/// Generates IR for the guard, and the joinpoint that the guard will jump to with the
/// calculated guard boolean value.
///
/// The caller should create a joinpoint with the given joinpoint ID and decide how to branch
/// after the guard has been evaluated.
///
/// The compiled guard statement expects the pattern before the guard to be destructed before the
/// returned statement. The caller should layer on the pattern destructuring, as bound from the
/// `when` condition value.
pub(crate) fn generate_guard_and_join<'a>(
self,
env: &mut Env<'a, '_>,
procs: &mut Procs<'a>,
layout_cache: &mut LayoutCache<'a>,
) -> CompiledGuardStmt<'a> {
let Self {
guard_expr,
identity: _,
} = self;
let join_point_id = JoinPointId(env.unique_symbol());
let symbol = env.unique_symbol();
let jump = env
.arena
.alloc(Stmt::Jump(join_point_id, env.arena.alloc([symbol])));
let stmt = with_hole(
env,
guard_expr,
Variable::BOOL,
procs,
layout_cache,
symbol,
jump,
);
CompiledGuardStmt {
join_point_id,
stmt,
}
}
}
pub(crate) struct CompiledGuardStmt<'a> {
pub join_point_id: JoinPointId,
pub stmt: Stmt<'a>,
}
fn substitute(substitutions: &BumpMap<Symbol, Symbol>, s: Symbol) -> Option<Symbol> {
match substitutions.get(&s) {
Some(new) => {
debug_assert!(!substitutions.contains_key(new));
Some(*new)
}
None => None,
}
}
fn substitute_in_exprs<'a>(arena: &'a Bump, stmt: &mut Stmt<'a>, from: Symbol, to: Symbol) {
let mut subs = BumpMap::with_capacity_in(1, arena);
subs.insert(from, to);
// TODO clean this up
let ref_stmt = arena.alloc(stmt.clone());
if let Some(new) = substitute_in_stmt_help(arena, ref_stmt, &subs) {
*stmt = new.clone();
}
}
pub(crate) fn substitute_in_exprs_many<'a>(
arena: &'a Bump,
stmt: &mut Stmt<'a>,
subs: BumpMap<Symbol, Symbol>,
) {
// TODO clean this up
let ref_stmt = arena.alloc(stmt.clone());
if let Some(new) = substitute_in_stmt_help(arena, ref_stmt, &subs) {
*stmt = new.clone();
}
}
fn substitute_in_stmt_help<'a>(
arena: &'a Bump,
stmt: &'a Stmt<'a>,
subs: &BumpMap<Symbol, Symbol>,
) -> Option<&'a Stmt<'a>> {
use Stmt::*;
match stmt {
Let(symbol, expr, layout, cont) => {
let opt_cont = substitute_in_stmt_help(arena, cont, subs);
let opt_expr = substitute_in_expr(arena, expr, subs);
if opt_expr.is_some() || opt_cont.is_some() {
let cont = opt_cont.unwrap_or(cont);
let expr = opt_expr.unwrap_or_else(|| expr.clone());
Some(arena.alloc(Let(*symbol, expr, *layout, cont)))
} else {
None
}
}
Join {
id,
parameters,
remainder,
body: continuation,
} => {
let opt_remainder = substitute_in_stmt_help(arena, remainder, subs);
let opt_continuation = substitute_in_stmt_help(arena, continuation, subs);
if opt_remainder.is_some() || opt_continuation.is_some() {
let remainder = opt_remainder.unwrap_or(remainder);
let continuation = opt_continuation.unwrap_or(*continuation);
Some(arena.alloc(Join {
id: *id,
parameters,
remainder,
body: continuation,
}))
} else {
None
}
}
Switch {
cond_symbol,
cond_layout,
branches,
default_branch,
ret_layout,
} => {
let mut did_change = false;
let cond_symbol = match substitute(subs, *cond_symbol) {
Some(s) => {
did_change = true;
s
}
None => *cond_symbol,
};
let opt_default = substitute_in_stmt_help(arena, default_branch.1, subs);
let opt_branches = Vec::from_iter_in(
branches.iter().map(|(label, info, branch)| {
match substitute_in_stmt_help(arena, branch, subs) {
None => None,
Some(branch) => {
did_change = true;
Some((*label, info.clone(), branch.clone()))
}
}
}),
arena,
);
if opt_default.is_some() || did_change {
let default_branch = (
default_branch.0.clone(),
opt_default.unwrap_or(default_branch.1),
);
let branches = if did_change {
let new = Vec::from_iter_in(
opt_branches.into_iter().zip(branches.iter()).map(
|(opt_branch, branch)| match opt_branch {
None => branch.clone(),
Some(new_branch) => new_branch,
},
),
arena,
);
new.into_bump_slice()
} else {
branches
};
Some(arena.alloc(Switch {
cond_symbol,
cond_layout: *cond_layout,
default_branch,
branches,
ret_layout: *ret_layout,
}))
} else {
None
}
}
Ret(s) => match substitute(subs, *s) {
Some(s) => Some(arena.alloc(Ret(s))),
None => None,
},
Refcounting(modify, cont) => {
// TODO should we substitute in the ModifyRc?
match substitute_in_stmt_help(arena, cont, subs) {
Some(cont) => Some(arena.alloc(Refcounting(*modify, cont))),
None => None,
}
}
Dbg {
source_location,
source,
symbol,
variable,
remainder,
} => {
let new_remainder =
substitute_in_stmt_help(arena, remainder, subs).unwrap_or(remainder);
let expect = Dbg {
source_location,
source,
symbol: substitute(subs, *symbol).unwrap_or(*symbol),
variable: *variable,
remainder: new_remainder,
};
Some(arena.alloc(expect))
}
Expect {
condition,
region,
lookups,
variables,
remainder,
} => {
let new_remainder =
substitute_in_stmt_help(arena, remainder, subs).unwrap_or(remainder);
let new_lookups = Vec::from_iter_in(
lookups.iter().map(|s| substitute(subs, *s).unwrap_or(*s)),
arena,
);
let expect = Expect {
condition: substitute(subs, *condition).unwrap_or(*condition),
region: *region,
lookups: new_lookups.into_bump_slice(),
variables,
remainder: new_remainder,
};
Some(arena.alloc(expect))
}
ExpectFx {
condition,
region,
lookups,
variables,
remainder,
} => {
let new_remainder =
substitute_in_stmt_help(arena, remainder, subs).unwrap_or(remainder);
let new_lookups = Vec::from_iter_in(
lookups.iter().map(|s| substitute(subs, *s).unwrap_or(*s)),
arena,
);
let expect = ExpectFx {
condition: substitute(subs, *condition).unwrap_or(*condition),
region: *region,
lookups: new_lookups.into_bump_slice(),
variables,
remainder: new_remainder,
};
Some(arena.alloc(expect))
}
Jump(id, args) => {
let mut did_change = false;
let new_args = Vec::from_iter_in(
args.iter().map(|s| match substitute(subs, *s) {
None => *s,
Some(s) => {
did_change = true;
s
}
}),
arena,
);
if did_change {
let args = new_args.into_bump_slice();
Some(arena.alloc(Jump(*id, args)))
} else {
None
}
}
Crash(msg, tag) => substitute(subs, *msg).map(|new| &*arena.alloc(Crash(new, *tag))),
}
}
fn substitute_in_call<'a>(
arena: &'a Bump,
call: &'a Call<'a>,
subs: &BumpMap<Symbol, Symbol>,
) -> Option<Call<'a>> {
let Call {
call_type,
arguments,
} = call;
let opt_call_type = match call_type {
CallType::ByName {
name,
arg_layouts,
ret_layout,
specialization_id,
} => substitute(subs, name.name()).map(|new| CallType::ByName {
name: name.replace_name(new),
arg_layouts,
ret_layout: *ret_layout,
specialization_id: *specialization_id,
}),
CallType::ByPointer {
pointer,
arg_layouts,
ret_layout,
} => substitute(subs, *pointer).map(|new| CallType::ByPointer {
pointer: new,
arg_layouts,
ret_layout: *ret_layout,
}),
CallType::Foreign { .. } => None,
CallType::LowLevel { .. } => None,
CallType::HigherOrder { .. } => None,
};
let mut did_change = false;
let new_args = Vec::from_iter_in(
arguments.iter().map(|s| match substitute(subs, *s) {
None => *s,
Some(s) => {
did_change = true;
s
}
}),
arena,
);
if did_change || opt_call_type.is_some() {
let call_type = opt_call_type.unwrap_or_else(|| call_type.clone());
let arguments = new_args.into_bump_slice();
Some(self::Call {
call_type,
arguments,
})
} else {
None
}
}
fn substitute_in_expr<'a>(
arena: &'a Bump,
expr: &'a Expr<'a>,
subs: &BumpMap<Symbol, Symbol>,
) -> Option<Expr<'a>> {
use Expr::*;
match expr {
Literal(_) | EmptyArray | RuntimeErrorFunction(_) => None,
Call(call) => substitute_in_call(arena, call, subs).map(Expr::Call),
Tag {
tag_layout,
tag_id,
arguments: args,
reuse,
} => {
let mut did_change = false;
let new_args = Vec::from_iter_in(
args.iter().map(|s| match substitute(subs, *s) {
None => *s,
Some(s) => {
did_change = true;
s
}
}),
arena,
);
let reuse = match *reuse {
Some(mut ru) => match substitute(subs, ru.symbol) {
Some(s) => {
did_change = true;
ru.symbol = s;
Some(ru)
}
None => Some(ru),
},
None => None,
};
if did_change {
let arguments = new_args.into_bump_slice();
Some(Tag {
tag_layout: *tag_layout,
tag_id: *tag_id,
arguments,
reuse,
})
} else {
None
}
}
NullPointer => None,
Reset { .. } | ResetRef { .. } => {
unreachable!("reset(ref) has not been introduced yet")
}
Struct(args) => {
let mut did_change = false;
let new_args = Vec::from_iter_in(
args.iter().map(|s| match substitute(subs, *s) {
None => *s,
Some(s) => {
did_change = true;
s
}
}),
arena,
);
if did_change {
let args = new_args.into_bump_slice();
Some(Struct(args))
} else {
None
}
}
Array {
elems: args,
elem_layout,
} => {
let mut did_change = false;
let new_args = Vec::from_iter_in(
args.iter().map(|e| {
if let ListLiteralElement::Symbol(s) = e {
match substitute(subs, *s) {
None => ListLiteralElement::Symbol(*s),
Some(s) => {
did_change = true;
ListLiteralElement::Symbol(s)
}
}
} else {
*e
}
}),
arena,
);
if did_change {
let args = new_args.into_bump_slice();
Some(Array {
elem_layout: *elem_layout,
elems: args,
})
} else {
None
}
}
ErasedMake { value, callee } => {
match (
value.and_then(|v| substitute(subs, v)),
substitute(subs, *callee),
) {
(None, None) => None,
(Some(value), None) => Some(ErasedMake {
value: Some(value),
callee: *callee,
}),
(None, Some(callee)) => Some(ErasedMake {
value: *value,
callee,
}),
(Some(value), Some(callee)) => Some(ErasedMake {
value: Some(value),
callee,
}),
}
}
ErasedLoad { symbol, field } => substitute(subs, *symbol).map(|new_symbol| ErasedLoad {
symbol: new_symbol,
field: *field,
}),
FunctionPointer { .. } => None,
StructAtIndex {
index,
structure,
field_layouts,
} => match substitute(subs, *structure) {
Some(structure) => Some(StructAtIndex {
index: *index,
field_layouts,
structure,
}),
None => None,
},
GetTagId {
structure,
union_layout,
} => match substitute(subs, *structure) {
Some(structure) => Some(GetTagId {
structure,
union_layout: *union_layout,
}),
None => None,
},
UnionAtIndex {
structure,
tag_id,
index,
union_layout,
} => match substitute(subs, *structure) {
Some(structure) => Some(UnionAtIndex {
structure,
tag_id: *tag_id,
index: *index,
union_layout: *union_layout,
}),
None => None,
},
// currently only used for tail recursion modulo cons (TRMC)
GetElementPointer {
structure,
indices,
union_layout,
} => match substitute(subs, *structure) {
Some(structure) => Some(GetElementPointer {
structure,
indices,
union_layout: *union_layout,
}),
None => None,
},
Alloca {
element_layout,
initializer,
} => match substitute(subs, (*initializer)?) {
Some(initializer) => Some(Alloca {
element_layout: *element_layout,
initializer: Some(initializer),
}),
None => None,
},
}
}
/// We want to re-use symbols that are not function symbols
/// for any other expression, we create a new symbol, and will
/// later make sure it gets assigned the correct value.
#[derive(Debug)]
enum ReuseSymbol {
Imported(Symbol),
LocalFunction(Symbol),
Value(Symbol),
UnspecializedExpr(Symbol),
NotASymbol,
}
fn can_reuse_symbol<'a>(
env: &mut Env<'a, '_>,
layout_cache: &mut LayoutCache<'a>,
procs: &mut Procs<'a>,
expr: &roc_can::expr::Expr,
expr_var: Variable,
) -> ReuseSymbol {
use roc_can::expr::Expr::*;
use ReuseSymbol::*;
let symbol = match expr {
AbilityMember(member, specialization_id, _) => {
late_resolve_ability_specialization(env, *member, *specialization_id, expr_var)
}
Var(symbol, _) => *symbol,
RecordAccess {
record_var,
field,
loc_expr,
..
} => {
let sorted_fields_result = {
let mut layout_env =
layout::Env::from_components(layout_cache, env.subs, env.arena);
layout::sort_record_fields(&mut layout_env, *record_var)
};
let sorted_fields = match sorted_fields_result {
Ok(fields) => fields,
Err(_) => unreachable!("Can't access record with improper layout"),
};
let index = sorted_fields
.into_iter()
.enumerate()
.find_map(|(current, (label, _, _))| (label == *field).then_some(current));
let struct_index = index.expect("field not in its own type");
let struct_symbol = possible_reuse_symbol_or_specialize(
env,
procs,
layout_cache,
&loc_expr.value,
*record_var,
);
match env
.struct_indexing
.get((struct_symbol, struct_index as u64))
{
Some(symbol) => *symbol,
None => {
return NotASymbol;
}
}
}
_ => return NotASymbol,
};
let arguments = [
Symbol::ARG_1,
Symbol::ARG_2,
Symbol::ARG_3,
Symbol::ARG_4,
Symbol::ARG_5,
Symbol::ARG_6,
Symbol::ARG_7,
];
if arguments.contains(&symbol) {
Value(symbol)
} else if env.is_imported_symbol(symbol) || env.is_unloaded_derived_symbol(symbol, procs) {
Imported(symbol)
} else if procs.partial_procs.contains_key(symbol) {
LocalFunction(symbol)
} else if procs.ability_member_aliases.get(symbol).is_some() {
UnspecializedExpr(symbol)
} else {
Value(symbol)
}
}
fn possible_reuse_symbol_or_specialize<'a>(
env: &mut Env<'a, '_>,
procs: &mut Procs<'a>,
layout_cache: &mut LayoutCache<'a>,
expr: &roc_can::expr::Expr,
var: Variable,
) -> Symbol {
match can_reuse_symbol(env, layout_cache, procs, expr, var) {
ReuseSymbol::Value(symbol) => {
procs.get_or_insert_symbol_specialization(env, layout_cache, symbol, var)
}
_ => env.unique_symbol(),
}
}
fn handle_variable_aliasing<'a, BuildRest>(
env: &mut Env<'a, '_>,
procs: &mut Procs<'a>,
layout_cache: &mut LayoutCache<'a>,
variable: Variable,
left: Symbol,
right: Symbol,
build_rest: BuildRest,
) -> Stmt<'a>
where
BuildRest: FnOnce(&mut Env<'a, '_>, &mut Procs<'a>, &mut LayoutCache<'a>) -> Stmt<'a>,
{
// 1. Handle references to ability members - we could be aliasing an ability member, or another
// alias to an ability member.
{
let is_ability_member = env
.abilities
.with_module_abilities_store(env.home, |store| store.is_ability_member_name(right));
if is_ability_member {
procs
.ability_member_aliases
.insert(left, AbilityMember(right));
return build_rest(env, procs, layout_cache);
}
if let Some(&ability_member) = procs.ability_member_aliases.get(right) {
procs.ability_member_aliases.insert(left, ability_member);
return build_rest(env, procs, layout_cache);
}
}
// We should never reference a partial proc - instead, we want to generate closure data and
// leave it there, even if the lambda set is unary. That way, we avoid having to try to resolve
// lambda set of the proc based on the symbol name, which can cause many problems!
// See my git blame for details.
debug_assert!(!procs.partial_procs.contains_key(right));
let result = build_rest(env, procs, layout_cache);
if procs.is_imported_module_thunk(right) {
// if this is an imported symbol, then we must make sure it is
// specialized, and wrap the original in a function pointer.
add_needed_external(procs, env, variable, LambdaName::no_niche(right));
let res_layout = layout_cache.from_var(env.arena, variable, env.subs);
let layout = return_on_layout_error!(env, res_layout, "handle_variable_aliasing");
force_thunk(env, right, layout, left, env.arena.alloc(result))
} else if env.is_imported_symbol(right) {
// if this is an imported symbol, then we must make sure it is
// specialized, and wrap the original in a function pointer.
add_needed_external(procs, env, variable, LambdaName::no_niche(right));
// then we must construct its closure; since imported symbols have no closure, we use the empty struct
let_empty_struct(left, env.arena.alloc(result))
} else {
let mut result = result;
substitute_in_exprs(env.arena, &mut result, left, right);
result
}
}
fn force_thunk<'a>(
env: &mut Env<'a, '_>,
thunk_name: Symbol,
layout: InLayout<'a>,
assigned: Symbol,
hole: &'a Stmt<'a>,
) -> Stmt<'a> {
let call = self::Call {
call_type: CallType::ByName {
name: LambdaName::no_niche(thunk_name),
ret_layout: layout,
arg_layouts: &[],
specialization_id: env.next_call_specialization_id(),
},
arguments: &[],
};
build_call(env, call, assigned, layout, env.arena.alloc(hole))
}
fn let_empty_struct<'a>(assigned: Symbol, hole: &'a Stmt<'a>) -> Stmt<'a> {
Stmt::Let(assigned, Expr::Struct(&[]), Layout::UNIT, hole)
}
/// If the symbol is a function or polymorphic value, make sure it is properly specialized
fn specialize_symbol<'a>(
env: &mut Env<'a, '_>,
procs: &mut Procs<'a>,
layout_cache: &mut LayoutCache<'a>,
arg_var: Option<Variable>,
assign_to: Symbol,
result: &'a Stmt<'a>,
original: Symbol,
) -> Stmt<'a> {
match procs.get_partial_proc(original) {
None => {
match arg_var {
Some(arg_var)
if env.is_imported_symbol(original)
|| env.is_unloaded_derived_symbol(original, procs) =>
{
let raw = match layout_cache.raw_from_var(env.arena, arg_var, env.subs) {
Ok(v) => v,
Err(e) => return_on_layout_error_help!(env, e, "specialize_symbol"),
};
match raw {
RawFunctionLayout::Function(_, lambda_set, _)
if !procs.is_imported_module_thunk(original) =>
{
let lambda_name =
find_lambda_name(env, layout_cache, lambda_set, original, &[]);
debug_assert!(
lambda_name.no_captures(),
"imported functions are top-level and should never capture"
);
let function_ptr_layout =
ProcLayout::from_raw_named(env.arena, lambda_name, raw);
procs.insert_passed_by_name(
env,
arg_var,
lambda_name,
function_ptr_layout,
layout_cache,
);
construct_closure_data(
env,
procs,
layout_cache,
lambda_set,
lambda_name,
&[],
assign_to,
env.arena.alloc(result),
)
}
_ => {
// This is an imported ZAT that returns either a value, or the closure
// data for a lambda set.
let layout = match raw {
RawFunctionLayout::ZeroArgumentThunk(layout) => layout,
RawFunctionLayout::ErasedFunction(..) => todo_lambda_erasure!(),
RawFunctionLayout::Function(_, lambda_set, _) => layout_cache
.put_in_direct_no_semantic(LayoutRepr::LambdaSet(lambda_set)),
};
let raw = RawFunctionLayout::ZeroArgumentThunk(layout);
let lambda_name = LambdaName::no_niche(original);
let top_level = ProcLayout::from_raw_named(env.arena, lambda_name, raw);
procs.insert_passed_by_name(
env,
arg_var,
lambda_name,
top_level,
layout_cache,
);
force_thunk(env, original, layout, assign_to, env.arena.alloc(result))
}
}
}
_ => {
// danger: a foreign symbol may not be specialized!
debug_assert!(
!env.is_imported_symbol(original),
"symbol {:?} while processing module {:?}",
original,
(env.home, &arg_var),
);
// Replaces references of `assign_to` in the rest of the block with `original`,
// since we don't actually need to specialize the original symbol to a value.
//
// This usually means we are using a symbol received from a joinpoint.
let mut result = result.clone();
substitute_in_exprs(env.arena, &mut result, assign_to, original);
result
}
}
}
Some(partial_proc) => {
let arg_var = arg_var.unwrap_or(partial_proc.annotation);
// this symbol is a function, that is used by-name (e.g. as an argument to another
// function). Register it with the current variable, then create a function pointer
// to it in the IR.
let res_layout = return_on_layout_error!(
env,
layout_cache.raw_from_var(env.arena, arg_var, env.subs),
"specialize_symbol res_layout"
);
// we have three kinds of functions really. Plain functions, closures by capture,
// and closures by unification. Here we record whether this function captures
// anything.
let captures = partial_proc.captured_symbols.captures();
let captured = partial_proc.captured_symbols;
match res_layout {
RawFunctionLayout::Function(_, lambda_set, _) => {
if captures {
let symbols = match captured {
CapturedSymbols::Captured(captured_symbols) => {
Vec::from_iter_in(captured_symbols.iter(), env.arena)
.into_bump_slice()
}
CapturedSymbols::None => unreachable!(),
};
let lambda_name = find_lambda_name(
env,
layout_cache,
lambda_set,
original,
symbols.iter().copied(),
);
// define the function pointer
let function_ptr_layout =
ProcLayout::from_raw_named(env.arena, lambda_name, res_layout);
// this is a closure by capture, meaning it itself captures local variables.
procs.insert_passed_by_name(
env,
arg_var,
lambda_name,
function_ptr_layout,
layout_cache,
);
let closure_data = assign_to;
construct_closure_data(
env,
procs,
layout_cache,
lambda_set,
lambda_name,
symbols.iter().copied(),
closure_data,
env.arena.alloc(result),
)
} else if procs.is_module_thunk(original) {
// this is a 0-argument thunk
// TODO suspicious
// let layout = Layout::Closure(argument_layouts, lambda_set, ret_layout);
// panic!("suspicious");
let layout = lambda_set.full_layout;
let top_level = ProcLayout::new(env.arena, &[], Niche::NONE, layout);
procs.insert_passed_by_name(
env,
arg_var,
LambdaName::no_niche(original),
top_level,
layout_cache,
);
force_thunk(env, original, layout, assign_to, env.arena.alloc(result))
} else {
// even though this function may not itself capture,
// unification may still cause it to have an extra argument
let lambda_name =
find_lambda_name(env, layout_cache, lambda_set, original, &[]);
debug_assert!(lambda_name.no_captures());
// define the function pointer
let function_ptr_layout =
ProcLayout::from_raw_named(env.arena, lambda_name, res_layout);
procs.insert_passed_by_name(
env,
arg_var,
lambda_name,
function_ptr_layout,
layout_cache,
);
construct_closure_data(
env,
procs,
layout_cache,
lambda_set,
lambda_name,
&[],
assign_to,
env.arena.alloc(result),
)
}
}
RawFunctionLayout::ErasedFunction(argument_layouts, ret_layout) => {
let erased_lambda = erased::ResolvedErasedLambda::new(
env,
layout_cache,
original,
captured,
argument_layouts,
ret_layout,
);
let lambda_name = erased_lambda.lambda_name();
let proc_layout =
ProcLayout::from_raw_named(env.arena, lambda_name, res_layout);
procs.insert_passed_by_name(
env,
arg_var,
lambda_name,
proc_layout,
layout_cache,
);
erased::build_erased_function(
env,
layout_cache,
erased_lambda,
assign_to,
result,
)
}
RawFunctionLayout::ZeroArgumentThunk(ret_layout) => {
// this is a 0-argument thunk
let top_level = ProcLayout::new(env.arena, &[], Niche::NONE, ret_layout);
procs.insert_passed_by_name(
env,
arg_var,
LambdaName::no_niche(original),
top_level,
layout_cache,
);
force_thunk(
env,
original,
ret_layout,
assign_to,
env.arena.alloc(result),
)
}
}
}
}
}
fn assign_to_symbol<'a>(
env: &mut Env<'a, '_>,
procs: &mut Procs<'a>,
layout_cache: &mut LayoutCache<'a>,
arg_var: Variable,
loc_arg: Loc<roc_can::expr::Expr>,
symbol: Symbol,
result: Stmt<'a>,
) -> Stmt<'a> {
use ReuseSymbol::*;
match can_reuse_symbol(env, layout_cache, procs, &loc_arg.value, arg_var) {
Imported(original) | LocalFunction(original) | UnspecializedExpr(original) => {
// for functions we must make sure they are specialized correctly
specialize_symbol(
env,
procs,
layout_cache,
Some(arg_var),
symbol,
env.arena.alloc(result),
original,
)
}
Value(_symbol) => result,
NotASymbol => with_hole(
env,
loc_arg.value,
arg_var,
procs,
layout_cache,
symbol,
env.arena.alloc(result),
),
}
}
fn assign_to_symbols<'a, I>(
env: &mut Env<'a, '_>,
procs: &mut Procs<'a>,
layout_cache: &mut LayoutCache<'a>,
iter: I,
mut result: Stmt<'a>,
) -> Stmt<'a>
where
I: Iterator<Item = ((Variable, Loc<roc_can::expr::Expr>), &'a Symbol)>,
{
for ((arg_var, loc_arg), symbol) in iter {
result = assign_to_symbol(env, procs, layout_cache, arg_var, loc_arg, *symbol, result);
}
result
}
fn add_needed_external<'a>(
procs: &mut Procs<'a>,
env: &mut Env<'a, '_>,
fn_var: Variable,
name: LambdaName<'a>,
) {
// call of a function that is not in this module
use hashbrown::hash_map::Entry::{Occupied, Vacant};
let existing = match procs.externals_we_need.entry(name.name().module_id()) {
Vacant(entry) => entry.insert(ExternalSpecializations::new()),
Occupied(entry) => entry.into_mut(),
};
roc_tracing::debug!(proc_name = ?name, ?fn_var, fn_content = ?roc_types::subs::SubsFmtContent(env.subs.get_content_without_compacting(fn_var), env.subs), "needed external");
existing.insert_external(name, env.subs, fn_var);
}
fn build_call<'a>(
_env: &mut Env<'a, '_>,
call: Call<'a>,
assigned: Symbol,
return_layout: InLayout<'a>,
hole: &'a Stmt<'a>,
) -> Stmt<'a> {
Stmt::Let(assigned, Expr::Call(call), return_layout, hole)
}
/// See https://github.com/roc-lang/roc/issues/1549
///
/// What happened is that a function has a type error, but the arguments are not processed.
/// That means specializations were missing. Normally that is not a problem, but because
/// of our closure strategy, internal functions can "leak". That's what happened here.
///
/// The solution is to evaluate the arguments as normal, and only when calling the function give an error
fn evaluate_arguments_then_runtime_error<'a>(
env: &mut Env<'a, '_>,
procs: &mut Procs<'a>,
layout_cache: &mut LayoutCache<'a>,
msg: String,
loc_args: std::vec::Vec<(Variable, Loc<roc_can::expr::Expr>)>,
) -> Stmt<'a> {
let arena = env.arena;
// eventually we will throw this runtime error
let result = runtime_error(env, env.arena.alloc(msg));
// but, we also still evaluate and specialize the arguments to give better error messages
let arg_symbols = Vec::from_iter_in(
loc_args.iter().map(|(var, arg_expr)| {
possible_reuse_symbol_or_specialize(env, procs, layout_cache, &arg_expr.value, *var)
}),
arena,
)
.into_bump_slice();
let iter = loc_args.into_iter().rev().zip(arg_symbols.iter().rev());
assign_to_symbols(env, procs, layout_cache, iter, result)
}
#[allow(clippy::too_many_arguments)]
fn call_by_name<'a>(
env: &mut Env<'a, '_>,
procs: &mut Procs<'a>,
fn_var: Variable,
proc_name: Symbol,
loc_args: std::vec::Vec<(Variable, Loc<roc_can::expr::Expr>)>,
layout_cache: &mut LayoutCache<'a>,
assigned: Symbol,
hole: &'a Stmt<'a>,
) -> Stmt<'a> {
// Register a pending_specialization for this function
match layout_cache.raw_from_var(env.arena, fn_var, env.subs) {
Err(LayoutProblem::UnresolvedTypeVar(var)) => {
let msg = format!(
"Hit an unresolved type variable {var:?} when creating a layout for {proc_name:?} (var {fn_var:?})"
);
evaluate_arguments_then_runtime_error(env, procs, layout_cache, msg, loc_args)
}
Err(LayoutProblem::Erroneous) => {
let msg = format!("Hit an erroneous type when creating a layout for {proc_name:?}");
evaluate_arguments_then_runtime_error(env, procs, layout_cache, msg, loc_args)
}
Ok(RawFunctionLayout::Function(arg_layouts, lambda_set, ret_layout)) => {
if procs.is_module_thunk(proc_name) {
if loc_args.is_empty() {
call_by_name_module_thunk(
env,
procs,
fn_var,
proc_name,
lambda_set.full_layout,
layout_cache,
assigned,
hole,
)
} else {
// here we turn a call to a module thunk into forcing of that thunk
// the thunk represents the closure environment for the body, so we then match
// on the closure environment to perform the call that the body represents.
//
// Example:
//
// > main = parseA "foo" "bar"
// > parseA = Str.concat
let closure_data_symbol = env.unique_symbol();
let arena = env.arena;
let arg_symbols = Vec::from_iter_in(
loc_args.iter().map(|(arg_var, arg_expr)| {
possible_reuse_symbol_or_specialize(
env,
procs,
layout_cache,
&arg_expr.value,
*arg_var,
)
}),
arena,
)
.into_bump_slice();
debug_assert_eq!(arg_symbols.len(), arg_layouts.len());
let result = match_on_lambda_set(
env,
layout_cache,
procs,
lambda_set,
closure_data_symbol,
arg_symbols,
arg_layouts,
ret_layout,
assigned,
hole,
);
let result = call_by_name_module_thunk(
env,
procs,
fn_var,
proc_name,
lambda_set.full_layout,
layout_cache,
closure_data_symbol,
env.arena.alloc(result),
);
let iter = loc_args.into_iter().rev().zip(arg_symbols.iter().rev());
assign_to_symbols(env, procs, layout_cache, iter, result)
}
} else {
call_by_name_help(
env,
procs,
fn_var,
proc_name,
loc_args,
lambda_set,
arg_layouts,
ret_layout,
layout_cache,
assigned,
hole,
)
}
}
Ok(RawFunctionLayout::ErasedFunction(arg_layouts, ret_layout)) => {
// TODO(erased-lambdas) call-by-name should never apply here
let arena = env.arena;
let arg_symbols = Vec::from_iter_in(
loc_args.iter().map(|(arg_var, arg_expr)| {
possible_reuse_symbol_or_specialize(
env,
procs,
layout_cache,
&arg_expr.value,
*arg_var,
)
}),
arena,
)
.into_bump_slice();
let result = erased::call_erased_function(
env,
layout_cache,
procs,
roc_can::expr::Expr::Var(proc_name, fn_var),
fn_var,
(arg_layouts, ret_layout),
arg_symbols,
assigned,
hole,
// TODO is this right??
ret_layout,
);
let iter = loc_args.into_iter().rev().zip(arg_symbols.iter().rev());
assign_to_symbols(env, procs, layout_cache, iter, result)
}
Ok(RawFunctionLayout::ZeroArgumentThunk(ret_layout)) => {
if procs.is_module_thunk(proc_name) {
// here we turn a call to a module thunk into forcing of that thunk
call_by_name_module_thunk(
env,
procs,
fn_var,
proc_name,
ret_layout,
layout_cache,
assigned,
hole,
)
} else if env.is_imported_symbol(proc_name) {
add_needed_external(procs, env, fn_var, LambdaName::no_niche(proc_name));
force_thunk(env, proc_name, ret_layout, assigned, hole)
} else {
panic!("most likely we're trying to call something that is not a function");
}
}
}
}
#[allow(clippy::too_many_arguments)]
fn call_by_name_help<'a>(
env: &mut Env<'a, '_>,
procs: &mut Procs<'a>,
fn_var: Variable,
proc_name: Symbol,
loc_args: std::vec::Vec<(Variable, Loc<roc_can::expr::Expr>)>,
lambda_set: LambdaSet<'a>,
argument_layouts: &'a [InLayout<'a>],
ret_layout: InLayout<'a>,
layout_cache: &mut LayoutCache<'a>,
assigned: Symbol,
hole: &'a Stmt<'a>,
) -> Stmt<'a> {
let original_fn_var = fn_var;
let arena = env.arena;
// the arguments given to the function, stored in symbols
let mut field_symbols = Vec::with_capacity_in(loc_args.len(), arena);
field_symbols.extend(loc_args.iter().map(|(arg_var, arg_expr)| {
possible_reuse_symbol_or_specialize(env, procs, layout_cache, &arg_expr.value, *arg_var)
}));
// THEORY: with a call by name, there are three options:
// - this is actually a thunk, and the lambda set is empty
// - the name references a function directly, like `main = \x -> ...`. In this case the
// lambda set includes only the function itself, and hence there is exactly one captures
// niche for the function.
// - the name references a value that yields a function, like
// `main = if b then \x -> .. else \y -> ..`. In that case the name being called never
// actually appears in the lambda set, and in fact has no capture set, and hence no
// captures niche.
// So, if this function has any captures niche, it will be the first one.
let mut iter_lambda_names = lambda_set
.iter_set()
.filter(|lam_name| lam_name.name() == proc_name);
let proc_name = match iter_lambda_names.next() {
Some(name) => {
debug_assert!(
iter_lambda_names.next().is_none(),
"Somehow, call by name for {proc_name:?} has multiple capture niches: {lambda_set:?}"
);
name
}
None => LambdaName::no_niche(proc_name),
};
// If required, add an extra argument to the layout that is the captured environment
// afterwards, we MUST make sure the number of arguments in the layout matches the
// number of arguments actually passed.
let top_level_layout = {
let argument_layouts =
lambda_set.extend_argument_list_for_named(env.arena, proc_name, argument_layouts);
ProcLayout::new(env.arena, argument_layouts, proc_name.niche(), ret_layout)
};
// the variables of the given arguments
let mut pattern_vars = Vec::with_capacity_in(loc_args.len(), arena);
for (var, _) in &loc_args {
match layout_cache.from_var(env.arena, *var, env.subs) {
Ok(_) => {
pattern_vars.push(*var);
}
Err(_) => {
// One of this function's arguments code gens to a runtime error,
// so attempting to call it will immediately crash.
return runtime_error(env, "TODO runtime error for invalid layout");
}
}
}
// If we've already specialized this one, no further work is needed.
if procs
.specialized
.is_specialized(proc_name.name(), &top_level_layout)
{
debug_assert_eq!(
argument_layouts.len(),
field_symbols.len(),
"see call_by_name for background (scroll down a bit), function is {proc_name:?}",
);
call_specialized_proc(
env,
procs,
proc_name,
lambda_set,
RawFunctionLayout::Function(argument_layouts, lambda_set, ret_layout),
top_level_layout,
field_symbols.into_bump_slice(),
loc_args,
layout_cache,
assigned,
hole,
)
} else if env.is_imported_symbol(proc_name.name())
|| env.is_unloaded_derived_symbol(proc_name.name(), procs)
{
add_needed_external(procs, env, original_fn_var, proc_name);
debug_assert_ne!(proc_name.name().module_id(), ModuleId::ATTR);
if procs.is_imported_module_thunk(proc_name.name()) {
force_thunk(
env,
proc_name.name(),
lambda_set.full_layout,
assigned,
hole,
)
} else if field_symbols.is_empty() {
// this is a case like `Str.concat`, an imported standard function, applied to zero arguments
// imported symbols cannot capture anything
let captured = &[];
debug_assert!(proc_name.no_captures());
construct_closure_data(
env,
procs,
layout_cache,
lambda_set,
proc_name,
captured,
assigned,
hole,
)
} else {
debug_assert_eq!(
argument_layouts.len(),
field_symbols.len(),
"see call_by_name for background (scroll down a bit), function is {proc_name:?}",
);
let field_symbols = field_symbols.into_bump_slice();
let call = self::Call {
call_type: CallType::ByName {
name: proc_name,
ret_layout,
arg_layouts: argument_layouts,
specialization_id: env.next_call_specialization_id(),
},
arguments: field_symbols,
};
let result = build_call(env, call, assigned, ret_layout, hole);
let iter = loc_args.into_iter().rev().zip(field_symbols.iter().rev());
assign_to_symbols(env, procs, layout_cache, iter, result)
}
} else {
// When requested (that is, when procs.pending_specializations is `Some`),
// store a pending specialization rather than specializing immediately.
//
// We do this so that we can do specialization in two passes: first,
// build the mono_expr with all the specialized calls in place (but
// no specializations performed yet), and then second, *after*
// de-duplicating requested specializations (since multiple modules
// which could be getting monomorphized in parallel might request
// the same specialization independently), we work through the
// queue of pending specializations to complete each specialization
// exactly once.
if procs.is_module_thunk(proc_name.name()) {
debug_assert!(top_level_layout.arguments.is_empty());
}
let needs_suspended_specialization =
procs.symbol_needs_suspended_specialization(proc_name.name());
match (
&mut procs.pending_specializations,
needs_suspended_specialization,
) {
(PendingSpecializations::Finding(suspended), _)
| (PendingSpecializations::Making(suspended), true) => {
debug_assert!(!env.is_imported_symbol(proc_name.name()));
// register the pending specialization, so this gets code genned later
suspended.specialization(env.subs, proc_name, top_level_layout, fn_var);
debug_assert_eq!(
argument_layouts.len(),
field_symbols.len(),
"see call_by_name for background (scroll down a bit), function is {proc_name:?}",
);
let field_symbols = field_symbols.into_bump_slice();
call_specialized_proc(
env,
procs,
proc_name,
lambda_set,
RawFunctionLayout::Function(argument_layouts, lambda_set, ret_layout),
top_level_layout,
field_symbols,
loc_args,
layout_cache,
assigned,
hole,
)
}
(PendingSpecializations::Making(_), false) => {
let opt_partial_proc = procs.partial_procs.symbol_to_id(proc_name.name());
let field_symbols = field_symbols.into_bump_slice();
match opt_partial_proc {
Some(partial_proc) => {
// Mark this proc as in-progress, so if we're dealing with
// mutually recursive functions, we don't loop forever.
// (We had a bug around this before this system existed!)
procs
.specialized
.mark_in_progress(proc_name.name(), top_level_layout);
match specialize_variable(
env,
procs,
proc_name,
layout_cache,
fn_var,
partial_proc,
) {
Ok((proc, layout)) => {
let proc_name = proc.name;
let function_layout =
ProcLayout::from_raw_named(env.arena, proc_name, layout);
procs.specialized.insert_specialized(
proc_name.name(),
function_layout,
proc,
);
// now we just call our freshly-specialized function
call_specialized_proc(
env,
procs,
proc_name,
lambda_set,
layout,
function_layout,
field_symbols,
loc_args,
layout_cache,
assigned,
hole,
)
}
Err(SpecializeFailure { attempted_layout }) => {
let proc = generate_runtime_error_function(
env,
proc_name,
attempted_layout,
);
let proc_name = proc.name;
let function_layout = ProcLayout::from_raw_named(
env.arena,
proc_name,
attempted_layout,
);
procs.specialized.insert_specialized(
proc_name.name(),
function_layout,
proc,
);
call_specialized_proc(
env,
procs,
proc_name,
lambda_set,
attempted_layout,
function_layout,
field_symbols,
loc_args,
layout_cache,
assigned,
hole,
)
}
}
}
None => {
unreachable!("Proc name {:?} is invalid", proc_name)
}
}
}
}
}
}
#[allow(clippy::too_many_arguments)]
fn call_by_name_module_thunk<'a>(
env: &mut Env<'a, '_>,
procs: &mut Procs<'a>,
fn_var: Variable,
proc_name: Symbol,
ret_layout: InLayout<'a>,
layout_cache: &mut LayoutCache<'a>,
assigned: Symbol,
hole: &'a Stmt<'a>,
) -> Stmt<'a> {
let top_level_layout = ProcLayout::new(env.arena, &[], Niche::NONE, ret_layout);
let inner_layout = ret_layout;
// If we've already specialized this one, no further work is needed.
let already_specialized = procs
.specialized
.is_specialized(proc_name, &top_level_layout);
if already_specialized {
force_thunk(env, proc_name, inner_layout, assigned, hole)
} else {
// When requested (that is, when procs.pending_specializations is `Some`),
// store a pending specialization rather than specializing immediately.
//
// We do this so that we can do specialization in two passes: first,
// build the mono_expr with all the specialized calls in place (but
// no specializations performed yet), and then second, *after*
// de-duplicating requested specializations (since multiple modules
// which could be getting monomorphized in parallel might request
// the same specialization independently), we work through the
// queue of pending specializations to complete each specialization
// exactly once.
if procs.is_module_thunk(proc_name) {
debug_assert!(top_level_layout.arguments.is_empty());
}
let needs_suspended_specialization = procs.symbol_needs_suspended_specialization(proc_name);
match (
&mut procs.pending_specializations,
needs_suspended_specialization,
) {
(PendingSpecializations::Finding(suspended), _)
| (PendingSpecializations::Making(suspended), true) => {
debug_assert!(!env.is_imported_symbol(proc_name));
// register the pending specialization, so this gets code genned later
suspended.specialization(
env.subs,
LambdaName::no_niche(proc_name),
top_level_layout,
fn_var,
);
force_thunk(env, proc_name, inner_layout, assigned, hole)
}
(PendingSpecializations::Making(_), false) => {
let opt_partial_proc = procs.partial_procs.symbol_to_id(proc_name);
match opt_partial_proc {
Some(partial_proc) => {
// Mark this proc as in-progress, so if we're dealing with
// mutually recursive functions, we don't loop forever.
// (We had a bug around this before this system existed!)
procs
.specialized
.mark_in_progress(proc_name, top_level_layout);
match specialize_variable(
env,
procs,
LambdaName::no_niche(proc_name),
layout_cache,
fn_var,
partial_proc,
) {
Ok((proc, raw_layout)) => {
debug_assert!(
raw_layout.is_zero_argument_thunk(),
"but actually {raw_layout:?}"
);
let was_present = procs
.specialized
.remove_specialized(proc_name, &top_level_layout);
debug_assert!(was_present);
procs.specialized.insert_specialized(
proc_name,
top_level_layout,
proc,
);
force_thunk(env, proc_name, inner_layout, assigned, hole)
}
Err(SpecializeFailure { attempted_layout }) => {
let proc = generate_runtime_error_function(
env,
LambdaName::no_niche(proc_name),
attempted_layout,
);
let was_present = procs
.specialized
.remove_specialized(proc_name, &top_level_layout);
debug_assert!(was_present);
procs.specialized.insert_specialized(
proc_name,
top_level_layout,
proc,
);
force_thunk(env, proc_name, inner_layout, assigned, hole)
}
}
}
None => {
unreachable!("Proc name {:?} is invalid", proc_name)
}
}
}
}
}
}
#[allow(clippy::too_many_arguments)]
fn call_specialized_proc<'a>(
env: &mut Env<'a, '_>,
procs: &mut Procs<'a>,
proc_name: LambdaName<'a>,
lambda_set: LambdaSet<'a>,
layout: RawFunctionLayout<'a>,
function_layout: ProcLayout<'a>,
field_symbols: &'a [Symbol],
loc_args: std::vec::Vec<(Variable, Loc<roc_can::expr::Expr>)>,
layout_cache: &mut LayoutCache<'a>,
assigned: Symbol,
hole: &'a Stmt<'a>,
) -> Stmt<'a> {
if field_symbols.is_empty() {
debug_assert!(loc_args.is_empty());
// This happens when we return a function, e.g.
//
// foo = Num.add
//
// Even though the layout (and type) are functions,
// there are no arguments. This confuses our IR,
// and we have to fix it here.
match layout {
RawFunctionLayout::Function(_, lambda_set, _) => {
// when the body is a closure, the function will return the closure environment
let call = self::Call {
call_type: CallType::ByName {
name: proc_name,
ret_layout: function_layout.result,
arg_layouts: function_layout.arguments,
specialization_id: env.next_call_specialization_id(),
},
arguments: field_symbols,
};
// the closure argument is already added here (to get the right specialization)
// but now we need to remove it because the `match_on_lambda_set` will add it again
build_call(env, call, assigned, lambda_set.full_layout, hole)
}
RawFunctionLayout::ErasedFunction(..) => todo_lambda_erasure!(),
RawFunctionLayout::ZeroArgumentThunk(_) => {
unreachable!()
}
}
} else {
let iter = loc_args.into_iter().rev().zip(field_symbols.iter().rev());
match procs
.partial_procs
.get_symbol(proc_name.name())
.map(|pp| &pp.captured_symbols)
{
Some(&CapturedSymbols::Captured(captured_symbols)) => {
let symbols =
Vec::from_iter_in(captured_symbols.iter(), env.arena).into_bump_slice();
let closure_data_symbol = env.unique_symbol();
// the closure argument is already added here (to get the right specialization)
// but now we need to remove it because the `match_on_lambda_set` will add it again
let mut argument_layouts =
Vec::from_iter_in(function_layout.arguments.iter().copied(), env.arena);
argument_layouts.pop().unwrap();
debug_assert_eq!(argument_layouts.len(), field_symbols.len(),);
let new_hole = match_on_lambda_set(
env,
layout_cache,
procs,
lambda_set,
closure_data_symbol,
field_symbols,
argument_layouts.into_bump_slice(),
function_layout.result,
assigned,
hole,
);
let result = construct_closure_data(
env,
procs,
layout_cache,
lambda_set,
proc_name,
symbols.iter().copied(),
closure_data_symbol,
env.arena.alloc(new_hole),
);
assign_to_symbols(env, procs, layout_cache, iter, result)
}
_ => {
debug_assert_eq!(
function_layout.arguments.len(),
field_symbols.len(),
"function {:?} with layout {:#?} expects {:?} arguments, but is applied to {:?}",
proc_name,
function_layout,
function_layout.arguments.len(),
field_symbols.len(),
);
let call = self::Call {
call_type: CallType::ByName {
name: proc_name,
ret_layout: function_layout.result,
arg_layouts: function_layout.arguments,
specialization_id: env.next_call_specialization_id(),
},
arguments: field_symbols,
};
let result = build_call(env, call, assigned, function_layout.result, hole);
assign_to_symbols(env, procs, layout_cache, iter, result)
}
}
}
}
fn assign_num_literal_expr<'a>(
env: &mut Env<'a, '_>,
layout_cache: &mut LayoutCache<'a>,
assigned: Symbol,
variable: Variable,
num_str: &str,
num_value: IntOrFloatValue,
hole: &'a Stmt<'a>,
) -> Result<Stmt<'a>, RuntimeError> {
let layout = layout_cache.from_var(env.arena, variable, env.subs)?;
let literal =
make_num_literal(&layout_cache.interner, layout, num_str, num_value).to_expr_literal();
Ok(Stmt::Let(assigned, Expr::Literal(literal), layout, hole))
}
type ToLowLevelCallArguments<'a> = (
LambdaName<'a>,
Symbol,
Option<InLayout<'a>>,
CallSpecId,
UpdateModeId,
);
/// Use the lambda set to figure out how to make a lowlevel call
#[allow(clippy::too_many_arguments)]
fn lowlevel_match_on_lambda_set<'a, ToLowLevelCall>(
env: &mut Env<'a, '_>,
layout_cache: &LayoutCache<'a>,
lambda_set: LambdaSet<'a>,
op: LowLevel,
closure_data_symbol: Symbol,
to_lowlevel_call: ToLowLevelCall,
return_layout: InLayout<'a>,
assigned: Symbol,
hole: &'a Stmt<'a>,
) -> Stmt<'a>
where
ToLowLevelCall: Fn(ToLowLevelCallArguments<'a>) -> Call<'a> + Copy,
{
match lambda_set.call_by_name_options(&layout_cache.interner) {
ClosureCallOptions::Void => empty_lambda_set_error(env),
ClosureCallOptions::Union(union_layout) => {
let closure_tag_id_symbol = env.unique_symbol();
let result = lowlevel_union_lambda_set_to_switch(
env,
lambda_set.iter_set(),
closure_tag_id_symbol,
union_layout.tag_id_layout(),
closure_data_symbol,
lambda_set.is_represented(&layout_cache.interner),
to_lowlevel_call,
return_layout,
assigned,
hole,
);
// extract & assign the closure_tag_id_symbol
let expr = Expr::GetTagId {
structure: closure_data_symbol,
union_layout,
};
Stmt::Let(
closure_tag_id_symbol,
expr,
union_layout.tag_id_layout(),
env.arena.alloc(result),
)
}
ClosureCallOptions::Struct { .. } => match lambda_set.iter_set().next() {
Some(lambda_name) => {
let call_spec_id = env.next_call_specialization_id();
let update_mode = env.next_update_mode_id();
let call = to_lowlevel_call((
lambda_name,
closure_data_symbol,
lambda_set.is_represented(&layout_cache.interner),
call_spec_id,
update_mode,
));
build_call(env, call, assigned, return_layout, env.arena.alloc(hole))
}
None => {
eprintln!(
"a function passed to `{op:?}` LowLevel call has an empty lambda set!
The most likely reason is that some symbol you use is not in scope.
"
);
hole.clone()
}
},
ClosureCallOptions::UnwrappedCapture(_) => {
let lambda_name = lambda_set
.iter_set()
.next()
.expect("no function in lambda set");
let call_spec_id = env.next_call_specialization_id();
let update_mode = env.next_update_mode_id();
let call = to_lowlevel_call((
lambda_name,
closure_data_symbol,
lambda_set.is_represented(&layout_cache.interner),
call_spec_id,
update_mode,
));
build_call(env, call, assigned, return_layout, env.arena.alloc(hole))
}
ClosureCallOptions::EnumDispatch(repr) => match repr {
EnumDispatch::Bool => {
let closure_tag_id_symbol = closure_data_symbol;
lowlevel_enum_lambda_set_to_switch(
env,
lambda_set.iter_set(),
closure_tag_id_symbol,
Layout::BOOL,
closure_data_symbol,
lambda_set.is_represented(&layout_cache.interner),
to_lowlevel_call,
return_layout,
assigned,
hole,
)
}
EnumDispatch::U8 => {
let closure_tag_id_symbol = closure_data_symbol;
lowlevel_enum_lambda_set_to_switch(
env,
lambda_set.iter_set(),
closure_tag_id_symbol,
Layout::U8,
closure_data_symbol,
lambda_set.is_represented(&layout_cache.interner),
to_lowlevel_call,
return_layout,
assigned,
hole,
)
}
},
}
}
#[allow(clippy::too_many_arguments)]
fn lowlevel_union_lambda_set_to_switch<'a, ToLowLevelCall>(
env: &mut Env<'a, '_>,
lambda_set: impl ExactSizeIterator<Item = LambdaName<'a>> + 'a,
closure_tag_id_symbol: Symbol,
closure_tag_id_layout: InLayout<'a>,
closure_data_symbol: Symbol,
closure_env_layout: Option<InLayout<'a>>,
to_lowlevel_call: ToLowLevelCall,
return_layout: InLayout<'a>,
assigned: Symbol,
hole: &'a Stmt<'a>,
) -> Stmt<'a>
where
ToLowLevelCall: Fn(ToLowLevelCallArguments<'a>) -> Call<'a> + Copy,
{
debug_assert_ne!(lambda_set.len(), 0);
let join_point_id = JoinPointId(env.unique_symbol());
let mut branches = Vec::with_capacity_in(lambda_set.len(), env.arena);
for (i, lambda_name) in lambda_set.into_iter().enumerate() {
let assigned = env.unique_symbol();
let hole = Stmt::Jump(join_point_id, env.arena.alloc([assigned]));
let call_spec_id = env.next_call_specialization_id();
let update_mode = env.next_update_mode_id();
let call = to_lowlevel_call((
lambda_name,
closure_data_symbol,
closure_env_layout,
call_spec_id,
update_mode,
));
let stmt = build_call(env, call, assigned, return_layout, env.arena.alloc(hole));
branches.push((i as u64, BranchInfo::None, stmt));
}
let default_branch = {
let (_, info, stmt) = branches.pop().unwrap();
(info, &*env.arena.alloc(stmt))
};
let switch = Stmt::Switch {
cond_symbol: closure_tag_id_symbol,
cond_layout: closure_tag_id_layout,
branches: branches.into_bump_slice(),
default_branch,
ret_layout: return_layout,
};
let param = Param {
symbol: assigned,
layout: return_layout,
};
Stmt::Join {
id: join_point_id,
parameters: &*env.arena.alloc([param]),
body: hole,
remainder: env.arena.alloc(switch),
}
}
fn empty_lambda_set_error<'a>(env: &mut Env<'a, '_>) -> Stmt<'a> {
let msg = "a Lambda Set is empty. Most likely there is a type error in your program.";
runtime_error(env, msg)
}
/// Use the lambda set to figure out how to make a call-by-name
#[allow(clippy::too_many_arguments)]
fn match_on_lambda_set<'a>(
env: &mut Env<'a, '_>,
layout_cache: &LayoutCache<'a>,
procs: &mut Procs<'a>,
lambda_set: LambdaSet<'a>,
closure_data_symbol: Symbol,
argument_symbols: &'a [Symbol],
argument_layouts: &'a [InLayout<'a>],
return_layout: InLayout<'a>,
assigned: Symbol,
hole: &'a Stmt<'a>,
) -> Stmt<'a> {
match lambda_set.call_by_name_options(&layout_cache.interner) {
ClosureCallOptions::Void => empty_lambda_set_error(env),
ClosureCallOptions::Union(union_layout) => {
let closure_tag_id_symbol = env.unique_symbol();
let result = union_lambda_set_to_switch(
env,
lambda_set,
closure_tag_id_symbol,
union_layout.tag_id_layout(),
closure_data_symbol,
argument_symbols,
argument_layouts,
return_layout,
assigned,
hole,
);
// extract & assign the closure_tag_id_symbol
let expr = Expr::GetTagId {
structure: closure_data_symbol,
union_layout,
};
Stmt::Let(
closure_tag_id_symbol,
expr,
union_layout.tag_id_layout(),
env.arena.alloc(result),
)
}
ClosureCallOptions::Struct(field_layouts) => {
let function_symbol = match lambda_set.iter_set().next() {
Some(function_symbol) => function_symbol,
None => {
// Lambda set is empty, so this function is never called; synthesize a function
// that always yields a runtime error.
let name = env.unique_symbol();
let lambda_name = LambdaName::no_niche(name);
let function_layout =
RawFunctionLayout::Function(argument_layouts, lambda_set, return_layout);
let proc = generate_runtime_error_function(env, lambda_name, function_layout);
let top_level =
ProcLayout::from_raw_named(env.arena, lambda_name, function_layout);
procs.specialized.insert_specialized(name, top_level, proc);
lambda_name
}
};
let closure_info = match field_layouts {
[] => ClosureInfo::DoesNotCapture,
_ => ClosureInfo::Captures {
lambda_set,
closure_data_symbol,
},
};
union_lambda_set_branch_help(
env,
function_symbol,
closure_info,
argument_symbols,
argument_layouts,
return_layout,
assigned,
hole,
)
}
ClosureCallOptions::UnwrappedCapture(_) => {
let function_symbol = lambda_set
.iter_set()
.next()
.expect("no function in lambda set");
let closure_info = ClosureInfo::Captures {
lambda_set,
closure_data_symbol,
};
union_lambda_set_branch_help(
env,
function_symbol,
closure_info,
argument_symbols,
argument_layouts,
return_layout,
assigned,
hole,
)
}
ClosureCallOptions::EnumDispatch(repr) => match repr {
EnumDispatch::Bool => {
let closure_tag_id_symbol = closure_data_symbol;
enum_lambda_set_to_switch(
env,
lambda_set.iter_set(),
closure_tag_id_symbol,
Layout::BOOL,
argument_symbols,
argument_layouts,
return_layout,
assigned,
hole,
)
}
EnumDispatch::U8 => {
let closure_tag_id_symbol = closure_data_symbol;
enum_lambda_set_to_switch(
env,
lambda_set.iter_set(),
closure_tag_id_symbol,
Layout::U8,
argument_symbols,
argument_layouts,
return_layout,
assigned,
hole,
)
}
},
}
}
#[allow(clippy::too_many_arguments)]
fn union_lambda_set_to_switch<'a>(
env: &mut Env<'a, '_>,
lambda_set: LambdaSet<'a>,
closure_tag_id_symbol: Symbol,
closure_tag_id_layout: InLayout<'a>,
closure_data_symbol: Symbol,
argument_symbols: &'a [Symbol],
argument_layouts: &'a [InLayout<'a>],
return_layout: InLayout<'a>,
assigned: Symbol,
hole: &'a Stmt<'a>,
) -> Stmt<'a> {
if lambda_set.is_empty() {
// NOTE this can happen if there is a type error somewhere. Since the lambda set is empty,
// there is really nothing we can do here. We generate a runtime error here which allows
// code gen to proceed. We then assume that we hit another (more descriptive) error before
// hitting this one
return empty_lambda_set_error(env);
}
let (opt_join, branch_assigned, branch_hole) = match hole {
Stmt::Ret(_) => {
// No need to jump to a joinpoint, inline the return in each statement as-is.
// This makes further analyses, like TCO, easier as well.
(None, assigned, hole)
}
_ => {
let join_point_id = JoinPointId(env.unique_symbol());
let assigned = env.unique_symbol();
let hole = Stmt::Jump(join_point_id, env.arena.alloc([assigned]));
(Some(join_point_id), assigned, &*env.arena.alloc(hole))
}
};
let mut branches = Vec::with_capacity_in(lambda_set.len(), env.arena);
for (i, lambda_name) in lambda_set.iter_set().enumerate() {
let closure_info = if lambda_name.no_captures() {
ClosureInfo::DoesNotCapture
} else {
ClosureInfo::Captures {
lambda_set,
closure_data_symbol,
}
};
let stmt = union_lambda_set_branch(
env,
lambda_name,
closure_info,
argument_symbols,
argument_layouts,
return_layout,
branch_assigned,
branch_hole,
);
branches.push((i as u64, BranchInfo::None, stmt));
}
let default_branch = {
let (_, info, stmt) = branches.pop().unwrap();
(info, &*env.arena.alloc(stmt))
};
let switch = Stmt::Switch {
cond_symbol: closure_tag_id_symbol,
cond_layout: closure_tag_id_layout,
branches: branches.into_bump_slice(),
default_branch,
ret_layout: return_layout,
};
match opt_join {
None => switch,
Some(join_point_id) => {
let param = Param {
symbol: assigned,
layout: return_layout,
};
Stmt::Join {
id: join_point_id,
parameters: &*env.arena.alloc([param]),
body: hole,
remainder: env.arena.alloc(switch),
}
}
}
}
#[allow(clippy::too_many_arguments)]
fn union_lambda_set_branch<'a>(
env: &mut Env<'a, '_>,
lambda_name: LambdaName<'a>,
closure_info: ClosureInfo<'a>,
argument_symbols_slice: &'a [Symbol],
argument_layouts_slice: &'a [InLayout<'a>],
return_layout: InLayout<'a>,
assigned: Symbol,
hole: &'a Stmt<'a>,
) -> Stmt<'a> {
union_lambda_set_branch_help(
env,
lambda_name,
closure_info,
argument_symbols_slice,
argument_layouts_slice,
return_layout,
assigned,
env.arena.alloc(hole),
)
}
#[derive(Clone, Copy)]
enum ClosureInfo<'a> {
Captures {
closure_data_symbol: Symbol,
/// The whole lambda set representation this closure is a variant of
lambda_set: LambdaSet<'a>,
},
DoesNotCapture,
}
#[allow(clippy::too_many_arguments)]
fn union_lambda_set_branch_help<'a>(
env: &mut Env<'a, '_>,
lambda_name: LambdaName<'a>,
closure_info: ClosureInfo<'a>,
argument_symbols_slice: &'a [Symbol],
argument_layouts_slice: &'a [InLayout<'a>],
return_layout: InLayout<'a>,
assigned: Symbol,
hole: &'a Stmt<'a>,
) -> Stmt<'a> {
let (argument_layouts, argument_symbols) = match closure_info {
ClosureInfo::Captures {
lambda_set,
closure_data_symbol,
} => {
let argument_layouts = lambda_set.extend_argument_list_for_named(
env.arena,
lambda_name,
argument_layouts_slice,
);
// Since this lambda captures, the arguments must have been extended.
debug_assert!(argument_layouts.len() > argument_layouts_slice.len());
// Extend symbols with the symbol of the closure environment.
let mut argument_symbols =
Vec::with_capacity_in(argument_symbols_slice.len() + 1, env.arena);
argument_symbols.extend(argument_symbols_slice);
argument_symbols.push(closure_data_symbol);
(argument_layouts, argument_symbols.into_bump_slice())
}
ClosureInfo::DoesNotCapture => {
// sometimes unification causes a function that does not itself capture anything
// to still get a lambda set that does store information. We must not pass a closure
// argument in this case
(argument_layouts_slice, argument_symbols_slice)
}
};
// build the call
let call = self::Call {
call_type: CallType::ByName {
name: lambda_name,
ret_layout: return_layout,
arg_layouts: argument_layouts,
specialization_id: env.next_call_specialization_id(),
},
arguments: argument_symbols,
};
build_call(env, call, assigned, return_layout, hole)
}
/// Switches over a enum lambda set, which may dispatch to different functions, none of which
/// capture.
#[allow(clippy::too_many_arguments)]
fn enum_lambda_set_to_switch<'a>(
env: &mut Env<'a, '_>,
lambda_set: impl ExactSizeIterator<Item = LambdaName<'a>>,
closure_tag_id_symbol: Symbol,
closure_tag_id_layout: InLayout<'a>,
argument_symbols: &'a [Symbol],
argument_layouts: &'a [InLayout<'a>],
return_layout: InLayout<'a>,
assigned: Symbol,
hole: &'a Stmt<'a>,
) -> Stmt<'a> {
debug_assert_ne!(lambda_set.len(), 0);
let (opt_join, branch_assigned, branch_hole) = match hole {
Stmt::Ret(_) => {
// No need to jump to a joinpoint, inline the return in each statement as-is.
// This makes further analyses, like TCO, easier as well.
(None, assigned, hole)
}
_ => {
let join_point_id = JoinPointId(env.unique_symbol());
let assigned = env.unique_symbol();
let hole = Stmt::Jump(join_point_id, env.arena.alloc([assigned]));
(Some(join_point_id), assigned, &*env.arena.alloc(hole))
}
};
let mut branches = Vec::with_capacity_in(lambda_set.len(), env.arena);
for (i, lambda_name) in lambda_set.into_iter().enumerate() {
let stmt = enum_lambda_set_branch(
env,
lambda_name,
argument_symbols,
argument_layouts,
return_layout,
branch_assigned,
branch_hole,
);
branches.push((i as u64, BranchInfo::None, stmt));
}
let default_branch = {
let (_, info, stmt) = branches.pop().unwrap();
(info, &*env.arena.alloc(stmt))
};
let switch = Stmt::Switch {
cond_symbol: closure_tag_id_symbol,
cond_layout: closure_tag_id_layout,
branches: branches.into_bump_slice(),
default_branch,
ret_layout: return_layout,
};
match opt_join {
None => switch,
Some(join_point_id) => {
let param = Param {
symbol: assigned,
layout: return_layout,
};
Stmt::Join {
id: join_point_id,
parameters: &*env.arena.alloc([param]),
body: hole,
remainder: env.arena.alloc(switch),
}
}
}
}
/// A branch for an enum lambda set branch dispatch, which never capture!
#[allow(clippy::too_many_arguments)]
fn enum_lambda_set_branch<'a>(
env: &mut Env<'a, '_>,
lambda_name: LambdaName<'a>,
argument_symbols: &'a [Symbol],
argument_layouts: &'a [InLayout<'a>],
return_layout: InLayout<'a>,
assigned: Symbol,
hole: &'a Stmt<'a>,
) -> Stmt<'a> {
let call = self::Call {
call_type: CallType::ByName {
name: lambda_name,
ret_layout: return_layout,
arg_layouts: argument_layouts,
specialization_id: env.next_call_specialization_id(),
},
arguments: argument_symbols,
};
build_call(env, call, assigned, return_layout, hole)
}
#[allow(clippy::too_many_arguments)]
fn lowlevel_enum_lambda_set_to_switch<'a, ToLowLevelCall>(
env: &mut Env<'a, '_>,
lambda_set: impl ExactSizeIterator<Item = LambdaName<'a>>,
closure_tag_id_symbol: Symbol,
closure_tag_id_layout: InLayout<'a>,
closure_data_symbol: Symbol,
closure_env_layout: Option<InLayout<'a>>,
to_lowlevel_call: ToLowLevelCall,
return_layout: InLayout<'a>,
assigned: Symbol,
hole: &'a Stmt<'a>,
) -> Stmt<'a>
where
ToLowLevelCall: Fn(ToLowLevelCallArguments<'a>) -> Call<'a> + Copy,
{
debug_assert_ne!(lambda_set.len(), 0);
let join_point_id = JoinPointId(env.unique_symbol());
let mut branches = Vec::with_capacity_in(lambda_set.len(), env.arena);
for (i, function_symbol) in lambda_set.into_iter().enumerate() {
let result_symbol = env.unique_symbol();
let hole = Stmt::Jump(join_point_id, env.arena.alloc([result_symbol]));
let call_spec_id = env.next_call_specialization_id();
let update_mode = env.next_update_mode_id();
let call = to_lowlevel_call((
function_symbol,
closure_data_symbol,
closure_env_layout,
call_spec_id,
update_mode,
));
let stmt = build_call(
env,
call,
result_symbol,
return_layout,
env.arena.alloc(hole),
);
branches.push((i as u64, BranchInfo::None, stmt));
}
let default_branch = {
let (_, info, stmt) = branches.pop().unwrap();
(info, &*env.arena.alloc(stmt))
};
let switch = Stmt::Switch {
cond_symbol: closure_tag_id_symbol,
cond_layout: closure_tag_id_layout,
branches: branches.into_bump_slice(),
default_branch,
ret_layout: return_layout,
};
let param = Param {
symbol: assigned,
layout: return_layout,
};
Stmt::Join {
id: join_point_id,
parameters: &*env.arena.alloc([param]),
body: hole,
remainder: env.arena.alloc(switch),
}
}
#[derive(Debug, Default)]
pub struct GlueLayouts<'a> {
pub getters: std::vec::Vec<(Symbol, ProcLayout<'a>)>,
}
type GlueProcId = u16;
#[derive(Debug)]
pub struct GlueProc<'a> {
pub name: Symbol,
pub proc_layout: ProcLayout<'a>,
pub proc: Proc<'a>,
}
pub struct GlueProcs<'a> {
pub getters: Vec<'a, (Layout<'a>, Vec<'a, GlueProc<'a>>)>,
/// Lambda set IDs computed from the layout of the lambda set. Should be replaced by
/// computation from type variable eventually.
pub legacy_layout_based_extern_names: Vec<'a, (LambdaSetId, RawFunctionLayout<'a>)>,
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Default)]
pub struct LambdaSetId(pub u32);
impl LambdaSetId {
#[must_use]
pub fn next(self) -> Self {
debug_assert!(self.0 < u32::MAX);
Self(self.0 + 1)
}
}
pub fn find_lambda_sets(
arena: &Bump,
subs: &Subs,
initial: Variable,
) -> MutMap<Variable, LambdaSetId> {
let mut stack = bumpalo::collections::Vec::new_in(arena);
// ignore the lambda set of top-level functions
match subs.get_without_compacting(initial).content {
Content::Structure(FlatType::Func(arguments, _, result)) => {
let arguments = &subs.variables[arguments.indices()];
stack.extend(arguments.iter().copied());
stack.push(result);
}
_ => {
stack.push(initial);
}
}
find_lambda_sets_help(subs, stack)
}
fn find_lambda_sets_help(
subs: &Subs,
mut stack: Vec<'_, Variable>,
) -> MutMap<Variable, LambdaSetId> {
use roc_types::subs::GetSubsSlice;
let mut lambda_set_id = LambdaSetId::default();
let mut result = MutMap::default();
while let Some(var) = stack.pop() {
match subs.get_content_without_compacting(var) {
Content::RangedNumber(_)
| Content::Error
| Content::FlexVar(_)
| Content::RigidVar(_)
| Content::FlexAbleVar(_, _)
| Content::RigidAbleVar(_, _)
| Content::RecursionVar { .. } => {}
Content::Structure(flat_type) => match flat_type {
FlatType::Apply(_, arguments) => {
stack.extend(subs.get_subs_slice(*arguments).iter().rev());
}
FlatType::Func(arguments, lambda_set_var, ret_var) => {
use std::collections::hash_map::Entry;
// Only insert a lambda_set_var if we didn't already have a value for this key.
if let Entry::Vacant(entry) = result.entry(*lambda_set_var) {
entry.insert(lambda_set_id);
lambda_set_id = lambda_set_id.next();
}
let arguments = &subs.variables[arguments.indices()];
stack.extend(arguments.iter().copied());
stack.push(*lambda_set_var);
stack.push(*ret_var);
}
FlatType::Record(fields, ext) => {
stack.extend(subs.get_subs_slice(fields.variables()).iter().rev());
stack.push(*ext);
}
FlatType::Tuple(elements, ext) => {
stack.extend(subs.get_subs_slice(elements.variables()).iter().rev());
stack.push(*ext);
}
FlatType::FunctionOrTagUnion(_, _, ext) => {
// just the ext
match ext {
roc_types::subs::TagExt::Openness(var) => stack.push(*var),
roc_types::subs::TagExt::Any(_) => { /* ignore */ }
}
}
FlatType::TagUnion(union_tags, ext)
| FlatType::RecursiveTagUnion(_, union_tags, ext) => {
for tag in union_tags.variables() {
stack.extend(
subs.get_subs_slice(subs.variable_slices[tag.index as usize])
.iter()
.rev(),
);
}
match ext {
roc_types::subs::TagExt::Openness(var) => stack.push(*var),
roc_types::subs::TagExt::Any(_) => { /* ignore */ }
}
}
FlatType::EmptyRecord => {}
FlatType::EmptyTuple => {}
FlatType::EmptyTagUnion => {}
},
Content::Alias(_, _, actual, _) => {
stack.push(*actual);
}
Content::LambdaSet(lambda_set) => {
// the lambda set itself should already be caught by Func above, but the
// capture can itself contain more lambda sets
for index in lambda_set.solved.variables() {
let subs_slice = subs.variable_slices[index.index as usize];
stack.extend(subs.variables[subs_slice.indices()].iter());
}
}
Content::ErasedLambda => {}
}
}
result
}
pub fn generate_glue_procs<'a, 'i, I>(
home: ModuleId,
ident_ids: &mut IdentIds,
arena: &'a Bump,
layout_interner: &'i mut I,
layout: &'a Layout<'a>,
) -> GlueProcs<'a>
where
I: LayoutInterner<'a>,
{
let mut answer = GlueProcs {
getters: Vec::new_in(arena),
legacy_layout_based_extern_names: Vec::new_in(arena),
};
let mut lambda_set_id = LambdaSetId(0);
let mut stack: Vec<'a, Layout<'a>> = Vec::from_iter_in([*layout], arena);
let mut next_unique_id = 0;
macro_rules! handle_tag_field_layouts {
($tag_id:expr, $layout:expr, $union_layout:expr, $field_layouts: expr) => {{
if $field_layouts.iter().any(|l| {
layout_interner
.get_repr(*l)
.has_varying_stack_size(layout_interner, arena)
}) {
let procs = generate_glue_procs_for_tag_fields(
layout_interner,
home,
&mut next_unique_id,
ident_ids,
arena,
$tag_id,
&$layout,
$union_layout,
$field_layouts,
);
answer.getters.push(($layout, procs));
}
for in_layout in $field_layouts.iter().rev() {
stack.push(layout_interner.get(*in_layout));
}
}};
}
while let Some(layout) = stack.pop() {
match layout.repr(layout_interner) {
LayoutRepr::Builtin(builtin) => match builtin {
Builtin::Int(_)
| Builtin::Float(_)
| Builtin::Bool
| Builtin::Decimal
| Builtin::Str => { /* do nothing */ }
Builtin::List(element) => stack.push(layout_interner.get(element)),
},
LayoutRepr::Struct(field_layouts) => {
if field_layouts.iter().any(|l| {
layout_interner
.get_repr(*l)
.has_varying_stack_size(layout_interner, arena)
}) {
let procs = generate_glue_procs_for_struct_fields(
layout_interner,
home,
&mut next_unique_id,
ident_ids,
arena,
&layout,
field_layouts,
);
answer.getters.push((layout, procs));
}
for in_layout in field_layouts.iter().rev() {
stack.push(layout_interner.get(*in_layout));
}
}
LayoutRepr::Ptr(inner) => {
stack.push(layout_interner.get(inner));
}
LayoutRepr::Union(union_layout) => match union_layout {
UnionLayout::NonRecursive(tags) => {
for in_layout in tags.iter().flat_map(|e| e.iter()) {
stack.push(layout_interner.get(*in_layout));
}
}
UnionLayout::Recursive(tags) => {
for in_layout in tags.iter().flat_map(|e| e.iter()) {
stack.push(layout_interner.get(*in_layout));
}
}
UnionLayout::NonNullableUnwrapped(field_layouts) => {
handle_tag_field_layouts!(0, layout, union_layout, field_layouts);
}
UnionLayout::NullableWrapped {
other_tags,
nullable_id,
} => {
let tag_ids =
(0..nullable_id).chain(nullable_id + 1..other_tags.len() as u16 + 1);
for (i, field_layouts) in tag_ids.zip(other_tags) {
handle_tag_field_layouts!(i, layout, union_layout, *field_layouts);
}
}
UnionLayout::NullableUnwrapped { other_fields, .. } => {
for in_layout in other_fields.iter().rev() {
stack.push(layout_interner.get(*in_layout));
}
}
},
LayoutRepr::LambdaSet(lambda_set) => {
let raw_function_layout =
RawFunctionLayout::Function(lambda_set.args, lambda_set, lambda_set.ret);
let key = (lambda_set_id, raw_function_layout);
answer.legacy_layout_based_extern_names.push(key);
// this id is used, increment for the next one
lambda_set_id = lambda_set_id.next();
stack.push(layout_interner.get(lambda_set.runtime_representation()));
// TODO: figure out if we need to look at the other layouts
// stack.push(layout_interner.get(lambda_set.ret));
}
LayoutRepr::RecursivePointer(_) => {
/* do nothing, we've already generated for this type through the Union(_) */
}
LayoutRepr::FunctionPointer(_) => todo_lambda_erasure!(),
LayoutRepr::Erased(_) => todo_lambda_erasure!(),
}
}
answer
}
fn generate_glue_procs_for_struct_fields<'a, 'i, I>(
layout_interner: &'i mut I,
home: ModuleId,
next_unique_id: &mut GlueProcId,
ident_ids: &mut IdentIds,
arena: &'a Bump,
unboxed_struct_layout: &Layout<'a>,
field_layouts: &[InLayout<'a>],
) -> Vec<'a, GlueProc<'a>>
where
I: LayoutInterner<'a>,
{
let interned_unboxed_struct_layout = layout_interner.insert(*unboxed_struct_layout);
let union_layout =
UnionLayout::NonNullableUnwrapped(arena.alloc([interned_unboxed_struct_layout]));
let boxed_struct_layout = Layout::no_semantic(LayoutRepr::Union(union_layout).direct());
let boxed_struct_layout = layout_interner.insert(boxed_struct_layout);
let mut answer = bumpalo::collections::Vec::with_capacity_in(field_layouts.len(), arena);
let field_layouts = match layout_interner.get_repr(interned_unboxed_struct_layout) {
LayoutRepr::Struct(field_layouts) => field_layouts,
other => {
unreachable!(
"{:?} {:?}",
layout_interner.dbg(interned_unboxed_struct_layout),
other
)
}
};
for (index, field) in field_layouts.iter().enumerate() {
let proc_layout = ProcLayout {
arguments: arena.alloc([boxed_struct_layout]),
result: *field,
niche: Niche::NONE,
};
let symbol = unique_glue_symbol(arena, next_unique_id, home, ident_ids);
let argument = Symbol::new(home, ident_ids.gen_unique());
let unboxed = Symbol::new(home, ident_ids.gen_unique());
let result = Symbol::new(home, ident_ids.gen_unique());
home.register_debug_idents(ident_ids);
let ret_stmt = arena.alloc(Stmt::Ret(result));
let field_get_expr = Expr::StructAtIndex {
index: index as u64,
field_layouts,
structure: unboxed,
};
let field_get_stmt = Stmt::Let(result, field_get_expr, *field, ret_stmt);
let unbox_expr = boxed::unbox(argument, arena.alloc(interned_unboxed_struct_layout));
let unbox_stmt = Stmt::Let(
unboxed,
unbox_expr,
interned_unboxed_struct_layout,
arena.alloc(field_get_stmt),
);
let proc = Proc {
name: LambdaName::no_niche(symbol),
args: arena.alloc([(boxed_struct_layout, argument)]),
body: unbox_stmt,
closure_data_layout: None,
ret_layout: *field,
is_self_recursive: SelfRecursive::NotSelfRecursive,
is_erased: false,
};
answer.push(GlueProc {
name: symbol,
proc_layout,
proc,
});
}
answer
}
fn unique_glue_symbol(
arena: &Bump,
next_unique_id: &mut GlueProcId,
home: ModuleId,
ident_ids: &mut IdentIds,
) -> Symbol {
let unique_id = *next_unique_id;
*next_unique_id = unique_id + 1;
// then name of the platform `main.roc` is the empty string
let module_name = "";
// Turn unique_id into a Symbol without doing a heap allocation.
use std::fmt::Write;
let mut string = bumpalo::collections::String::with_capacity_in(32, arena);
let _result = write!(&mut string, "roc__getter_{module_name}_{unique_id}");
debug_assert_eq!(_result, Ok(())); // This should never fail, but doesn't hurt to debug-check!
let bump_string = string.into_bump_str();
let ident_id = ident_ids.get_or_insert(bump_string);
Symbol::new(home, ident_id)
}
#[allow(clippy::too_many_arguments)]
fn generate_glue_procs_for_tag_fields<'a, 'i, I>(
layout_interner: &'i mut I,
home: ModuleId,
next_unique_id: &mut GlueProcId,
ident_ids: &mut IdentIds,
arena: &'a Bump,
tag_id: TagIdIntType,
unboxed_struct_layout: &Layout<'a>,
union_layout: UnionLayout<'a>,
field_layouts: &'a [InLayout<'a>],
) -> Vec<'a, GlueProc<'a>>
where
I: LayoutInterner<'a>,
{
let interned = layout_interner.insert(*unboxed_struct_layout);
let box_union_layout = UnionLayout::NonNullableUnwrapped(arena.alloc([interned]));
let boxed_struct_layout = Layout::no_semantic(LayoutRepr::Union(box_union_layout).direct());
let boxed_struct_layout = layout_interner.insert(boxed_struct_layout);
let mut answer = bumpalo::collections::Vec::with_capacity_in(field_layouts.len(), arena);
for (index, field) in field_layouts.iter().enumerate() {
let proc_layout = ProcLayout {
arguments: arena.alloc([boxed_struct_layout]),
result: *field,
niche: Niche::NONE,
};
let symbol = unique_glue_symbol(arena, next_unique_id, home, ident_ids);
let argument = Symbol::new(home, ident_ids.gen_unique());
let unboxed = Symbol::new(home, ident_ids.gen_unique());
let result = Symbol::new(home, ident_ids.gen_unique());
home.register_debug_idents(ident_ids);
let ret_stmt = arena.alloc(Stmt::Ret(result));
let field_get_expr = Expr::UnionAtIndex {
structure: unboxed,
tag_id,
union_layout,
index: index as u64,
};
let field_get_stmt = Stmt::Let(result, field_get_expr, *field, ret_stmt);
let unbox_expr = boxed::unbox(argument, arena.alloc(interned));
let unbox_stmt = Stmt::Let(unboxed, unbox_expr, interned, arena.alloc(field_get_stmt));
let proc = Proc {
name: LambdaName::no_niche(symbol),
args: arena.alloc([(boxed_struct_layout, argument)]),
body: unbox_stmt,
closure_data_layout: None,
ret_layout: *field,
is_self_recursive: SelfRecursive::NotSelfRecursive,
is_erased: false,
};
answer.push(GlueProc {
name: symbol,
proc_layout,
proc,
});
}
answer
}
enum Usage {
Used,
Unused,
}
pub struct UsageTrackingMap<K, V> {
map: MutMap<K, (V, Usage)>,
}
impl<K, V> Default for UsageTrackingMap<K, V> {
fn default() -> Self {
Self {
map: MutMap::default(),
}
}
}
impl<K, V> UsageTrackingMap<K, V>
where
K: std::cmp::Eq + std::hash::Hash,
{
pub fn insert(&mut self, key: K, value: V) {
self.map.insert(key, (value, Usage::Unused));
}
pub fn get(&mut self, key: K) -> Option<&V> {
let (value, usage) = self.map.get_mut(&key)?;
*usage = Usage::Used;
Some(value)
}
fn get_used(&mut self, key: &K) -> Option<V> {
self.map.remove(key).and_then(|(value, usage)| match usage {
Usage::Used => Some(value),
Usage::Unused => None,
})
}
}