roc/compiler/solve/src/solve.rs
2022-03-05 00:26:03 +01:00

2099 lines
73 KiB
Rust

use bumpalo::Bump;
use roc_can::constraint::Constraint::{self, *};
use roc_can::constraint::{LetConstraint, PresenceConstraint};
use roc_can::expected::{Expected, PExpected};
use roc_collections::all::MutMap;
use roc_module::ident::TagName;
use roc_module::symbol::Symbol;
use roc_region::all::{Loc, Region};
use roc_types::solved_types::Solved;
use roc_types::subs::{
AliasVariables, Content, Descriptor, FlatType, Mark, OptVariable, Rank, RecordFields, Subs,
SubsIndex, SubsSlice, UnionTags, Variable, VariableSubsSlice,
};
use roc_types::types::Type::{self, *};
use roc_types::types::{
gather_fields_unsorted_iter, AliasKind, Category, ErrorType, PatternCategory,
};
use roc_unify::unify::{unify, Mode, Unified::*};
use std::collections::hash_map::Entry;
// Type checking system adapted from Elm by Evan Czaplicki, BSD-3-Clause Licensed
// https://github.com/elm/compiler
// Thank you, Evan!
// A lot of energy was put into making type inference fast. That means it's pretty intimidating.
//
// Fundamentally, type inference assigns very general types based on syntax, and then tries to
// make all the pieces fit together. For instance when writing
//
// > f x
//
// We know that `f` is a function, and thus must have some type `a -> b`.
// `x` is just a variable, that gets the type `c`
//
// Next comes constraint generation. For `f x` to be well-typed,
// it must be the case that `c = a`, So a constraint `Eq(c, a)` is generated.
// But `Eq` is a bit special: `c` does not need to equal `a` exactly, but they need to be equivalent.
// This allows for instance the use of aliases. `c` could be an alias, and so looks different from
// `a`, but they still represent the same type.
//
// Then we get to solving, which happens in this file.
//
// When we hit an `Eq` constraint, then we check whether the two involved types are in fact
// equivalent using unification, and when they are, we can substitute one for the other.
//
// When all constraints are processed, and no unification errors have occurred, then the program
// is type-correct. Otherwise the errors are reported.
//
// Now, coming back to efficiency, this type checker uses *ranks* to optimize
// The rank tracks the number of let-bindings a variable is "under". Top-level definitions
// have rank 1. A let in a top-level definition gets rank 2, and so on.
//
// This has to do with generalization of type variables. This is described here
//
// http://okmij.org/ftp/ML/generalization.html#levels
//
// The problem is that when doing inference naively, this program would fail to typecheck
//
// f =
// id = \x -> x
//
// { a: id 1, b: id "foo" }
//
// Because `id` is applied to an integer, the type `Int -> Int` is inferred, which then gives a
// type error for `id "foo"`.
//
// Thus instead the inferred type for `id` is generalized (see the `generalize` function) to `a -> a`.
// Ranks are used to limit the number of type variables considered for generalization. Only those inside
// of the let (so those used in inferring the type of `\x -> x`) are considered.
#[derive(PartialEq, Debug, Clone)]
pub enum TypeError {
BadExpr(Region, Category, ErrorType, Expected<ErrorType>),
BadPattern(Region, PatternCategory, ErrorType, PExpected<ErrorType>),
CircularType(Region, Symbol, ErrorType),
BadType(roc_types::types::Problem),
UnexposedLookup(Symbol),
}
#[derive(Clone, Debug, Default)]
pub struct Env {
symbols: Vec<Symbol>,
variables: Vec<Variable>,
}
impl Env {
pub fn vars_by_symbol(&self) -> impl Iterator<Item = (Symbol, Variable)> + '_ {
let it1 = self.symbols.iter().copied();
let it2 = self.variables.iter().copied();
it1.zip(it2)
}
fn get_var_by_symbol(&self, symbol: &Symbol) -> Option<Variable> {
self.symbols
.iter()
.position(|s| s == symbol)
.map(|index| self.variables[index])
}
fn insert_symbol_var_if_vacant(&mut self, symbol: Symbol, var: Variable) {
match self.symbols.iter().position(|s| *s == symbol) {
None => {
// symbol is not in vars_by_symbol yet; insert it
self.symbols.push(symbol);
self.variables.push(var);
}
Some(_) => {
// do nothing
}
}
}
}
const DEFAULT_POOLS: usize = 8;
#[derive(Clone, Debug)]
struct Pools(Vec<Vec<Variable>>);
impl Default for Pools {
fn default() -> Self {
Pools::new(DEFAULT_POOLS)
}
}
impl Pools {
pub fn new(num_pools: usize) -> Self {
Pools(vec![Vec::new(); num_pools])
}
pub fn len(&self) -> usize {
self.0.len()
}
pub fn get_mut(&mut self, rank: Rank) -> &mut Vec<Variable> {
match self.0.get_mut(rank.into_usize()) {
Some(reference) => reference,
None => panic!("Compiler bug: could not find pool at rank {}", rank),
}
}
pub fn get(&self, rank: Rank) -> &Vec<Variable> {
match self.0.get(rank.into_usize()) {
Some(reference) => reference,
None => panic!("Compiler bug: could not find pool at rank {}", rank),
}
}
pub fn iter(&self) -> std::slice::Iter<'_, Vec<Variable>> {
self.0.iter()
}
pub fn split_last(&self) -> (&Vec<Variable>, &[Vec<Variable>]) {
self.0
.split_last()
.unwrap_or_else(|| panic!("Attempted to split_last() on non-empty Pools"))
}
pub fn extend_to(&mut self, n: usize) {
for _ in self.len()..n {
self.0.push(Vec::new());
}
}
}
#[derive(Clone)]
struct State {
env: Env,
mark: Mark,
}
pub fn run(
env: &Env,
problems: &mut Vec<TypeError>,
mut subs: Subs,
constraint: &Constraint,
) -> (Solved<Subs>, Env) {
let env = run_in_place(env, problems, &mut subs, constraint);
(Solved(subs), env)
}
/// Modify an existing subs in-place instead
pub fn run_in_place(
env: &Env,
problems: &mut Vec<TypeError>,
subs: &mut Subs,
constraint: &Constraint,
) -> Env {
let mut pools = Pools::default();
let state = State {
env: env.clone(),
mark: Mark::NONE.next(),
};
let rank = Rank::toplevel();
let arena = Bump::new();
let state = solve(
&arena,
env,
state,
rank,
&mut pools,
problems,
&mut MutMap::default(),
subs,
constraint,
);
state.env
}
enum Work<'a> {
Constraint {
env: &'a Env,
rank: Rank,
constraint: &'a Constraint,
},
CheckForInfiniteTypes(LocalDefVarsVec<(Symbol, Loc<Variable>)>),
LetConSimple {
env: &'a Env,
rank: Rank,
let_con: &'a LetConstraint,
},
}
#[allow(clippy::too_many_arguments)]
fn solve(
arena: &Bump,
env: &Env,
mut state: State,
rank: Rank,
pools: &mut Pools,
problems: &mut Vec<TypeError>,
cached_aliases: &mut MutMap<Symbol, Variable>,
subs: &mut Subs,
constraint: &Constraint,
) -> State {
let initial = Work::Constraint {
env,
rank,
constraint,
};
let mut stack = vec![initial];
while let Some(work_item) = stack.pop() {
let (env, rank, constraint) = match work_item {
Work::Constraint {
env,
rank,
constraint,
} => (env, rank, constraint),
Work::CheckForInfiniteTypes(def_vars) => {
for (symbol, loc_var) in def_vars.iter() {
check_for_infinite_type(subs, problems, *symbol, *loc_var);
}
// No constraint to be solved
continue;
}
Work::LetConSimple { env, rank, let_con } => {
// Add a variable for each def to new_vars_by_env.
let mut local_def_vars = LocalDefVarsVec::with_length(let_con.def_types.len());
for (symbol, loc_type) in let_con.def_types.iter() {
let var = type_to_var(subs, rank, pools, cached_aliases, &loc_type.value);
local_def_vars.push((
*symbol,
Loc {
value: var,
region: loc_type.region,
},
));
}
let mut new_env = env.clone();
for (symbol, loc_var) in local_def_vars.iter() {
new_env.insert_symbol_var_if_vacant(*symbol, loc_var.value);
}
stack.push(Work::CheckForInfiniteTypes(local_def_vars));
stack.push(Work::Constraint {
env: arena.alloc(new_env),
rank,
constraint: &let_con.ret_constraint,
});
continue;
}
};
state = match constraint {
True => state,
SaveTheEnvironment => {
// NOTE deviation: elm only copies the env into the state on SaveTheEnvironment
let mut copy = state;
copy.env = env.clone();
copy
}
Eq(typ, expectation, category, region) => {
let actual = type_to_var(subs, rank, pools, cached_aliases, typ);
let expected = type_to_var(
subs,
rank,
pools,
cached_aliases,
expectation.get_type_ref(),
);
match unify(subs, actual, expected, Mode::EQ) {
Success(vars) => {
introduce(subs, rank, pools, &vars);
state
}
Failure(vars, actual_type, expected_type) => {
introduce(subs, rank, pools, &vars);
let problem = TypeError::BadExpr(
*region,
category.clone(),
actual_type,
expectation.clone().replace(expected_type),
);
problems.push(problem);
state
}
BadType(vars, problem) => {
introduce(subs, rank, pools, &vars);
problems.push(TypeError::BadType(problem));
state
}
}
}
Store(source, target, _filename, _linenr) => {
// a special version of Eq that is used to store types in the AST.
// IT DOES NOT REPORT ERRORS!
let actual = type_to_var(subs, rank, pools, cached_aliases, source);
let target = *target;
match unify(subs, actual, target, Mode::EQ) {
Success(vars) => {
introduce(subs, rank, pools, &vars);
state
}
Failure(vars, _actual_type, _expected_type) => {
introduce(subs, rank, pools, &vars);
// ERROR NOT REPORTED
state
}
BadType(vars, _) => {
introduce(subs, rank, pools, &vars);
// ERROR NOT REPORTED
state
}
}
}
Lookup(symbol, expectation, region) => {
match env.get_var_by_symbol(symbol) {
Some(var) => {
// Deep copy the vars associated with this symbol before unifying them.
// Otherwise, suppose we have this:
//
// identity = \a -> a
//
// x = identity 5
//
// When we call (identity 5), it's important that we not unify
// on identity's original vars. If we do, the type of `identity` will be
// mutated to be `Int -> Int` instead of `a -> `, which would be incorrect;
// the type of `identity` is more general than that!
//
// Instead, we want to unify on a *copy* of its vars. If the copy unifies
// successfully (in this case, to `Int -> Int`), we can use that to
// infer the type of this lookup (in this case, `Int`) without ever
// having mutated the original.
//
// If this Lookup is targeting a value in another module,
// then we copy from that module's Subs into our own. If the value
// is being looked up in this module, then we use our Subs as both
// the source and destination.
let actual = deep_copy_var(subs, rank, pools, var);
let expected = type_to_var(
subs,
rank,
pools,
cached_aliases,
expectation.get_type_ref(),
);
match unify(subs, actual, expected, Mode::EQ) {
Success(vars) => {
introduce(subs, rank, pools, &vars);
state
}
Failure(vars, actual_type, expected_type) => {
introduce(subs, rank, pools, &vars);
let problem = TypeError::BadExpr(
*region,
Category::Lookup(*symbol),
actual_type,
expectation.clone().replace(expected_type),
);
problems.push(problem);
state
}
BadType(vars, problem) => {
introduce(subs, rank, pools, &vars);
problems.push(TypeError::BadType(problem));
state
}
}
}
None => {
problems.push(TypeError::UnexposedLookup(*symbol));
state
}
}
}
And(sub_constraints) => {
for sub_constraint in sub_constraints.iter().rev() {
stack.push(Work::Constraint {
env,
rank,
constraint: sub_constraint,
})
}
state
}
Pattern(region, category, typ, expectation)
| Present(typ, PresenceConstraint::Pattern(region, category, expectation)) => {
let actual = type_to_var(subs, rank, pools, cached_aliases, typ);
let expected = type_to_var(
subs,
rank,
pools,
cached_aliases,
expectation.get_type_ref(),
);
let mode = match constraint {
Present(_, _) => Mode::PRESENT,
_ => Mode::EQ,
};
match unify(subs, actual, expected, mode) {
Success(vars) => {
introduce(subs, rank, pools, &vars);
state
}
Failure(vars, actual_type, expected_type) => {
introduce(subs, rank, pools, &vars);
let problem = TypeError::BadPattern(
*region,
category.clone(),
actual_type,
expectation.clone().replace(expected_type),
);
problems.push(problem);
state
}
BadType(vars, problem) => {
introduce(subs, rank, pools, &vars);
problems.push(TypeError::BadType(problem));
state
}
}
}
Let(let_con) => {
match &let_con.ret_constraint {
True if let_con.rigid_vars.is_empty() => {
introduce(subs, rank, pools, &let_con.flex_vars);
// If the return expression is guaranteed to solve,
// solve the assignments themselves and move on.
stack.push(Work::Constraint {
env,
rank,
constraint: &let_con.defs_constraint,
});
state
}
_ if let_con.rigid_vars.is_empty() && let_con.flex_vars.is_empty() => {
stack.push(Work::LetConSimple { env, rank, let_con });
stack.push(Work::Constraint {
env,
rank,
constraint: &let_con.defs_constraint,
});
state
}
ret_con => {
let rigid_vars = &let_con.rigid_vars;
let flex_vars = &let_con.flex_vars;
// work in the next pool to localize header
let next_rank = rank.next();
// introduce variables
for &var in rigid_vars.iter().chain(flex_vars.iter()) {
subs.set_rank(var, next_rank);
}
// determine the next pool
if next_rank.into_usize() < pools.len() {
// Nothing to do, we already accounted for the next rank, no need to
// adjust the pools
} else {
// we should be off by one at this point
debug_assert_eq!(next_rank.into_usize(), 1 + pools.len());
pools.extend_to(next_rank.into_usize());
}
let pool: &mut Vec<Variable> = pools.get_mut(next_rank);
// Replace the contents of this pool with rigid_vars and flex_vars
pool.clear();
pool.reserve(rigid_vars.len() + flex_vars.len());
pool.extend(rigid_vars.iter());
pool.extend(flex_vars.iter());
// run solver in next pool
// Add a variable for each def to local_def_vars.
let mut local_def_vars =
LocalDefVarsVec::with_length(let_con.def_types.len());
for (symbol, loc_type) in let_con.def_types.iter() {
let def_type = &loc_type.value;
let var = type_to_var(subs, next_rank, pools, cached_aliases, def_type);
local_def_vars.push((
*symbol,
Loc {
value: var,
region: loc_type.region,
},
));
}
// Solve the assignments' constraints first.
// TODO: make into `WorkItem` with `After`
let State {
env: saved_env,
mark,
} = solve(
arena,
env,
state,
next_rank,
pools,
problems,
cached_aliases,
subs,
&let_con.defs_constraint,
);
let young_mark = mark;
let visit_mark = young_mark.next();
let final_mark = visit_mark.next();
debug_assert_eq!(
{
let offenders = pools
.get(next_rank)
.iter()
.filter(|var| {
let current_rank =
subs.get_rank(roc_types::subs::Variable::clone(var));
current_rank.into_usize() > next_rank.into_usize()
})
.collect::<Vec<_>>();
let result = offenders.len();
if result > 0 {
dbg!(&subs, &offenders, &let_con.def_types);
}
result
},
0
);
// pop pool
generalize(subs, young_mark, visit_mark, next_rank, pools);
pools.get_mut(next_rank).clear();
// check that things went well
debug_assert!({
// NOTE the `subs.redundant` check is added for the uniqueness
// inference, and does not come from elm. It's unclear whether this is
// a bug with uniqueness inference (something is redundant that
// shouldn't be) or that it just never came up in elm.
let failing: Vec<_> = rigid_vars
.iter()
.filter(|&var| {
!subs.redundant(*var) && subs.get_rank(*var) != Rank::NONE
})
.collect();
if !failing.is_empty() {
println!("Rigids {:?}", &rigid_vars);
println!("Failing {:?}", failing);
}
failing.is_empty()
});
let mut new_env = env.clone();
for (symbol, loc_var) in local_def_vars.iter() {
new_env.insert_symbol_var_if_vacant(*symbol, loc_var.value);
}
// Note that this vars_by_symbol is the one returned by the
// previous call to solve()
let state_for_ret_con = State {
env: saved_env,
mark: final_mark,
};
// Now solve the body, using the new vars_by_symbol which includes
// the assignments' name-to-variable mappings.
stack.push(Work::CheckForInfiniteTypes(local_def_vars));
stack.push(Work::Constraint {
env: arena.alloc(new_env),
rank,
constraint: ret_con,
});
state_for_ret_con
}
}
}
Present(typ, PresenceConstraint::IsOpen) => {
let actual = type_to_var(subs, rank, pools, cached_aliases, typ);
let mut new_desc = subs.get(actual);
match new_desc.content {
Content::Structure(FlatType::TagUnion(tags, _)) => {
let new_ext = subs.fresh_unnamed_flex_var();
let new_union = Content::Structure(FlatType::TagUnion(tags, new_ext));
new_desc.content = new_union;
subs.set(actual, new_desc);
state
}
_ => {
// Today, an "open" constraint doesn't affect any types
// other than tag unions. Recursive tag unions are constructed
// at a later time (during occurs checks after tag unions are
// resolved), so that's not handled here either.
// NB: Handle record types here if we add presence constraints
// to their type inference as well.
state
}
}
}
Present(
typ,
PresenceConstraint::IncludesTag(tag_name, tys, region, pattern_category),
) => {
let actual = type_to_var(subs, rank, pools, cached_aliases, typ);
let tag_ty = Type::TagUnion(
vec![(tag_name.clone(), tys.clone())],
Box::new(Type::EmptyTagUnion),
);
let includes = type_to_var(subs, rank, pools, cached_aliases, &tag_ty);
match unify(subs, actual, includes, Mode::PRESENT) {
Success(vars) => {
introduce(subs, rank, pools, &vars);
state
}
Failure(vars, actual_type, expected_to_include_type) => {
introduce(subs, rank, pools, &vars);
let problem = TypeError::BadPattern(
*region,
pattern_category.clone(),
expected_to_include_type,
PExpected::NoExpectation(actual_type),
);
problems.push(problem);
state
}
BadType(vars, problem) => {
introduce(subs, rank, pools, &vars);
problems.push(TypeError::BadType(problem));
state
}
}
}
};
}
state
}
#[derive(Debug)]
enum LocalDefVarsVec<T> {
Stack(arrayvec::ArrayVec<T, 32>),
Heap(Vec<T>),
}
impl<T> LocalDefVarsVec<T> {
#[inline(always)]
fn with_length(length: usize) -> Self {
if length <= 32 {
Self::Stack(Default::default())
} else {
Self::Heap(Default::default())
}
}
fn push(&mut self, element: T) {
match self {
LocalDefVarsVec::Stack(vec) => vec.push(element),
LocalDefVarsVec::Heap(vec) => vec.push(element),
}
}
fn iter(&self) -> impl Iterator<Item = &T> {
match self {
LocalDefVarsVec::Stack(vec) => vec.iter(),
LocalDefVarsVec::Heap(vec) => vec.iter(),
}
}
}
use std::cell::RefCell;
std::thread_local! {
/// Scratchpad arena so we don't need to allocate a new one all the time
static SCRATCHPAD: RefCell<bumpalo::Bump> = RefCell::new(bumpalo::Bump::with_capacity(4 * 1024));
}
fn take_scratchpad() -> bumpalo::Bump {
let mut result = bumpalo::Bump::new();
SCRATCHPAD.with(|f| {
result = f.replace(bumpalo::Bump::new());
});
result
}
fn put_scratchpad(scratchpad: bumpalo::Bump) {
SCRATCHPAD.with(|f| {
f.replace(scratchpad);
});
}
fn type_to_var(
subs: &mut Subs,
rank: Rank,
pools: &mut Pools,
_: &mut MutMap<Symbol, Variable>,
typ: &Type,
) -> Variable {
let mut arena = take_scratchpad();
let var = type_to_variable(subs, rank, pools, &arena, typ);
arena.reset();
put_scratchpad(arena);
var
}
fn type_to_variable<'a>(
subs: &mut Subs,
rank: Rank,
pools: &mut Pools,
arena: &'a bumpalo::Bump,
typ: &Type,
) -> Variable {
use bumpalo::collections::Vec;
match typ {
Variable(var) => *var,
RangedNumber(typ, vars) => {
let ty_var = type_to_variable(subs, rank, pools, arena, typ);
let vars = VariableSubsSlice::insert_into_subs(subs, vars.iter().copied());
let content = Content::RangedNumber(ty_var, vars);
register(subs, rank, pools, content)
}
Apply(symbol, arguments, _) => {
let new_arguments = VariableSubsSlice::reserve_into_subs(subs, arguments.len());
for (target_index, var_index) in (new_arguments.indices()).zip(arguments) {
let var = type_to_variable(subs, rank, pools, arena, var_index);
subs.variables[target_index] = var;
}
let flat_type = FlatType::Apply(*symbol, new_arguments);
let content = Content::Structure(flat_type);
register(subs, rank, pools, content)
}
EmptyRec => Variable::EMPTY_RECORD,
EmptyTagUnion => Variable::EMPTY_TAG_UNION,
ClosureTag { name, ext } => {
let tag_name = TagName::Closure(*name);
let tag_names = SubsSlice::new(subs.tag_names.len() as u32, 1);
subs.tag_names.push(tag_name);
// the first VariableSubsSlice in the array is a zero-length slice
let union_tags = UnionTags::from_slices(tag_names, SubsSlice::new(0, 1));
let content = Content::Structure(FlatType::TagUnion(union_tags, *ext));
register(subs, rank, pools, content)
}
// This case is important for the rank of boolean variables
Function(arguments, closure_type, ret_type) => {
let new_arguments = VariableSubsSlice::reserve_into_subs(subs, arguments.len());
for (target_index, var_index) in (new_arguments.indices()).zip(arguments) {
let var = type_to_variable(subs, rank, pools, arena, var_index);
subs.variables[target_index] = var;
}
let ret_var = type_to_variable(subs, rank, pools, arena, ret_type);
let closure_var = type_to_variable(subs, rank, pools, arena, closure_type);
let content = Content::Structure(FlatType::Func(new_arguments, closure_var, ret_var));
register(subs, rank, pools, content)
}
Record(fields, ext) => {
// An empty fields is inefficient (but would be correct)
// If hit, try to turn the value into an EmptyRecord in canonicalization
debug_assert!(!fields.is_empty() || !ext.is_empty_record());
let mut field_vars = Vec::with_capacity_in(fields.len(), arena);
for (field, field_type) in fields {
let field_var =
field_type.map(|typ| type_to_variable(subs, rank, pools, arena, typ));
field_vars.push((field.clone(), field_var));
}
let temp_ext_var = type_to_variable(subs, rank, pools, arena, ext);
let (it, new_ext_var) =
gather_fields_unsorted_iter(subs, RecordFields::empty(), temp_ext_var)
.expect("Something ended up weird in this record type");
let it = it
.into_iter()
.map(|(field, field_type)| (field.clone(), field_type));
field_vars.extend(it);
insertion_sort_by(&mut field_vars, RecordFields::compare);
let record_fields = RecordFields::insert_into_subs(subs, field_vars);
let content = Content::Structure(FlatType::Record(record_fields, new_ext_var));
register(subs, rank, pools, content)
}
TagUnion(tags, ext) => {
// An empty tags is inefficient (but would be correct)
// If hit, try to turn the value into an EmptyTagUnion in canonicalization
debug_assert!(!tags.is_empty() || !ext.is_empty_tag_union());
let (union_tags, ext) = type_to_union_tags(subs, rank, pools, arena, tags, ext);
let content = Content::Structure(FlatType::TagUnion(union_tags, ext));
register(subs, rank, pools, content)
}
FunctionOrTagUnion(tag_name, symbol, ext) => {
let temp_ext_var = type_to_variable(subs, rank, pools, arena, ext);
let (it, ext) = roc_types::types::gather_tags_unsorted_iter(
subs,
UnionTags::default(),
temp_ext_var,
);
for _ in it {
unreachable!("we assert that the ext var is empty; otherwise we'd already know it was a tag union!");
}
let slice = SubsIndex::new(subs.tag_names.len() as u32);
subs.tag_names.push(tag_name.clone());
let content = Content::Structure(FlatType::FunctionOrTagUnion(slice, *symbol, ext));
register(subs, rank, pools, content)
}
RecursiveTagUnion(rec_var, tags, ext) => {
// An empty tags is inefficient (but would be correct)
// If hit, try to turn the value into an EmptyTagUnion in canonicalization
debug_assert!(!tags.is_empty() || !ext.is_empty_tag_union());
let (union_tags, ext) = type_to_union_tags(subs, rank, pools, arena, tags, ext);
let content =
Content::Structure(FlatType::RecursiveTagUnion(*rec_var, union_tags, ext));
let tag_union_var = register(subs, rank, pools, content);
register_with_known_var(
subs,
*rec_var,
rank,
pools,
Content::RecursionVar {
opt_name: None,
structure: tag_union_var,
},
);
tag_union_var
}
Type::Alias {
symbol,
type_arguments,
actual,
lambda_set_variables,
kind,
} => {
if let Some(reserved) = Variable::get_reserved(*symbol) {
if rank.is_none() {
// reserved variables are stored with rank NONE
return reserved;
} else {
// for any other rank, we need to copy; it takes care of adjusting the rank
return deep_copy_var(subs, rank, pools, reserved);
}
}
let alias_variables = alias_to_var(
subs,
rank,
pools,
arena,
type_arguments,
lambda_set_variables,
);
let alias_variable = if let Symbol::RESULT_RESULT = *symbol {
roc_result_to_var(subs, rank, pools, arena, actual)
} else {
type_to_variable(subs, rank, pools, arena, actual)
};
let content = Content::Alias(*symbol, alias_variables, alias_variable, *kind);
register(subs, rank, pools, content)
}
HostExposedAlias {
name: symbol,
type_arguments,
actual: alias_type,
actual_var,
lambda_set_variables,
..
} => {
let alias_variables = alias_to_var(
subs,
rank,
pools,
arena,
type_arguments,
lambda_set_variables,
);
let alias_variable = type_to_variable(subs, rank, pools, arena, alias_type);
// TODO(opaques): I think host-exposed aliases should always be structural
// (when does it make sense to give a host an opaque type?)
let content = Content::Alias(
*symbol,
alias_variables,
alias_variable,
AliasKind::Structural,
);
let result = register(subs, rank, pools, content);
// We only want to unify the actual_var with the alias once
// if it's already redirected (and therefore, redundant)
// don't do it again
if !subs.redundant(*actual_var) {
let descriptor = subs.get(result);
subs.union(result, *actual_var, descriptor);
}
result
}
Erroneous(problem) => {
let content = Content::Structure(FlatType::Erroneous(Box::new(problem.clone())));
register(subs, rank, pools, content)
}
}
}
fn alias_to_var<'a>(
subs: &mut Subs,
rank: Rank,
pools: &mut Pools,
arena: &'a bumpalo::Bump,
type_arguments: &[(roc_module::ident::Lowercase, Type)],
lambda_set_variables: &[roc_types::types::LambdaSet],
) -> AliasVariables {
let length = type_arguments.len() + lambda_set_variables.len();
let new_variables = VariableSubsSlice::reserve_into_subs(subs, length);
for (target_index, (_, arg_type)) in (new_variables.indices()).zip(type_arguments) {
let copy_var = type_to_variable(subs, rank, pools, arena, arg_type);
subs.variables[target_index] = copy_var;
}
let it = (new_variables.indices().skip(type_arguments.len())).zip(lambda_set_variables);
for (target_index, ls) in it {
let copy_var = type_to_variable(subs, rank, pools, arena, &ls.0);
subs.variables[target_index] = copy_var;
}
AliasVariables {
variables_start: new_variables.start,
type_variables_len: type_arguments.len() as _,
all_variables_len: length as _,
}
}
fn roc_result_to_var<'a>(
subs: &mut Subs,
rank: Rank,
pools: &mut Pools,
arena: &'a bumpalo::Bump,
result_type: &Type,
) -> Variable {
match result_type {
Type::TagUnion(tags, ext) => {
debug_assert!(ext.is_empty_tag_union());
debug_assert!(tags.len() == 2);
if let [(err, err_args), (ok, ok_args)] = &tags[..] {
debug_assert_eq!(err, &subs.tag_names[0]);
debug_assert_eq!(ok, &subs.tag_names[1]);
if let ([err_type], [ok_type]) = (err_args.as_slice(), ok_args.as_slice()) {
let err_var = type_to_variable(subs, rank, pools, arena, err_type);
let ok_var = type_to_variable(subs, rank, pools, arena, ok_type);
let start = subs.variables.len() as u32;
let err_slice = SubsSlice::new(start, 1);
let ok_slice = SubsSlice::new(start + 1, 1);
subs.variables.push(err_var);
subs.variables.push(ok_var);
let variables = SubsSlice::new(subs.variable_slices.len() as _, 2);
subs.variable_slices.push(err_slice);
subs.variable_slices.push(ok_slice);
let union_tags = UnionTags::from_slices(Subs::RESULT_TAG_NAMES, variables);
let ext = Variable::EMPTY_TAG_UNION;
let content = Content::Structure(FlatType::TagUnion(union_tags, ext));
return register(subs, rank, pools, content);
}
}
unreachable!("invalid arguments to Result.Result; canonicalization should catch this!")
}
_ => unreachable!("not a valid type inside a Result.Result alias"),
}
}
fn insertion_sort_by<T, F>(arr: &mut [T], mut compare: F)
where
F: FnMut(&T, &T) -> std::cmp::Ordering,
{
for i in 1..arr.len() {
let val = &arr[i];
let mut j = i;
let pos = arr[..i]
.binary_search_by(|x| compare(x, val))
.unwrap_or_else(|pos| pos);
// Swap all elements until specific position.
while j > pos {
arr.swap(j - 1, j);
j -= 1;
}
}
}
fn sorted_no_duplicates<T>(slice: &[(TagName, T)]) -> bool {
match slice.split_first() {
None => true,
Some(((first, _), rest)) => {
let mut current = first;
for (next, _) in rest {
if current >= next {
return false;
} else {
current = next;
}
}
true
}
}
}
fn sort_and_deduplicate<T>(tag_vars: &mut bumpalo::collections::Vec<(TagName, T)>) {
insertion_sort_by(tag_vars, |(a, _), (b, _)| a.cmp(b));
// deduplicate, keeping the right-most occurrence of a tag name
let mut i = 0;
while i < tag_vars.len() {
match (tag_vars.get(i), tag_vars.get(i + 1)) {
(Some((t1, _)), Some((t2, _))) => {
if t1 == t2 {
tag_vars.remove(i);
} else {
i += 1;
}
}
_ => break,
}
}
}
/// Find whether the current run of tag names is in the subs.tag_names array already. If so,
/// we take a SubsSlice to the existing tag names, so we don't have to add/clone those tag names
/// and keep subs memory consumption low
fn find_tag_name_run<T>(slice: &[(TagName, T)], subs: &mut Subs) -> Option<SubsSlice<TagName>> {
use std::cmp::Ordering;
let tag_name = slice.get(0)?.0.clone();
let mut result = None;
// the `SubsSlice<TagName>` that inserting `slice` into subs would give
let bigger_slice = SubsSlice::new(subs.tag_names.len() as _, slice.len() as _);
match subs.tag_name_cache.entry(tag_name) {
Entry::Occupied(mut occupied) => {
let subs_slice = *occupied.get();
let prefix_slice = SubsSlice::new(subs_slice.start, slice.len() as _);
if slice.len() == 1 {
return Some(prefix_slice);
}
match slice.len().cmp(&subs_slice.len()) {
Ordering::Less => {
// we might have a prefix
let tag_names = &subs.tag_names[subs_slice.start as usize..];
for (from_subs, (from_slice, _)) in tag_names.iter().zip(slice.iter()) {
if from_subs != from_slice {
return None;
}
}
result = Some(prefix_slice);
}
Ordering::Equal => {
let tag_names = &subs.tag_names[subs_slice.indices()];
for (from_subs, (from_slice, _)) in tag_names.iter().zip(slice.iter()) {
if from_subs != from_slice {
return None;
}
}
result = Some(subs_slice);
}
Ordering::Greater => {
// switch to the bigger slice that is not inserted yet, but will be soon
occupied.insert(bigger_slice);
}
}
}
Entry::Vacant(vacant) => {
vacant.insert(bigger_slice);
}
}
result
}
/// Assumes that the tags are sorted and there are no duplicates!
fn insert_tags_fast_path<'a>(
subs: &mut Subs,
rank: Rank,
pools: &mut Pools,
arena: &'a bumpalo::Bump,
tags: &[(TagName, Vec<Type>)],
) -> UnionTags {
let new_variable_slices = SubsSlice::reserve_variable_slices(subs, tags.len());
match find_tag_name_run(tags, subs) {
Some(new_tag_names) => {
let it = (new_variable_slices.indices()).zip(tags);
for (variable_slice_index, (_, arguments)) in it {
// turn the arguments into variables
let new_variables = VariableSubsSlice::reserve_into_subs(subs, arguments.len());
let it = (new_variables.indices()).zip(arguments);
for (target_index, argument) in it {
let var = type_to_variable(subs, rank, pools, arena, argument);
subs.variables[target_index] = var;
}
subs.variable_slices[variable_slice_index] = new_variables;
}
UnionTags::from_slices(new_tag_names, new_variable_slices)
}
None => {
let new_tag_names = SubsSlice::reserve_tag_names(subs, tags.len());
let it = (new_variable_slices.indices())
.zip(new_tag_names.indices())
.zip(tags);
for ((variable_slice_index, tag_name_index), (tag_name, arguments)) in it {
// turn the arguments into variables
let new_variables = VariableSubsSlice::reserve_into_subs(subs, arguments.len());
let it = (new_variables.indices()).zip(arguments);
for (target_index, argument) in it {
let var = type_to_variable(subs, rank, pools, arena, argument);
subs.variables[target_index] = var;
}
subs.variable_slices[variable_slice_index] = new_variables;
subs.tag_names[tag_name_index] = tag_name.clone();
}
UnionTags::from_slices(new_tag_names, new_variable_slices)
}
}
}
fn insert_tags_slow_path<'a>(
subs: &mut Subs,
rank: Rank,
pools: &mut Pools,
arena: &'a bumpalo::Bump,
tags: &[(TagName, Vec<Type>)],
mut tag_vars: bumpalo::collections::Vec<(TagName, VariableSubsSlice)>,
) -> UnionTags {
for (tag, tag_argument_types) in tags {
let new_slice = VariableSubsSlice::reserve_into_subs(subs, tag_argument_types.len());
for (i, arg) in (new_slice.indices()).zip(tag_argument_types) {
let var = type_to_variable(subs, rank, pools, arena, arg);
subs.variables[i] = var;
}
tag_vars.push((tag.clone(), new_slice));
}
sort_and_deduplicate(&mut tag_vars);
UnionTags::insert_slices_into_subs(subs, tag_vars)
}
fn type_to_union_tags<'a>(
subs: &mut Subs,
rank: Rank,
pools: &mut Pools,
arena: &'a bumpalo::Bump,
tags: &[(TagName, Vec<Type>)],
ext: &Type,
) -> (UnionTags, Variable) {
use bumpalo::collections::Vec;
let sorted = tags.len() == 1 || sorted_no_duplicates(tags);
if ext.is_empty_tag_union() {
let ext = type_to_variable(subs, rank, pools, arena, &Type::EmptyTagUnion);
// let ext = Variable::EMPTY_TAG_UNION;
let union_tags = if sorted {
insert_tags_fast_path(subs, rank, pools, arena, tags)
} else {
let tag_vars = Vec::with_capacity_in(tags.len(), arena);
insert_tags_slow_path(subs, rank, pools, arena, tags, tag_vars)
};
(union_tags, ext)
} else {
let mut tag_vars = Vec::with_capacity_in(tags.len(), arena);
let temp_ext_var = type_to_variable(subs, rank, pools, arena, ext);
let (it, ext) =
roc_types::types::gather_tags_unsorted_iter(subs, UnionTags::default(), temp_ext_var);
tag_vars.extend(it.map(|(n, v)| (n.clone(), v)));
let union_tags = if tag_vars.is_empty() && sorted {
insert_tags_fast_path(subs, rank, pools, arena, tags)
} else {
insert_tags_slow_path(subs, rank, pools, arena, tags, tag_vars)
};
(union_tags, ext)
}
}
fn check_for_infinite_type(
subs: &mut Subs,
problems: &mut Vec<TypeError>,
symbol: Symbol,
loc_var: Loc<Variable>,
) {
let var = loc_var.value;
while let Err((recursive, _chain)) = subs.occurs(var) {
let description = subs.get(recursive);
// try to make a tag union recursive, see if that helps
match description.content {
Content::Structure(FlatType::TagUnion(tags, ext_var)) => {
subs.mark_tag_union_recursive(recursive, tags, ext_var);
}
_other => circular_error(subs, problems, symbol, &loc_var),
}
}
}
fn circular_error(
subs: &mut Subs,
problems: &mut Vec<TypeError>,
symbol: Symbol,
loc_var: &Loc<Variable>,
) {
let var = loc_var.value;
let (error_type, _) = subs.var_to_error_type(var);
let problem = TypeError::CircularType(loc_var.region, symbol, error_type);
subs.set_content(var, Content::Error);
problems.push(problem);
}
fn generalize(
subs: &mut Subs,
young_mark: Mark,
visit_mark: Mark,
young_rank: Rank,
pools: &mut Pools,
) {
let young_vars = pools.get(young_rank);
let rank_table = pool_to_rank_table(subs, young_mark, young_rank, young_vars);
// Get the ranks right for each entry.
// Start at low ranks so we only have to pass over the information once.
for (index, table) in rank_table.iter().enumerate() {
for &var in table.iter() {
adjust_rank(subs, young_mark, visit_mark, Rank::from(index), var);
}
}
let (last_pool, all_but_last_pool) = rank_table.split_last();
// For variables that have rank lowerer than young_rank, register them in
// the appropriate old pool if they are not redundant.
for vars in all_but_last_pool {
for &var in vars {
if !subs.redundant(var) {
let rank = subs.get_rank(var);
pools.get_mut(rank).push(var);
}
}
}
// For variables with rank young_rank, if rank < young_rank: register in old pool,
// otherwise generalize
for &var in last_pool {
if !subs.redundant(var) {
let desc_rank = subs.get_rank(var);
if desc_rank < young_rank {
pools.get_mut(desc_rank).push(var);
} else {
subs.set_rank(var, Rank::NONE);
}
}
}
}
fn pool_to_rank_table(
subs: &mut Subs,
young_mark: Mark,
young_rank: Rank,
young_vars: &[Variable],
) -> Pools {
let mut pools = Pools::new(young_rank.into_usize() + 1);
// Sort the variables into buckets by rank.
for &var in young_vars.iter() {
let rank = subs.get_rank_set_mark(var, young_mark);
debug_assert!(rank.into_usize() < young_rank.into_usize() + 1);
pools.get_mut(rank).push(var);
}
pools
}
/// Adjust variable ranks such that ranks never increase as you move deeper.
/// This way the outermost rank is representative of the entire structure.
fn adjust_rank(
subs: &mut Subs,
young_mark: Mark,
visit_mark: Mark,
group_rank: Rank,
var: Variable,
) -> Rank {
let (desc_rank, desc_mark) = subs.get_rank_mark(var);
if desc_mark == young_mark {
// Mark the variable as visited before adjusting content, as it may be cyclic.
subs.set_mark(var, visit_mark);
// SAFETY: in this function (and functions it calls, we ONLY modify rank and mark, never content!
// hence, we can have an immutable reference to it even though we also have a mutable
// reference to the Subs as a whole. This prevents a clone of the content, which turns out
// to be quite expensive.
let content = {
let ptr = &subs.get_ref(var).content as *const _;
unsafe { &*ptr }
};
let max_rank = adjust_rank_content(subs, young_mark, visit_mark, group_rank, content);
subs.set_rank_mark(var, max_rank, visit_mark);
max_rank
} else if desc_mark == visit_mark {
// nothing changes
desc_rank
} else {
let min_rank = group_rank.min(desc_rank);
// TODO from elm-compiler: how can min_rank ever be group_rank?
subs.set_rank_mark(var, min_rank, visit_mark);
min_rank
}
}
fn adjust_rank_content(
subs: &mut Subs,
young_mark: Mark,
visit_mark: Mark,
group_rank: Rank,
content: &Content,
) -> Rank {
use roc_types::subs::Content::*;
use roc_types::subs::FlatType::*;
match content {
FlexVar(_) | RigidVar(_) | Error => group_rank,
RecursionVar { .. } => group_rank,
Structure(flat_type) => {
match flat_type {
Apply(_, args) => {
let mut rank = Rank::toplevel();
for var_index in args.into_iter() {
let var = subs[var_index];
rank = rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
}
rank
}
Func(arg_vars, closure_var, ret_var) => {
let mut rank = adjust_rank(subs, young_mark, visit_mark, group_rank, *ret_var);
// TODO investigate further.
//
// My theory is that because the closure_var contains variables already
// contained in the signature only, it does not need to be part of the rank
// calculuation
if true {
rank = rank.max(adjust_rank(
subs,
young_mark,
visit_mark,
group_rank,
*closure_var,
));
}
for index in arg_vars.into_iter() {
let var = subs[index];
rank = rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
}
rank
}
EmptyRecord => {
// from elm-compiler: THEORY: an empty record never needs to get generalized
Rank::toplevel()
}
EmptyTagUnion => Rank::toplevel(),
Record(fields, ext_var) => {
let mut rank = adjust_rank(subs, young_mark, visit_mark, group_rank, *ext_var);
for index in fields.iter_variables() {
let var = subs[index];
rank = rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
}
rank
}
TagUnion(tags, ext_var) => {
let mut rank = adjust_rank(subs, young_mark, visit_mark, group_rank, *ext_var);
// For performance reasons, we only keep one representation of empty tag unions
// in subs. That representation exists at rank 0, which we don't always want to
// reflect the whole tag union as, because doing so may over-generalize free
// type variables.
// Normally this is not a problem because of the loop below that maximizes the
// rank from nested types in the union. But suppose we have the simple tag
// union
// [ Z ]{}
// there are no nested types in the tags, and the empty tag union is at rank 0,
// so we promote the tag union to rank 0. Now if we introduce the presence
// constraint
// [ Z ]{} += [ S a ]
// we'll wind up with [ Z, S a ]{}, but it will be at rank 0, and "a" will get
// over-generalized. Really, the empty tag union should be introduced at
// whatever current group rank we're at, and so that's how we encode it here.
if *ext_var == Variable::EMPTY_TAG_UNION && rank.is_none() {
rank = group_rank;
}
for (_, index) in tags.iter_all() {
let slice = subs[index];
for var_index in slice {
let var = subs[var_index];
rank = rank
.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
}
}
rank
}
FunctionOrTagUnion(_, _, ext_var) => {
adjust_rank(subs, young_mark, visit_mark, group_rank, *ext_var)
}
RecursiveTagUnion(rec_var, tags, ext_var) => {
let mut rank = adjust_rank(subs, young_mark, visit_mark, group_rank, *ext_var);
for (_, index) in tags.iter_all() {
let slice = subs[index];
for var_index in slice {
let var = subs[var_index];
rank = rank
.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
}
}
// THEORY: the recursion var has the same rank as the tag union itself
// all types it uses are also in the tags already, so it cannot influence the
// rank
if cfg!(debug_assertions) {
let rec_var_rank =
adjust_rank(subs, young_mark, visit_mark, group_rank, *rec_var);
debug_assert!(
rank >= rec_var_rank,
"rank was {:?} but recursion var {:?} has higher rank {:?}",
rank,
rec_var,
rec_var_rank
);
}
rank
}
Erroneous(_) => group_rank,
}
}
Alias(_, args, real_var, _) => {
let mut rank = Rank::toplevel();
for var_index in args.variables() {
let var = subs[var_index];
rank = rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
}
// from elm-compiler: THEORY: anything in the real_var would be Rank::toplevel()
// this theory is not true in Roc! aliases of function types capture the closure var
rank = rank.max(adjust_rank(
subs, young_mark, visit_mark, group_rank, *real_var,
));
rank
}
RangedNumber(typ, _) => adjust_rank(subs, young_mark, visit_mark, group_rank, *typ),
}
}
/// Introduce some variables to Pools at the given rank.
/// Also, set each of their ranks in Subs to be the given rank.
fn introduce(subs: &mut Subs, rank: Rank, pools: &mut Pools, vars: &[Variable]) {
let pool: &mut Vec<Variable> = pools.get_mut(rank);
for &var in vars.iter() {
subs.set_rank(var, rank);
}
pool.extend(vars);
}
/// Function that converts rigids variables to flex variables
/// this is used during the monomorphization process
pub fn instantiate_rigids(subs: &mut Subs, var: Variable) {
let rank = Rank::NONE;
instantiate_rigids_help(subs, rank, var);
// NOTE subs.restore(var) is done at the end of instantiate_rigids_help
}
fn instantiate_rigids_help(subs: &mut Subs, max_rank: Rank, initial: Variable) {
let mut visited = vec![];
let mut stack = vec![initial];
macro_rules! var_slice {
($variable_subs_slice:expr) => {{
let slice = $variable_subs_slice;
&subs.variables[slice.indices()]
}};
}
while let Some(var) = stack.pop() {
visited.push(var);
let desc = subs.get_ref_mut(var);
if desc.copy.is_some() {
continue;
}
desc.rank = Rank::NONE;
desc.mark = Mark::NONE;
desc.copy = OptVariable::from(var);
use Content::*;
use FlatType::*;
match &desc.content {
RigidVar(name) => {
// what it's all about: convert the rigid var into a flex var
let name = name.clone();
// NOTE: we must write to the mutually borrowed `desc` value here
// using `subs.set` does not work (unclear why, really)
// but get_ref_mut approach saves a lookup, so the weirdness is worth it
desc.content = FlexVar(Some(name));
desc.rank = max_rank;
desc.mark = Mark::NONE;
desc.copy = OptVariable::NONE;
}
FlexVar(_) | Error => (),
RecursionVar { structure, .. } => {
stack.push(*structure);
}
Structure(flat_type) => match flat_type {
Apply(_, args) => {
stack.extend(var_slice!(*args));
}
Func(arg_vars, closure_var, ret_var) => {
let arg_vars = *arg_vars;
let ret_var = *ret_var;
let closure_var = *closure_var;
stack.extend(var_slice!(arg_vars));
stack.push(ret_var);
stack.push(closure_var);
}
EmptyRecord => (),
EmptyTagUnion => (),
Record(fields, ext_var) => {
let fields = *fields;
let ext_var = *ext_var;
stack.extend(var_slice!(fields.variables()));
stack.push(ext_var);
}
TagUnion(tags, ext_var) => {
let tags = *tags;
let ext_var = *ext_var;
for slice_index in tags.variables() {
let slice = subs.variable_slices[slice_index.index as usize];
stack.extend(var_slice!(slice));
}
stack.push(ext_var);
}
FunctionOrTagUnion(_, _, ext_var) => {
stack.push(*ext_var);
}
RecursiveTagUnion(rec_var, tags, ext_var) => {
let tags = *tags;
let ext_var = *ext_var;
let rec_var = *rec_var;
for slice_index in tags.variables() {
let slice = subs.variable_slices[slice_index.index as usize];
stack.extend(var_slice!(slice));
}
stack.push(ext_var);
stack.push(rec_var);
}
Erroneous(_) => (),
},
Alias(_, args, var, _) => {
let var = *var;
let args = *args;
stack.extend(var_slice!(args.variables()));
stack.push(var);
}
&RangedNumber(typ, vars) => {
stack.push(typ);
stack.extend(var_slice!(vars));
}
}
}
// we have tracked all visited variables, and can now traverse them
// in one go (without looking at the UnificationTable) and clear the copy field
for var in visited {
let descriptor = subs.get_ref_mut(var);
if descriptor.copy.is_some() {
descriptor.rank = Rank::NONE;
descriptor.mark = Mark::NONE;
descriptor.copy = OptVariable::NONE;
}
}
}
fn deep_copy_var(subs: &mut Subs, rank: Rank, pools: &mut Pools, var: Variable) -> Variable {
let mut arena = take_scratchpad();
let mut visited = bumpalo::collections::Vec::with_capacity_in(4 * 1024, &arena);
let copy = deep_copy_var_help(subs, rank, pools, &mut visited, var);
// we have tracked all visited variables, and can now traverse them
// in one go (without looking at the UnificationTable) and clear the copy field
for var in visited {
let descriptor = subs.get_ref_mut(var);
if descriptor.copy.is_some() {
descriptor.rank = Rank::NONE;
descriptor.mark = Mark::NONE;
descriptor.copy = OptVariable::NONE;
}
}
arena.reset();
put_scratchpad(arena);
copy
}
fn deep_copy_var_help(
subs: &mut Subs,
max_rank: Rank,
pools: &mut Pools,
visited: &mut bumpalo::collections::Vec<'_, Variable>,
var: Variable,
) -> Variable {
use roc_types::subs::Content::*;
use roc_types::subs::FlatType::*;
let desc = subs.get_without_compacting(var);
if let Some(copy) = desc.copy.into_variable() {
return copy;
} else if desc.rank != Rank::NONE {
return var;
}
visited.push(var);
let make_descriptor = |content| Descriptor {
content,
rank: max_rank,
mark: Mark::NONE,
copy: OptVariable::NONE,
};
let content = desc.content;
let copy = subs.fresh(make_descriptor(content.clone()));
pools.get_mut(max_rank).push(copy);
// Link the original variable to the new variable. This lets us
// avoid making multiple copies of the variable we are instantiating.
//
// Need to do this before recursively copying to avoid looping.
subs.set(
var,
Descriptor {
content: content.clone(),
rank: desc.rank,
mark: Mark::NONE,
copy: copy.into(),
},
);
// Now we recursively copy the content of the variable.
// We have already marked the variable as copied, so we
// will not repeat this work or crawl this variable again.
match content {
Structure(flat_type) => {
let new_flat_type = match flat_type {
Apply(symbol, arguments) => {
let new_arguments = VariableSubsSlice::reserve_into_subs(subs, arguments.len());
for (target_index, var_index) in (new_arguments.indices()).zip(arguments) {
let var = subs[var_index];
let copy_var = deep_copy_var_help(subs, max_rank, pools, visited, var);
subs.variables[target_index] = copy_var;
}
Apply(symbol, new_arguments)
}
Func(arguments, closure_var, ret_var) => {
let new_ret_var = deep_copy_var_help(subs, max_rank, pools, visited, ret_var);
let new_closure_var =
deep_copy_var_help(subs, max_rank, pools, visited, closure_var);
let new_arguments = VariableSubsSlice::reserve_into_subs(subs, arguments.len());
for (target_index, var_index) in (new_arguments.indices()).zip(arguments) {
let var = subs[var_index];
let copy_var = deep_copy_var_help(subs, max_rank, pools, visited, var);
subs.variables[target_index] = copy_var;
}
Func(new_arguments, new_closure_var, new_ret_var)
}
same @ EmptyRecord | same @ EmptyTagUnion | same @ Erroneous(_) => same,
Record(fields, ext_var) => {
let record_fields = {
let new_variables =
VariableSubsSlice::reserve_into_subs(subs, fields.len());
let it = (new_variables.indices()).zip(fields.iter_variables());
for (target_index, var_index) in it {
let var = subs[var_index];
let copy_var = deep_copy_var_help(subs, max_rank, pools, visited, var);
subs.variables[target_index] = copy_var;
}
RecordFields {
length: fields.length,
field_names_start: fields.field_names_start,
variables_start: new_variables.start,
field_types_start: fields.field_types_start,
}
};
Record(
record_fields,
deep_copy_var_help(subs, max_rank, pools, visited, ext_var),
)
}
TagUnion(tags, ext_var) => {
let new_variable_slices = SubsSlice::reserve_variable_slices(subs, tags.len());
let it = (new_variable_slices.indices()).zip(tags.variables());
for (target_index, index) in it {
let slice = subs[index];
let new_variables = VariableSubsSlice::reserve_into_subs(subs, slice.len());
let it = (new_variables.indices()).zip(slice);
for (target_index, var_index) in it {
let var = subs[var_index];
let copy_var = deep_copy_var_help(subs, max_rank, pools, visited, var);
subs.variables[target_index] = copy_var;
}
subs.variable_slices[target_index] = new_variables;
}
let union_tags = UnionTags::from_slices(tags.tag_names(), new_variable_slices);
let new_ext = deep_copy_var_help(subs, max_rank, pools, visited, ext_var);
TagUnion(union_tags, new_ext)
}
FunctionOrTagUnion(tag_name, symbol, ext_var) => FunctionOrTagUnion(
tag_name,
symbol,
deep_copy_var_help(subs, max_rank, pools, visited, ext_var),
),
RecursiveTagUnion(rec_var, tags, ext_var) => {
let new_variable_slices = SubsSlice::reserve_variable_slices(subs, tags.len());
let it = (new_variable_slices.indices()).zip(tags.variables());
for (target_index, index) in it {
let slice = subs[index];
let new_variables = VariableSubsSlice::reserve_into_subs(subs, slice.len());
let it = (new_variables.indices()).zip(slice);
for (target_index, var_index) in it {
let var = subs[var_index];
let copy_var = deep_copy_var_help(subs, max_rank, pools, visited, var);
subs.variables[target_index] = copy_var;
}
subs.variable_slices[target_index] = new_variables;
}
let union_tags = UnionTags::from_slices(tags.tag_names(), new_variable_slices);
let new_ext = deep_copy_var_help(subs, max_rank, pools, visited, ext_var);
let new_rec_var = deep_copy_var_help(subs, max_rank, pools, visited, rec_var);
RecursiveTagUnion(new_rec_var, union_tags, new_ext)
}
};
subs.set(copy, make_descriptor(Structure(new_flat_type)));
copy
}
FlexVar(_) | Error => copy,
RecursionVar {
opt_name,
structure,
} => {
let new_structure = deep_copy_var_help(subs, max_rank, pools, visited, structure);
subs.set(
copy,
make_descriptor(RecursionVar {
opt_name,
structure: new_structure,
}),
);
copy
}
RigidVar(name) => {
subs.set(copy, make_descriptor(FlexVar(Some(name))));
copy
}
Alias(symbol, arguments, real_type_var, kind) => {
let new_variables =
SubsSlice::reserve_into_subs(subs, arguments.all_variables_len as _);
for (target_index, var_index) in (new_variables.indices()).zip(arguments.variables()) {
let var = subs[var_index];
let copy_var = deep_copy_var_help(subs, max_rank, pools, visited, var);
subs.variables[target_index] = copy_var;
}
let new_arguments = AliasVariables {
variables_start: new_variables.start,
..arguments
};
let new_real_type_var =
deep_copy_var_help(subs, max_rank, pools, visited, real_type_var);
let new_content = Alias(symbol, new_arguments, new_real_type_var, kind);
subs.set(copy, make_descriptor(new_content));
copy
}
RangedNumber(typ, range_vars) => {
let new_type_var = deep_copy_var_help(subs, max_rank, pools, visited, typ);
let new_vars = SubsSlice::reserve_into_subs(subs, range_vars.len());
for (target_index, var_index) in (new_vars.indices()).zip(range_vars) {
let var = subs[var_index];
let copy_var = deep_copy_var_help(subs, max_rank, pools, visited, var);
subs.variables[target_index] = copy_var;
}
let new_content = RangedNumber(new_type_var, new_vars);
subs.set(copy, make_descriptor(new_content));
copy
}
}
}
fn register(subs: &mut Subs, rank: Rank, pools: &mut Pools, content: Content) -> Variable {
let descriptor = Descriptor {
content,
rank,
mark: Mark::NONE,
copy: OptVariable::NONE,
};
let var = subs.fresh(descriptor);
pools.get_mut(rank).push(var);
var
}
fn register_with_known_var(
subs: &mut Subs,
var: Variable,
rank: Rank,
pools: &mut Pools,
content: Content,
) {
let descriptor = Descriptor {
content,
rank,
mark: Mark::NONE,
copy: OptVariable::NONE,
};
subs.set(var, descriptor);
pools.get_mut(rank).push(var);
}