roc/compiler/load/src/docs.rs
2020-10-12 09:33:11 -04:00

1664 lines
59 KiB
Rust

// This file was copied from file.rs and modified to expose information
// required to auto-generate documentation
use bumpalo::Bump;
use crossbeam::channel::{bounded, Sender};
use crossbeam::deque::{Injector, Stealer, Worker};
use crossbeam::thread;
use inlinable_string::InlinableString;
use parking_lot::Mutex;
use roc_builtins::std::{Mode, StdLib};
use roc_can::constraint::Constraint;
use roc_can::def::Declaration;
use roc_can::module::{canonicalize_module_defs, Module};
use roc_collections::all::{default_hasher, MutMap, MutSet};
use roc_constrain::module::{
constrain_imports, load_builtin_aliases, pre_constrain_imports, ConstrainableImports, Import,
};
use roc_constrain::module::{constrain_module, ExposedModuleTypes, SubsByModule};
use roc_module::ident::{Ident, ModuleName};
use roc_module::symbol::{IdentIds, Interns, ModuleId, ModuleIds, Symbol};
use roc_parse::ast::Def;
use roc_parse::ast::{self, Attempting, ExposesEntry, ImportsEntry};
use roc_parse::module::module_defs;
use roc_parse::parser::{self, Fail, Parser};
use roc_region::all::{Located, Region};
use roc_solve::module::SolvedModule;
use roc_solve::solve;
use roc_types::solved_types::Solved;
use roc_types::subs::{Subs, VarStore, Variable};
use roc_types::types::Alias;
use std::collections::{HashMap, HashSet};
use std::fs;
use std::io;
use std::iter;
use std::path::{Path, PathBuf};
use std::str::from_utf8_unchecked;
use std::sync::Arc;
use std::time::{Duration, SystemTime};
/// Filename extension for normal Roc modules
const ROC_FILE_EXTENSION: &str = "roc";
/// The . in between module names like Foo.Bar.Baz
const MODULE_SEPARATOR: char = '.';
#[derive(Debug)]
pub struct LoadedModule {
pub module_id: ModuleId,
pub interns: Interns,
pub solved: Solved<Subs>,
pub can_problems: Vec<roc_problem::can::Problem>,
pub type_problems: Vec<solve::TypeError>,
pub declarations_by_id: MutMap<ModuleId, Vec<Declaration>>,
pub exposed_vars_by_symbol: Vec<(Symbol, Variable)>,
pub src: Box<str>,
pub timings: MutMap<ModuleId, ModuleTiming>,
pub module_docs: ModuleDocumentation,
}
#[derive(Debug)]
pub struct LoadedModuleForDocumentation {
pub module_id: ModuleId,
pub interns: Interns,
pub solved: Solved<Subs>,
pub can_problems: Vec<roc_problem::can::Problem>,
pub type_problems: Vec<solve::TypeError>,
pub declarations_by_id: MutMap<ModuleId, Vec<Declaration>>,
pub exposed_vars_by_symbol: Vec<(Symbol, Variable)>,
pub src: Box<str>,
pub timings: MutMap<ModuleId, ModuleTiming>,
}
#[derive(Debug)]
pub enum BuildProblem<'a> {
FileNotFound(&'a Path),
}
#[derive(Debug)]
struct ModuleHeader<'a> {
module_id: ModuleId,
module_name: ModuleName,
exposed_ident_ids: IdentIds,
deps_by_name: MutMap<ModuleName, ModuleId>,
imported_modules: MutSet<ModuleId>,
exposes: Vec<Symbol>,
exposed_imports: MutMap<Ident, (Symbol, Region)>,
src: &'a [u8],
module_timing: ModuleTiming,
}
#[derive(Debug)]
enum Msg<'a> {
Header(ModuleHeader<'a>),
Constrained {
module: Module,
declarations: Vec<Declaration>,
imported_modules: MutSet<ModuleId>,
src: &'a str,
constraint: Constraint,
ident_ids: IdentIds,
problems: Vec<roc_problem::can::Problem>,
var_store: VarStore,
module_timing: ModuleTiming,
module_docs: ModuleDocumentation,
},
Solved {
src: &'a str,
module_id: ModuleId,
solved_module: SolvedModule,
solved_subs: Solved<Subs>,
module_timing: ModuleTiming,
module_docs: ModuleDocumentation,
},
Finished {
solved_subs: Solved<Subs>,
problems: Vec<solve::TypeError>,
exposed_vars_by_symbol: Vec<(Symbol, Variable)>,
src: &'a str,
module_docs: ModuleDocumentation,
},
}
#[derive(Debug)]
struct State<'a> {
pub root_id: ModuleId,
pub exposed_types: SubsByModule,
pub can_problems: Vec<roc_problem::can::Problem>,
pub headers_parsed: MutSet<ModuleId>,
pub type_problems: Vec<solve::TypeError>,
/// This is the "final" list of IdentIds, after canonicalization and constraint gen
/// have completed for a given module.
pub constrained_ident_ids: MutMap<ModuleId, IdentIds>,
/// From now on, these will be used by multiple threads; time to make an Arc<Mutex<_>>!
pub arc_modules: Arc<Mutex<ModuleIds>>,
pub ident_ids_by_module: Arc<Mutex<IdentIdsByModule>>,
/// All the dependent modules we've already begun loading -
/// meaning we should never kick off another load_module on them!
pub loading_started: MutSet<ModuleId>,
pub declarations_by_id: MutMap<ModuleId, Vec<Declaration>>,
pub exposed_symbols_by_module: MutMap<ModuleId, MutSet<Symbol>>,
/// Modules which are waiting for certain headers to be parsed
pub waiting_for_headers: MutMap<ModuleId, MutSet<ModuleId>>,
// When the key ModuleId gets solved, iterate through each of the given modules
// a,d remove that ModuleId from the appropriate waiting_for_headers entry.
// If the relevant module's waiting_for_headers entry is now empty, canonicalize the module.
pub header_listeners: MutMap<ModuleId, Vec<ModuleId>>,
pub unparsed_modules: MutMap<ModuleId, ModuleHeader<'a>>,
// Modules which are waiting for certain deps to be solved
pub waiting_for_solve: MutMap<ModuleId, MutSet<ModuleId>>,
// When the key ModuleId gets solved, iterate through each of the given modules
// and remove that ModuleId from the appropriate waiting_for_solve entry.
// If the relevant module's waiting_for_solve entry is now empty, solve the module.
pub solve_listeners: MutMap<ModuleId, Vec<ModuleId>>,
pub unsolved_modules: MutMap<ModuleId, UnsolvedModule<'a>>,
pub timings: MutMap<ModuleId, ModuleTiming>,
}
#[derive(Debug)]
struct UnsolvedModule<'a> {
module: Module,
src: &'a str,
imported_modules: MutSet<ModuleId>,
constraint: Constraint,
var_store: VarStore,
module_timing: ModuleTiming,
}
#[derive(Debug)]
pub struct ModuleTiming {
pub read_roc_file: Duration,
pub parse_header: Duration,
pub parse_body: Duration,
pub canonicalize: Duration,
pub constrain: Duration,
pub solve: Duration,
// TODO pub monomorphize: Duration,
/// Total duration will always be more than the sum of the other fields, due
/// to things like state lookups in between phases, waiting on other threads, etc.
start_time: SystemTime,
end_time: SystemTime,
}
impl ModuleTiming {
pub fn total(&self) -> Duration {
self.end_time.duration_since(self.start_time).unwrap()
}
/// Subtract all the other fields from total_start_to_finish
pub fn other(&self) -> Duration {
let Self {
read_roc_file,
parse_header,
parse_body,
canonicalize,
constrain,
solve,
start_time,
end_time,
} = self;
end_time
.duration_since(*start_time)
.ok()
.and_then(|t| {
t.checked_sub(*solve).and_then(|t| {
t.checked_sub(*constrain).and_then(|t| {
t.checked_sub(*canonicalize).and_then(|t| {
t.checked_sub(*parse_body).and_then(|t| {
t.checked_sub(*parse_header)
.and_then(|t| t.checked_sub(*read_roc_file))
})
})
})
})
})
.unwrap_or_else(Duration::default)
}
}
#[derive(Debug)]
enum BuildTask<'a> {
LoadModule {
module_name: ModuleName,
module_ids: Arc<Mutex<ModuleIds>>,
ident_ids_by_module: Arc<Mutex<IdentIdsByModule>>,
},
ParseAndConstrain {
header: ModuleHeader<'a>,
mode: Mode,
module_ids: ModuleIds,
dep_idents: IdentIdsByModule,
exposed_symbols: MutSet<Symbol>,
},
Solve {
module: Module,
imported_symbols: Vec<Import>,
imported_aliases: MutMap<Symbol, Alias>,
module_timing: ModuleTiming,
constraint: Constraint,
var_store: VarStore,
src: &'a str,
module_docs: ModuleDocumentation,
},
}
enum WorkerMsg {
Shutdown,
TaskAdded,
}
#[derive(Debug)]
pub enum LoadingProblem {
FileProblem {
filename: PathBuf,
error: io::ErrorKind,
},
ParsingFailed {
filename: PathBuf,
fail: Fail,
},
MsgChannelDied,
ErrJoiningWorkerThreads,
TriedToImportAppModule,
}
type IdentIdsByModule = MutMap<ModuleId, IdentIds>;
type MsgSender<'a> = Sender<Msg<'a>>;
/// Add a task to the queue, and notify all the listeners.
fn enqueue_task<'a>(
injector: &Injector<BuildTask<'a>>,
listeners: &[Sender<WorkerMsg>],
task: BuildTask<'a>,
) -> Result<(), LoadingProblem> {
injector.push(task);
for listener in listeners {
listener
.send(WorkerMsg::TaskAdded)
.map_err(|_| LoadingProblem::MsgChannelDied)?;
}
Ok(())
}
/// The loading process works like this, starting from the given filename (e.g. "main.roc"):
///
/// 1. Open the file.
/// 2. Parse the module's header.
/// 3. For each of its imports, send a message on the channel to the coordinator thread, which
/// will repeat this process to load that module - starting with step 1.
/// 4. Add everything we were able to import unqualified to the module's default scope.
/// 5. Parse the module's defs.
/// 6. Canonicalize the module.
/// 7. Before type checking, block on waiting for type checking to complete on all imports.
/// (Since Roc doesn't allow cyclic dependencies, this ctypeot deadlock.)
/// 8. Type check the module and create type annotations for its top-level declarations.
/// 9. Report the completed type annotation to the coordinator thread, so other modules
/// that are waiting in step 7 can unblock.
///
/// The loaded_modules argument specifies which modules have already been loaded.
/// It typically contains *at least* the standard modules, but is empty when loading
/// the standard modules themselves.
///
/// If we're just type-checking everything (e.g. running `roc check` at the command line),
/// we can stop there. However, if we're generating code, then there are additional steps.
///
/// 10. After reporting the completed type annotation, we have all the information necessary
/// to monomorphize. However, since we want to monomorphize in parallel without
/// duplicating work, we do monomorphization in two steps. First, we go through and
/// determine all the specializations this module *wants*. We compute the hashes
/// and report them to the coordinator thread, along with the mono::expr::Expr values of
/// the current function's body. At this point, we have not yet begun to assemble Procs;
/// all we've done is send a list of requetsted specializations to the coordinator.
/// 11. The coordinator works through the specialization requests in parallel, adding them
/// to a global map once they're finished. Performing one specialization may result
/// in requests for others; these are added to the queue and worked through as normal.
/// This process continues until *both* all modules have reported that they've finished
/// adding specialization requests to the queue, *and* the queue is empty (including
/// of any requestss that were added in the course of completing other requests). Now
/// we have a map of specializations, and everything was assembled in parallel with
/// no unique specialization ever getting assembled twice (meanaing no wasted effort).
/// 12. Now that we have our final map of specializations, we can proceed to code gen!
/// As long as the specializations are stored in a per-ModuleId map, we can also
/// parallelize this code gen. (e.g. in dev builds, building separate LLVM modules
/// and then linking them together, and possibly caching them by the hash of their
/// specializations, so if none of their specializations changed, we don't even need
/// to rebuild the module and can link in the cached one directly.)
// #[allow(clippy::cognitive_complexity)]
pub fn load(
filename: PathBuf,
stdlib: &StdLib,
src_dir: &Path,
exposed_types: SubsByModule,
) -> Result<LoadedModule, LoadingProblem> {
let arena = Bump::new();
// Reserve one CPU for the main thread, and let all the others be eligible
// to spawn workers. We use .max(2) to enforce that we always
// end up with at least 1 worker - since (.max(2) - 1) will
// always return a number that's at least 1. Using
// .max(2) on the initial number of CPUs instead of
// doing .max(1) on the entire expression guards against
// num_cpus returning 0, while also avoiding wrapping
// unsigned subtraction overflow.
let num_workers = num_cpus::get().max(2) - 1;
let mut worker_arenas = bumpalo::collections::Vec::with_capacity_in(num_workers, &arena);
for _ in 0..num_workers {
worker_arenas.push(Bump::new());
}
let (msg_tx, msg_rx) = bounded(1024);
let arc_modules = Arc::new(Mutex::new(ModuleIds::default()));
let root_exposed_ident_ids = IdentIds::exposed_builtins(0);
let ident_ids_by_module = Arc::new(Mutex::new(root_exposed_ident_ids));
// Load the root module synchronously; we can't proceed until we have its id.
let (root_id, root_msg) = {
let root_start_time = SystemTime::now();
load_filename(
&arena,
filename,
Arc::clone(&arc_modules),
Arc::clone(&ident_ids_by_module),
root_start_time,
)?
};
msg_tx
.send(root_msg)
.map_err(|_| LoadingProblem::MsgChannelDied)?;
// We'll add tasks to this, and then worker threads will take tasks from it.
let injector = Injector::new();
// We need to allocate worker *queues* on the main thread and then move them
// into the worker threads, because those workers' stealers need to be
// shared bet,een all threads, and this coordination work is much easier
// on the main thread.
let mut worker_queues = bumpalo::collections::Vec::with_capacity_in(num_workers, &arena);
let mut stealers = bumpalo::collections::Vec::with_capacity_in(num_workers, &arena);
thread::scope(|thread_scope| {
for _ in 0..num_workers {
let worker = Worker::new_lifo();
stealers.push(worker.stealer());
worker_queues.push(worker);
}
// Get a reference to the completed stealers, so we can send that
// reference to each worker. (Slices are Sync, but bumpalo Vecs are not.)
let stealers = stealers.into_bump_slice();
let mut headers_parsed = MutSet::default();
// We've already parsed the root's header. (But only its header, so far.)
headers_parsed.insert(root_id);
let mut loading_started = MutSet::default();
// If the root module we're still processing happens to be an interface,
// it's possible that something else will import it. That will
// necessarily cause a cyclic import error, but in the meantime
// we still shouldn't load it.
loading_started.insert(root_id);
let mut state = State {
root_id,
exposed_types,
headers_parsed,
loading_started,
can_problems: Vec::new(),
type_problems: Vec::new(),
arc_modules,
constrained_ident_ids: IdentIds::exposed_builtins(0),
ident_ids_by_module,
declarations_by_id: MutMap::default(),
exposed_symbols_by_module: MutMap::default(),
waiting_for_headers: MutMap::default(),
header_listeners: MutMap::default(),
unparsed_modules: MutMap::default(),
waiting_for_solve: MutMap::default(),
solve_listeners: MutMap::default(),
unsolved_modules: MutMap::default(),
timings: MutMap::default(),
};
let mut worker_listeners = bumpalo::collections::Vec::with_capacity_in(num_workers, &arena);
for worker_arena in worker_arenas.iter_mut() {
let msg_tx = msg_tx.clone();
let worker = worker_queues.pop().unwrap();
let (worker_msg_tx, worker_msg_rx) = bounded(1024);
worker_listeners.push(worker_msg_tx);
// We only want to move a *reference* to the main task queue's
// injector in the thread, not the injector itself
// (since other threads need to reference it too).
let injector = &injector;
// Record this thread's handle so the main thread can join it later.
thread_scope.spawn(move |_| {
// Keep listening until we receive a Shutdown msg
for msg in worker_msg_rx.iter() {
match msg {
WorkerMsg::Shutdown => {
// We've finished all our work. It's time to
// shut down the thread, so when the main thread
// blocks on joining with all the worker threads,
// it can finally exit too!
return;
}
WorkerMsg::TaskAdded => {
// Find a task - either from this thread's queue,
// or from the main queue, or from another worker's
// queue - and run it.
//
// There might be no tasks to work on! That could
// happen if another thread is working on a task
// which will later result in more tasks being
// added. In that case, do nothing, and keep waiting
// until we receive a Shutdown message.
if let Some(task) = find_task(&worker, injector, stealers) {
run_task(task, worker_arena, src_dir, msg_tx.clone(), stdlib)
.expect("Msg channel closed unexpectedly.");
}
}
}
}
// Needed to prevent a borrow checker error about this closure
// outliving its enclosing function.
drop(worker_msg_rx);
});
}
// We've now distributed one worker queue to each thread.
// There should be no queues left to distribute!
debug_assert!(worker_queues.is_empty());
drop(worker_queues);
// Grab a reference to these Senders outside the loop, so we can share
// it across each iteration of the loop.
let worker_listeners = worker_listeners.into_bump_slice();
let msg_tx = msg_tx.clone();
// The root module will have already queued up messages to process,
// and processing those messages will in turn queue up more messages.
for msg in msg_rx.iter() {
match msg {
Msg::Finished {
solved_subs,
problems,
exposed_vars_by_symbol,
src,
module_docs,
} => {
// We're done! There should be no more messages pending.
debug_assert!(msg_rx.is_empty());
// Shut down all the worker threads.
for listener in worker_listeners {
listener
.send(WorkerMsg::Shutdown)
.map_err(|_| LoadingProblem::MsgChannelDied)?;
}
return Ok(finish(
state,
solved_subs,
problems,
exposed_vars_by_symbol,
src,
module_docs,
));
}
msg => {
// This is where most of the main thread's work gets done.
// Everything up to this point has been setting up the threading
// system which lets this logic work efficiently.
state = update(
state,
msg,
stdlib,
msg_tx.clone(),
&injector,
worker_listeners,
)?;
}
}
}
// The msg_rx receiver closed unexpectedly before we finished solving everything
Err(LoadingProblem::MsgChannelDied)
})
.unwrap()
}
fn update<'a>(
mut state: State<'a>,
msg: Msg<'a>,
stdlib: &StdLib,
msg_tx: MsgSender<'a>,
injector: &Injector<BuildTask<'a>>,
worker_listeners: &'a [Sender<WorkerMsg>],
) -> Result<State<'a>, LoadingProblem> {
use self::Msg::*;
match msg {
Header(header) => {
let home = header.module_id;
let deps_by_name = &header.deps_by_name;
let mut headers_needed =
HashSet::with_capacity_and_hasher(deps_by_name.len(), default_hasher());
state.headers_parsed.insert(home);
for dep_id in deps_by_name.values() {
if !state.headers_parsed.contains(&dep_id) {
headers_needed.insert(*dep_id);
}
}
// This was a dependency. Write it down and keep processing messaages.
let mut exposed_symbols: MutSet<Symbol> =
HashSet::with_capacity_and_hasher(header.exposes.len(), default_hasher());
// TODO can we avoid this loop by storing them as a Set in Header to begin with?
for symbol in header.exposes.iter() {
exposed_symbols.insert(*symbol);
}
debug_assert!(!state.exposed_symbols_by_module.contains_key(&home));
state
.exposed_symbols_by_module
.insert(home, exposed_symbols);
// Notify all the listeners that headers are now available for this module.
if let Some(listeners) = state.header_listeners.remove(&home) {
for listener_id in listeners {
// This listener is longer waiting for this module,
// because this module's headers are now available!
let waiting_for = state
.waiting_for_headers
.get_mut(&listener_id)
.expect("Unable to find module ID in waiting_for_headers");
waiting_for.remove(&home);
// If it's no longer waiting for anything else, solve it.
if waiting_for.is_empty() {
let header = state
.unparsed_modules
.remove(&listener_id)
.expect("Could not find listener ID in unparsed_modules");
let exposed_symbols = state
.exposed_symbols_by_module
.remove(&listener_id)
.expect("Could not find listener ID in exposed_symbols_by_module");
enqueue_task(
injector,
worker_listeners,
BuildTask::parse_and_constrain(
header,
stdlib.mode,
Arc::clone(&state.arc_modules),
Arc::clone(&state.ident_ids_by_module),
&state.exposed_types,
exposed_symbols.clone(),
&mut state.waiting_for_solve,
),
)?;
}
}
}
// If any of our deps weren't loaded before, start loading them.
for (dep_name, dep_id) in deps_by_name.iter() {
if !state.loading_started.contains(&dep_id) {
// Record that we've started loading the module *before*
// we actually start loading it.
state.loading_started.insert(*dep_id);
// Start loading this module in the background.
enqueue_task(
injector,
worker_listeners,
BuildTask::LoadModule {
module_name: dep_name.clone(),
// Provide mutexes of ModuleIds and IdentIds by module,
// so other modules can populate them as they load.
module_ids: Arc::clone(&state.arc_modules),
ident_ids_by_module: Arc::clone(&state.ident_ids_by_module),
},
)?;
}
}
if headers_needed.is_empty() {
let exposed_symbols = state
.exposed_symbols_by_module
.remove(&home)
.expect("Could not find listener ID in exposed_symbols_by_module");
enqueue_task(
injector,
worker_listeners,
BuildTask::parse_and_constrain(
header,
stdlib.mode,
Arc::clone(&state.arc_modules),
Arc::clone(&state.ident_ids_by_module),
&state.exposed_types,
exposed_symbols,
&mut state.waiting_for_solve,
),
)?;
} else {
// We will have to wait for our deps' headers to be parsed,
// so we can access their IdentId, which we need for canonicalization.
debug_assert!(!state.unparsed_modules.contains_key(&home));
state.unparsed_modules.insert(home, header);
// Register a listener with each of these.
for dep_id in headers_needed.iter() {
let listeners = state
.header_listeners
.entry(*dep_id)
.or_insert_with(|| Vec::with_capacity(1));
(*listeners).push(home);
}
debug_assert!(!state.waiting_for_headers.contains_key(&home));
state.waiting_for_headers.insert(home, headers_needed);
}
Ok(state)
}
Constrained {
module,
declarations,
src,
ident_ids,
imported_modules,
constraint,
problems,
var_store,
module_timing,
module_docs,
} => {
state.can_problems.extend(problems);
let module_id = module.module_id;
let State {
waiting_for_solve,
exposed_types,
constrained_ident_ids,
declarations_by_id,
unsolved_modules,
solve_listeners,
..
} = &mut state;
let waiting_for = waiting_for_solve.get_mut(&module_id).unwrap_or_else(|| {
panic!(
"Could not find module ID {:?} in waiting_for_solve",
module_id
)
});
// Record the final IdentIds
debug_assert!(!constrained_ident_ids.contains_key(&module_id));
constrained_ident_ids.insert(module_id, ident_ids);
// It's possible that some modules have been solved since
// we began waiting for them. Remove those from waiting_for,
// because we no longer need to wait for them!
waiting_for.retain(|id| !exposed_types.contains_key(id));
declarations_by_id.insert(module_id, declarations);
if waiting_for.is_empty() {
// All of our dependencies have already been solved. Great!
// That means we can proceed directly to solving.
enqueue_task(
injector,
worker_listeners,
BuildTask::solve_module(
module,
module_timing,
src,
constraint,
var_store,
imported_modules,
&mut state.exposed_types,
stdlib,
module_docs,
),
)?;
} else {
// We will have to wait for our dependencies to be solved.
debug_assert!(!unsolved_modules.contains_key(&module_id));
unsolved_modules.insert(
module_id,
UnsolvedModule {
module,
src,
imported_modules,
constraint,
var_store,
module_timing,
},
);
// Register a listener with each of these.
for dep_id in waiting_for.iter() {
let listeners = solve_listeners
.entry(*dep_id)
.or_insert_with(|| Vec::with_capacity(1));
(*listeners).push(module_id);
}
}
Ok(state)
}
Solved {
src,
module_id,
solved_module,
solved_subs,
mut module_timing,
module_docs,
} => {
module_timing.end_time = SystemTime::now();
// We've finished recording all the timings for this module,
// add them to state.timings
state.timings.insert(module_id, module_timing);
if module_id == state.root_id {
msg_tx
.send(Msg::Finished {
solved_subs,
problems: solved_module.problems,
exposed_vars_by_symbol: solved_module.exposed_vars_by_symbol,
src,
module_docs,
})
.map_err(|_| LoadingProblem::MsgChannelDied)?;
} else {
state.type_problems.extend(solved_module.problems);
// This was a dependency. Write it down and keep processing messages.
debug_assert!(!state.exposed_types.contains_key(&module_id));
state.exposed_types.insert(
module_id,
ExposedModuleTypes::Valid(solved_module.solved_types, solved_module.aliases),
);
// Notify all the listeners that this solved.
if let Some(listeners) = state.solve_listeners.remove(&module_id) {
for listener_id in listeners {
// This listener is longer waiting for this module,
// because this module has now been solved!
let waiting_for = state
.waiting_for_solve
.get_mut(&listener_id)
.expect("Unable to find module ID in waiting_for_solve");
waiting_for.remove(&module_id);
// If it's no longer waiting for anything else, solve it.
if waiting_for.is_empty() {
let UnsolvedModule {
module,
src,
imported_modules,
constraint,
var_store,
module_timing,
} = state
.unsolved_modules
.remove(&listener_id)
.expect("Could not find listener ID in unsolved_modules");
enqueue_task(
injector,
worker_listeners,
BuildTask::solve_module(
module,
module_timing,
src,
constraint,
var_store,
imported_modules,
&mut state.exposed_types,
stdlib,
module_docs.clone(),
),
)?;
}
}
}
}
Ok(state)
}
Msg::Finished { .. } => {
unreachable!();
}
}
}
fn finish<'a>(
mut state: State<'a>,
solved: Solved<Subs>,
problems: Vec<solve::TypeError>,
exposed_vars_by_symbol: Vec<(Symbol, Variable)>,
src: &'a str,
module_docs: ModuleDocumentation,
) -> LoadedModule {
state.type_problems.extend(problems);
let module_ids = Arc::try_unwrap(state.arc_modules)
.unwrap_or_else(|_| panic!("There were still outstanding Arc references to module_ids"))
.into_inner();
let interns = Interns {
module_ids,
all_ident_ids: state.constrained_ident_ids,
};
// let module_docs_unreferenced = ModuleDocumentation { .. module_docs };
LoadedModule {
module_id: state.root_id,
interns,
solved,
can_problems: state.can_problems,
type_problems: state.type_problems,
declarations_by_id: state.declarations_by_id,
exposed_vars_by_symbol,
src: src.into(),
timings: state.timings,
module_docs,
}
}
/// Load a module by its module name, rather than by its filename
fn load_module<'a>(
arena: &'a Bump,
src_dir: &Path,
module_name: ModuleName,
module_ids: Arc<Mutex<ModuleIds>>,
ident_ids_by_module: Arc<Mutex<IdentIdsByModule>>,
) -> Result<(ModuleId, Msg<'a>), LoadingProblem> {
let module_start_time = SystemTime::now();
let mut filename = PathBuf::new();
filename.push(src_dir);
// Convert dots in module name to directories
for part in module_name.as_str().split(MODULE_SEPARATOR) {
filename.push(part);
}
// End with .roc
filename.set_extension(ROC_FILE_EXTENSION);
load_filename(
arena,
filename,
module_ids,
ident_ids_by_module,
module_start_time,
)
}
/// Find a task according to the following algorithm:
///
/// 1. Look in a local Worker queue. If it has a task, pop it off the queue and return it.
/// 2. If that queue was empty, ask the global queue for a task.
/// 3. If the global queue is also empty, iterate through each Stealer (each Worker queue has a
/// corresponding Stealer, which can steal from it. Stealers can be shared across threads.)
///
/// Based on https://docs.rs/crossbeam/0.7.3/crossbeam/deque/index.html#examples
fn find_task<T>(local: &Worker<T>, global: &Injector<T>, stealers: &[Stealer<T>]) -> Option<T> {
// Pop a task from the local queue, if not empty.
local.pop().or_else(|| {
// Otherwise, we need to look for a task elsewhere.
iter::repeat_with(|| {
// Try stealing a task from the global queue.
global
.steal()
// Or try stealing a task from one of the other threads.
.or_else(|| stealers.iter().map(|s| s.steal()).collect())
})
// Loop while no task was stolen and any steal operation needs to be retried.
.find(|s| !s.is_retry())
// Extract the stolen task, if there is one.
.and_then(|s| s.success())
})
}
fn parse_header<'a>(
arena: &'a Bump,
read_file_duration: Duration,
filename: PathBuf,
module_ids: Arc<Mutex<ModuleIds>>,
ident_ids_by_module: Arc<Mutex<IdentIdsByModule>>,
src_bytes: &'a [u8],
start_time: SystemTime,
) -> Result<(ModuleId, Msg<'a>), LoadingProblem> {
let parse_start = SystemTime::now();
let parse_state = parser::State::new(src_bytes, Attempting::Module);
let parsed = roc_parse::module::header().parse(&arena, parse_state);
let parse_header_duration = parse_start.elapsed().unwrap();
// Insert the first entries for this module's timings
let mut module_timing = ModuleTiming {
read_roc_file: Duration::default(),
parse_header: Duration::default(),
parse_body: Duration::default(),
canonicalize: Duration::default(),
constrain: Duration::default(),
solve: Duration::default(),
start_time,
end_time: start_time, // just for now; we'll overwrite this at the end
};
module_timing.read_roc_file = read_file_duration;
module_timing.parse_header = parse_header_duration;
match parsed {
Ok((ast::Module::Interface { header }, parse_state)) => Ok(send_header(
header.name,
header.exposes.into_bump_slice(),
header.imports.into_bump_slice(),
parse_state,
module_ids,
ident_ids_by_module,
module_timing,
)),
Ok((ast::Module::App { header }, parse_state)) => Ok(send_header(
header.name,
header.provides.into_bump_slice(),
header.imports.into_bump_slice(),
parse_state,
module_ids,
ident_ids_by_module,
module_timing,
)),
Err((fail, _)) => Err(LoadingProblem::ParsingFailed { filename, fail }),
}
}
/// Load a module by its filename
fn load_filename<'a>(
arena: &'a Bump,
filename: PathBuf,
module_ids: Arc<Mutex<ModuleIds>>,
ident_ids_by_module: Arc<Mutex<IdentIdsByModule>>,
module_start_time: SystemTime,
) -> Result<(ModuleId, Msg<'a>), LoadingProblem> {
let file_io_start = SystemTime::now();
let file = fs::read(&filename);
let file_io_duration = file_io_start.elapsed().unwrap();
match file {
Ok(bytes) => parse_header(
arena,
file_io_duration,
filename,
module_ids,
ident_ids_by_module,
arena.alloc(bytes),
module_start_time,
),
Err(err) => Err(LoadingProblem::FileProblem {
filename,
error: err.kind(),
}),
}
}
#[allow(clippy::too_many_arguments)]
fn send_header<'a>(
name: Located<roc_parse::header::ModuleName<'a>>,
exposes: &'a [Located<ExposesEntry<'a>>],
imports: &'a [Located<ImportsEntry<'a>>],
parse_state: parser::State<'a>,
module_ids: Arc<Mutex<ModuleIds>>,
ident_ids_by_module: Arc<Mutex<IdentIdsByModule>>,
module_timing: ModuleTiming,
) -> (ModuleId, Msg<'a>) {
let declared_name: ModuleName = name.value.as_str().into();
// TODO check to see if declared_name is consistent with filename.
// If it isn't, report a problem!
let mut imported: Vec<(ModuleName, Vec<Ident>, Region)> = Vec::with_capacity(imports.len());
let mut imported_modules: MutSet<ModuleId> = MutSet::default();
let mut scope_size = 0;
for loc_entry in imports {
let (module_name, exposed) = exposed_from_import(&loc_entry.value);
scope_size += exposed.len();
imported.push((module_name, exposed, loc_entry.region));
}
let num_exposes = exposes.len();
let mut deps_by_name: MutMap<ModuleName, ModuleId> =
HashMap::with_capacity_and_hasher(num_exposes, default_hasher());
let mut exposed: Vec<Symbol> = Vec::with_capacity(num_exposes);
// Make sure the module_ids has ModuleIds for all our deps,
// then record those ModuleIds in can_module_ids for later.
let mut scope: MutMap<Ident, (Symbol, Region)> =
HashMap::with_capacity_and_hasher(scope_size, default_hasher());
let home: ModuleId;
let ident_ids = {
// Lock just long enough to perform the minimal operations necessary.
let mut module_ids = (*module_ids).lock();
let mut ident_ids_by_module = (*ident_ids_by_module).lock();
home = module_ids.get_or_insert(&declared_name.as_inline_str());
// Ensure this module has an entry in the exposed_ident_ids map.
ident_ids_by_module
.entry(home)
.or_insert_with(IdentIds::default);
// For each of our imports, add an entry to deps_by_name
//
// e.g. for `imports [ Foo.{ bar } ]`, add `Foo` to deps_by_name
//
// Also build a list of imported_values_to_expose (like `bar` above.)
for (module_name, exposed_idents, region) in imported.into_iter() {
let cloned_module_name = module_name.clone();
let module_id = module_ids.get_or_insert(&module_name.into());
deps_by_name.insert(cloned_module_name, module_id);
imported_modules.insert(module_id);
// Add the new exposed idents to the dep module's IdentIds, so
// once that module later gets loaded, its lookups will resolve
// to the same symbols as the ones we're using here.
let ident_ids = ident_ids_by_module
.entry(module_id)
.or_insert_with(IdentIds::default);
for ident in exposed_idents {
let ident_id = ident_ids.get_or_insert(ident.as_inline_str());
let symbol = Symbol::new(module_id, ident_id);
// Since this value is exposed, add it to our module's default scope.
debug_assert!(!scope.contains_key(&ident.clone()));
scope.insert(ident, (symbol, region));
}
}
let ident_ids = ident_ids_by_module.get_mut(&home).unwrap();
// Generate IdentIds entries for all values this module exposes.
// This way, when we encounter them in Defs later, they already
// have an IdentIds entry.
//
// We must *not* add them to scope yet, or else the Defs will
// incorrectly think they're shadowing them!
for loc_exposed in exposes.iter() {
// Use get_or_insert here because the ident_ids may already
// created an IdentId for this, when it was imported exposed
// in a dependent module.
//
// For example, if module A has [ B.{ foo } ], then
// when we get here for B, `foo` will already have
// an IdentId. We must reuse that!
let ident_id = ident_ids.get_or_insert(&loc_exposed.value.as_str().into());
let symbol = Symbol::new(home, ident_id);
exposed.push(symbol);
}
if cfg!(debug_assertions) {
home.register_debug_idents(&ident_ids);
}
ident_ids.clone()
};
// Send the deps to the coordinator thread for processing,
// then continue on to parsing and canonicalizing defs.
//
// We always need to send these, even if deps is empty,
// because the coordinator thread needs to receive this message
// to decrement its "pending" count.
// Send the header the main thread for processing,
(
home,
Msg::Header(ModuleHeader {
module_id: home,
exposed_ident_ids: ident_ids,
module_name: declared_name,
imported_modules,
deps_by_name,
exposes: exposed,
src: parse_state.bytes,
exposed_imports: scope,
module_timing,
}),
)
}
impl<'a> BuildTask<'a> {
// TODO trim down these arguments - possibly by moving Constraint into Module
#[allow(clippy::too_many_arguments)]
pub fn solve_module(
module: Module,
module_timing: ModuleTiming,
src: &'a str,
constraint: Constraint,
var_store: VarStore,
imported_modules: MutSet<ModuleId>,
exposed_types: &mut SubsByModule,
stdlib: &StdLib,
module_docs: ModuleDocumentation,
) -> Self {
let home = module.module_id;
// Get the constraints for this module's imports. We do this on the main thread
// to avoid having to lock the map of exposed types, or to clone it
// (which would be more expensive for the main thread).
let ConstrainableImports {
imported_symbols,
imported_aliases,
unused_imports,
} = pre_constrain_imports(
home,
&module.references,
imported_modules,
exposed_types,
stdlib,
);
for unused_import in unused_imports {
todo!(
"TODO gracefully handle unused import {:?} from module {:?}",
unused_import,
home
);
}
// Next, solve this module in the background.
Self::Solve {
module,
imported_symbols,
imported_aliases,
constraint,
var_store,
src,
module_timing,
module_docs,
}
}
#[allow(clippy::too_many_arguments)]
pub fn parse_and_constrain(
header: ModuleHeader<'a>,
mode: Mode,
module_ids: Arc<Mutex<ModuleIds>>,
ident_ids_by_module: Arc<Mutex<IdentIdsByModule>>,
exposed_types: &SubsByModule,
exposed_symbols: MutSet<Symbol>,
waiting_for_solve: &mut MutMap<ModuleId, MutSet<ModuleId>>,
) -> Self {
let module_id = header.module_id;
let deps_by_name = &header.deps_by_name;
let num_deps = deps_by_name.len();
let mut dep_idents: IdentIdsByModule = IdentIds::exposed_builtins(num_deps);
{
let ident_ids_by_module = (*ident_ids_by_module).lock();
// Populate dep_idents with each of their IdentIds,
// which we'll need during canonicalization to translate
// identifier strings into IdentIds, which we need to build Symbols.
// We only include the modules we care about (the ones we import).
//
// At the end of this loop, dep_idents contains all the information to
// resolve a symbol from another module: if it's in here, that means
// we have both imported the module and the ident was exported by that mdoule.
for dep_id in header.deps_by_name.values() {
// We already verified that these are all present,
// so unwrapping should always succeed here.
let idents = ident_ids_by_module.get(&dep_id).unwrap();
dep_idents.insert(*dep_id, idents.clone());
}
}
// Once this step has completed, the next thing we'll need
// is solving. Register the modules we'll need to have been
// solved before we can solve.
let mut solve_needed = HashSet::with_capacity_and_hasher(num_deps, default_hasher());
for dep_id in deps_by_name.values() {
if !exposed_types.contains_key(dep_id) {
solve_needed.insert(*dep_id);
}
}
waiting_for_solve.insert(module_id, solve_needed);
// Clone the module_ids we'll need for canonicalization.
// This should be small, and cloning it should be quick.
// We release the lock as soon as we're done cloning, so we don't have
// to lock the global module_ids while canonicalizing any given module.
let module_ids = { (*module_ids).lock().clone() };
// Now that we have waiting_for_solve populated, continue parsing,
// canonicalizing, and constraining the module.
Self::ParseAndConstrain {
header,
mode,
module_ids,
dep_idents,
exposed_symbols,
}
}
}
#[allow(clippy::too_many_arguments)]
fn run_solve<'a>(
module: Module,
mut module_timing: ModuleTiming,
stdlib: &StdLib,
imported_symbols: Vec<Import>,
imported_aliases: MutMap<Symbol, Alias>,
constraint: Constraint,
mut var_store: VarStore,
src: &'a str,
module_docs: ModuleDocumentation,
) -> Msg<'a> {
// Rebuild the aliases in this thread, so we don't have to clone all of
// stdlib.aliases on the main thread.
let aliases = match stdlib.mode {
Mode::Standard => roc_builtins::std::aliases(),
Mode::Uniqueness => roc_builtins::unique::aliases(),
};
// We have more constraining work to do now, so we'll add it to our timings.
let constrain_start = SystemTime::now();
// Finish constraining the module by wrapping the existing Constraint
// in the ones we just computed. We can do this off the main thread.
let constraint = constrain_imports(
imported_symbols,
imported_aliases,
constraint,
&mut var_store,
);
let mut constraint = load_builtin_aliases(aliases, constraint, &mut var_store);
// Turn Apply into Alias
constraint.instantiate_aliases(&mut var_store);
let constrain_end = SystemTime::now();
let module_id = module.module_id;
let (solved_subs, solved_module) =
roc_solve::module::solve_module(module, constraint, var_store);
// Record the final timings
let solve_end = SystemTime::now();
let constrain_elapsed = constrain_end.duration_since(constrain_start).unwrap();
module_timing.constrain += constrain_elapsed;
module_timing.solve = solve_end.duration_since(constrain_end).unwrap();
// Send the subs to the main thread for processing,
Msg::Solved {
src,
module_id,
solved_subs,
solved_module,
module_timing,
module_docs,
}
}
/// Parse the module, canonicalize it, and generate constraints for it.
fn parse_and_constrain<'a>(
header: ModuleHeader<'a>,
mode: Mode,
module_ids: ModuleIds,
dep_idents: IdentIdsByModule,
exposed_symbols: MutSet<Symbol>,
) -> Result<Msg<'a>, LoadingProblem> {
let mut module_timing = header.module_timing;
let parse_start = SystemTime::now();
let arena = Bump::new();
let parse_state = parser::State::new(&header.src, Attempting::Module);
let (parsed_defs, _) = module_defs()
.parse(&arena, parse_state)
.expect("TODO gracefully handle parse error on module defs. IMPORTANT: Bail out entirely if there are any BadUtf8 problems! That means the whole source file is not valid UTF-8 and any other errors we report may get mis-reported. We rely on this for safety in an `unsafe` block later on in this function.");
// Record the parse end time once, to avoid checking the time a second time
// immediately afterward (for the beginning of canonicalization).
let parse_end = SystemTime::now();
// Generate documentation information
// TODO: store timing information?
let module_docs =
generate_module_docs(header.module_name, &header.exposed_ident_ids, &parsed_defs);
let module_id = header.module_id;
let mut var_store = VarStore::default();
let canonicalized = canonicalize_module_defs(
&arena,
parsed_defs,
module_id,
&module_ids,
header.exposed_ident_ids,
dep_idents,
header.exposed_imports,
exposed_symbols,
&mut var_store,
);
let canonicalize_end = SystemTime::now();
let (module, declarations, ident_ids, constraint, problems) = match canonicalized {
Ok(mut module_output) => {
// Add builtin defs (e.g. List.get) to the module's defs
let builtin_defs = roc_can::builtins::builtin_defs(&mut var_store);
let references = &module_output.references;
for (symbol, def) in builtin_defs {
if references.contains(&symbol) {
module_output.declarations.push(Declaration::Builtin(def));
}
}
let constraint = constrain_module(&module_output, module_id, mode, &mut var_store);
// Now that we're done with parsing, canonicalization, and constraint gen,
// add the timings for those to module_timing
module_timing.constrain = canonicalize_end.elapsed().unwrap();
module_timing.parse_body = parse_end.duration_since(parse_start).unwrap();
module_timing.canonicalize = canonicalize_end.duration_since(parse_start).unwrap();
let module = Module {
module_id,
exposed_imports: module_output.exposed_imports,
exposed_vars_by_symbol: module_output.exposed_vars_by_symbol,
references: module_output.references,
aliases: module_output.aliases,
rigid_variables: module_output.rigid_variables,
};
(
module,
module_output.declarations,
module_output.ident_ids,
constraint,
module_output.problems,
)
}
Err(runtime_error) => {
panic!(
"TODO gracefully handle module canonicalization error {:?}",
runtime_error
);
}
};
let imported_modules = header.imported_modules;
// SAFETY: By this point we've already incrementally verified that there
// are no UTF-8 errors in these bytes. If there had been any UTF-8 errors,
// we'd have bailed out before now.
let src = unsafe { from_utf8_unchecked(header.src) };
// Send the constraint to the main thread for processing.
Ok(Msg::Constrained {
module,
src,
declarations,
imported_modules,
ident_ids,
constraint,
problems,
var_store,
module_timing,
module_docs,
})
}
fn exposed_from_import(entry: &ImportsEntry<'_>) -> (ModuleName, Vec<Ident>) {
use roc_parse::ast::ImportsEntry::*;
match entry {
Module(module_name, exposes) => {
let mut exposed = Vec::with_capacity(exposes.len());
for loc_entry in exposes {
exposed.push(ident_from_exposed(&loc_entry.value));
}
(module_name.as_str().into(), exposed)
}
SpaceBefore(sub_entry, _) | SpaceAfter(sub_entry, _) => {
// Ignore spaces.
exposed_from_import(*sub_entry)
}
}
}
fn ident_from_exposed(entry: &ExposesEntry<'_>) -> Ident {
use roc_parse::ast::ExposesEntry::*;
match entry {
Ident(ident) => (*ident).into(),
SpaceBefore(sub_entry, _) | SpaceAfter(sub_entry, _) => ident_from_exposed(sub_entry),
}
}
fn run_task<'a>(
task: BuildTask<'a>,
arena: &'a Bump,
src_dir: &Path,
msg_tx: MsgSender<'a>,
stdlib: &StdLib,
) -> Result<(), LoadingProblem> {
use BuildTask::*;
let msg = match task {
LoadModule {
module_name,
module_ids,
ident_ids_by_module,
} => load_module(arena, src_dir, module_name, module_ids, ident_ids_by_module)
.map(|(_, msg)| msg),
ParseAndConstrain {
header,
mode,
module_ids,
dep_idents,
exposed_symbols,
} => parse_and_constrain(header, mode, module_ids, dep_idents, exposed_symbols),
Solve {
module,
module_timing,
imported_symbols,
imported_aliases,
constraint,
var_store,
src,
module_docs,
} => Ok(run_solve(
module,
module_timing,
stdlib,
imported_symbols,
imported_aliases,
constraint,
var_store,
src,
module_docs,
)),
}?;
msg_tx
.send(msg)
.map_err(|_| LoadingProblem::MsgChannelDied)?;
Ok(())
}
// Documentation generation requirements
#[derive(Debug, Clone)]
pub struct Documentation {
pub name: String,
pub version: String,
pub docs: String,
pub modules: Vec<ModuleDocumentation>,
}
#[derive(Debug, Clone)]
pub struct ModuleDocumentation {
pub name: String,
pub docs: String,
pub entries: Vec<DocEntry>,
}
#[derive(Debug, Clone)]
pub struct DocEntry {
pub name: String,
pub docs: Option<String>,
}
fn generate_module_docs<'a>(
module_name: ModuleName,
exposed_ident_ids: &'a IdentIds,
parsed_defs: &'a bumpalo::collections::Vec<'a, Located<Def<'a>>>,
) -> ModuleDocumentation {
let (entries, _) =
parsed_defs
.iter()
.fold((vec![], None), |(acc, maybe_comments_after), def| {
generate_module_doc(exposed_ident_ids, acc, maybe_comments_after, &def.value)
});
ModuleDocumentation {
name: module_name.as_str().to_string(),
docs: "".to_string(),
entries,
}
}
fn generate_module_doc<'a>(
exposed_ident_ids: &'a IdentIds,
mut acc: Vec<DocEntry>,
before_comments_or_new_lines: Option<&'a [roc_parse::ast::CommentOrNewline<'a>]>,
def: &'a ast::Def<'a>,
) -> (
Vec<DocEntry>,
Option<&'a [roc_parse::ast::CommentOrNewline<'a>]>,
) {
use roc_parse::ast::Def::*;
use roc_parse::ast::Pattern;
match def {
SpaceBefore(sub_def, comments_or_new_lines) => {
// Comments before a definition are attached to the current defition
generate_module_doc(exposed_ident_ids, acc, Some(comments_or_new_lines), sub_def)
}
SpaceAfter(sub_def, comments_or_new_lines) => {
let (new_acc, _) =
// If there are comments before, attach to this definition
generate_module_doc(exposed_ident_ids, acc, before_comments_or_new_lines, sub_def);
// Comments after a definition are attached to the next defition
(new_acc, Some(comments_or_new_lines))
}
Annotation(loc_pattern, _loc_ann) => match loc_pattern.value {
Pattern::Identifier(identifier) => {
// Check if the definition is exposed
if exposed_ident_ids
.get_id(&InlinableString::from(identifier))
.is_some()
{
let entry = DocEntry {
name: identifier.to_string(),
docs: before_comments_or_new_lines.and_then(comments_or_new_lines_to_docs),
};
acc.push(entry);
}
(acc, None)
}
_ => (acc, None),
},
Alias {
name: _,
vars: _,
ann: _,
} => (acc, None),
Body(_, _) | Nested(_) => (acc, None),
}
}
fn comments_or_new_lines_to_docs<'a>(
comments_or_new_lines: &'a [roc_parse::ast::CommentOrNewline<'a>],
) -> Option<String> {
use roc_parse::ast::CommentOrNewline::*;
let mut docs = String::new();
for comment_or_new_line in comments_or_new_lines.iter() {
match comment_or_new_line {
Newline => {}
LineComment(_) => {}
DocComment(doc_str) => docs.push_str(doc_str),
}
}
if docs.is_empty() {
None
} else {
Some(docs)
}
}