mirror of
https://github.com/roc-lang/roc.git
synced 2025-09-28 14:24:45 +00:00
2099 lines
73 KiB
Rust
2099 lines
73 KiB
Rust
use bumpalo::Bump;
|
|
use roc_can::constraint::Constraint::{self, *};
|
|
use roc_can::constraint::{LetConstraint, PresenceConstraint};
|
|
use roc_can::expected::{Expected, PExpected};
|
|
use roc_collections::all::MutMap;
|
|
use roc_module::ident::TagName;
|
|
use roc_module::symbol::Symbol;
|
|
use roc_region::all::{Loc, Region};
|
|
use roc_types::solved_types::Solved;
|
|
use roc_types::subs::{
|
|
AliasVariables, Content, Descriptor, FlatType, Mark, OptVariable, Rank, RecordFields, Subs,
|
|
SubsIndex, SubsSlice, UnionTags, Variable, VariableSubsSlice,
|
|
};
|
|
use roc_types::types::Type::{self, *};
|
|
use roc_types::types::{
|
|
gather_fields_unsorted_iter, AliasKind, Category, ErrorType, PatternCategory,
|
|
};
|
|
use roc_unify::unify::{unify, Mode, Unified::*};
|
|
use std::collections::hash_map::Entry;
|
|
|
|
// Type checking system adapted from Elm by Evan Czaplicki, BSD-3-Clause Licensed
|
|
// https://github.com/elm/compiler
|
|
// Thank you, Evan!
|
|
|
|
// A lot of energy was put into making type inference fast. That means it's pretty intimidating.
|
|
//
|
|
// Fundamentally, type inference assigns very general types based on syntax, and then tries to
|
|
// make all the pieces fit together. For instance when writing
|
|
//
|
|
// > f x
|
|
//
|
|
// We know that `f` is a function, and thus must have some type `a -> b`.
|
|
// `x` is just a variable, that gets the type `c`
|
|
//
|
|
// Next comes constraint generation. For `f x` to be well-typed,
|
|
// it must be the case that `c = a`, So a constraint `Eq(c, a)` is generated.
|
|
// But `Eq` is a bit special: `c` does not need to equal `a` exactly, but they need to be equivalent.
|
|
// This allows for instance the use of aliases. `c` could be an alias, and so looks different from
|
|
// `a`, but they still represent the same type.
|
|
//
|
|
// Then we get to solving, which happens in this file.
|
|
//
|
|
// When we hit an `Eq` constraint, then we check whether the two involved types are in fact
|
|
// equivalent using unification, and when they are, we can substitute one for the other.
|
|
//
|
|
// When all constraints are processed, and no unification errors have occurred, then the program
|
|
// is type-correct. Otherwise the errors are reported.
|
|
//
|
|
// Now, coming back to efficiency, this type checker uses *ranks* to optimize
|
|
// The rank tracks the number of let-bindings a variable is "under". Top-level definitions
|
|
// have rank 1. A let in a top-level definition gets rank 2, and so on.
|
|
//
|
|
// This has to do with generalization of type variables. This is described here
|
|
//
|
|
// http://okmij.org/ftp/ML/generalization.html#levels
|
|
//
|
|
// The problem is that when doing inference naively, this program would fail to typecheck
|
|
//
|
|
// f =
|
|
// id = \x -> x
|
|
//
|
|
// { a: id 1, b: id "foo" }
|
|
//
|
|
// Because `id` is applied to an integer, the type `Int -> Int` is inferred, which then gives a
|
|
// type error for `id "foo"`.
|
|
//
|
|
// Thus instead the inferred type for `id` is generalized (see the `generalize` function) to `a -> a`.
|
|
// Ranks are used to limit the number of type variables considered for generalization. Only those inside
|
|
// of the let (so those used in inferring the type of `\x -> x`) are considered.
|
|
|
|
#[derive(PartialEq, Debug, Clone)]
|
|
pub enum TypeError {
|
|
BadExpr(Region, Category, ErrorType, Expected<ErrorType>),
|
|
BadPattern(Region, PatternCategory, ErrorType, PExpected<ErrorType>),
|
|
CircularType(Region, Symbol, ErrorType),
|
|
BadType(roc_types::types::Problem),
|
|
UnexposedLookup(Symbol),
|
|
}
|
|
|
|
#[derive(Clone, Debug, Default)]
|
|
pub struct Env {
|
|
symbols: Vec<Symbol>,
|
|
variables: Vec<Variable>,
|
|
}
|
|
|
|
impl Env {
|
|
pub fn vars_by_symbol(&self) -> impl Iterator<Item = (Symbol, Variable)> + '_ {
|
|
let it1 = self.symbols.iter().copied();
|
|
let it2 = self.variables.iter().copied();
|
|
|
|
it1.zip(it2)
|
|
}
|
|
|
|
fn get_var_by_symbol(&self, symbol: &Symbol) -> Option<Variable> {
|
|
self.symbols
|
|
.iter()
|
|
.position(|s| s == symbol)
|
|
.map(|index| self.variables[index])
|
|
}
|
|
|
|
fn insert_symbol_var_if_vacant(&mut self, symbol: Symbol, var: Variable) {
|
|
match self.symbols.iter().position(|s| *s == symbol) {
|
|
None => {
|
|
// symbol is not in vars_by_symbol yet; insert it
|
|
self.symbols.push(symbol);
|
|
self.variables.push(var);
|
|
}
|
|
Some(_) => {
|
|
// do nothing
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
const DEFAULT_POOLS: usize = 8;
|
|
|
|
#[derive(Clone, Debug)]
|
|
struct Pools(Vec<Vec<Variable>>);
|
|
|
|
impl Default for Pools {
|
|
fn default() -> Self {
|
|
Pools::new(DEFAULT_POOLS)
|
|
}
|
|
}
|
|
|
|
impl Pools {
|
|
pub fn new(num_pools: usize) -> Self {
|
|
Pools(vec![Vec::new(); num_pools])
|
|
}
|
|
|
|
pub fn len(&self) -> usize {
|
|
self.0.len()
|
|
}
|
|
|
|
pub fn get_mut(&mut self, rank: Rank) -> &mut Vec<Variable> {
|
|
match self.0.get_mut(rank.into_usize()) {
|
|
Some(reference) => reference,
|
|
None => panic!("Compiler bug: could not find pool at rank {}", rank),
|
|
}
|
|
}
|
|
|
|
pub fn get(&self, rank: Rank) -> &Vec<Variable> {
|
|
match self.0.get(rank.into_usize()) {
|
|
Some(reference) => reference,
|
|
None => panic!("Compiler bug: could not find pool at rank {}", rank),
|
|
}
|
|
}
|
|
|
|
pub fn iter(&self) -> std::slice::Iter<'_, Vec<Variable>> {
|
|
self.0.iter()
|
|
}
|
|
|
|
pub fn split_last(&self) -> (&Vec<Variable>, &[Vec<Variable>]) {
|
|
self.0
|
|
.split_last()
|
|
.unwrap_or_else(|| panic!("Attempted to split_last() on non-empty Pools"))
|
|
}
|
|
|
|
pub fn extend_to(&mut self, n: usize) {
|
|
for _ in self.len()..n {
|
|
self.0.push(Vec::new());
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Clone)]
|
|
struct State {
|
|
env: Env,
|
|
mark: Mark,
|
|
}
|
|
|
|
pub fn run(
|
|
env: &Env,
|
|
problems: &mut Vec<TypeError>,
|
|
mut subs: Subs,
|
|
constraint: &Constraint,
|
|
) -> (Solved<Subs>, Env) {
|
|
let env = run_in_place(env, problems, &mut subs, constraint);
|
|
|
|
(Solved(subs), env)
|
|
}
|
|
|
|
/// Modify an existing subs in-place instead
|
|
pub fn run_in_place(
|
|
env: &Env,
|
|
problems: &mut Vec<TypeError>,
|
|
subs: &mut Subs,
|
|
constraint: &Constraint,
|
|
) -> Env {
|
|
let mut pools = Pools::default();
|
|
let state = State {
|
|
env: env.clone(),
|
|
mark: Mark::NONE.next(),
|
|
};
|
|
let rank = Rank::toplevel();
|
|
|
|
let arena = Bump::new();
|
|
|
|
let state = solve(
|
|
&arena,
|
|
env,
|
|
state,
|
|
rank,
|
|
&mut pools,
|
|
problems,
|
|
&mut MutMap::default(),
|
|
subs,
|
|
constraint,
|
|
);
|
|
|
|
state.env
|
|
}
|
|
|
|
enum Work<'a> {
|
|
Constraint {
|
|
env: &'a Env,
|
|
rank: Rank,
|
|
constraint: &'a Constraint,
|
|
},
|
|
CheckForInfiniteTypes(LocalDefVarsVec<(Symbol, Loc<Variable>)>),
|
|
LetConSimple {
|
|
env: &'a Env,
|
|
rank: Rank,
|
|
let_con: &'a LetConstraint,
|
|
},
|
|
}
|
|
|
|
#[allow(clippy::too_many_arguments)]
|
|
fn solve(
|
|
arena: &Bump,
|
|
env: &Env,
|
|
mut state: State,
|
|
rank: Rank,
|
|
pools: &mut Pools,
|
|
problems: &mut Vec<TypeError>,
|
|
cached_aliases: &mut MutMap<Symbol, Variable>,
|
|
subs: &mut Subs,
|
|
constraint: &Constraint,
|
|
) -> State {
|
|
let initial = Work::Constraint {
|
|
env,
|
|
rank,
|
|
constraint,
|
|
};
|
|
|
|
let mut stack = vec![initial];
|
|
while let Some(work_item) = stack.pop() {
|
|
let (env, rank, constraint) = match work_item {
|
|
Work::Constraint {
|
|
env,
|
|
rank,
|
|
constraint,
|
|
} => (env, rank, constraint),
|
|
Work::CheckForInfiniteTypes(def_vars) => {
|
|
for (symbol, loc_var) in def_vars.iter() {
|
|
check_for_infinite_type(subs, problems, *symbol, *loc_var);
|
|
}
|
|
// No constraint to be solved
|
|
continue;
|
|
}
|
|
Work::LetConSimple { env, rank, let_con } => {
|
|
// Add a variable for each def to new_vars_by_env.
|
|
let mut local_def_vars = LocalDefVarsVec::with_length(let_con.def_types.len());
|
|
|
|
for (symbol, loc_type) in let_con.def_types.iter() {
|
|
let var = type_to_var(subs, rank, pools, cached_aliases, &loc_type.value);
|
|
|
|
local_def_vars.push((
|
|
*symbol,
|
|
Loc {
|
|
value: var,
|
|
region: loc_type.region,
|
|
},
|
|
));
|
|
}
|
|
|
|
let mut new_env = env.clone();
|
|
for (symbol, loc_var) in local_def_vars.iter() {
|
|
new_env.insert_symbol_var_if_vacant(*symbol, loc_var.value);
|
|
}
|
|
|
|
stack.push(Work::CheckForInfiniteTypes(local_def_vars));
|
|
stack.push(Work::Constraint {
|
|
env: arena.alloc(new_env),
|
|
rank,
|
|
constraint: &let_con.ret_constraint,
|
|
});
|
|
continue;
|
|
}
|
|
};
|
|
|
|
state = match constraint {
|
|
True => state,
|
|
SaveTheEnvironment => {
|
|
// NOTE deviation: elm only copies the env into the state on SaveTheEnvironment
|
|
let mut copy = state;
|
|
|
|
copy.env = env.clone();
|
|
|
|
copy
|
|
}
|
|
Eq(typ, expectation, category, region) => {
|
|
let actual = type_to_var(subs, rank, pools, cached_aliases, typ);
|
|
let expected = type_to_var(
|
|
subs,
|
|
rank,
|
|
pools,
|
|
cached_aliases,
|
|
expectation.get_type_ref(),
|
|
);
|
|
|
|
match unify(subs, actual, expected, Mode::EQ) {
|
|
Success(vars) => {
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
state
|
|
}
|
|
Failure(vars, actual_type, expected_type) => {
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
let problem = TypeError::BadExpr(
|
|
*region,
|
|
category.clone(),
|
|
actual_type,
|
|
expectation.clone().replace(expected_type),
|
|
);
|
|
|
|
problems.push(problem);
|
|
|
|
state
|
|
}
|
|
BadType(vars, problem) => {
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
problems.push(TypeError::BadType(problem));
|
|
|
|
state
|
|
}
|
|
}
|
|
}
|
|
Store(source, target, _filename, _linenr) => {
|
|
// a special version of Eq that is used to store types in the AST.
|
|
// IT DOES NOT REPORT ERRORS!
|
|
let actual = type_to_var(subs, rank, pools, cached_aliases, source);
|
|
let target = *target;
|
|
|
|
match unify(subs, actual, target, Mode::EQ) {
|
|
Success(vars) => {
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
state
|
|
}
|
|
Failure(vars, _actual_type, _expected_type) => {
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
// ERROR NOT REPORTED
|
|
|
|
state
|
|
}
|
|
BadType(vars, _) => {
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
// ERROR NOT REPORTED
|
|
|
|
state
|
|
}
|
|
}
|
|
}
|
|
Lookup(symbol, expectation, region) => {
|
|
match env.get_var_by_symbol(symbol) {
|
|
Some(var) => {
|
|
// Deep copy the vars associated with this symbol before unifying them.
|
|
// Otherwise, suppose we have this:
|
|
//
|
|
// identity = \a -> a
|
|
//
|
|
// x = identity 5
|
|
//
|
|
// When we call (identity 5), it's important that we not unify
|
|
// on identity's original vars. If we do, the type of `identity` will be
|
|
// mutated to be `Int -> Int` instead of `a -> `, which would be incorrect;
|
|
// the type of `identity` is more general than that!
|
|
//
|
|
// Instead, we want to unify on a *copy* of its vars. If the copy unifies
|
|
// successfully (in this case, to `Int -> Int`), we can use that to
|
|
// infer the type of this lookup (in this case, `Int`) without ever
|
|
// having mutated the original.
|
|
//
|
|
// If this Lookup is targeting a value in another module,
|
|
// then we copy from that module's Subs into our own. If the value
|
|
// is being looked up in this module, then we use our Subs as both
|
|
// the source and destination.
|
|
let actual = deep_copy_var(subs, rank, pools, var);
|
|
let expected = type_to_var(
|
|
subs,
|
|
rank,
|
|
pools,
|
|
cached_aliases,
|
|
expectation.get_type_ref(),
|
|
);
|
|
match unify(subs, actual, expected, Mode::EQ) {
|
|
Success(vars) => {
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
state
|
|
}
|
|
|
|
Failure(vars, actual_type, expected_type) => {
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
let problem = TypeError::BadExpr(
|
|
*region,
|
|
Category::Lookup(*symbol),
|
|
actual_type,
|
|
expectation.clone().replace(expected_type),
|
|
);
|
|
|
|
problems.push(problem);
|
|
|
|
state
|
|
}
|
|
BadType(vars, problem) => {
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
problems.push(TypeError::BadType(problem));
|
|
|
|
state
|
|
}
|
|
}
|
|
}
|
|
None => {
|
|
problems.push(TypeError::UnexposedLookup(*symbol));
|
|
|
|
state
|
|
}
|
|
}
|
|
}
|
|
And(sub_constraints) => {
|
|
for sub_constraint in sub_constraints.iter().rev() {
|
|
stack.push(Work::Constraint {
|
|
env,
|
|
rank,
|
|
constraint: sub_constraint,
|
|
})
|
|
}
|
|
|
|
state
|
|
}
|
|
Pattern(region, category, typ, expectation)
|
|
| Present(typ, PresenceConstraint::Pattern(region, category, expectation)) => {
|
|
let actual = type_to_var(subs, rank, pools, cached_aliases, typ);
|
|
let expected = type_to_var(
|
|
subs,
|
|
rank,
|
|
pools,
|
|
cached_aliases,
|
|
expectation.get_type_ref(),
|
|
);
|
|
|
|
let mode = match constraint {
|
|
Present(_, _) => Mode::PRESENT,
|
|
_ => Mode::EQ,
|
|
};
|
|
|
|
match unify(subs, actual, expected, mode) {
|
|
Success(vars) => {
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
state
|
|
}
|
|
Failure(vars, actual_type, expected_type) => {
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
let problem = TypeError::BadPattern(
|
|
*region,
|
|
category.clone(),
|
|
actual_type,
|
|
expectation.clone().replace(expected_type),
|
|
);
|
|
|
|
problems.push(problem);
|
|
|
|
state
|
|
}
|
|
BadType(vars, problem) => {
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
problems.push(TypeError::BadType(problem));
|
|
|
|
state
|
|
}
|
|
}
|
|
}
|
|
Let(let_con) => {
|
|
match &let_con.ret_constraint {
|
|
True if let_con.rigid_vars.is_empty() => {
|
|
introduce(subs, rank, pools, &let_con.flex_vars);
|
|
|
|
// If the return expression is guaranteed to solve,
|
|
// solve the assignments themselves and move on.
|
|
stack.push(Work::Constraint {
|
|
env,
|
|
rank,
|
|
constraint: &let_con.defs_constraint,
|
|
});
|
|
state
|
|
}
|
|
_ if let_con.rigid_vars.is_empty() && let_con.flex_vars.is_empty() => {
|
|
stack.push(Work::LetConSimple { env, rank, let_con });
|
|
stack.push(Work::Constraint {
|
|
env,
|
|
rank,
|
|
constraint: &let_con.defs_constraint,
|
|
});
|
|
|
|
state
|
|
}
|
|
ret_con => {
|
|
let rigid_vars = &let_con.rigid_vars;
|
|
let flex_vars = &let_con.flex_vars;
|
|
|
|
// work in the next pool to localize header
|
|
let next_rank = rank.next();
|
|
|
|
// introduce variables
|
|
for &var in rigid_vars.iter().chain(flex_vars.iter()) {
|
|
subs.set_rank(var, next_rank);
|
|
}
|
|
|
|
// determine the next pool
|
|
if next_rank.into_usize() < pools.len() {
|
|
// Nothing to do, we already accounted for the next rank, no need to
|
|
// adjust the pools
|
|
} else {
|
|
// we should be off by one at this point
|
|
debug_assert_eq!(next_rank.into_usize(), 1 + pools.len());
|
|
pools.extend_to(next_rank.into_usize());
|
|
}
|
|
|
|
let pool: &mut Vec<Variable> = pools.get_mut(next_rank);
|
|
|
|
// Replace the contents of this pool with rigid_vars and flex_vars
|
|
pool.clear();
|
|
pool.reserve(rigid_vars.len() + flex_vars.len());
|
|
pool.extend(rigid_vars.iter());
|
|
pool.extend(flex_vars.iter());
|
|
|
|
// run solver in next pool
|
|
|
|
// Add a variable for each def to local_def_vars.
|
|
let mut local_def_vars =
|
|
LocalDefVarsVec::with_length(let_con.def_types.len());
|
|
|
|
for (symbol, loc_type) in let_con.def_types.iter() {
|
|
let def_type = &loc_type.value;
|
|
|
|
let var = type_to_var(subs, next_rank, pools, cached_aliases, def_type);
|
|
|
|
local_def_vars.push((
|
|
*symbol,
|
|
Loc {
|
|
value: var,
|
|
region: loc_type.region,
|
|
},
|
|
));
|
|
}
|
|
|
|
// Solve the assignments' constraints first.
|
|
// TODO: make into `WorkItem` with `After`
|
|
let State {
|
|
env: saved_env,
|
|
mark,
|
|
} = solve(
|
|
arena,
|
|
env,
|
|
state,
|
|
next_rank,
|
|
pools,
|
|
problems,
|
|
cached_aliases,
|
|
subs,
|
|
&let_con.defs_constraint,
|
|
);
|
|
|
|
let young_mark = mark;
|
|
let visit_mark = young_mark.next();
|
|
let final_mark = visit_mark.next();
|
|
|
|
debug_assert_eq!(
|
|
{
|
|
let offenders = pools
|
|
.get(next_rank)
|
|
.iter()
|
|
.filter(|var| {
|
|
let current_rank =
|
|
subs.get_rank(roc_types::subs::Variable::clone(var));
|
|
|
|
current_rank.into_usize() > next_rank.into_usize()
|
|
})
|
|
.collect::<Vec<_>>();
|
|
|
|
let result = offenders.len();
|
|
|
|
if result > 0 {
|
|
dbg!(&subs, &offenders, &let_con.def_types);
|
|
}
|
|
|
|
result
|
|
},
|
|
0
|
|
);
|
|
|
|
// pop pool
|
|
generalize(subs, young_mark, visit_mark, next_rank, pools);
|
|
|
|
pools.get_mut(next_rank).clear();
|
|
|
|
// check that things went well
|
|
debug_assert!({
|
|
// NOTE the `subs.redundant` check is added for the uniqueness
|
|
// inference, and does not come from elm. It's unclear whether this is
|
|
// a bug with uniqueness inference (something is redundant that
|
|
// shouldn't be) or that it just never came up in elm.
|
|
let failing: Vec<_> = rigid_vars
|
|
.iter()
|
|
.filter(|&var| {
|
|
!subs.redundant(*var) && subs.get_rank(*var) != Rank::NONE
|
|
})
|
|
.collect();
|
|
|
|
if !failing.is_empty() {
|
|
println!("Rigids {:?}", &rigid_vars);
|
|
println!("Failing {:?}", failing);
|
|
}
|
|
|
|
failing.is_empty()
|
|
});
|
|
|
|
let mut new_env = env.clone();
|
|
for (symbol, loc_var) in local_def_vars.iter() {
|
|
new_env.insert_symbol_var_if_vacant(*symbol, loc_var.value);
|
|
}
|
|
|
|
// Note that this vars_by_symbol is the one returned by the
|
|
// previous call to solve()
|
|
let state_for_ret_con = State {
|
|
env: saved_env,
|
|
mark: final_mark,
|
|
};
|
|
|
|
// Now solve the body, using the new vars_by_symbol which includes
|
|
// the assignments' name-to-variable mappings.
|
|
stack.push(Work::CheckForInfiniteTypes(local_def_vars));
|
|
stack.push(Work::Constraint {
|
|
env: arena.alloc(new_env),
|
|
rank,
|
|
constraint: ret_con,
|
|
});
|
|
|
|
state_for_ret_con
|
|
}
|
|
}
|
|
}
|
|
Present(typ, PresenceConstraint::IsOpen) => {
|
|
let actual = type_to_var(subs, rank, pools, cached_aliases, typ);
|
|
let mut new_desc = subs.get(actual);
|
|
match new_desc.content {
|
|
Content::Structure(FlatType::TagUnion(tags, _)) => {
|
|
let new_ext = subs.fresh_unnamed_flex_var();
|
|
let new_union = Content::Structure(FlatType::TagUnion(tags, new_ext));
|
|
new_desc.content = new_union;
|
|
subs.set(actual, new_desc);
|
|
state
|
|
}
|
|
_ => {
|
|
// Today, an "open" constraint doesn't affect any types
|
|
// other than tag unions. Recursive tag unions are constructed
|
|
// at a later time (during occurs checks after tag unions are
|
|
// resolved), so that's not handled here either.
|
|
// NB: Handle record types here if we add presence constraints
|
|
// to their type inference as well.
|
|
state
|
|
}
|
|
}
|
|
}
|
|
Present(
|
|
typ,
|
|
PresenceConstraint::IncludesTag(tag_name, tys, region, pattern_category),
|
|
) => {
|
|
let actual = type_to_var(subs, rank, pools, cached_aliases, typ);
|
|
let tag_ty = Type::TagUnion(
|
|
vec![(tag_name.clone(), tys.clone())],
|
|
Box::new(Type::EmptyTagUnion),
|
|
);
|
|
let includes = type_to_var(subs, rank, pools, cached_aliases, &tag_ty);
|
|
|
|
match unify(subs, actual, includes, Mode::PRESENT) {
|
|
Success(vars) => {
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
state
|
|
}
|
|
Failure(vars, actual_type, expected_to_include_type) => {
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
let problem = TypeError::BadPattern(
|
|
*region,
|
|
pattern_category.clone(),
|
|
expected_to_include_type,
|
|
PExpected::NoExpectation(actual_type),
|
|
);
|
|
problems.push(problem);
|
|
|
|
state
|
|
}
|
|
BadType(vars, problem) => {
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
problems.push(TypeError::BadType(problem));
|
|
|
|
state
|
|
}
|
|
}
|
|
}
|
|
};
|
|
}
|
|
|
|
state
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
enum LocalDefVarsVec<T> {
|
|
Stack(arrayvec::ArrayVec<T, 32>),
|
|
Heap(Vec<T>),
|
|
}
|
|
|
|
impl<T> LocalDefVarsVec<T> {
|
|
#[inline(always)]
|
|
fn with_length(length: usize) -> Self {
|
|
if length <= 32 {
|
|
Self::Stack(Default::default())
|
|
} else {
|
|
Self::Heap(Default::default())
|
|
}
|
|
}
|
|
|
|
fn push(&mut self, element: T) {
|
|
match self {
|
|
LocalDefVarsVec::Stack(vec) => vec.push(element),
|
|
LocalDefVarsVec::Heap(vec) => vec.push(element),
|
|
}
|
|
}
|
|
|
|
fn iter(&self) -> impl Iterator<Item = &T> {
|
|
match self {
|
|
LocalDefVarsVec::Stack(vec) => vec.iter(),
|
|
LocalDefVarsVec::Heap(vec) => vec.iter(),
|
|
}
|
|
}
|
|
}
|
|
|
|
use std::cell::RefCell;
|
|
std::thread_local! {
|
|
/// Scratchpad arena so we don't need to allocate a new one all the time
|
|
static SCRATCHPAD: RefCell<bumpalo::Bump> = RefCell::new(bumpalo::Bump::with_capacity(4 * 1024));
|
|
}
|
|
|
|
fn take_scratchpad() -> bumpalo::Bump {
|
|
let mut result = bumpalo::Bump::new();
|
|
SCRATCHPAD.with(|f| {
|
|
result = f.replace(bumpalo::Bump::new());
|
|
});
|
|
|
|
result
|
|
}
|
|
|
|
fn put_scratchpad(scratchpad: bumpalo::Bump) {
|
|
SCRATCHPAD.with(|f| {
|
|
f.replace(scratchpad);
|
|
});
|
|
}
|
|
|
|
fn type_to_var(
|
|
subs: &mut Subs,
|
|
rank: Rank,
|
|
pools: &mut Pools,
|
|
_: &mut MutMap<Symbol, Variable>,
|
|
typ: &Type,
|
|
) -> Variable {
|
|
let mut arena = take_scratchpad();
|
|
|
|
let var = type_to_variable(subs, rank, pools, &arena, typ);
|
|
|
|
arena.reset();
|
|
put_scratchpad(arena);
|
|
|
|
var
|
|
}
|
|
|
|
fn type_to_variable<'a>(
|
|
subs: &mut Subs,
|
|
rank: Rank,
|
|
pools: &mut Pools,
|
|
arena: &'a bumpalo::Bump,
|
|
typ: &Type,
|
|
) -> Variable {
|
|
use bumpalo::collections::Vec;
|
|
|
|
match typ {
|
|
Variable(var) => *var,
|
|
RangedNumber(typ, vars) => {
|
|
let ty_var = type_to_variable(subs, rank, pools, arena, typ);
|
|
let vars = VariableSubsSlice::insert_into_subs(subs, vars.iter().copied());
|
|
let content = Content::RangedNumber(ty_var, vars);
|
|
|
|
register(subs, rank, pools, content)
|
|
}
|
|
Apply(symbol, arguments, _) => {
|
|
let new_arguments = VariableSubsSlice::reserve_into_subs(subs, arguments.len());
|
|
for (target_index, var_index) in (new_arguments.indices()).zip(arguments) {
|
|
let var = type_to_variable(subs, rank, pools, arena, var_index);
|
|
subs.variables[target_index] = var;
|
|
}
|
|
|
|
let flat_type = FlatType::Apply(*symbol, new_arguments);
|
|
let content = Content::Structure(flat_type);
|
|
|
|
register(subs, rank, pools, content)
|
|
}
|
|
EmptyRec => Variable::EMPTY_RECORD,
|
|
EmptyTagUnion => Variable::EMPTY_TAG_UNION,
|
|
|
|
ClosureTag { name, ext } => {
|
|
let tag_name = TagName::Closure(*name);
|
|
let tag_names = SubsSlice::new(subs.tag_names.len() as u32, 1);
|
|
|
|
subs.tag_names.push(tag_name);
|
|
|
|
// the first VariableSubsSlice in the array is a zero-length slice
|
|
let union_tags = UnionTags::from_slices(tag_names, SubsSlice::new(0, 1));
|
|
|
|
let content = Content::Structure(FlatType::TagUnion(union_tags, *ext));
|
|
|
|
register(subs, rank, pools, content)
|
|
}
|
|
|
|
// This case is important for the rank of boolean variables
|
|
Function(arguments, closure_type, ret_type) => {
|
|
let new_arguments = VariableSubsSlice::reserve_into_subs(subs, arguments.len());
|
|
for (target_index, var_index) in (new_arguments.indices()).zip(arguments) {
|
|
let var = type_to_variable(subs, rank, pools, arena, var_index);
|
|
subs.variables[target_index] = var;
|
|
}
|
|
|
|
let ret_var = type_to_variable(subs, rank, pools, arena, ret_type);
|
|
let closure_var = type_to_variable(subs, rank, pools, arena, closure_type);
|
|
let content = Content::Structure(FlatType::Func(new_arguments, closure_var, ret_var));
|
|
|
|
register(subs, rank, pools, content)
|
|
}
|
|
Record(fields, ext) => {
|
|
// An empty fields is inefficient (but would be correct)
|
|
// If hit, try to turn the value into an EmptyRecord in canonicalization
|
|
debug_assert!(!fields.is_empty() || !ext.is_empty_record());
|
|
|
|
let mut field_vars = Vec::with_capacity_in(fields.len(), arena);
|
|
|
|
for (field, field_type) in fields {
|
|
let field_var =
|
|
field_type.map(|typ| type_to_variable(subs, rank, pools, arena, typ));
|
|
|
|
field_vars.push((field.clone(), field_var));
|
|
}
|
|
|
|
let temp_ext_var = type_to_variable(subs, rank, pools, arena, ext);
|
|
|
|
let (it, new_ext_var) =
|
|
gather_fields_unsorted_iter(subs, RecordFields::empty(), temp_ext_var)
|
|
.expect("Something ended up weird in this record type");
|
|
|
|
let it = it
|
|
.into_iter()
|
|
.map(|(field, field_type)| (field.clone(), field_type));
|
|
|
|
field_vars.extend(it);
|
|
insertion_sort_by(&mut field_vars, RecordFields::compare);
|
|
|
|
let record_fields = RecordFields::insert_into_subs(subs, field_vars);
|
|
|
|
let content = Content::Structure(FlatType::Record(record_fields, new_ext_var));
|
|
|
|
register(subs, rank, pools, content)
|
|
}
|
|
TagUnion(tags, ext) => {
|
|
// An empty tags is inefficient (but would be correct)
|
|
// If hit, try to turn the value into an EmptyTagUnion in canonicalization
|
|
debug_assert!(!tags.is_empty() || !ext.is_empty_tag_union());
|
|
|
|
let (union_tags, ext) = type_to_union_tags(subs, rank, pools, arena, tags, ext);
|
|
let content = Content::Structure(FlatType::TagUnion(union_tags, ext));
|
|
|
|
register(subs, rank, pools, content)
|
|
}
|
|
FunctionOrTagUnion(tag_name, symbol, ext) => {
|
|
let temp_ext_var = type_to_variable(subs, rank, pools, arena, ext);
|
|
|
|
let (it, ext) = roc_types::types::gather_tags_unsorted_iter(
|
|
subs,
|
|
UnionTags::default(),
|
|
temp_ext_var,
|
|
);
|
|
|
|
for _ in it {
|
|
unreachable!("we assert that the ext var is empty; otherwise we'd already know it was a tag union!");
|
|
}
|
|
|
|
let slice = SubsIndex::new(subs.tag_names.len() as u32);
|
|
subs.tag_names.push(tag_name.clone());
|
|
|
|
let content = Content::Structure(FlatType::FunctionOrTagUnion(slice, *symbol, ext));
|
|
|
|
register(subs, rank, pools, content)
|
|
}
|
|
RecursiveTagUnion(rec_var, tags, ext) => {
|
|
// An empty tags is inefficient (but would be correct)
|
|
// If hit, try to turn the value into an EmptyTagUnion in canonicalization
|
|
debug_assert!(!tags.is_empty() || !ext.is_empty_tag_union());
|
|
|
|
let (union_tags, ext) = type_to_union_tags(subs, rank, pools, arena, tags, ext);
|
|
let content =
|
|
Content::Structure(FlatType::RecursiveTagUnion(*rec_var, union_tags, ext));
|
|
|
|
let tag_union_var = register(subs, rank, pools, content);
|
|
|
|
register_with_known_var(
|
|
subs,
|
|
*rec_var,
|
|
rank,
|
|
pools,
|
|
Content::RecursionVar {
|
|
opt_name: None,
|
|
structure: tag_union_var,
|
|
},
|
|
);
|
|
|
|
tag_union_var
|
|
}
|
|
|
|
Type::Alias {
|
|
symbol,
|
|
type_arguments,
|
|
actual,
|
|
lambda_set_variables,
|
|
kind,
|
|
} => {
|
|
if let Some(reserved) = Variable::get_reserved(*symbol) {
|
|
if rank.is_none() {
|
|
// reserved variables are stored with rank NONE
|
|
return reserved;
|
|
} else {
|
|
// for any other rank, we need to copy; it takes care of adjusting the rank
|
|
return deep_copy_var(subs, rank, pools, reserved);
|
|
}
|
|
}
|
|
|
|
let alias_variables = alias_to_var(
|
|
subs,
|
|
rank,
|
|
pools,
|
|
arena,
|
|
type_arguments,
|
|
lambda_set_variables,
|
|
);
|
|
|
|
let alias_variable = if let Symbol::RESULT_RESULT = *symbol {
|
|
roc_result_to_var(subs, rank, pools, arena, actual)
|
|
} else {
|
|
type_to_variable(subs, rank, pools, arena, actual)
|
|
};
|
|
let content = Content::Alias(*symbol, alias_variables, alias_variable, *kind);
|
|
|
|
register(subs, rank, pools, content)
|
|
}
|
|
HostExposedAlias {
|
|
name: symbol,
|
|
type_arguments,
|
|
actual: alias_type,
|
|
actual_var,
|
|
lambda_set_variables,
|
|
..
|
|
} => {
|
|
let alias_variables = alias_to_var(
|
|
subs,
|
|
rank,
|
|
pools,
|
|
arena,
|
|
type_arguments,
|
|
lambda_set_variables,
|
|
);
|
|
|
|
let alias_variable = type_to_variable(subs, rank, pools, arena, alias_type);
|
|
// TODO(opaques): I think host-exposed aliases should always be structural
|
|
// (when does it make sense to give a host an opaque type?)
|
|
let content = Content::Alias(
|
|
*symbol,
|
|
alias_variables,
|
|
alias_variable,
|
|
AliasKind::Structural,
|
|
);
|
|
let result = register(subs, rank, pools, content);
|
|
|
|
// We only want to unify the actual_var with the alias once
|
|
// if it's already redirected (and therefore, redundant)
|
|
// don't do it again
|
|
if !subs.redundant(*actual_var) {
|
|
let descriptor = subs.get(result);
|
|
subs.union(result, *actual_var, descriptor);
|
|
}
|
|
|
|
result
|
|
}
|
|
Erroneous(problem) => {
|
|
let content = Content::Structure(FlatType::Erroneous(Box::new(problem.clone())));
|
|
|
|
register(subs, rank, pools, content)
|
|
}
|
|
}
|
|
}
|
|
|
|
fn alias_to_var<'a>(
|
|
subs: &mut Subs,
|
|
rank: Rank,
|
|
pools: &mut Pools,
|
|
arena: &'a bumpalo::Bump,
|
|
type_arguments: &[(roc_module::ident::Lowercase, Type)],
|
|
lambda_set_variables: &[roc_types::types::LambdaSet],
|
|
) -> AliasVariables {
|
|
let length = type_arguments.len() + lambda_set_variables.len();
|
|
let new_variables = VariableSubsSlice::reserve_into_subs(subs, length);
|
|
|
|
for (target_index, (_, arg_type)) in (new_variables.indices()).zip(type_arguments) {
|
|
let copy_var = type_to_variable(subs, rank, pools, arena, arg_type);
|
|
subs.variables[target_index] = copy_var;
|
|
}
|
|
|
|
let it = (new_variables.indices().skip(type_arguments.len())).zip(lambda_set_variables);
|
|
for (target_index, ls) in it {
|
|
let copy_var = type_to_variable(subs, rank, pools, arena, &ls.0);
|
|
subs.variables[target_index] = copy_var;
|
|
}
|
|
|
|
AliasVariables {
|
|
variables_start: new_variables.start,
|
|
type_variables_len: type_arguments.len() as _,
|
|
all_variables_len: length as _,
|
|
}
|
|
}
|
|
|
|
fn roc_result_to_var<'a>(
|
|
subs: &mut Subs,
|
|
rank: Rank,
|
|
pools: &mut Pools,
|
|
arena: &'a bumpalo::Bump,
|
|
result_type: &Type,
|
|
) -> Variable {
|
|
match result_type {
|
|
Type::TagUnion(tags, ext) => {
|
|
debug_assert!(ext.is_empty_tag_union());
|
|
debug_assert!(tags.len() == 2);
|
|
|
|
if let [(err, err_args), (ok, ok_args)] = &tags[..] {
|
|
debug_assert_eq!(err, &subs.tag_names[0]);
|
|
debug_assert_eq!(ok, &subs.tag_names[1]);
|
|
|
|
if let ([err_type], [ok_type]) = (err_args.as_slice(), ok_args.as_slice()) {
|
|
let err_var = type_to_variable(subs, rank, pools, arena, err_type);
|
|
let ok_var = type_to_variable(subs, rank, pools, arena, ok_type);
|
|
|
|
let start = subs.variables.len() as u32;
|
|
let err_slice = SubsSlice::new(start, 1);
|
|
let ok_slice = SubsSlice::new(start + 1, 1);
|
|
|
|
subs.variables.push(err_var);
|
|
subs.variables.push(ok_var);
|
|
|
|
let variables = SubsSlice::new(subs.variable_slices.len() as _, 2);
|
|
subs.variable_slices.push(err_slice);
|
|
subs.variable_slices.push(ok_slice);
|
|
|
|
let union_tags = UnionTags::from_slices(Subs::RESULT_TAG_NAMES, variables);
|
|
let ext = Variable::EMPTY_TAG_UNION;
|
|
|
|
let content = Content::Structure(FlatType::TagUnion(union_tags, ext));
|
|
|
|
return register(subs, rank, pools, content);
|
|
}
|
|
}
|
|
|
|
unreachable!("invalid arguments to Result.Result; canonicalization should catch this!")
|
|
}
|
|
_ => unreachable!("not a valid type inside a Result.Result alias"),
|
|
}
|
|
}
|
|
|
|
fn insertion_sort_by<T, F>(arr: &mut [T], mut compare: F)
|
|
where
|
|
F: FnMut(&T, &T) -> std::cmp::Ordering,
|
|
{
|
|
for i in 1..arr.len() {
|
|
let val = &arr[i];
|
|
let mut j = i;
|
|
let pos = arr[..i]
|
|
.binary_search_by(|x| compare(x, val))
|
|
.unwrap_or_else(|pos| pos);
|
|
// Swap all elements until specific position.
|
|
while j > pos {
|
|
arr.swap(j - 1, j);
|
|
j -= 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
fn sorted_no_duplicates<T>(slice: &[(TagName, T)]) -> bool {
|
|
match slice.split_first() {
|
|
None => true,
|
|
Some(((first, _), rest)) => {
|
|
let mut current = first;
|
|
|
|
for (next, _) in rest {
|
|
if current >= next {
|
|
return false;
|
|
} else {
|
|
current = next;
|
|
}
|
|
}
|
|
|
|
true
|
|
}
|
|
}
|
|
}
|
|
|
|
fn sort_and_deduplicate<T>(tag_vars: &mut bumpalo::collections::Vec<(TagName, T)>) {
|
|
insertion_sort_by(tag_vars, |(a, _), (b, _)| a.cmp(b));
|
|
|
|
// deduplicate, keeping the right-most occurrence of a tag name
|
|
let mut i = 0;
|
|
|
|
while i < tag_vars.len() {
|
|
match (tag_vars.get(i), tag_vars.get(i + 1)) {
|
|
(Some((t1, _)), Some((t2, _))) => {
|
|
if t1 == t2 {
|
|
tag_vars.remove(i);
|
|
} else {
|
|
i += 1;
|
|
}
|
|
}
|
|
_ => break,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Find whether the current run of tag names is in the subs.tag_names array already. If so,
|
|
/// we take a SubsSlice to the existing tag names, so we don't have to add/clone those tag names
|
|
/// and keep subs memory consumption low
|
|
fn find_tag_name_run<T>(slice: &[(TagName, T)], subs: &mut Subs) -> Option<SubsSlice<TagName>> {
|
|
use std::cmp::Ordering;
|
|
|
|
let tag_name = slice.get(0)?.0.clone();
|
|
|
|
let mut result = None;
|
|
|
|
// the `SubsSlice<TagName>` that inserting `slice` into subs would give
|
|
let bigger_slice = SubsSlice::new(subs.tag_names.len() as _, slice.len() as _);
|
|
|
|
match subs.tag_name_cache.entry(tag_name) {
|
|
Entry::Occupied(mut occupied) => {
|
|
let subs_slice = *occupied.get();
|
|
|
|
let prefix_slice = SubsSlice::new(subs_slice.start, slice.len() as _);
|
|
|
|
if slice.len() == 1 {
|
|
return Some(prefix_slice);
|
|
}
|
|
|
|
match slice.len().cmp(&subs_slice.len()) {
|
|
Ordering::Less => {
|
|
// we might have a prefix
|
|
let tag_names = &subs.tag_names[subs_slice.start as usize..];
|
|
|
|
for (from_subs, (from_slice, _)) in tag_names.iter().zip(slice.iter()) {
|
|
if from_subs != from_slice {
|
|
return None;
|
|
}
|
|
}
|
|
|
|
result = Some(prefix_slice);
|
|
}
|
|
Ordering::Equal => {
|
|
let tag_names = &subs.tag_names[subs_slice.indices()];
|
|
|
|
for (from_subs, (from_slice, _)) in tag_names.iter().zip(slice.iter()) {
|
|
if from_subs != from_slice {
|
|
return None;
|
|
}
|
|
}
|
|
|
|
result = Some(subs_slice);
|
|
}
|
|
Ordering::Greater => {
|
|
// switch to the bigger slice that is not inserted yet, but will be soon
|
|
occupied.insert(bigger_slice);
|
|
}
|
|
}
|
|
}
|
|
Entry::Vacant(vacant) => {
|
|
vacant.insert(bigger_slice);
|
|
}
|
|
}
|
|
|
|
result
|
|
}
|
|
|
|
/// Assumes that the tags are sorted and there are no duplicates!
|
|
fn insert_tags_fast_path<'a>(
|
|
subs: &mut Subs,
|
|
rank: Rank,
|
|
pools: &mut Pools,
|
|
arena: &'a bumpalo::Bump,
|
|
tags: &[(TagName, Vec<Type>)],
|
|
) -> UnionTags {
|
|
let new_variable_slices = SubsSlice::reserve_variable_slices(subs, tags.len());
|
|
|
|
match find_tag_name_run(tags, subs) {
|
|
Some(new_tag_names) => {
|
|
let it = (new_variable_slices.indices()).zip(tags);
|
|
|
|
for (variable_slice_index, (_, arguments)) in it {
|
|
// turn the arguments into variables
|
|
let new_variables = VariableSubsSlice::reserve_into_subs(subs, arguments.len());
|
|
let it = (new_variables.indices()).zip(arguments);
|
|
for (target_index, argument) in it {
|
|
let var = type_to_variable(subs, rank, pools, arena, argument);
|
|
subs.variables[target_index] = var;
|
|
}
|
|
|
|
subs.variable_slices[variable_slice_index] = new_variables;
|
|
}
|
|
|
|
UnionTags::from_slices(new_tag_names, new_variable_slices)
|
|
}
|
|
None => {
|
|
let new_tag_names = SubsSlice::reserve_tag_names(subs, tags.len());
|
|
|
|
let it = (new_variable_slices.indices())
|
|
.zip(new_tag_names.indices())
|
|
.zip(tags);
|
|
|
|
for ((variable_slice_index, tag_name_index), (tag_name, arguments)) in it {
|
|
// turn the arguments into variables
|
|
let new_variables = VariableSubsSlice::reserve_into_subs(subs, arguments.len());
|
|
let it = (new_variables.indices()).zip(arguments);
|
|
for (target_index, argument) in it {
|
|
let var = type_to_variable(subs, rank, pools, arena, argument);
|
|
subs.variables[target_index] = var;
|
|
}
|
|
|
|
subs.variable_slices[variable_slice_index] = new_variables;
|
|
subs.tag_names[tag_name_index] = tag_name.clone();
|
|
}
|
|
|
|
UnionTags::from_slices(new_tag_names, new_variable_slices)
|
|
}
|
|
}
|
|
}
|
|
|
|
fn insert_tags_slow_path<'a>(
|
|
subs: &mut Subs,
|
|
rank: Rank,
|
|
pools: &mut Pools,
|
|
arena: &'a bumpalo::Bump,
|
|
tags: &[(TagName, Vec<Type>)],
|
|
mut tag_vars: bumpalo::collections::Vec<(TagName, VariableSubsSlice)>,
|
|
) -> UnionTags {
|
|
for (tag, tag_argument_types) in tags {
|
|
let new_slice = VariableSubsSlice::reserve_into_subs(subs, tag_argument_types.len());
|
|
|
|
for (i, arg) in (new_slice.indices()).zip(tag_argument_types) {
|
|
let var = type_to_variable(subs, rank, pools, arena, arg);
|
|
subs.variables[i] = var;
|
|
}
|
|
|
|
tag_vars.push((tag.clone(), new_slice));
|
|
}
|
|
|
|
sort_and_deduplicate(&mut tag_vars);
|
|
|
|
UnionTags::insert_slices_into_subs(subs, tag_vars)
|
|
}
|
|
|
|
fn type_to_union_tags<'a>(
|
|
subs: &mut Subs,
|
|
rank: Rank,
|
|
pools: &mut Pools,
|
|
arena: &'a bumpalo::Bump,
|
|
tags: &[(TagName, Vec<Type>)],
|
|
ext: &Type,
|
|
) -> (UnionTags, Variable) {
|
|
use bumpalo::collections::Vec;
|
|
|
|
let sorted = tags.len() == 1 || sorted_no_duplicates(tags);
|
|
|
|
if ext.is_empty_tag_union() {
|
|
let ext = type_to_variable(subs, rank, pools, arena, &Type::EmptyTagUnion);
|
|
// let ext = Variable::EMPTY_TAG_UNION;
|
|
|
|
let union_tags = if sorted {
|
|
insert_tags_fast_path(subs, rank, pools, arena, tags)
|
|
} else {
|
|
let tag_vars = Vec::with_capacity_in(tags.len(), arena);
|
|
insert_tags_slow_path(subs, rank, pools, arena, tags, tag_vars)
|
|
};
|
|
|
|
(union_tags, ext)
|
|
} else {
|
|
let mut tag_vars = Vec::with_capacity_in(tags.len(), arena);
|
|
|
|
let temp_ext_var = type_to_variable(subs, rank, pools, arena, ext);
|
|
let (it, ext) =
|
|
roc_types::types::gather_tags_unsorted_iter(subs, UnionTags::default(), temp_ext_var);
|
|
|
|
tag_vars.extend(it.map(|(n, v)| (n.clone(), v)));
|
|
|
|
let union_tags = if tag_vars.is_empty() && sorted {
|
|
insert_tags_fast_path(subs, rank, pools, arena, tags)
|
|
} else {
|
|
insert_tags_slow_path(subs, rank, pools, arena, tags, tag_vars)
|
|
};
|
|
|
|
(union_tags, ext)
|
|
}
|
|
}
|
|
|
|
fn check_for_infinite_type(
|
|
subs: &mut Subs,
|
|
problems: &mut Vec<TypeError>,
|
|
symbol: Symbol,
|
|
loc_var: Loc<Variable>,
|
|
) {
|
|
let var = loc_var.value;
|
|
|
|
while let Err((recursive, _chain)) = subs.occurs(var) {
|
|
let description = subs.get(recursive);
|
|
|
|
// try to make a tag union recursive, see if that helps
|
|
match description.content {
|
|
Content::Structure(FlatType::TagUnion(tags, ext_var)) => {
|
|
subs.mark_tag_union_recursive(recursive, tags, ext_var);
|
|
}
|
|
|
|
_other => circular_error(subs, problems, symbol, &loc_var),
|
|
}
|
|
}
|
|
}
|
|
|
|
fn circular_error(
|
|
subs: &mut Subs,
|
|
problems: &mut Vec<TypeError>,
|
|
symbol: Symbol,
|
|
loc_var: &Loc<Variable>,
|
|
) {
|
|
let var = loc_var.value;
|
|
let (error_type, _) = subs.var_to_error_type(var);
|
|
let problem = TypeError::CircularType(loc_var.region, symbol, error_type);
|
|
|
|
subs.set_content(var, Content::Error);
|
|
|
|
problems.push(problem);
|
|
}
|
|
|
|
fn generalize(
|
|
subs: &mut Subs,
|
|
young_mark: Mark,
|
|
visit_mark: Mark,
|
|
young_rank: Rank,
|
|
pools: &mut Pools,
|
|
) {
|
|
let young_vars = pools.get(young_rank);
|
|
let rank_table = pool_to_rank_table(subs, young_mark, young_rank, young_vars);
|
|
|
|
// Get the ranks right for each entry.
|
|
// Start at low ranks so we only have to pass over the information once.
|
|
for (index, table) in rank_table.iter().enumerate() {
|
|
for &var in table.iter() {
|
|
adjust_rank(subs, young_mark, visit_mark, Rank::from(index), var);
|
|
}
|
|
}
|
|
|
|
let (last_pool, all_but_last_pool) = rank_table.split_last();
|
|
|
|
// For variables that have rank lowerer than young_rank, register them in
|
|
// the appropriate old pool if they are not redundant.
|
|
for vars in all_but_last_pool {
|
|
for &var in vars {
|
|
if !subs.redundant(var) {
|
|
let rank = subs.get_rank(var);
|
|
|
|
pools.get_mut(rank).push(var);
|
|
}
|
|
}
|
|
}
|
|
|
|
// For variables with rank young_rank, if rank < young_rank: register in old pool,
|
|
// otherwise generalize
|
|
for &var in last_pool {
|
|
if !subs.redundant(var) {
|
|
let desc_rank = subs.get_rank(var);
|
|
|
|
if desc_rank < young_rank {
|
|
pools.get_mut(desc_rank).push(var);
|
|
} else {
|
|
subs.set_rank(var, Rank::NONE);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn pool_to_rank_table(
|
|
subs: &mut Subs,
|
|
young_mark: Mark,
|
|
young_rank: Rank,
|
|
young_vars: &[Variable],
|
|
) -> Pools {
|
|
let mut pools = Pools::new(young_rank.into_usize() + 1);
|
|
|
|
// Sort the variables into buckets by rank.
|
|
for &var in young_vars.iter() {
|
|
let rank = subs.get_rank_set_mark(var, young_mark);
|
|
|
|
debug_assert!(rank.into_usize() < young_rank.into_usize() + 1);
|
|
pools.get_mut(rank).push(var);
|
|
}
|
|
|
|
pools
|
|
}
|
|
|
|
/// Adjust variable ranks such that ranks never increase as you move deeper.
|
|
/// This way the outermost rank is representative of the entire structure.
|
|
fn adjust_rank(
|
|
subs: &mut Subs,
|
|
young_mark: Mark,
|
|
visit_mark: Mark,
|
|
group_rank: Rank,
|
|
var: Variable,
|
|
) -> Rank {
|
|
let (desc_rank, desc_mark) = subs.get_rank_mark(var);
|
|
|
|
if desc_mark == young_mark {
|
|
// Mark the variable as visited before adjusting content, as it may be cyclic.
|
|
subs.set_mark(var, visit_mark);
|
|
|
|
// SAFETY: in this function (and functions it calls, we ONLY modify rank and mark, never content!
|
|
// hence, we can have an immutable reference to it even though we also have a mutable
|
|
// reference to the Subs as a whole. This prevents a clone of the content, which turns out
|
|
// to be quite expensive.
|
|
let content = {
|
|
let ptr = &subs.get_ref(var).content as *const _;
|
|
unsafe { &*ptr }
|
|
};
|
|
|
|
let max_rank = adjust_rank_content(subs, young_mark, visit_mark, group_rank, content);
|
|
|
|
subs.set_rank_mark(var, max_rank, visit_mark);
|
|
|
|
max_rank
|
|
} else if desc_mark == visit_mark {
|
|
// nothing changes
|
|
desc_rank
|
|
} else {
|
|
let min_rank = group_rank.min(desc_rank);
|
|
|
|
// TODO from elm-compiler: how can min_rank ever be group_rank?
|
|
subs.set_rank_mark(var, min_rank, visit_mark);
|
|
|
|
min_rank
|
|
}
|
|
}
|
|
|
|
fn adjust_rank_content(
|
|
subs: &mut Subs,
|
|
young_mark: Mark,
|
|
visit_mark: Mark,
|
|
group_rank: Rank,
|
|
content: &Content,
|
|
) -> Rank {
|
|
use roc_types::subs::Content::*;
|
|
use roc_types::subs::FlatType::*;
|
|
|
|
match content {
|
|
FlexVar(_) | RigidVar(_) | Error => group_rank,
|
|
|
|
RecursionVar { .. } => group_rank,
|
|
|
|
Structure(flat_type) => {
|
|
match flat_type {
|
|
Apply(_, args) => {
|
|
let mut rank = Rank::toplevel();
|
|
|
|
for var_index in args.into_iter() {
|
|
let var = subs[var_index];
|
|
rank = rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
|
|
}
|
|
|
|
rank
|
|
}
|
|
|
|
Func(arg_vars, closure_var, ret_var) => {
|
|
let mut rank = adjust_rank(subs, young_mark, visit_mark, group_rank, *ret_var);
|
|
|
|
// TODO investigate further.
|
|
//
|
|
// My theory is that because the closure_var contains variables already
|
|
// contained in the signature only, it does not need to be part of the rank
|
|
// calculuation
|
|
if true {
|
|
rank = rank.max(adjust_rank(
|
|
subs,
|
|
young_mark,
|
|
visit_mark,
|
|
group_rank,
|
|
*closure_var,
|
|
));
|
|
}
|
|
|
|
for index in arg_vars.into_iter() {
|
|
let var = subs[index];
|
|
rank = rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
|
|
}
|
|
|
|
rank
|
|
}
|
|
|
|
EmptyRecord => {
|
|
// from elm-compiler: THEORY: an empty record never needs to get generalized
|
|
Rank::toplevel()
|
|
}
|
|
|
|
EmptyTagUnion => Rank::toplevel(),
|
|
|
|
Record(fields, ext_var) => {
|
|
let mut rank = adjust_rank(subs, young_mark, visit_mark, group_rank, *ext_var);
|
|
|
|
for index in fields.iter_variables() {
|
|
let var = subs[index];
|
|
rank = rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
|
|
}
|
|
|
|
rank
|
|
}
|
|
|
|
TagUnion(tags, ext_var) => {
|
|
let mut rank = adjust_rank(subs, young_mark, visit_mark, group_rank, *ext_var);
|
|
// For performance reasons, we only keep one representation of empty tag unions
|
|
// in subs. That representation exists at rank 0, which we don't always want to
|
|
// reflect the whole tag union as, because doing so may over-generalize free
|
|
// type variables.
|
|
// Normally this is not a problem because of the loop below that maximizes the
|
|
// rank from nested types in the union. But suppose we have the simple tag
|
|
// union
|
|
// [ Z ]{}
|
|
// there are no nested types in the tags, and the empty tag union is at rank 0,
|
|
// so we promote the tag union to rank 0. Now if we introduce the presence
|
|
// constraint
|
|
// [ Z ]{} += [ S a ]
|
|
// we'll wind up with [ Z, S a ]{}, but it will be at rank 0, and "a" will get
|
|
// over-generalized. Really, the empty tag union should be introduced at
|
|
// whatever current group rank we're at, and so that's how we encode it here.
|
|
if *ext_var == Variable::EMPTY_TAG_UNION && rank.is_none() {
|
|
rank = group_rank;
|
|
}
|
|
|
|
for (_, index) in tags.iter_all() {
|
|
let slice = subs[index];
|
|
for var_index in slice {
|
|
let var = subs[var_index];
|
|
rank = rank
|
|
.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
|
|
}
|
|
}
|
|
|
|
rank
|
|
}
|
|
|
|
FunctionOrTagUnion(_, _, ext_var) => {
|
|
adjust_rank(subs, young_mark, visit_mark, group_rank, *ext_var)
|
|
}
|
|
|
|
RecursiveTagUnion(rec_var, tags, ext_var) => {
|
|
let mut rank = adjust_rank(subs, young_mark, visit_mark, group_rank, *ext_var);
|
|
|
|
for (_, index) in tags.iter_all() {
|
|
let slice = subs[index];
|
|
for var_index in slice {
|
|
let var = subs[var_index];
|
|
rank = rank
|
|
.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
|
|
}
|
|
}
|
|
|
|
// THEORY: the recursion var has the same rank as the tag union itself
|
|
// all types it uses are also in the tags already, so it cannot influence the
|
|
// rank
|
|
|
|
if cfg!(debug_assertions) {
|
|
let rec_var_rank =
|
|
adjust_rank(subs, young_mark, visit_mark, group_rank, *rec_var);
|
|
|
|
debug_assert!(
|
|
rank >= rec_var_rank,
|
|
"rank was {:?} but recursion var {:?} has higher rank {:?}",
|
|
rank,
|
|
rec_var,
|
|
rec_var_rank
|
|
);
|
|
}
|
|
|
|
rank
|
|
}
|
|
|
|
Erroneous(_) => group_rank,
|
|
}
|
|
}
|
|
|
|
Alias(_, args, real_var, _) => {
|
|
let mut rank = Rank::toplevel();
|
|
|
|
for var_index in args.variables() {
|
|
let var = subs[var_index];
|
|
rank = rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
|
|
}
|
|
|
|
// from elm-compiler: THEORY: anything in the real_var would be Rank::toplevel()
|
|
// this theory is not true in Roc! aliases of function types capture the closure var
|
|
rank = rank.max(adjust_rank(
|
|
subs, young_mark, visit_mark, group_rank, *real_var,
|
|
));
|
|
|
|
rank
|
|
}
|
|
|
|
RangedNumber(typ, _) => adjust_rank(subs, young_mark, visit_mark, group_rank, *typ),
|
|
}
|
|
}
|
|
|
|
/// Introduce some variables to Pools at the given rank.
|
|
/// Also, set each of their ranks in Subs to be the given rank.
|
|
fn introduce(subs: &mut Subs, rank: Rank, pools: &mut Pools, vars: &[Variable]) {
|
|
let pool: &mut Vec<Variable> = pools.get_mut(rank);
|
|
|
|
for &var in vars.iter() {
|
|
subs.set_rank(var, rank);
|
|
}
|
|
|
|
pool.extend(vars);
|
|
}
|
|
|
|
/// Function that converts rigids variables to flex variables
|
|
/// this is used during the monomorphization process
|
|
pub fn instantiate_rigids(subs: &mut Subs, var: Variable) {
|
|
let rank = Rank::NONE;
|
|
|
|
instantiate_rigids_help(subs, rank, var);
|
|
|
|
// NOTE subs.restore(var) is done at the end of instantiate_rigids_help
|
|
}
|
|
|
|
fn instantiate_rigids_help(subs: &mut Subs, max_rank: Rank, initial: Variable) {
|
|
let mut visited = vec![];
|
|
let mut stack = vec![initial];
|
|
|
|
macro_rules! var_slice {
|
|
($variable_subs_slice:expr) => {{
|
|
let slice = $variable_subs_slice;
|
|
&subs.variables[slice.indices()]
|
|
}};
|
|
}
|
|
|
|
while let Some(var) = stack.pop() {
|
|
visited.push(var);
|
|
|
|
let desc = subs.get_ref_mut(var);
|
|
if desc.copy.is_some() {
|
|
continue;
|
|
}
|
|
|
|
desc.rank = Rank::NONE;
|
|
desc.mark = Mark::NONE;
|
|
desc.copy = OptVariable::from(var);
|
|
|
|
use Content::*;
|
|
use FlatType::*;
|
|
|
|
match &desc.content {
|
|
RigidVar(name) => {
|
|
// what it's all about: convert the rigid var into a flex var
|
|
let name = name.clone();
|
|
|
|
// NOTE: we must write to the mutually borrowed `desc` value here
|
|
// using `subs.set` does not work (unclear why, really)
|
|
// but get_ref_mut approach saves a lookup, so the weirdness is worth it
|
|
desc.content = FlexVar(Some(name));
|
|
desc.rank = max_rank;
|
|
desc.mark = Mark::NONE;
|
|
desc.copy = OptVariable::NONE;
|
|
}
|
|
FlexVar(_) | Error => (),
|
|
|
|
RecursionVar { structure, .. } => {
|
|
stack.push(*structure);
|
|
}
|
|
|
|
Structure(flat_type) => match flat_type {
|
|
Apply(_, args) => {
|
|
stack.extend(var_slice!(*args));
|
|
}
|
|
|
|
Func(arg_vars, closure_var, ret_var) => {
|
|
let arg_vars = *arg_vars;
|
|
let ret_var = *ret_var;
|
|
let closure_var = *closure_var;
|
|
|
|
stack.extend(var_slice!(arg_vars));
|
|
|
|
stack.push(ret_var);
|
|
stack.push(closure_var);
|
|
}
|
|
|
|
EmptyRecord => (),
|
|
EmptyTagUnion => (),
|
|
|
|
Record(fields, ext_var) => {
|
|
let fields = *fields;
|
|
let ext_var = *ext_var;
|
|
stack.extend(var_slice!(fields.variables()));
|
|
|
|
stack.push(ext_var);
|
|
}
|
|
TagUnion(tags, ext_var) => {
|
|
let tags = *tags;
|
|
let ext_var = *ext_var;
|
|
|
|
for slice_index in tags.variables() {
|
|
let slice = subs.variable_slices[slice_index.index as usize];
|
|
stack.extend(var_slice!(slice));
|
|
}
|
|
|
|
stack.push(ext_var);
|
|
}
|
|
FunctionOrTagUnion(_, _, ext_var) => {
|
|
stack.push(*ext_var);
|
|
}
|
|
|
|
RecursiveTagUnion(rec_var, tags, ext_var) => {
|
|
let tags = *tags;
|
|
let ext_var = *ext_var;
|
|
let rec_var = *rec_var;
|
|
|
|
for slice_index in tags.variables() {
|
|
let slice = subs.variable_slices[slice_index.index as usize];
|
|
stack.extend(var_slice!(slice));
|
|
}
|
|
|
|
stack.push(ext_var);
|
|
stack.push(rec_var);
|
|
}
|
|
|
|
Erroneous(_) => (),
|
|
},
|
|
Alias(_, args, var, _) => {
|
|
let var = *var;
|
|
let args = *args;
|
|
|
|
stack.extend(var_slice!(args.variables()));
|
|
|
|
stack.push(var);
|
|
}
|
|
&RangedNumber(typ, vars) => {
|
|
stack.push(typ);
|
|
|
|
stack.extend(var_slice!(vars));
|
|
}
|
|
}
|
|
}
|
|
|
|
// we have tracked all visited variables, and can now traverse them
|
|
// in one go (without looking at the UnificationTable) and clear the copy field
|
|
for var in visited {
|
|
let descriptor = subs.get_ref_mut(var);
|
|
|
|
if descriptor.copy.is_some() {
|
|
descriptor.rank = Rank::NONE;
|
|
descriptor.mark = Mark::NONE;
|
|
descriptor.copy = OptVariable::NONE;
|
|
}
|
|
}
|
|
}
|
|
|
|
fn deep_copy_var(subs: &mut Subs, rank: Rank, pools: &mut Pools, var: Variable) -> Variable {
|
|
let mut arena = take_scratchpad();
|
|
|
|
let mut visited = bumpalo::collections::Vec::with_capacity_in(4 * 1024, &arena);
|
|
|
|
let copy = deep_copy_var_help(subs, rank, pools, &mut visited, var);
|
|
|
|
// we have tracked all visited variables, and can now traverse them
|
|
// in one go (without looking at the UnificationTable) and clear the copy field
|
|
for var in visited {
|
|
let descriptor = subs.get_ref_mut(var);
|
|
|
|
if descriptor.copy.is_some() {
|
|
descriptor.rank = Rank::NONE;
|
|
descriptor.mark = Mark::NONE;
|
|
descriptor.copy = OptVariable::NONE;
|
|
}
|
|
}
|
|
|
|
arena.reset();
|
|
put_scratchpad(arena);
|
|
|
|
copy
|
|
}
|
|
|
|
fn deep_copy_var_help(
|
|
subs: &mut Subs,
|
|
max_rank: Rank,
|
|
pools: &mut Pools,
|
|
visited: &mut bumpalo::collections::Vec<'_, Variable>,
|
|
var: Variable,
|
|
) -> Variable {
|
|
use roc_types::subs::Content::*;
|
|
use roc_types::subs::FlatType::*;
|
|
|
|
let desc = subs.get_without_compacting(var);
|
|
|
|
if let Some(copy) = desc.copy.into_variable() {
|
|
return copy;
|
|
} else if desc.rank != Rank::NONE {
|
|
return var;
|
|
}
|
|
|
|
visited.push(var);
|
|
|
|
let make_descriptor = |content| Descriptor {
|
|
content,
|
|
rank: max_rank,
|
|
mark: Mark::NONE,
|
|
copy: OptVariable::NONE,
|
|
};
|
|
|
|
let content = desc.content;
|
|
let copy = subs.fresh(make_descriptor(content.clone()));
|
|
|
|
pools.get_mut(max_rank).push(copy);
|
|
|
|
// Link the original variable to the new variable. This lets us
|
|
// avoid making multiple copies of the variable we are instantiating.
|
|
//
|
|
// Need to do this before recursively copying to avoid looping.
|
|
subs.set(
|
|
var,
|
|
Descriptor {
|
|
content: content.clone(),
|
|
rank: desc.rank,
|
|
mark: Mark::NONE,
|
|
copy: copy.into(),
|
|
},
|
|
);
|
|
|
|
// Now we recursively copy the content of the variable.
|
|
// We have already marked the variable as copied, so we
|
|
// will not repeat this work or crawl this variable again.
|
|
match content {
|
|
Structure(flat_type) => {
|
|
let new_flat_type = match flat_type {
|
|
Apply(symbol, arguments) => {
|
|
let new_arguments = VariableSubsSlice::reserve_into_subs(subs, arguments.len());
|
|
for (target_index, var_index) in (new_arguments.indices()).zip(arguments) {
|
|
let var = subs[var_index];
|
|
let copy_var = deep_copy_var_help(subs, max_rank, pools, visited, var);
|
|
subs.variables[target_index] = copy_var;
|
|
}
|
|
|
|
Apply(symbol, new_arguments)
|
|
}
|
|
|
|
Func(arguments, closure_var, ret_var) => {
|
|
let new_ret_var = deep_copy_var_help(subs, max_rank, pools, visited, ret_var);
|
|
let new_closure_var =
|
|
deep_copy_var_help(subs, max_rank, pools, visited, closure_var);
|
|
|
|
let new_arguments = VariableSubsSlice::reserve_into_subs(subs, arguments.len());
|
|
for (target_index, var_index) in (new_arguments.indices()).zip(arguments) {
|
|
let var = subs[var_index];
|
|
let copy_var = deep_copy_var_help(subs, max_rank, pools, visited, var);
|
|
subs.variables[target_index] = copy_var;
|
|
}
|
|
|
|
Func(new_arguments, new_closure_var, new_ret_var)
|
|
}
|
|
|
|
same @ EmptyRecord | same @ EmptyTagUnion | same @ Erroneous(_) => same,
|
|
|
|
Record(fields, ext_var) => {
|
|
let record_fields = {
|
|
let new_variables =
|
|
VariableSubsSlice::reserve_into_subs(subs, fields.len());
|
|
|
|
let it = (new_variables.indices()).zip(fields.iter_variables());
|
|
for (target_index, var_index) in it {
|
|
let var = subs[var_index];
|
|
let copy_var = deep_copy_var_help(subs, max_rank, pools, visited, var);
|
|
subs.variables[target_index] = copy_var;
|
|
}
|
|
|
|
RecordFields {
|
|
length: fields.length,
|
|
field_names_start: fields.field_names_start,
|
|
variables_start: new_variables.start,
|
|
field_types_start: fields.field_types_start,
|
|
}
|
|
};
|
|
|
|
Record(
|
|
record_fields,
|
|
deep_copy_var_help(subs, max_rank, pools, visited, ext_var),
|
|
)
|
|
}
|
|
|
|
TagUnion(tags, ext_var) => {
|
|
let new_variable_slices = SubsSlice::reserve_variable_slices(subs, tags.len());
|
|
|
|
let it = (new_variable_slices.indices()).zip(tags.variables());
|
|
for (target_index, index) in it {
|
|
let slice = subs[index];
|
|
|
|
let new_variables = VariableSubsSlice::reserve_into_subs(subs, slice.len());
|
|
let it = (new_variables.indices()).zip(slice);
|
|
for (target_index, var_index) in it {
|
|
let var = subs[var_index];
|
|
let copy_var = deep_copy_var_help(subs, max_rank, pools, visited, var);
|
|
subs.variables[target_index] = copy_var;
|
|
}
|
|
|
|
subs.variable_slices[target_index] = new_variables;
|
|
}
|
|
|
|
let union_tags = UnionTags::from_slices(tags.tag_names(), new_variable_slices);
|
|
|
|
let new_ext = deep_copy_var_help(subs, max_rank, pools, visited, ext_var);
|
|
TagUnion(union_tags, new_ext)
|
|
}
|
|
|
|
FunctionOrTagUnion(tag_name, symbol, ext_var) => FunctionOrTagUnion(
|
|
tag_name,
|
|
symbol,
|
|
deep_copy_var_help(subs, max_rank, pools, visited, ext_var),
|
|
),
|
|
|
|
RecursiveTagUnion(rec_var, tags, ext_var) => {
|
|
let new_variable_slices = SubsSlice::reserve_variable_slices(subs, tags.len());
|
|
|
|
let it = (new_variable_slices.indices()).zip(tags.variables());
|
|
for (target_index, index) in it {
|
|
let slice = subs[index];
|
|
|
|
let new_variables = VariableSubsSlice::reserve_into_subs(subs, slice.len());
|
|
let it = (new_variables.indices()).zip(slice);
|
|
for (target_index, var_index) in it {
|
|
let var = subs[var_index];
|
|
let copy_var = deep_copy_var_help(subs, max_rank, pools, visited, var);
|
|
subs.variables[target_index] = copy_var;
|
|
}
|
|
|
|
subs.variable_slices[target_index] = new_variables;
|
|
}
|
|
|
|
let union_tags = UnionTags::from_slices(tags.tag_names(), new_variable_slices);
|
|
|
|
let new_ext = deep_copy_var_help(subs, max_rank, pools, visited, ext_var);
|
|
let new_rec_var = deep_copy_var_help(subs, max_rank, pools, visited, rec_var);
|
|
|
|
RecursiveTagUnion(new_rec_var, union_tags, new_ext)
|
|
}
|
|
};
|
|
|
|
subs.set(copy, make_descriptor(Structure(new_flat_type)));
|
|
|
|
copy
|
|
}
|
|
|
|
FlexVar(_) | Error => copy,
|
|
|
|
RecursionVar {
|
|
opt_name,
|
|
structure,
|
|
} => {
|
|
let new_structure = deep_copy_var_help(subs, max_rank, pools, visited, structure);
|
|
|
|
subs.set(
|
|
copy,
|
|
make_descriptor(RecursionVar {
|
|
opt_name,
|
|
structure: new_structure,
|
|
}),
|
|
);
|
|
|
|
copy
|
|
}
|
|
|
|
RigidVar(name) => {
|
|
subs.set(copy, make_descriptor(FlexVar(Some(name))));
|
|
|
|
copy
|
|
}
|
|
|
|
Alias(symbol, arguments, real_type_var, kind) => {
|
|
let new_variables =
|
|
SubsSlice::reserve_into_subs(subs, arguments.all_variables_len as _);
|
|
for (target_index, var_index) in (new_variables.indices()).zip(arguments.variables()) {
|
|
let var = subs[var_index];
|
|
let copy_var = deep_copy_var_help(subs, max_rank, pools, visited, var);
|
|
subs.variables[target_index] = copy_var;
|
|
}
|
|
|
|
let new_arguments = AliasVariables {
|
|
variables_start: new_variables.start,
|
|
..arguments
|
|
};
|
|
|
|
let new_real_type_var =
|
|
deep_copy_var_help(subs, max_rank, pools, visited, real_type_var);
|
|
let new_content = Alias(symbol, new_arguments, new_real_type_var, kind);
|
|
|
|
subs.set(copy, make_descriptor(new_content));
|
|
|
|
copy
|
|
}
|
|
|
|
RangedNumber(typ, range_vars) => {
|
|
let new_type_var = deep_copy_var_help(subs, max_rank, pools, visited, typ);
|
|
|
|
let new_vars = SubsSlice::reserve_into_subs(subs, range_vars.len());
|
|
for (target_index, var_index) in (new_vars.indices()).zip(range_vars) {
|
|
let var = subs[var_index];
|
|
let copy_var = deep_copy_var_help(subs, max_rank, pools, visited, var);
|
|
subs.variables[target_index] = copy_var;
|
|
}
|
|
|
|
let new_content = RangedNumber(new_type_var, new_vars);
|
|
|
|
subs.set(copy, make_descriptor(new_content));
|
|
|
|
copy
|
|
}
|
|
}
|
|
}
|
|
|
|
fn register(subs: &mut Subs, rank: Rank, pools: &mut Pools, content: Content) -> Variable {
|
|
let descriptor = Descriptor {
|
|
content,
|
|
rank,
|
|
mark: Mark::NONE,
|
|
copy: OptVariable::NONE,
|
|
};
|
|
|
|
let var = subs.fresh(descriptor);
|
|
|
|
pools.get_mut(rank).push(var);
|
|
|
|
var
|
|
}
|
|
|
|
fn register_with_known_var(
|
|
subs: &mut Subs,
|
|
var: Variable,
|
|
rank: Rank,
|
|
pools: &mut Pools,
|
|
content: Content,
|
|
) {
|
|
let descriptor = Descriptor {
|
|
content,
|
|
rank,
|
|
mark: Mark::NONE,
|
|
copy: OptVariable::NONE,
|
|
};
|
|
|
|
subs.set(var, descriptor);
|
|
|
|
pools.get_mut(rank).push(var);
|
|
}
|