mirror of
https://github.com/roc-lang/roc.git
synced 2025-08-02 03:12:20 +00:00
10860 lines
382 KiB
Rust
10860 lines
382 KiB
Rust
#![allow(clippy::manual_map)]
|
|
|
|
use crate::layout::{
|
|
self, Builtin, CapturesNiche, ClosureCallOptions, ClosureRepresentation, EnumDispatch,
|
|
LambdaName, LambdaSet, Layout, LayoutCache, LayoutInterner, LayoutProblem, RawFunctionLayout,
|
|
STLayoutInterner, TagIdIntType, UnionLayout, WrappedVariant,
|
|
};
|
|
use bumpalo::collections::{CollectIn, Vec};
|
|
use bumpalo::Bump;
|
|
use roc_builtins::bitcode::{FloatWidth, IntWidth};
|
|
use roc_can::abilities::SpecializationId;
|
|
use roc_can::expr::{AnnotatedMark, ClosureData, ExpectLookup, IntValue};
|
|
use roc_can::module::ExposedByModule;
|
|
use roc_collections::all::{default_hasher, BumpMap, BumpMapDefault, MutMap};
|
|
use roc_collections::VecMap;
|
|
use roc_debug_flags::dbg_do;
|
|
#[cfg(debug_assertions)]
|
|
use roc_debug_flags::{
|
|
ROC_PRINT_IR_AFTER_REFCOUNT, ROC_PRINT_IR_AFTER_RESET_REUSE, ROC_PRINT_IR_AFTER_SPECIALIZATION,
|
|
ROC_PRINT_RUNTIME_ERROR_GEN,
|
|
};
|
|
use roc_derive::SharedDerivedModule;
|
|
use roc_error_macros::{internal_error, todo_abilities};
|
|
use roc_exhaustive::{Ctor, CtorName, ListArity, RenderAs, TagId};
|
|
use roc_intern::Interner;
|
|
use roc_late_solve::storage::{ExternalModuleStorage, ExternalModuleStorageSnapshot};
|
|
use roc_late_solve::{resolve_ability_specialization, AbilitiesView, Resolved, UnificationFailed};
|
|
use roc_module::ident::{ForeignSymbol, Lowercase, TagName};
|
|
use roc_module::low_level::LowLevel;
|
|
use roc_module::symbol::{IdentIds, ModuleId, Symbol};
|
|
use roc_problem::can::{RuntimeError, ShadowKind};
|
|
use roc_region::all::{Loc, Region};
|
|
use roc_std::RocDec;
|
|
use roc_target::TargetInfo;
|
|
use roc_types::subs::{
|
|
instantiate_rigids, Content, ExhaustiveMark, FlatType, RedundantMark, StorageSubs, Subs,
|
|
Variable, VariableSubsSlice,
|
|
};
|
|
use std::collections::HashMap;
|
|
use ven_pretty::{BoxAllocator, DocAllocator, DocBuilder};
|
|
|
|
#[inline(always)]
|
|
pub fn pretty_print_ir_symbols() -> bool {
|
|
dbg_do!(ROC_PRINT_IR_AFTER_SPECIALIZATION, {
|
|
return true;
|
|
});
|
|
dbg_do!(ROC_PRINT_IR_AFTER_RESET_REUSE, {
|
|
return true;
|
|
});
|
|
dbg_do!(ROC_PRINT_IR_AFTER_REFCOUNT, {
|
|
return true;
|
|
});
|
|
false
|
|
}
|
|
|
|
// if your changes cause this number to go down, great!
|
|
// please change it to the lower number.
|
|
// if it went up, maybe check that the change is really required
|
|
|
|
roc_error_macros::assert_sizeof_wasm!(Literal, 24);
|
|
roc_error_macros::assert_sizeof_wasm!(Expr, 48);
|
|
roc_error_macros::assert_sizeof_wasm!(Stmt, 120);
|
|
roc_error_macros::assert_sizeof_wasm!(ProcLayout, 40);
|
|
roc_error_macros::assert_sizeof_wasm!(Call, 44);
|
|
roc_error_macros::assert_sizeof_wasm!(CallType, 36);
|
|
|
|
roc_error_macros::assert_sizeof_non_wasm!(Literal, 3 * 8);
|
|
roc_error_macros::assert_sizeof_non_wasm!(Expr, 10 * 8);
|
|
roc_error_macros::assert_sizeof_non_wasm!(Stmt, 19 * 8);
|
|
roc_error_macros::assert_sizeof_non_wasm!(ProcLayout, 8 * 8);
|
|
roc_error_macros::assert_sizeof_non_wasm!(Call, 9 * 8);
|
|
roc_error_macros::assert_sizeof_non_wasm!(CallType, 7 * 8);
|
|
|
|
fn runtime_error<'a>(env: &mut Env<'a, '_>, msg: &'a str) -> Stmt<'a> {
|
|
let sym = env.unique_symbol();
|
|
Stmt::Let(
|
|
sym,
|
|
Expr::Literal(Literal::Str(msg)),
|
|
Layout::Builtin(Builtin::Str),
|
|
env.arena.alloc(Stmt::Crash(sym, CrashTag::Roc)),
|
|
)
|
|
}
|
|
|
|
macro_rules! return_on_layout_error {
|
|
($env:expr, $layout_result:expr, $context_msg:expr) => {
|
|
match $layout_result {
|
|
Ok(cached) => cached,
|
|
Err(error) => return_on_layout_error_help!($env, error, $context_msg),
|
|
}
|
|
};
|
|
}
|
|
|
|
macro_rules! return_on_layout_error_help {
|
|
($env:expr, $error:expr, $context_msg:expr) => {{
|
|
match $error {
|
|
LayoutProblem::UnresolvedTypeVar(_) => {
|
|
return runtime_error(
|
|
$env,
|
|
$env.arena
|
|
.alloc(format!("UnresolvedTypeVar: {}", $context_msg,)),
|
|
)
|
|
}
|
|
LayoutProblem::Erroneous => {
|
|
return runtime_error(
|
|
$env,
|
|
$env.arena.alloc(format!("Erroneous: {}", $context_msg,)),
|
|
)
|
|
}
|
|
}
|
|
}};
|
|
}
|
|
|
|
#[derive(Debug, Clone, Copy)]
|
|
pub enum OptLevel {
|
|
Development,
|
|
Normal,
|
|
Size,
|
|
Optimize,
|
|
}
|
|
|
|
#[derive(Debug, Clone, Copy)]
|
|
pub struct EntryPoint<'a> {
|
|
pub symbol: Symbol,
|
|
pub layout: ProcLayout<'a>,
|
|
}
|
|
|
|
#[derive(Clone, Copy, Debug)]
|
|
pub struct PartialProcId(usize);
|
|
|
|
#[derive(Clone, Debug)]
|
|
pub struct PartialProcs<'a> {
|
|
/// maps a function name (symbol) to an index
|
|
symbols: Vec<'a, Symbol>,
|
|
|
|
/// An entry (a, b) means `a` directly references the lambda value of `b`,
|
|
/// i.e. this came from a `let a = b in ...` where `b` was defined as a
|
|
/// lambda earlier.
|
|
references: Vec<'a, (Symbol, Symbol)>,
|
|
|
|
partial_procs: Vec<'a, PartialProc<'a>>,
|
|
}
|
|
|
|
impl<'a> PartialProcs<'a> {
|
|
fn new_in(arena: &'a Bump) -> Self {
|
|
Self {
|
|
symbols: Vec::new_in(arena),
|
|
references: Vec::new_in(arena),
|
|
partial_procs: Vec::new_in(arena),
|
|
}
|
|
}
|
|
fn contains_key(&self, symbol: Symbol) -> bool {
|
|
self.symbol_to_id(symbol).is_some()
|
|
}
|
|
|
|
fn symbol_to_id(&self, mut symbol: Symbol) -> Option<PartialProcId> {
|
|
while let Some(real_symbol) = self
|
|
.references
|
|
.iter()
|
|
.find(|(alias, _)| *alias == symbol)
|
|
.map(|(_, real)| real)
|
|
{
|
|
symbol = *real_symbol;
|
|
}
|
|
|
|
self.symbols
|
|
.iter()
|
|
.position(|s| *s == symbol)
|
|
.map(PartialProcId)
|
|
}
|
|
|
|
fn get_symbol(&self, symbol: Symbol) -> Option<&PartialProc<'a>> {
|
|
let id = self.symbol_to_id(symbol)?;
|
|
|
|
Some(self.get_id(id))
|
|
}
|
|
|
|
fn get_id(&self, id: PartialProcId) -> &PartialProc<'a> {
|
|
&self.partial_procs[id.0]
|
|
}
|
|
|
|
pub fn insert(&mut self, symbol: Symbol, partial_proc: PartialProc<'a>) -> PartialProcId {
|
|
debug_assert!(
|
|
!self.contains_key(symbol),
|
|
"The {:?} is inserted as a partial proc twice: that's a bug!",
|
|
symbol,
|
|
);
|
|
|
|
let id = PartialProcId(self.symbols.len());
|
|
|
|
self.symbols.push(symbol);
|
|
self.partial_procs.push(partial_proc);
|
|
|
|
id
|
|
}
|
|
|
|
pub fn insert_alias(&mut self, alias: Symbol, real_symbol: Symbol) {
|
|
debug_assert!(
|
|
!self.contains_key(alias),
|
|
"{:?} is inserted as a partial proc twice: that's a bug!",
|
|
alias,
|
|
);
|
|
debug_assert!(
|
|
self.contains_key(real_symbol),
|
|
"{:?} is not a partial proc or another alias: that's a bug!",
|
|
real_symbol,
|
|
);
|
|
|
|
self.references.push((alias, real_symbol));
|
|
}
|
|
|
|
pub fn drain(self) -> impl Iterator<Item = (Symbol, PartialProc<'a>)> {
|
|
debug_assert_eq!(self.symbols.len(), self.partial_procs.len());
|
|
|
|
self.symbols.into_iter().zip(self.partial_procs.into_iter())
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Debug)]
|
|
pub struct PartialProc<'a> {
|
|
pub annotation: Variable,
|
|
pub pattern_symbols: &'a [Symbol],
|
|
pub captured_symbols: CapturedSymbols<'a>,
|
|
pub body: roc_can::expr::Expr,
|
|
pub body_var: Variable,
|
|
pub is_self_recursive: bool,
|
|
}
|
|
|
|
impl<'a> PartialProc<'a> {
|
|
#[allow(clippy::too_many_arguments)]
|
|
pub fn from_named_function(
|
|
env: &mut Env<'a, '_>,
|
|
annotation: Variable,
|
|
loc_args: std::vec::Vec<(Variable, AnnotatedMark, Loc<roc_can::pattern::Pattern>)>,
|
|
loc_body: Loc<roc_can::expr::Expr>,
|
|
captured_symbols: CapturedSymbols<'a>,
|
|
is_self_recursive: bool,
|
|
ret_var: Variable,
|
|
) -> PartialProc<'a> {
|
|
let number_of_arguments = loc_args.len();
|
|
|
|
match patterns_to_when(env, loc_args, ret_var, loc_body) {
|
|
Ok((_, pattern_symbols, body)) => {
|
|
// a named closure. Since these aren't specialized by the surrounding
|
|
// context, we can't add pending specializations for them yet.
|
|
// (If we did, all named polymorphic functions would immediately error
|
|
// on trying to convert a flex var to a Layout.)
|
|
let pattern_symbols = pattern_symbols.into_bump_slice();
|
|
PartialProc {
|
|
annotation,
|
|
pattern_symbols,
|
|
captured_symbols,
|
|
body: body.value,
|
|
body_var: ret_var,
|
|
is_self_recursive,
|
|
}
|
|
}
|
|
|
|
Err(error) => {
|
|
let mut pattern_symbols = Vec::with_capacity_in(number_of_arguments, env.arena);
|
|
|
|
for _ in 0..number_of_arguments {
|
|
pattern_symbols.push(env.unique_symbol());
|
|
}
|
|
|
|
PartialProc {
|
|
annotation,
|
|
pattern_symbols: pattern_symbols.into_bump_slice(),
|
|
captured_symbols: CapturedSymbols::None,
|
|
body: roc_can::expr::Expr::RuntimeError(error.value),
|
|
body_var: ret_var,
|
|
is_self_recursive: false,
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Copy, Debug)]
|
|
struct AbilityMember(Symbol);
|
|
|
|
/// A table of aliases of ability member symbols.
|
|
#[derive(Clone, Debug)]
|
|
struct AbilityAliases(BumpMap<Symbol, AbilityMember>);
|
|
|
|
impl AbilityAliases {
|
|
fn new_in(arena: &Bump) -> Self {
|
|
Self(BumpMap::new_in(arena))
|
|
}
|
|
|
|
fn insert(&mut self, symbol: Symbol, member: AbilityMember) {
|
|
self.0.insert(symbol, member);
|
|
}
|
|
|
|
fn get(&self, symbol: Symbol) -> Option<&AbilityMember> {
|
|
self.0.get(&symbol)
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
|
|
pub enum CapturedSymbols<'a> {
|
|
None,
|
|
Captured(&'a [(Symbol, Variable)]),
|
|
}
|
|
|
|
impl<'a> CapturedSymbols<'a> {
|
|
fn captures(&self) -> bool {
|
|
match self {
|
|
CapturedSymbols::None => false,
|
|
CapturedSymbols::Captured(_) => true,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'a> Default for CapturedSymbols<'a> {
|
|
fn default() -> Self {
|
|
CapturedSymbols::None
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Debug, PartialEq)]
|
|
pub struct Proc<'a> {
|
|
pub name: LambdaName<'a>,
|
|
pub args: &'a [(Layout<'a>, Symbol)],
|
|
pub body: Stmt<'a>,
|
|
pub closure_data_layout: Option<Layout<'a>>,
|
|
pub ret_layout: Layout<'a>,
|
|
pub is_self_recursive: SelfRecursive,
|
|
pub must_own_arguments: bool,
|
|
pub host_exposed_layouts: HostExposedLayouts<'a>,
|
|
}
|
|
|
|
#[derive(Clone, Debug, PartialEq, Eq)]
|
|
pub enum HostExposedLayouts<'a> {
|
|
NotHostExposed,
|
|
HostExposed {
|
|
rigids: BumpMap<Lowercase, Layout<'a>>,
|
|
aliases: BumpMap<Symbol, (Symbol, ProcLayout<'a>, RawFunctionLayout<'a>)>,
|
|
},
|
|
}
|
|
|
|
#[derive(Clone, Debug, PartialEq, Eq)]
|
|
pub enum SelfRecursive {
|
|
NotSelfRecursive,
|
|
SelfRecursive(JoinPointId),
|
|
}
|
|
|
|
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
|
|
pub enum Parens {
|
|
NotNeeded,
|
|
InTypeParam,
|
|
InFunction,
|
|
}
|
|
|
|
impl<'a> Proc<'a> {
|
|
pub fn to_doc<'b, D, A, I>(
|
|
&'b self,
|
|
alloc: &'b D,
|
|
interner: &'b I,
|
|
_parens: Parens,
|
|
) -> DocBuilder<'b, D, A>
|
|
where
|
|
D: DocAllocator<'b, A>,
|
|
D::Doc: Clone,
|
|
A: Clone,
|
|
I: Interner<'a, Layout<'a>>,
|
|
{
|
|
let args_doc = self.args.iter().map(|(layout, symbol)| {
|
|
let arg_doc = symbol_to_doc(alloc, *symbol);
|
|
if pretty_print_ir_symbols() {
|
|
arg_doc.append(alloc.reflow(": ")).append(layout.to_doc(
|
|
alloc,
|
|
interner,
|
|
Parens::NotNeeded,
|
|
))
|
|
} else {
|
|
arg_doc
|
|
}
|
|
});
|
|
|
|
if pretty_print_ir_symbols() {
|
|
alloc
|
|
.text("procedure : ")
|
|
.append(symbol_to_doc(alloc, self.name.name()))
|
|
.append(" ")
|
|
.append(self.ret_layout.to_doc(alloc, interner, Parens::NotNeeded))
|
|
.append(alloc.hardline())
|
|
.append(alloc.text("procedure = "))
|
|
.append(symbol_to_doc(alloc, self.name.name()))
|
|
.append(" (")
|
|
.append(alloc.intersperse(args_doc, ", "))
|
|
.append("):")
|
|
.append(alloc.hardline())
|
|
.append(self.body.to_doc(alloc, interner).indent(4))
|
|
} else {
|
|
alloc
|
|
.text("procedure ")
|
|
.append(symbol_to_doc(alloc, self.name.name()))
|
|
.append(" (")
|
|
.append(alloc.intersperse(args_doc, ", "))
|
|
.append("):")
|
|
.append(alloc.hardline())
|
|
.append(self.body.to_doc(alloc, interner).indent(4))
|
|
}
|
|
}
|
|
|
|
pub fn to_pretty<I>(&self, interner: &I, width: usize) -> String
|
|
where
|
|
I: Interner<'a, Layout<'a>>,
|
|
{
|
|
let allocator = BoxAllocator;
|
|
let mut w = std::vec::Vec::new();
|
|
self.to_doc::<_, (), _>(&allocator, interner, Parens::NotNeeded)
|
|
.1
|
|
.render(width, &mut w)
|
|
.unwrap();
|
|
w.push(b'\n');
|
|
String::from_utf8(w).unwrap()
|
|
}
|
|
|
|
pub fn insert_refcount_operations<'i>(
|
|
arena: &'a Bump,
|
|
layout_interner: &'i STLayoutInterner<'a>,
|
|
home: ModuleId,
|
|
ident_ids: &'i mut IdentIds,
|
|
update_mode_ids: &'i mut UpdateModeIds,
|
|
procs: &mut MutMap<(Symbol, ProcLayout<'a>), Proc<'a>>,
|
|
) {
|
|
let borrow_params = arena.alloc(crate::borrow::infer_borrow(arena, procs));
|
|
|
|
crate::inc_dec::visit_procs(
|
|
arena,
|
|
layout_interner,
|
|
home,
|
|
ident_ids,
|
|
update_mode_ids,
|
|
borrow_params,
|
|
procs,
|
|
);
|
|
}
|
|
|
|
pub fn insert_reset_reuse_operations<'i>(
|
|
arena: &'a Bump,
|
|
home: ModuleId,
|
|
ident_ids: &'i mut IdentIds,
|
|
update_mode_ids: &'i mut UpdateModeIds,
|
|
procs: &mut MutMap<(Symbol, ProcLayout<'a>), Proc<'a>>,
|
|
) {
|
|
for (_, proc) in procs.iter_mut() {
|
|
let new_proc = crate::reset_reuse::insert_reset_reuse(
|
|
arena,
|
|
home,
|
|
ident_ids,
|
|
update_mode_ids,
|
|
proc.clone(),
|
|
);
|
|
*proc = new_proc;
|
|
}
|
|
}
|
|
|
|
fn make_tail_recursive(&mut self, env: &mut Env<'a, '_>) {
|
|
let mut args = Vec::with_capacity_in(self.args.len(), env.arena);
|
|
let mut proc_args = Vec::with_capacity_in(self.args.len(), env.arena);
|
|
|
|
for (layout, symbol) in self.args {
|
|
let new = env.unique_symbol();
|
|
args.push((*layout, *symbol, new));
|
|
proc_args.push((*layout, new));
|
|
}
|
|
|
|
use self::SelfRecursive::*;
|
|
if let SelfRecursive(id) = self.is_self_recursive {
|
|
let transformed = crate::tail_recursion::make_tail_recursive(
|
|
env.arena,
|
|
id,
|
|
self.name,
|
|
self.body.clone(),
|
|
args.into_bump_slice(),
|
|
self.ret_layout,
|
|
);
|
|
|
|
if let Some(with_tco) = transformed {
|
|
self.body = with_tco;
|
|
self.args = proc_args.into_bump_slice();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// A host-exposed function must be specialized; it's a seed for subsequent specializations
|
|
#[derive(Clone, Debug)]
|
|
pub struct HostSpecializations<'a> {
|
|
/// Not a bumpalo vec because bumpalo is not thread safe
|
|
/// Separate array so we can search for membership quickly
|
|
/// If it's a value and not a lambda, the value is recorded as LambdaName::no_niche.
|
|
symbol_or_lambdas: std::vec::Vec<LambdaName<'a>>,
|
|
storage_subs: StorageSubs,
|
|
/// For each symbol, what types to specialize it for, points into the storage_subs
|
|
types_to_specialize: std::vec::Vec<Variable>,
|
|
/// Variables for an exposed alias
|
|
exposed_aliases: std::vec::Vec<std::vec::Vec<(Symbol, Variable)>>,
|
|
}
|
|
|
|
impl Default for HostSpecializations<'_> {
|
|
fn default() -> Self {
|
|
Self::new()
|
|
}
|
|
}
|
|
|
|
impl<'a> HostSpecializations<'a> {
|
|
pub fn new() -> Self {
|
|
Self {
|
|
symbol_or_lambdas: std::vec::Vec::new(),
|
|
storage_subs: StorageSubs::new(Subs::default()),
|
|
types_to_specialize: std::vec::Vec::new(),
|
|
exposed_aliases: std::vec::Vec::new(),
|
|
}
|
|
}
|
|
|
|
pub fn insert_host_exposed(
|
|
&mut self,
|
|
env_subs: &mut Subs,
|
|
symbol_or_lambda: LambdaName<'a>,
|
|
opt_annotation: Option<roc_can::def::Annotation>,
|
|
variable: Variable,
|
|
) {
|
|
let variable = self.storage_subs.extend_with_variable(env_subs, variable);
|
|
|
|
let mut host_exposed_aliases = std::vec::Vec::new();
|
|
|
|
if let Some(annotation) = opt_annotation {
|
|
host_exposed_aliases.extend(annotation.introduced_variables.host_exposed_aliases);
|
|
}
|
|
|
|
match self
|
|
.symbol_or_lambdas
|
|
.iter()
|
|
.position(|s| *s == symbol_or_lambda)
|
|
{
|
|
None => {
|
|
self.symbol_or_lambdas.push(symbol_or_lambda);
|
|
self.types_to_specialize.push(variable);
|
|
self.exposed_aliases.push(host_exposed_aliases);
|
|
}
|
|
Some(_) => {
|
|
// we assume that only one specialization of a function is directly exposed to the
|
|
// host. Other host-exposed symbols may (transitively) specialize this symbol,
|
|
// but then the existing specialization mechanism will find those specializations
|
|
panic!("A host-exposed symbol can only be exposed once");
|
|
}
|
|
}
|
|
|
|
debug_assert_eq!(self.types_to_specialize.len(), self.exposed_aliases.len());
|
|
}
|
|
|
|
fn decompose(
|
|
self,
|
|
) -> (
|
|
StorageSubs,
|
|
impl Iterator<Item = (LambdaName<'a>, Variable, std::vec::Vec<(Symbol, Variable)>)>,
|
|
) {
|
|
let it1 = self.symbol_or_lambdas.into_iter();
|
|
|
|
let it2 = self.types_to_specialize.into_iter();
|
|
let it3 = self.exposed_aliases.into_iter();
|
|
|
|
(
|
|
self.storage_subs,
|
|
it1.zip(it2).zip(it3).map(|((a, b), c)| (a, b, c)),
|
|
)
|
|
}
|
|
}
|
|
|
|
/// Specializations of this module's symbols that other modules need.
|
|
/// One struct represents one pair of modules, e.g. what module A wants of module B.
|
|
#[derive(Clone, Debug)]
|
|
pub struct ExternalSpecializations<'a> {
|
|
/// Not a bumpalo vec because bumpalo is not thread safe
|
|
/// Separate array so we can search for membership quickly
|
|
/// If it's a value and not a lambda, the value is recorded as LambdaName::no_niche.
|
|
pub symbol_or_lambda: std::vec::Vec<LambdaName<'a>>,
|
|
storage: ExternalModuleStorage,
|
|
/// For each symbol, what types to specialize it for, points into the storage_subs
|
|
types_to_specialize: std::vec::Vec<std::vec::Vec<Variable>>,
|
|
}
|
|
|
|
impl Default for ExternalSpecializations<'_> {
|
|
fn default() -> Self {
|
|
Self::new()
|
|
}
|
|
}
|
|
|
|
impl<'a> ExternalSpecializations<'a> {
|
|
pub fn new() -> Self {
|
|
Self {
|
|
symbol_or_lambda: std::vec::Vec::new(),
|
|
storage: ExternalModuleStorage::new(Subs::default()),
|
|
types_to_specialize: std::vec::Vec::new(),
|
|
}
|
|
}
|
|
|
|
fn insert_external(
|
|
&mut self,
|
|
symbol_or_lambda: LambdaName<'a>,
|
|
env_subs: &mut Subs,
|
|
variable: Variable,
|
|
) {
|
|
let stored_variable = self.storage.extend_with_variable(env_subs, variable);
|
|
roc_tracing::debug!(original = ?variable, stored = ?stored_variable, "stored needed external");
|
|
|
|
match self
|
|
.symbol_or_lambda
|
|
.iter()
|
|
.position(|s| *s == symbol_or_lambda)
|
|
{
|
|
None => {
|
|
self.symbol_or_lambda.push(symbol_or_lambda);
|
|
self.types_to_specialize.push(vec![stored_variable]);
|
|
}
|
|
Some(index) => {
|
|
let types_to_specialize = &mut self.types_to_specialize[index];
|
|
types_to_specialize.push(stored_variable);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn decompose(
|
|
self,
|
|
) -> (
|
|
StorageSubs,
|
|
impl Iterator<Item = (LambdaName<'a>, std::vec::Vec<Variable>)>,
|
|
) {
|
|
(
|
|
self.storage.into_storage_subs(),
|
|
self.symbol_or_lambda
|
|
.into_iter()
|
|
.zip(self.types_to_specialize.into_iter()),
|
|
)
|
|
}
|
|
|
|
fn snapshot_cache(&mut self) -> ExternalModuleStorageSnapshot {
|
|
self.storage.snapshot_cache()
|
|
}
|
|
|
|
fn rollback_cache(&mut self, snapshot: ExternalModuleStorageSnapshot) {
|
|
self.storage.rollback_cache(snapshot)
|
|
}
|
|
|
|
fn invalidate_cache(&mut self, changed_variables: &[Variable]) {
|
|
self.storage.invalidate_cache(changed_variables)
|
|
}
|
|
|
|
fn invalidate_whole_cache(&mut self) {
|
|
self.storage.invalidate_whole_cache()
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Debug)]
|
|
pub struct Suspended<'a> {
|
|
pub store: StorageSubs,
|
|
/// LambdaName::no_niche if it's a value
|
|
pub symbol_or_lambdas: Vec<'a, LambdaName<'a>>,
|
|
pub layouts: Vec<'a, ProcLayout<'a>>,
|
|
pub variables: Vec<'a, Variable>,
|
|
}
|
|
|
|
impl<'a> Suspended<'a> {
|
|
fn new_in(arena: &'a Bump) -> Self {
|
|
Self {
|
|
store: StorageSubs::new(Subs::new_from_varstore(Default::default())),
|
|
symbol_or_lambdas: Vec::new_in(arena),
|
|
layouts: Vec::new_in(arena),
|
|
variables: Vec::new_in(arena),
|
|
}
|
|
}
|
|
|
|
fn is_empty(&self) -> bool {
|
|
self.symbol_or_lambdas.is_empty()
|
|
}
|
|
|
|
fn specialization(
|
|
&mut self,
|
|
subs: &mut Subs,
|
|
symbol_or_lambda: LambdaName<'a>,
|
|
proc_layout: ProcLayout<'a>,
|
|
variable: Variable,
|
|
) {
|
|
// de-duplicate
|
|
for (i, s) in self.symbol_or_lambdas.iter().enumerate() {
|
|
if *s == symbol_or_lambda {
|
|
let existing = &self.layouts[i];
|
|
if &proc_layout == existing {
|
|
// symbol + layout combo exists
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
self.symbol_or_lambdas.push(symbol_or_lambda);
|
|
self.layouts.push(proc_layout);
|
|
|
|
let variable = self.store.import_variable_from(subs, variable).variable;
|
|
|
|
self.variables.push(variable);
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Debug)]
|
|
enum PendingSpecializations<'a> {
|
|
/// We are finding specializations we need. This is a separate step so
|
|
/// that we can give specializations we need to modules higher up in the dependency chain, so
|
|
/// that they can start making specializations too
|
|
Finding(Suspended<'a>),
|
|
/// We are making specializations.
|
|
/// If any new one comes up while specializing a body, we can do one of two things:
|
|
/// - if the new specialization is for a symbol that is not in the current stack of symbols
|
|
/// being specialized, make it immediately
|
|
/// - if it is, we must suspend the specialization, and we'll do it once the stack is clear
|
|
/// again.
|
|
Making(Suspended<'a>),
|
|
}
|
|
|
|
impl<'a> PendingSpecializations<'a> {
|
|
fn is_empty(&self) -> bool {
|
|
match self {
|
|
PendingSpecializations::Finding(suspended)
|
|
| PendingSpecializations::Making(suspended) => suspended.is_empty(),
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Debug, Default)]
|
|
struct Specialized<'a> {
|
|
symbols: std::vec::Vec<Symbol>,
|
|
proc_layouts: std::vec::Vec<ProcLayout<'a>>,
|
|
procedures: std::vec::Vec<InProgressProc<'a>>,
|
|
}
|
|
|
|
impl<'a> Specialized<'a> {
|
|
fn len(&self) -> usize {
|
|
self.symbols.len()
|
|
}
|
|
|
|
#[allow(dead_code)]
|
|
fn is_empty(&self) -> bool {
|
|
self.symbols.is_empty()
|
|
}
|
|
|
|
fn into_iter_assert_done(self) -> impl Iterator<Item = (Symbol, ProcLayout<'a>, Proc<'a>)> {
|
|
self.symbols
|
|
.into_iter()
|
|
.zip(self.proc_layouts.into_iter())
|
|
.zip(self.procedures.into_iter())
|
|
.filter_map(|((s, l), in_progress)| {
|
|
if let Symbol::REMOVED_SPECIALIZATION = s {
|
|
None
|
|
} else {
|
|
match in_progress {
|
|
InProgressProc::InProgress => {
|
|
panic!("Function {:?} ({:?}) is not done specializing", s, l)
|
|
}
|
|
InProgressProc::Done(proc) => Some((s, l, proc)),
|
|
}
|
|
}
|
|
})
|
|
}
|
|
|
|
fn is_specialized(&self, symbol: Symbol, layout: &ProcLayout<'a>) -> bool {
|
|
for (i, s) in self.symbols.iter().enumerate() {
|
|
if *s == symbol && &self.proc_layouts[i] == layout {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
false
|
|
}
|
|
|
|
fn mark_in_progress(&mut self, symbol: Symbol, layout: ProcLayout<'a>) {
|
|
for (i, s) in self.symbols.iter().enumerate() {
|
|
if *s == symbol && self.proc_layouts[i] == layout {
|
|
match &self.procedures[i] {
|
|
InProgressProc::InProgress => {
|
|
return;
|
|
}
|
|
InProgressProc::Done(_) => {
|
|
panic!("marking in progress, but this proc is already done!")
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// the key/layout combo was not found; insert it
|
|
self.symbols.push(symbol);
|
|
self.proc_layouts.push(layout);
|
|
self.procedures.push(InProgressProc::InProgress);
|
|
}
|
|
|
|
fn remove_specialized(&mut self, symbol: Symbol, layout: &ProcLayout<'a>) -> bool {
|
|
let mut index = None;
|
|
|
|
for (i, s) in self.symbols.iter().enumerate() {
|
|
if *s == symbol && &self.proc_layouts[i] == layout {
|
|
index = Some(i);
|
|
}
|
|
}
|
|
|
|
if let Some(index) = index {
|
|
self.symbols[index] = Symbol::REMOVED_SPECIALIZATION;
|
|
|
|
true
|
|
} else {
|
|
false
|
|
}
|
|
}
|
|
|
|
fn insert_specialized(&mut self, symbol: Symbol, layout: ProcLayout<'a>, proc: Proc<'a>) {
|
|
for (i, s) in self.symbols.iter().enumerate() {
|
|
if *s == symbol && self.proc_layouts[i] == layout {
|
|
match &self.procedures[i] {
|
|
InProgressProc::InProgress => {
|
|
self.procedures[i] = InProgressProc::Done(proc);
|
|
return;
|
|
}
|
|
InProgressProc::Done(_) => {
|
|
// overwrite existing! this is important in practice
|
|
// TODO investigate why we generate the wrong proc in some cases and then
|
|
// correct later
|
|
self.procedures[i] = InProgressProc::Done(proc);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// the key/layout combo was not found; insert it
|
|
self.symbols.push(symbol);
|
|
self.proc_layouts.push(layout);
|
|
self.procedures.push(InProgressProc::Done(proc));
|
|
}
|
|
}
|
|
|
|
/// Uniquely determines the specialization of a polymorphic (non-proc) value symbol.
|
|
/// Two specializations are equivalent if their [`SpecializationMark`]s are equal.
|
|
#[derive(PartialEq, Eq, Debug, Clone, Copy)]
|
|
struct SpecializationMark<'a> {
|
|
/// The layout of the symbol itself.
|
|
layout: Layout<'a>,
|
|
|
|
/// If this symbol is a closure def, we must also keep track of what function it specializes,
|
|
/// because the [`layout`] field will only keep track of its closure and lambda set - which can
|
|
/// be the same for two different function specializations. For example,
|
|
///
|
|
/// id = if True then \x -> x else \y -> y
|
|
/// { a: id "", b: id 1u8 }
|
|
///
|
|
/// The lambda set and captures of `id` is the same in both usages inside the record, but the
|
|
/// reified specializations of `\x -> x` and `\y -> y` must be for Str and U8.
|
|
///
|
|
/// Note that this field is not relevant for anything that is not a function.
|
|
function_mark: Option<RawFunctionLayout<'a>>,
|
|
}
|
|
|
|
/// The deepest closure in the current stack of procedures under specialization a symbol specialization
|
|
/// was used in.
|
|
///
|
|
/// This is necessary to understand what symbol specializations are used in what capture sets. For
|
|
/// example, consider
|
|
///
|
|
/// main =
|
|
/// x = 1
|
|
///
|
|
/// y = \{} -> 1u8 + x
|
|
/// z = \{} -> 1u16 + x
|
|
///
|
|
/// Here, we have a two specializations of `x` to U8 and U16 with deepest uses of
|
|
/// (2, y) and (2, z), respectively. This tells us that both of those specializations must be
|
|
/// preserved by `main` (which is at depth 1), but that `y` and `z` respectively only need to
|
|
/// capture one particular specialization of `x` each.
|
|
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
|
|
struct UseDepth {
|
|
depth: usize,
|
|
symbol: Symbol,
|
|
}
|
|
|
|
impl UseDepth {
|
|
fn is_nested_use_in(&self, outer: &Self) -> bool {
|
|
if self.symbol == outer.symbol {
|
|
debug_assert!(self.depth == outer.depth);
|
|
return true;
|
|
}
|
|
self.depth > outer.depth
|
|
}
|
|
}
|
|
|
|
/// When walking a function body, we may encounter specialized usages of polymorphic symbols. For
|
|
/// example
|
|
///
|
|
/// myTag = A
|
|
/// use1 : [A, B]
|
|
/// use1 = myTag
|
|
/// use2 : [A, B, C]
|
|
/// use2 = myTag
|
|
///
|
|
/// We keep track of the specializations of `myTag` and create fresh symbols when there is more
|
|
/// than one, so that a unique def can be created for each.
|
|
#[derive(Default, Debug, Clone)]
|
|
struct SymbolSpecializations<'a>(
|
|
// THEORY:
|
|
// 1. the number of symbols in a def is very small
|
|
// 2. the number of specializations of a symbol in a def is even smaller (almost always only one)
|
|
// So, a linear VecMap is preferrable. Use a two-layered one to make (1) extraction of defs easy
|
|
// and (2) reads of a certain symbol be determined by its first occurrence, not its last.
|
|
VecMap<Symbol, VecMap<SpecializationMark<'a>, (Variable, Symbol, UseDepth)>>,
|
|
);
|
|
|
|
impl<'a> SymbolSpecializations<'a> {
|
|
/// Inserts a known specialization for a symbol. Returns the overwritten specialization, if any.
|
|
pub fn get_or_insert_known(
|
|
&mut self,
|
|
symbol: Symbol,
|
|
mark: SpecializationMark<'a>,
|
|
specialization_var: Variable,
|
|
specialization_symbol: Symbol,
|
|
deepest_use: UseDepth,
|
|
) -> Option<(Variable, Symbol, UseDepth)> {
|
|
self.0.get_or_insert(symbol, Default::default).insert(
|
|
mark,
|
|
(specialization_var, specialization_symbol, deepest_use),
|
|
)
|
|
}
|
|
|
|
/// Removes all specializations for a symbol, returning the type and symbol of each specialization.
|
|
pub fn remove(
|
|
&mut self,
|
|
symbol: Symbol,
|
|
) -> impl ExactSizeIterator<Item = (SpecializationMark<'a>, (Variable, Symbol, UseDepth))> {
|
|
self.0
|
|
.remove(&symbol)
|
|
.map(|(_, specializations)| specializations)
|
|
.unwrap_or_default()
|
|
.into_iter()
|
|
}
|
|
|
|
/// Expects and removes at most a single specialization symbol for the given requested symbol.
|
|
/// A symbol may have no specializations if it is never referenced in a body, so it is possible
|
|
/// for this to return None.
|
|
pub fn remove_single(&mut self, symbol: Symbol) -> Option<Symbol> {
|
|
let mut specializations = self.remove(symbol);
|
|
|
|
debug_assert!(
|
|
specializations.len() < 2,
|
|
"Symbol {:?} has multiple specializations",
|
|
symbol
|
|
);
|
|
|
|
specializations.next().map(|(_, (_, symbol, _))| symbol)
|
|
}
|
|
|
|
pub fn is_empty(&self) -> bool {
|
|
self.0.is_empty()
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Debug, Default)]
|
|
pub struct ProcsBase<'a> {
|
|
pub partial_procs: BumpMap<Symbol, PartialProc<'a>>,
|
|
pub module_thunks: &'a [Symbol],
|
|
/// A host-exposed function must be specialized; it's a seed for subsequent specializations
|
|
pub host_specializations: HostSpecializations<'a>,
|
|
pub runtime_errors: BumpMap<Symbol, &'a str>,
|
|
pub imported_module_thunks: &'a [Symbol],
|
|
}
|
|
|
|
/// The current set of functions under specialization. They form a stack where the latest
|
|
/// specialization to be seen is at the head of the stack.
|
|
#[derive(Clone, Debug)]
|
|
struct SpecializationStack<'a>(Vec<'a, Symbol>);
|
|
|
|
impl<'a> SpecializationStack<'a> {
|
|
fn current_use_depth(&self) -> UseDepth {
|
|
UseDepth {
|
|
depth: self.0.len(),
|
|
symbol: *self.0.last().unwrap(),
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Debug)]
|
|
pub struct Procs<'a> {
|
|
pub partial_procs: PartialProcs<'a>,
|
|
ability_member_aliases: AbilityAliases,
|
|
pub imported_module_thunks: &'a [Symbol],
|
|
pub module_thunks: &'a [Symbol],
|
|
pending_specializations: PendingSpecializations<'a>,
|
|
specialized: Specialized<'a>,
|
|
pub runtime_errors: BumpMap<Symbol, &'a str>,
|
|
pub externals_we_need: BumpMap<ModuleId, ExternalSpecializations<'a>>,
|
|
symbol_specializations: SymbolSpecializations<'a>,
|
|
specialization_stack: SpecializationStack<'a>,
|
|
}
|
|
|
|
impl<'a> Procs<'a> {
|
|
pub fn new_in(arena: &'a Bump) -> Self {
|
|
Self {
|
|
partial_procs: PartialProcs::new_in(arena),
|
|
ability_member_aliases: AbilityAliases::new_in(arena),
|
|
imported_module_thunks: &[],
|
|
module_thunks: &[],
|
|
pending_specializations: PendingSpecializations::Finding(Suspended::new_in(arena)),
|
|
specialized: Specialized::default(),
|
|
runtime_errors: BumpMap::new_in(arena),
|
|
externals_we_need: BumpMap::new_in(arena),
|
|
symbol_specializations: Default::default(),
|
|
specialization_stack: SpecializationStack(Vec::with_capacity_in(16, arena)),
|
|
}
|
|
}
|
|
|
|
fn push_active_specialization(&mut self, specialization: Symbol) {
|
|
self.specialization_stack.0.push(specialization);
|
|
}
|
|
|
|
fn pop_active_specialization(&mut self, specialization: Symbol) {
|
|
let popped = self
|
|
.specialization_stack
|
|
.0
|
|
.pop()
|
|
.expect("specialization stack is empty");
|
|
debug_assert_eq!(
|
|
popped, specialization,
|
|
"incorrect popped specialization: passed {:?}, but was {:?}",
|
|
specialization, popped
|
|
);
|
|
}
|
|
|
|
/// If we need to specialize a function that is already in the stack, we must wait to do so
|
|
/// until that function is popped off. That's because the type environment will be configured
|
|
/// for the existing specialization on the stack.
|
|
///
|
|
/// For example, in
|
|
///
|
|
/// foo = \val, b -> if b then "done" else bar val
|
|
/// bar = \_ -> foo {} True
|
|
/// foo "" False
|
|
///
|
|
/// During the specialization of `foo : Str False -> Str`, we specialize `bar : Str -> Str`,
|
|
/// which in turn needs a specialization of `foo : {} False -> Str`. However, we can't
|
|
/// specialize both `foo : Str False -> Str` and `foo : {} False -> Str` at the same time, so
|
|
/// the latter specialization must be deferred.
|
|
fn symbol_needs_suspended_specialization(&self, specialization: Symbol) -> bool {
|
|
self.specialization_stack.0.contains(&specialization)
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Debug, PartialEq)]
|
|
pub enum InProgressProc<'a> {
|
|
InProgress,
|
|
Done(Proc<'a>),
|
|
}
|
|
|
|
impl<'a> Procs<'a> {
|
|
fn is_imported_module_thunk(&self, symbol: Symbol) -> bool {
|
|
self.imported_module_thunks.iter().any(|x| *x == symbol)
|
|
}
|
|
|
|
fn is_module_thunk(&self, symbol: Symbol) -> bool {
|
|
self.module_thunks.iter().any(|x| *x == symbol)
|
|
}
|
|
|
|
fn get_partial_proc<'b>(&'b self, symbol: Symbol) -> Option<&'b PartialProc<'a>> {
|
|
self.partial_procs.get_symbol(symbol)
|
|
}
|
|
|
|
pub fn get_specialized_procs_without_rc(
|
|
self,
|
|
env: &mut Env<'a, '_>,
|
|
) -> (MutMap<(Symbol, ProcLayout<'a>), Proc<'a>>, ProcsBase<'a>) {
|
|
let mut specialized_procs =
|
|
MutMap::with_capacity_and_hasher(self.specialized.len(), default_hasher());
|
|
|
|
for (symbol, layout, mut proc) in self.specialized.into_iter_assert_done() {
|
|
proc.make_tail_recursive(env);
|
|
|
|
let key = (symbol, layout);
|
|
specialized_procs.insert(key, proc);
|
|
}
|
|
|
|
let restored_procs_base = ProcsBase {
|
|
partial_procs: self.partial_procs.drain().collect(),
|
|
module_thunks: self.module_thunks,
|
|
// This must now be empty
|
|
host_specializations: HostSpecializations::default(),
|
|
runtime_errors: self.runtime_errors,
|
|
imported_module_thunks: self.imported_module_thunks,
|
|
};
|
|
|
|
(specialized_procs, restored_procs_base)
|
|
}
|
|
|
|
// TODO trim these down
|
|
#[allow(clippy::too_many_arguments)]
|
|
fn insert_anonymous(
|
|
&mut self,
|
|
env: &mut Env<'a, '_>,
|
|
name: LambdaName<'a>,
|
|
annotation: Variable,
|
|
loc_args: std::vec::Vec<(Variable, AnnotatedMark, Loc<roc_can::pattern::Pattern>)>,
|
|
loc_body: Loc<roc_can::expr::Expr>,
|
|
captured_symbols: CapturedSymbols<'a>,
|
|
ret_var: Variable,
|
|
layout_cache: &mut LayoutCache<'a>,
|
|
) -> Result<ProcLayout<'a>, RuntimeError> {
|
|
let raw_layout = layout_cache
|
|
.raw_from_var(env.arena, annotation, env.subs)
|
|
.unwrap_or_else(|err| panic!("TODO turn fn_var into a RuntimeError {:?}", err));
|
|
|
|
let top_level = ProcLayout::from_raw(
|
|
env.arena,
|
|
&layout_cache.interner,
|
|
raw_layout,
|
|
name.captures_niche(),
|
|
);
|
|
|
|
// anonymous functions cannot reference themselves, therefore cannot be tail-recursive
|
|
// EXCEPT when the closure conversion makes it tail-recursive.
|
|
let is_self_recursive = match top_level.arguments.last() {
|
|
Some(Layout::LambdaSet(lambda_set)) => lambda_set.contains(name.name()),
|
|
_ => false,
|
|
};
|
|
|
|
match patterns_to_when(env, loc_args, ret_var, loc_body) {
|
|
Ok((_, pattern_symbols, body)) => {
|
|
// an anonymous closure. These will always be specialized already
|
|
// by the surrounding context, so we can add pending specializations
|
|
// for them immediately.
|
|
|
|
let already_specialized = self.specialized.is_specialized(name.name(), &top_level);
|
|
|
|
let layout = top_level;
|
|
|
|
// if we've already specialized this one, no further work is needed.
|
|
if !already_specialized {
|
|
if self.is_module_thunk(name.name()) {
|
|
debug_assert!(layout.arguments.is_empty());
|
|
}
|
|
|
|
let needs_suspended_specialization =
|
|
self.symbol_needs_suspended_specialization(name.name());
|
|
match (
|
|
&mut self.pending_specializations,
|
|
needs_suspended_specialization,
|
|
) {
|
|
(PendingSpecializations::Finding(suspended), _)
|
|
| (PendingSpecializations::Making(suspended), true) => {
|
|
// register the pending specialization, so this gets code genned later
|
|
suspended.specialization(env.subs, name, layout, annotation);
|
|
|
|
match self.partial_procs.symbol_to_id(name.name()) {
|
|
Some(occupied) => {
|
|
let existing = self.partial_procs.get_id(occupied);
|
|
// if we're adding the same partial proc twice, they must be the actual same!
|
|
//
|
|
// NOTE we can't skip extra work! we still need to make the specialization for this
|
|
// invocation. The content of the `annotation` can be different, even if the variable
|
|
// number is the same
|
|
debug_assert_eq!(annotation, existing.annotation);
|
|
debug_assert_eq!(captured_symbols, existing.captured_symbols);
|
|
debug_assert_eq!(is_self_recursive, existing.is_self_recursive);
|
|
|
|
// the partial proc is already in there, do nothing
|
|
}
|
|
None => {
|
|
let pattern_symbols = pattern_symbols.into_bump_slice();
|
|
|
|
let partial_proc = PartialProc {
|
|
annotation,
|
|
pattern_symbols,
|
|
captured_symbols,
|
|
body: body.value,
|
|
body_var: ret_var,
|
|
is_self_recursive,
|
|
};
|
|
|
|
self.partial_procs.insert(name.name(), partial_proc);
|
|
}
|
|
}
|
|
}
|
|
(PendingSpecializations::Making(_), false) => {
|
|
// Mark this proc as in-progress, so if we're dealing with
|
|
// mutually recursive functions, we don't loop forever.
|
|
// (We had a bug around this before this system existed!)
|
|
self.specialized.mark_in_progress(name.name(), layout);
|
|
|
|
let partial_proc_id = if let Some(partial_proc_id) =
|
|
self.partial_procs.symbol_to_id(name.name())
|
|
{
|
|
let existing = self.partial_procs.get_id(partial_proc_id);
|
|
// if we're adding the same partial proc twice, they must be the actual same!
|
|
//
|
|
// NOTE we can't skip extra work! we still need to make the specialization for this
|
|
// invocation. The content of the `annotation` can be different, even if the variable
|
|
// number is the same
|
|
debug_assert_eq!(annotation, existing.annotation);
|
|
debug_assert_eq!(captured_symbols, existing.captured_symbols);
|
|
debug_assert_eq!(is_self_recursive, existing.is_self_recursive);
|
|
|
|
partial_proc_id
|
|
} else {
|
|
let pattern_symbols = pattern_symbols.into_bump_slice();
|
|
|
|
let partial_proc = PartialProc {
|
|
annotation,
|
|
pattern_symbols,
|
|
captured_symbols,
|
|
body: body.value,
|
|
body_var: ret_var,
|
|
is_self_recursive,
|
|
};
|
|
|
|
self.partial_procs.insert(name.name(), partial_proc)
|
|
};
|
|
|
|
match specialize_variable(
|
|
env,
|
|
self,
|
|
name,
|
|
layout_cache,
|
|
annotation,
|
|
&[],
|
|
partial_proc_id,
|
|
) {
|
|
Ok((proc, _ignore_layout)) => {
|
|
// the `layout` is a function pointer, while `_ignore_layout` can be a
|
|
// closure. We only specialize functions, storing this value with a closure
|
|
// layout will give trouble.
|
|
let arguments = Vec::from_iter_in(
|
|
proc.args.iter().map(|(l, _)| *l),
|
|
env.arena,
|
|
)
|
|
.into_bump_slice();
|
|
|
|
let proper_layout = ProcLayout {
|
|
arguments,
|
|
result: proc.ret_layout,
|
|
captures_niche: proc.name.captures_niche(),
|
|
};
|
|
|
|
// NOTE: some functions are specialized to have a closure, but don't actually
|
|
// need any closure argument. Here is where we correct this sort of thing,
|
|
// by trusting the layout of the Proc, not of what we specialize for
|
|
self.specialized.remove_specialized(name.name(), &layout);
|
|
self.specialized.insert_specialized(
|
|
name.name(),
|
|
proper_layout,
|
|
proc,
|
|
);
|
|
}
|
|
Err(error) => {
|
|
panic!("TODO generate a RuntimeError message for {:?}", error);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
Ok(layout)
|
|
}
|
|
Err(loc_error) => Err(loc_error.value),
|
|
}
|
|
}
|
|
|
|
fn insert_passed_by_name(
|
|
&mut self,
|
|
env: &mut Env<'a, '_>,
|
|
fn_var: Variable,
|
|
name: LambdaName<'a>,
|
|
layout: ProcLayout<'a>,
|
|
layout_cache: &mut LayoutCache<'a>,
|
|
) {
|
|
// If we've already specialized this one, no further work is needed.
|
|
if self.specialized.is_specialized(name.name(), &layout) {
|
|
return;
|
|
}
|
|
|
|
// If this is an imported symbol, let its home module make this specialization
|
|
if env.is_imported_symbol(name.name()) || env.is_unloaded_derived_symbol(name.name(), self)
|
|
{
|
|
add_needed_external(self, env, fn_var, name);
|
|
return;
|
|
}
|
|
|
|
// register the pending specialization, so this gets code genned later
|
|
if self.module_thunks.contains(&name.name()) {
|
|
debug_assert!(layout.arguments.is_empty());
|
|
}
|
|
|
|
// This should only be called when pending_specializations is Some.
|
|
// Otherwise, it's being called in the wrong pass!
|
|
let needs_suspended_specialization =
|
|
self.symbol_needs_suspended_specialization(name.name());
|
|
match (
|
|
&mut self.pending_specializations,
|
|
needs_suspended_specialization,
|
|
) {
|
|
(PendingSpecializations::Finding(suspended), _)
|
|
| (PendingSpecializations::Making(suspended), true) => {
|
|
suspended.specialization(env.subs, name, layout, fn_var);
|
|
}
|
|
(PendingSpecializations::Making(_), false) => {
|
|
let symbol = name;
|
|
|
|
let partial_proc_id = match self.partial_procs.symbol_to_id(symbol.name()) {
|
|
Some(p) => p,
|
|
None => panic!("no partial_proc for {:?} in module {:?}", symbol, env.home),
|
|
};
|
|
|
|
// Mark this proc as in-progress, so if we're dealing with
|
|
// mutually recursive functions, we don't loop forever.
|
|
// (We had a bug around this before this system existed!)
|
|
self.specialized.mark_in_progress(symbol.name(), layout);
|
|
|
|
// See https://github.com/roc-lang/roc/issues/1600
|
|
//
|
|
// The annotation variable is the generic/lifted/top-level annotation.
|
|
// It is connected to the variables of the function's body
|
|
//
|
|
// fn_var is the variable representing the type that we actually need for the
|
|
// function right here.
|
|
//
|
|
// For some reason, it matters that we unify with the original variable. Extracting
|
|
// that variable into a SolvedType and then introducing it again severs some
|
|
// connection that turns out to be important
|
|
match specialize_variable(
|
|
env,
|
|
self,
|
|
symbol,
|
|
layout_cache,
|
|
fn_var,
|
|
Default::default(),
|
|
partial_proc_id,
|
|
) {
|
|
Ok((proc, _ignore_layout)) => {
|
|
// the `layout` is a function pointer, while `_ignore_layout` can be a
|
|
// closure. We only specialize functions, storing this value with a closure
|
|
// layout will give trouble.
|
|
let arguments =
|
|
Vec::from_iter_in(proc.args.iter().map(|(l, _)| *l), env.arena)
|
|
.into_bump_slice();
|
|
|
|
let proper_layout = ProcLayout {
|
|
arguments,
|
|
result: proc.ret_layout,
|
|
captures_niche: proc.name.captures_niche(),
|
|
};
|
|
|
|
// NOTE: some functions are specialized to have a closure, but don't actually
|
|
// need any closure argument. Here is where we correct this sort of thing,
|
|
// by trusting the layout of the Proc, not of what we specialize for
|
|
self.specialized.remove_specialized(symbol.name(), &layout);
|
|
self.specialized
|
|
.insert_specialized(symbol.name(), proper_layout, proc);
|
|
}
|
|
Err(error) => {
|
|
panic!("TODO generate a RuntimeError message for {:?}", error);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Gets a specialization for a symbol, or creates a new one.
|
|
#[inline(always)]
|
|
fn get_or_insert_symbol_specialization(
|
|
&mut self,
|
|
env: &mut Env<'a, '_>,
|
|
layout_cache: &mut LayoutCache<'a>,
|
|
symbol: Symbol,
|
|
specialization_var: Variable,
|
|
) -> Symbol {
|
|
let arena = env.arena;
|
|
let subs: &Subs = env.subs;
|
|
|
|
let layout = match layout_cache.from_var(arena, specialization_var, subs) {
|
|
Ok(layout) => layout,
|
|
// This can happen when the def symbol has a type error. In such cases just use the
|
|
// def symbol, which is erroring.
|
|
Err(_) => return symbol,
|
|
};
|
|
|
|
let is_closure = matches!(
|
|
subs.get_content_without_compacting(specialization_var),
|
|
Content::Structure(FlatType::Func(..))
|
|
);
|
|
let function_mark = if is_closure {
|
|
let fn_layout = match layout_cache.raw_from_var(arena, specialization_var, subs) {
|
|
Ok(layout) => layout,
|
|
// This can happen when the def symbol has a type error. In such cases just use the
|
|
// def symbol, which is erroring.
|
|
Err(_) => return symbol,
|
|
};
|
|
Some(fn_layout)
|
|
} else {
|
|
None
|
|
};
|
|
|
|
let specialization_mark = SpecializationMark {
|
|
layout,
|
|
function_mark,
|
|
};
|
|
|
|
let symbol_specializations = self
|
|
.symbol_specializations
|
|
.0
|
|
.get_or_insert(symbol, Default::default);
|
|
|
|
// For the first specialization, always reuse the current symbol. The vast majority of defs
|
|
// only have one instance type, so this preserves readability of the IR.
|
|
// TODO: turn me off and see what breaks.
|
|
let needs_fresh_symbol = !symbol_specializations.is_empty();
|
|
|
|
let mut make_specialized_symbol = || {
|
|
if needs_fresh_symbol {
|
|
env.unique_symbol()
|
|
} else {
|
|
symbol
|
|
}
|
|
};
|
|
|
|
let current_use = self.specialization_stack.current_use_depth();
|
|
let (_var, specialized_symbol, deepest_use) = symbol_specializations
|
|
.get_or_insert(specialization_mark, || {
|
|
(specialization_var, make_specialized_symbol(), current_use)
|
|
});
|
|
|
|
if deepest_use.is_nested_use_in(¤t_use) {
|
|
*deepest_use = current_use;
|
|
}
|
|
|
|
*specialized_symbol
|
|
}
|
|
|
|
/// Get the symbol specializations used in the active specialization's body.
|
|
pub fn get_symbol_specializations_used_in_body(
|
|
&self,
|
|
symbol: Symbol,
|
|
) -> Option<impl Iterator<Item = (Variable, Symbol)> + '_> {
|
|
let this_use = self.specialization_stack.current_use_depth();
|
|
self.symbol_specializations.0.get(&symbol).map(move |l| {
|
|
l.iter().filter_map(move |(_, (var, sym, deepest_use))| {
|
|
if deepest_use.is_nested_use_in(&this_use) {
|
|
Some((*var, *sym))
|
|
} else {
|
|
None
|
|
}
|
|
})
|
|
})
|
|
}
|
|
}
|
|
|
|
#[derive(Default)]
|
|
pub struct Specializations<'a> {
|
|
by_symbol: MutMap<Symbol, MutMap<Layout<'a>, Proc<'a>>>,
|
|
}
|
|
|
|
impl<'a> Specializations<'a> {
|
|
pub fn insert(&mut self, symbol: Symbol, layout: Layout<'a>, proc: Proc<'a>) {
|
|
let procs_by_layout = self
|
|
.by_symbol
|
|
.entry(symbol)
|
|
.or_insert_with(|| HashMap::with_capacity_and_hasher(1, default_hasher()));
|
|
|
|
// If we already have an entry for this, it should be no different
|
|
// from what we're about to insert.
|
|
debug_assert!(
|
|
!procs_by_layout.contains_key(&layout) || procs_by_layout.get(&layout) == Some(&proc)
|
|
);
|
|
|
|
procs_by_layout.insert(layout, proc);
|
|
}
|
|
|
|
pub fn len(&self) -> usize {
|
|
self.by_symbol.len()
|
|
}
|
|
|
|
pub fn is_empty(&self) -> bool {
|
|
self.by_symbol.is_empty()
|
|
}
|
|
}
|
|
|
|
pub struct Env<'a, 'i> {
|
|
pub arena: &'a Bump,
|
|
pub subs: &'i mut Subs,
|
|
pub home: ModuleId,
|
|
pub ident_ids: &'i mut IdentIds,
|
|
pub target_info: TargetInfo,
|
|
pub update_mode_ids: &'i mut UpdateModeIds,
|
|
pub call_specialization_counter: u32,
|
|
// TODO: WorldAbilities and exposed_by_module share things, think about how to combine them
|
|
pub abilities: AbilitiesView<'i>,
|
|
pub exposed_by_module: &'i ExposedByModule,
|
|
pub derived_module: &'i SharedDerivedModule,
|
|
}
|
|
|
|
impl<'a, 'i> Env<'a, 'i> {
|
|
pub fn unique_symbol(&mut self) -> Symbol {
|
|
let ident_id = self.ident_ids.gen_unique();
|
|
|
|
Symbol::new(self.home, ident_id)
|
|
}
|
|
|
|
pub fn next_update_mode_id(&mut self) -> UpdateModeId {
|
|
self.update_mode_ids.next_id()
|
|
}
|
|
|
|
pub fn next_call_specialization_id(&mut self) -> CallSpecId {
|
|
let id = CallSpecId {
|
|
id: self.call_specialization_counter,
|
|
};
|
|
|
|
self.call_specialization_counter += 1;
|
|
|
|
id
|
|
}
|
|
|
|
pub fn is_imported_symbol(&self, symbol: Symbol) -> bool {
|
|
let sym_module = symbol.module_id();
|
|
sym_module != self.home
|
|
// The Derived_gen module takes responsibility for code-generating symbols in the
|
|
// Derived_synth module.
|
|
&& !(self.home == ModuleId::DERIVED_GEN && sym_module == ModuleId::DERIVED_SYNTH)
|
|
}
|
|
|
|
/// While specializing the Derived_gen module, derived implementation symbols from the
|
|
/// Derived_synth module may be discovered. These implementations may not have yet been loaded
|
|
/// into the Derived_gen module, because we only load them before making specializations, and
|
|
/// not during mono itself (yet).
|
|
///
|
|
/// When this procedure returns `true`, the symbol should be marked as an external specialization,
|
|
/// so that a subsequent specializations pass loads the derived implementation into Derived_gen
|
|
/// and then code-generates appropriately.
|
|
pub fn is_unloaded_derived_symbol(&self, symbol: Symbol, procs: &Procs<'a>) -> bool {
|
|
self.home == ModuleId::DERIVED_GEN
|
|
&& symbol.module_id() == ModuleId::DERIVED_SYNTH
|
|
&& !procs.partial_procs.contains_key(symbol)
|
|
// TODO: locking to find the answer in the `Derived_gen` module is not great, since
|
|
// Derived_gen also blocks other modules specializing. Improve this later.
|
|
&& self
|
|
.derived_module
|
|
.lock()
|
|
.expect("derived module is poisoned")
|
|
.is_derived_def(symbol)
|
|
}
|
|
|
|
/// Unifies two variables and performs lambda set compaction.
|
|
/// Use this rather than [roc_unify::unify] directly!
|
|
fn unify<'b, 'c: 'b>(
|
|
&mut self,
|
|
external_specializations: impl IntoIterator<Item = &'b mut ExternalSpecializations<'c>>,
|
|
layout_cache: &mut LayoutCache,
|
|
left: Variable,
|
|
right: Variable,
|
|
) -> Result<(), UnificationFailed> {
|
|
debug_assert_ne!(
|
|
self.home,
|
|
ModuleId::DERIVED_SYNTH,
|
|
"should never be monomorphizing the derived synth module!"
|
|
);
|
|
|
|
let changed_variables = roc_late_solve::unify(
|
|
self.home,
|
|
self.arena,
|
|
self.subs,
|
|
&self.abilities,
|
|
self.derived_module,
|
|
self.exposed_by_module,
|
|
left,
|
|
right,
|
|
)?;
|
|
|
|
layout_cache.invalidate(changed_variables.iter().copied());
|
|
external_specializations
|
|
.into_iter()
|
|
.for_each(|e| e.invalidate_cache(&changed_variables));
|
|
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Debug, PartialEq, Copy, Eq, Hash)]
|
|
pub struct JoinPointId(pub Symbol);
|
|
|
|
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
|
|
pub struct Param<'a> {
|
|
pub symbol: Symbol,
|
|
pub borrow: bool,
|
|
pub layout: Layout<'a>,
|
|
}
|
|
|
|
impl<'a> Param<'a> {
|
|
pub const EMPTY: Self = Param {
|
|
symbol: Symbol::EMPTY_PARAM,
|
|
borrow: false,
|
|
layout: Layout::UNIT,
|
|
};
|
|
}
|
|
|
|
pub fn cond<'a>(
|
|
env: &mut Env<'a, '_>,
|
|
cond_symbol: Symbol,
|
|
cond_layout: Layout<'a>,
|
|
pass: Stmt<'a>,
|
|
fail: Stmt<'a>,
|
|
ret_layout: Layout<'a>,
|
|
) -> Stmt<'a> {
|
|
let branches = env.arena.alloc([(1u64, BranchInfo::None, pass)]);
|
|
let default_branch = (BranchInfo::None, &*env.arena.alloc(fail));
|
|
|
|
Stmt::Switch {
|
|
cond_symbol,
|
|
cond_layout,
|
|
ret_layout,
|
|
branches,
|
|
default_branch,
|
|
}
|
|
}
|
|
|
|
pub type Stores<'a> = &'a [(Symbol, Layout<'a>, Expr<'a>)];
|
|
|
|
#[derive(Clone, Debug, PartialEq)]
|
|
pub enum Stmt<'a> {
|
|
Let(Symbol, Expr<'a>, Layout<'a>, &'a Stmt<'a>),
|
|
Switch {
|
|
/// This *must* stand for an integer, because Switch potentially compiles to a jump table.
|
|
cond_symbol: Symbol,
|
|
cond_layout: Layout<'a>,
|
|
/// The u64 in the tuple will be compared directly to the condition Expr.
|
|
/// If they are equal, this branch will be taken.
|
|
branches: &'a [(u64, BranchInfo<'a>, Stmt<'a>)],
|
|
/// If no other branches pass, this default branch will be taken.
|
|
default_branch: (BranchInfo<'a>, &'a Stmt<'a>),
|
|
/// Each branch must return a value of this type.
|
|
ret_layout: Layout<'a>,
|
|
},
|
|
Ret(Symbol),
|
|
Refcounting(ModifyRc, &'a Stmt<'a>),
|
|
Expect {
|
|
condition: Symbol,
|
|
region: Region,
|
|
lookups: &'a [Symbol],
|
|
layouts: &'a [Layout<'a>],
|
|
/// what happens after the expect
|
|
remainder: &'a Stmt<'a>,
|
|
},
|
|
ExpectFx {
|
|
condition: Symbol,
|
|
region: Region,
|
|
lookups: &'a [Symbol],
|
|
layouts: &'a [Layout<'a>],
|
|
/// what happens after the expect
|
|
remainder: &'a Stmt<'a>,
|
|
},
|
|
/// a join point `join f <params> = <continuation> in remainder`
|
|
Join {
|
|
id: JoinPointId,
|
|
parameters: &'a [Param<'a>],
|
|
/// body of the join point
|
|
/// what happens after _jumping to_ the join point
|
|
body: &'a Stmt<'a>,
|
|
/// what happens after _defining_ the join point
|
|
remainder: &'a Stmt<'a>,
|
|
},
|
|
Jump(JoinPointId, &'a [Symbol]),
|
|
Crash(Symbol, CrashTag),
|
|
}
|
|
|
|
/// Source of crash, and its runtime representation to roc_panic.
|
|
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
|
|
#[repr(u32)]
|
|
pub enum CrashTag {
|
|
/// The crash is due to Roc, either via a builtin or type error.
|
|
Roc = 0,
|
|
/// The crash is user-defined.
|
|
User = 1,
|
|
}
|
|
|
|
impl TryFrom<u32> for CrashTag {
|
|
type Error = ();
|
|
|
|
fn try_from(value: u32) -> Result<Self, Self::Error> {
|
|
match value {
|
|
0 => Ok(Self::Roc),
|
|
1 => Ok(Self::User),
|
|
_ => Err(()),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// in the block below, symbol `scrutinee` is assumed be be of shape `tag_id`
|
|
#[derive(Clone, Debug, PartialEq, Eq)]
|
|
pub enum BranchInfo<'a> {
|
|
None,
|
|
Constructor {
|
|
scrutinee: Symbol,
|
|
layout: Layout<'a>,
|
|
tag_id: TagIdIntType,
|
|
},
|
|
}
|
|
|
|
impl<'a> BranchInfo<'a> {
|
|
pub fn to_doc<'b, D, A>(&'b self, alloc: &'b D) -> DocBuilder<'b, D, A>
|
|
where
|
|
D: DocAllocator<'b, A>,
|
|
D::Doc: Clone,
|
|
A: Clone,
|
|
{
|
|
use BranchInfo::*;
|
|
|
|
match self {
|
|
Constructor {
|
|
tag_id,
|
|
scrutinee,
|
|
layout: _,
|
|
} if pretty_print_ir_symbols() => alloc
|
|
.hardline()
|
|
.append(" BranchInfo: { scrutinee: ")
|
|
.append(symbol_to_doc(alloc, *scrutinee))
|
|
.append(", tag_id: ")
|
|
.append(format!("{}", tag_id))
|
|
.append("} "),
|
|
|
|
_ => {
|
|
if pretty_print_ir_symbols() {
|
|
alloc.text(" <no branch info>")
|
|
} else {
|
|
alloc.text("")
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
|
|
pub enum ModifyRc {
|
|
/// Increment a reference count
|
|
Inc(Symbol, u64),
|
|
/// Decrement a reference count
|
|
Dec(Symbol),
|
|
/// A DecRef is a non-recursive reference count decrement
|
|
/// e.g. If we Dec a list of lists, then if the reference count of the outer list is one,
|
|
/// a Dec will recursively decrement all elements, then free the memory of the outer list.
|
|
/// A DecRef would just free the outer list.
|
|
/// That is dangerous because you may not free the elements, but in our Zig builtins,
|
|
/// sometimes we know we already dealt with the elements (e.g. by copying them all over
|
|
/// to a new list) and so we can just do a DecRef, which is much cheaper in such a case.
|
|
DecRef(Symbol),
|
|
}
|
|
|
|
impl ModifyRc {
|
|
pub fn to_doc<'a, D, A>(self, alloc: &'a D) -> DocBuilder<'a, D, A>
|
|
where
|
|
D: DocAllocator<'a, A>,
|
|
D::Doc: Clone,
|
|
A: Clone,
|
|
{
|
|
use ModifyRc::*;
|
|
|
|
match self {
|
|
Inc(symbol, 1) => alloc
|
|
.text("inc ")
|
|
.append(symbol_to_doc(alloc, symbol))
|
|
.append(";"),
|
|
Inc(symbol, n) => alloc
|
|
.text("inc ")
|
|
.append(alloc.text(format!("{} ", n)))
|
|
.append(symbol_to_doc(alloc, symbol))
|
|
.append(";"),
|
|
Dec(symbol) => alloc
|
|
.text("dec ")
|
|
.append(symbol_to_doc(alloc, symbol))
|
|
.append(";"),
|
|
DecRef(symbol) => alloc
|
|
.text("decref ")
|
|
.append(symbol_to_doc(alloc, symbol))
|
|
.append(";"),
|
|
}
|
|
}
|
|
|
|
pub fn get_symbol(&self) -> Symbol {
|
|
use ModifyRc::*;
|
|
|
|
match self {
|
|
Inc(symbol, _) => *symbol,
|
|
Dec(symbol) => *symbol,
|
|
DecRef(symbol) => *symbol,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Copy, Debug, PartialEq)]
|
|
pub enum Literal<'a> {
|
|
// Literals
|
|
/// stored as raw bytes rather than a number to avoid an alignment bump
|
|
Int([u8; 16]),
|
|
/// stored as raw bytes rather than a number to avoid an alignment bump
|
|
U128([u8; 16]),
|
|
Float(f64),
|
|
/// stored as raw bytes rather than a number to avoid an alignment bump
|
|
Decimal([u8; 16]),
|
|
Str(&'a str),
|
|
/// Closed tag unions containing exactly two (0-arity) tags compile to Expr::Bool,
|
|
/// so they can (at least potentially) be emitted as 1-bit machine bools.
|
|
///
|
|
/// So [True, False] compiles to this, and so do [A, B] and [Foo, Bar].
|
|
/// However, a union like [True, False, Other Int] would not.
|
|
Bool(bool),
|
|
/// Closed tag unions containing between 3 and 256 tags (all of 0 arity)
|
|
/// compile to bytes, e.g. [Blue, Black, Red, Green, White]
|
|
Byte(u8),
|
|
}
|
|
|
|
#[derive(Clone, Copy, Debug, PartialEq)]
|
|
pub enum ListLiteralElement<'a> {
|
|
Literal(Literal<'a>),
|
|
Symbol(Symbol),
|
|
}
|
|
|
|
impl<'a> ListLiteralElement<'a> {
|
|
pub fn to_symbol(&self) -> Option<Symbol> {
|
|
match self {
|
|
Self::Symbol(s) => Some(*s),
|
|
_ => None,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Debug, PartialEq, Eq)]
|
|
pub struct Call<'a> {
|
|
pub call_type: CallType<'a>,
|
|
pub arguments: &'a [Symbol],
|
|
}
|
|
|
|
impl<'a> Call<'a> {
|
|
pub fn to_doc<'b, D, A>(&'b self, alloc: &'b D) -> DocBuilder<'b, D, A>
|
|
where
|
|
D: DocAllocator<'b, A>,
|
|
D::Doc: Clone,
|
|
A: Clone,
|
|
{
|
|
use CallType::*;
|
|
|
|
let arguments = self.arguments;
|
|
|
|
match self.call_type {
|
|
CallType::ByName { name, .. } => {
|
|
let it = std::iter::once(name.name())
|
|
.chain(arguments.iter().copied())
|
|
.map(|s| symbol_to_doc(alloc, s));
|
|
|
|
alloc.text("CallByName ").append(alloc.intersperse(it, " "))
|
|
}
|
|
LowLevel { op: lowlevel, .. } => {
|
|
let it = arguments.iter().map(|s| symbol_to_doc(alloc, *s));
|
|
|
|
alloc
|
|
.text(format!("lowlevel {:?} ", lowlevel))
|
|
.append(alloc.intersperse(it, " "))
|
|
}
|
|
HigherOrder(higher_order) => {
|
|
let it = arguments.iter().map(|s| symbol_to_doc(alloc, *s));
|
|
|
|
alloc
|
|
.text(format!("lowlevel {:?} ", higher_order.op))
|
|
.append(alloc.intersperse(it, " "))
|
|
}
|
|
Foreign {
|
|
ref foreign_symbol, ..
|
|
} => {
|
|
let it = arguments.iter().map(|s| symbol_to_doc(alloc, *s));
|
|
|
|
alloc
|
|
.text(format!("foreign {:?} ", foreign_symbol.as_str()))
|
|
.append(alloc.intersperse(it, " "))
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
|
|
pub struct CallSpecId {
|
|
id: u32,
|
|
}
|
|
|
|
impl CallSpecId {
|
|
pub fn to_bytes(self) -> [u8; 4] {
|
|
self.id.to_ne_bytes()
|
|
}
|
|
|
|
/// Dummy value for generating refcount helper procs in the backends
|
|
/// This happens *after* specialization so it's safe
|
|
pub const BACKEND_DUMMY: Self = Self { id: 0 };
|
|
}
|
|
|
|
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
|
|
pub struct UpdateModeId {
|
|
id: u32,
|
|
}
|
|
|
|
impl UpdateModeId {
|
|
pub fn to_bytes(self) -> [u8; 4] {
|
|
self.id.to_ne_bytes()
|
|
}
|
|
|
|
/// Dummy value for generating refcount helper procs in the backends
|
|
/// This happens *after* alias analysis so it's safe
|
|
pub const BACKEND_DUMMY: Self = Self { id: 0 };
|
|
}
|
|
|
|
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
|
|
pub struct UpdateModeIds {
|
|
next: u32,
|
|
}
|
|
|
|
impl UpdateModeIds {
|
|
pub const fn new() -> Self {
|
|
Self { next: 0 }
|
|
}
|
|
|
|
pub fn next_id(&mut self) -> UpdateModeId {
|
|
let id = UpdateModeId { id: self.next };
|
|
self.next += 1;
|
|
id
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Debug, PartialEq, Eq)]
|
|
pub enum CallType<'a> {
|
|
ByName {
|
|
name: LambdaName<'a>,
|
|
ret_layout: &'a Layout<'a>,
|
|
arg_layouts: &'a [Layout<'a>],
|
|
specialization_id: CallSpecId,
|
|
},
|
|
Foreign {
|
|
foreign_symbol: ForeignSymbol,
|
|
ret_layout: &'a Layout<'a>,
|
|
},
|
|
LowLevel {
|
|
op: LowLevel,
|
|
update_mode: UpdateModeId,
|
|
},
|
|
HigherOrder(&'a HigherOrderLowLevel<'a>),
|
|
}
|
|
|
|
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
|
|
pub struct PassedFunction<'a> {
|
|
/// name of the top-level function that is passed as an argument
|
|
/// e.g. in `List.map xs Num.abs` this would be `Num.abs`
|
|
pub name: LambdaName<'a>,
|
|
|
|
pub argument_layouts: &'a [Layout<'a>],
|
|
pub return_layout: Layout<'a>,
|
|
|
|
pub specialization_id: CallSpecId,
|
|
|
|
/// Symbol of the environment captured by the function argument
|
|
pub captured_environment: Symbol,
|
|
|
|
pub owns_captured_environment: bool,
|
|
}
|
|
|
|
#[derive(Clone, Debug, PartialEq, Eq)]
|
|
pub struct HigherOrderLowLevel<'a> {
|
|
pub op: crate::low_level::HigherOrder,
|
|
|
|
/// TODO I _think_ we can get rid of this, perhaps only keeping track of
|
|
/// the layout of the closure argument, if any
|
|
pub closure_env_layout: Option<Layout<'a>>,
|
|
|
|
/// update mode of the higher order lowlevel itself
|
|
pub update_mode: UpdateModeId,
|
|
|
|
pub passed_function: PassedFunction<'a>,
|
|
}
|
|
|
|
#[derive(Clone, Debug, PartialEq)]
|
|
pub enum Expr<'a> {
|
|
Literal(Literal<'a>),
|
|
|
|
// Functions
|
|
Call(Call<'a>),
|
|
|
|
Tag {
|
|
tag_layout: UnionLayout<'a>,
|
|
tag_id: TagIdIntType,
|
|
arguments: &'a [Symbol],
|
|
},
|
|
Struct(&'a [Symbol]),
|
|
|
|
StructAtIndex {
|
|
index: u64,
|
|
field_layouts: &'a [Layout<'a>],
|
|
structure: Symbol,
|
|
},
|
|
|
|
GetTagId {
|
|
structure: Symbol,
|
|
union_layout: UnionLayout<'a>,
|
|
},
|
|
|
|
UnionAtIndex {
|
|
structure: Symbol,
|
|
tag_id: TagIdIntType,
|
|
union_layout: UnionLayout<'a>,
|
|
index: u64,
|
|
},
|
|
|
|
Array {
|
|
elem_layout: Layout<'a>,
|
|
elems: &'a [ListLiteralElement<'a>],
|
|
},
|
|
EmptyArray,
|
|
|
|
ExprBox {
|
|
symbol: Symbol,
|
|
},
|
|
|
|
ExprUnbox {
|
|
symbol: Symbol,
|
|
},
|
|
|
|
Reuse {
|
|
symbol: Symbol,
|
|
update_tag_id: bool,
|
|
update_mode: UpdateModeId,
|
|
// normal Tag fields
|
|
tag_layout: UnionLayout<'a>,
|
|
tag_id: TagIdIntType,
|
|
arguments: &'a [Symbol],
|
|
},
|
|
Reset {
|
|
symbol: Symbol,
|
|
update_mode: UpdateModeId,
|
|
},
|
|
|
|
RuntimeErrorFunction(&'a str),
|
|
}
|
|
|
|
impl<'a> Literal<'a> {
|
|
pub fn to_doc<'b, D, A>(&'b self, alloc: &'b D) -> DocBuilder<'b, D, A>
|
|
where
|
|
D: DocAllocator<'b, A>,
|
|
D::Doc: Clone,
|
|
A: Clone,
|
|
{
|
|
use Literal::*;
|
|
|
|
match self {
|
|
Int(bytes) => alloc.text(format!("{}i64", i128::from_ne_bytes(*bytes))),
|
|
U128(bytes) => alloc.text(format!("{}u128", u128::from_ne_bytes(*bytes))),
|
|
Float(lit) => alloc.text(format!("{}f64", lit)),
|
|
Decimal(bytes) => alloc.text(format!("{}dec", RocDec::from_ne_bytes(*bytes))),
|
|
Bool(lit) => alloc.text(format!("{}", lit)),
|
|
Byte(lit) => alloc.text(format!("{}u8", lit)),
|
|
Str(lit) => alloc.text(format!("{:?}", lit)),
|
|
}
|
|
}
|
|
}
|
|
|
|
pub(crate) fn symbol_to_doc_string(symbol: Symbol) -> String {
|
|
use roc_module::ident::ModuleName;
|
|
|
|
if pretty_print_ir_symbols() {
|
|
format!("{:?}", symbol)
|
|
} else {
|
|
let text = format!("{}", symbol);
|
|
|
|
if text.starts_with(ModuleName::APP) {
|
|
let name: String = text.trim_start_matches(ModuleName::APP).into();
|
|
format!("Test{}", name)
|
|
} else {
|
|
text
|
|
}
|
|
}
|
|
}
|
|
|
|
fn symbol_to_doc<'b, D, A>(alloc: &'b D, symbol: Symbol) -> DocBuilder<'b, D, A>
|
|
where
|
|
D: DocAllocator<'b, A>,
|
|
D::Doc: Clone,
|
|
A: Clone,
|
|
{
|
|
alloc.text(symbol_to_doc_string(symbol))
|
|
}
|
|
|
|
fn join_point_to_doc<'b, D, A>(alloc: &'b D, symbol: JoinPointId) -> DocBuilder<'b, D, A>
|
|
where
|
|
D: DocAllocator<'b, A>,
|
|
D::Doc: Clone,
|
|
A: Clone,
|
|
{
|
|
symbol_to_doc(alloc, symbol.0)
|
|
}
|
|
|
|
impl<'a> Expr<'a> {
|
|
pub fn to_doc<'b, D, A>(&'b self, alloc: &'b D) -> DocBuilder<'b, D, A>
|
|
where
|
|
D: DocAllocator<'b, A>,
|
|
D::Doc: Clone,
|
|
A: Clone,
|
|
{
|
|
use Expr::*;
|
|
|
|
match self {
|
|
Literal(lit) => lit.to_doc(alloc),
|
|
|
|
Call(call) => call.to_doc(alloc),
|
|
|
|
Tag {
|
|
tag_id, arguments, ..
|
|
} => {
|
|
let doc_tag = alloc
|
|
.text("TagId(")
|
|
.append(alloc.text(tag_id.to_string()))
|
|
.append(")");
|
|
|
|
let it = arguments.iter().map(|s| symbol_to_doc(alloc, *s));
|
|
|
|
doc_tag
|
|
.append(alloc.space())
|
|
.append(alloc.intersperse(it, " "))
|
|
}
|
|
Reuse {
|
|
symbol,
|
|
tag_id,
|
|
arguments,
|
|
update_mode,
|
|
..
|
|
} => {
|
|
let doc_tag = alloc
|
|
.text("TagId(")
|
|
.append(alloc.text(tag_id.to_string()))
|
|
.append(")");
|
|
|
|
let it = arguments.iter().map(|s| symbol_to_doc(alloc, *s));
|
|
|
|
alloc
|
|
.text("Reuse ")
|
|
.append(symbol_to_doc(alloc, *symbol))
|
|
.append(alloc.space())
|
|
.append(format!("{:?}", update_mode))
|
|
.append(alloc.space())
|
|
.append(doc_tag)
|
|
.append(alloc.space())
|
|
.append(alloc.intersperse(it, " "))
|
|
}
|
|
Reset {
|
|
symbol,
|
|
update_mode,
|
|
} => alloc.text(format!(
|
|
"Reset {{ symbol: {:?}, id: {} }}",
|
|
symbol, update_mode.id
|
|
)),
|
|
|
|
Struct(args) => {
|
|
let it = args.iter().map(|s| symbol_to_doc(alloc, *s));
|
|
|
|
alloc
|
|
.text("Struct {")
|
|
.append(alloc.intersperse(it, ", "))
|
|
.append(alloc.text("}"))
|
|
}
|
|
Array { elems, .. } => {
|
|
let it = elems.iter().map(|e| match e {
|
|
ListLiteralElement::Literal(l) => l.to_doc(alloc),
|
|
ListLiteralElement::Symbol(s) => symbol_to_doc(alloc, *s),
|
|
});
|
|
|
|
alloc
|
|
.text("Array [")
|
|
.append(alloc.intersperse(it, ", "))
|
|
.append(alloc.text("]"))
|
|
}
|
|
EmptyArray => alloc.text("Array []"),
|
|
|
|
StructAtIndex {
|
|
index, structure, ..
|
|
} => alloc
|
|
.text(format!("StructAtIndex {} ", index))
|
|
.append(symbol_to_doc(alloc, *structure)),
|
|
|
|
RuntimeErrorFunction(s) => alloc.text(format!("ErrorFunction {}", s)),
|
|
|
|
GetTagId { structure, .. } => alloc
|
|
.text("GetTagId ")
|
|
.append(symbol_to_doc(alloc, *structure)),
|
|
|
|
ExprBox { symbol, .. } => alloc.text("Box ").append(symbol_to_doc(alloc, *symbol)),
|
|
|
|
ExprUnbox { symbol, .. } => alloc.text("Unbox ").append(symbol_to_doc(alloc, *symbol)),
|
|
|
|
UnionAtIndex {
|
|
tag_id,
|
|
structure,
|
|
index,
|
|
..
|
|
} => alloc
|
|
.text(format!("UnionAtIndex (Id {}) (Index {}) ", tag_id, index))
|
|
.append(symbol_to_doc(alloc, *structure)),
|
|
}
|
|
}
|
|
|
|
pub fn to_pretty(&self, width: usize) -> String {
|
|
let allocator = BoxAllocator;
|
|
let mut w = std::vec::Vec::new();
|
|
self.to_doc::<_, ()>(&allocator)
|
|
.1
|
|
.render(width, &mut w)
|
|
.unwrap();
|
|
w.push(b'\n');
|
|
String::from_utf8(w).unwrap()
|
|
}
|
|
}
|
|
|
|
impl<'a> Stmt<'a> {
|
|
pub fn new(
|
|
env: &mut Env<'a, '_>,
|
|
can_expr: roc_can::expr::Expr,
|
|
var: Variable,
|
|
procs: &mut Procs<'a>,
|
|
layout_cache: &mut LayoutCache<'a>,
|
|
) -> Self {
|
|
from_can(env, var, can_expr, procs, layout_cache)
|
|
}
|
|
|
|
pub fn to_doc<'b, D, A, I>(&'b self, alloc: &'b D, interner: &I) -> DocBuilder<'b, D, A>
|
|
where
|
|
D: DocAllocator<'b, A>,
|
|
D::Doc: Clone,
|
|
A: Clone,
|
|
I: Interner<'a, Layout<'a>>,
|
|
{
|
|
use Stmt::*;
|
|
|
|
match self {
|
|
Let(symbol, expr, layout, cont) => alloc
|
|
.text("let ")
|
|
.append(symbol_to_doc(alloc, *symbol))
|
|
.append(" : ")
|
|
.append(layout.to_doc(alloc, interner, Parens::NotNeeded))
|
|
.append(" = ")
|
|
.append(expr.to_doc(alloc))
|
|
.append(";")
|
|
.append(alloc.hardline())
|
|
.append(cont.to_doc(alloc, interner)),
|
|
|
|
Refcounting(modify, cont) => modify
|
|
.to_doc(alloc)
|
|
.append(alloc.hardline())
|
|
.append(cont.to_doc(alloc, interner)),
|
|
|
|
Expect {
|
|
condition,
|
|
remainder,
|
|
..
|
|
} => alloc
|
|
.text("expect ")
|
|
.append(symbol_to_doc(alloc, *condition))
|
|
.append(";")
|
|
.append(alloc.hardline())
|
|
.append(remainder.to_doc(alloc, interner)),
|
|
|
|
ExpectFx {
|
|
condition,
|
|
remainder,
|
|
..
|
|
} => alloc
|
|
.text("expect-fx ")
|
|
.append(symbol_to_doc(alloc, *condition))
|
|
.append(";")
|
|
.append(alloc.hardline())
|
|
.append(remainder.to_doc(alloc, interner)),
|
|
|
|
Ret(symbol) => alloc
|
|
.text("ret ")
|
|
.append(symbol_to_doc(alloc, *symbol))
|
|
.append(";"),
|
|
|
|
Switch {
|
|
cond_symbol,
|
|
branches,
|
|
default_branch,
|
|
..
|
|
} => {
|
|
match branches {
|
|
[(1, info, pass)] => {
|
|
let fail = default_branch.1;
|
|
alloc
|
|
.text("if ")
|
|
.append(symbol_to_doc(alloc, *cond_symbol))
|
|
.append(" then")
|
|
.append(info.to_doc(alloc))
|
|
.append(alloc.hardline())
|
|
.append(pass.to_doc(alloc, interner).indent(4))
|
|
.append(alloc.hardline())
|
|
.append(alloc.text("else"))
|
|
.append(default_branch.0.to_doc(alloc))
|
|
.append(alloc.hardline())
|
|
.append(fail.to_doc(alloc, interner).indent(4))
|
|
}
|
|
|
|
_ => {
|
|
let default_doc = alloc
|
|
.text("default:")
|
|
.append(alloc.hardline())
|
|
.append(default_branch.1.to_doc(alloc, interner).indent(4))
|
|
.indent(4);
|
|
|
|
let branches_docs = branches
|
|
.iter()
|
|
.map(|(tag, _info, expr)| {
|
|
alloc
|
|
.text(format!("case {}:", tag))
|
|
.append(alloc.hardline())
|
|
.append(expr.to_doc(alloc, interner).indent(4))
|
|
.indent(4)
|
|
})
|
|
.chain(std::iter::once(default_doc));
|
|
//
|
|
alloc
|
|
.text("switch ")
|
|
.append(symbol_to_doc(alloc, *cond_symbol))
|
|
.append(":")
|
|
.append(alloc.hardline())
|
|
.append(alloc.intersperse(
|
|
branches_docs,
|
|
alloc.hardline().append(alloc.hardline()),
|
|
))
|
|
.append(alloc.hardline())
|
|
}
|
|
}
|
|
}
|
|
|
|
Crash(s, _src) => alloc.text("Crash ").append(symbol_to_doc(alloc, *s)),
|
|
|
|
Join {
|
|
id,
|
|
parameters,
|
|
body: continuation,
|
|
remainder,
|
|
} => {
|
|
let it = parameters.iter().map(|p| symbol_to_doc(alloc, p.symbol));
|
|
|
|
alloc.intersperse(
|
|
vec![
|
|
alloc
|
|
.text("joinpoint ")
|
|
.append(join_point_to_doc(alloc, *id))
|
|
.append(" ".repeat(parameters.len().min(1)))
|
|
.append(alloc.intersperse(it, alloc.space()))
|
|
.append(":"),
|
|
continuation.to_doc(alloc, interner).indent(4),
|
|
alloc.text("in"),
|
|
remainder.to_doc(alloc, interner),
|
|
],
|
|
alloc.hardline(),
|
|
)
|
|
}
|
|
Jump(id, arguments) => {
|
|
let it = arguments.iter().map(|s| symbol_to_doc(alloc, *s));
|
|
|
|
alloc
|
|
.text("jump ")
|
|
.append(join_point_to_doc(alloc, *id))
|
|
.append(" ".repeat(arguments.len().min(1)))
|
|
.append(alloc.intersperse(it, alloc.space()))
|
|
.append(";")
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn to_pretty<I>(&self, interner: &I, width: usize) -> String
|
|
where
|
|
I: Interner<'a, Layout<'a>>,
|
|
{
|
|
let allocator = BoxAllocator;
|
|
let mut w = std::vec::Vec::new();
|
|
self.to_doc::<_, (), _>(&allocator, interner)
|
|
.1
|
|
.render(width, &mut w)
|
|
.unwrap();
|
|
w.push(b'\n');
|
|
String::from_utf8(w).unwrap()
|
|
}
|
|
|
|
pub fn is_terminal(&self) -> bool {
|
|
use Stmt::*;
|
|
|
|
matches!(
|
|
self,
|
|
Switch { .. } | Ret(_) | Jump(_, _) // TODO for Switch; is this the reason Lean only looks at the outermost `when`?
|
|
)
|
|
}
|
|
|
|
pub fn if_then_else(
|
|
arena: &'a Bump,
|
|
condition_symbol: Symbol,
|
|
return_layout: Layout<'a>,
|
|
then_branch_stmt: Stmt<'a>,
|
|
else_branch_stmt: &'a Stmt<'a>,
|
|
) -> Self {
|
|
let then_branch_info = BranchInfo::Constructor {
|
|
scrutinee: condition_symbol,
|
|
layout: Layout::bool(),
|
|
tag_id: 1,
|
|
};
|
|
let then_branch = (1u64, then_branch_info, then_branch_stmt);
|
|
|
|
let else_branch_info = BranchInfo::Constructor {
|
|
scrutinee: condition_symbol,
|
|
layout: Layout::bool(),
|
|
tag_id: 0,
|
|
};
|
|
let else_branch = (else_branch_info, else_branch_stmt);
|
|
|
|
Stmt::Switch {
|
|
cond_symbol: condition_symbol,
|
|
cond_layout: Layout::bool(),
|
|
branches: &*arena.alloc([then_branch]),
|
|
default_branch: else_branch,
|
|
ret_layout: return_layout,
|
|
}
|
|
}
|
|
}
|
|
|
|
fn from_can_let<'a>(
|
|
env: &mut Env<'a, '_>,
|
|
procs: &mut Procs<'a>,
|
|
layout_cache: &mut LayoutCache<'a>,
|
|
def: Box<roc_can::def::Def>,
|
|
cont: Box<Loc<roc_can::expr::Expr>>,
|
|
variable: Variable,
|
|
opt_assigned_and_hole: Option<(Symbol, &'a Stmt<'a>)>,
|
|
) -> Stmt<'a> {
|
|
use roc_can::expr::Expr::*;
|
|
|
|
macro_rules! lower_rest {
|
|
($variable:expr, $expr:expr) => {
|
|
lower_rest!(env, procs, layout_cache, $variable, $expr)
|
|
};
|
|
($env:expr, $procs:expr, $layout_cache:expr, $variable:expr, $expr:expr) => {
|
|
match opt_assigned_and_hole {
|
|
None => from_can($env, $variable, $expr, $procs, $layout_cache),
|
|
Some((assigned, hole)) => with_hole(
|
|
$env,
|
|
$expr,
|
|
$variable,
|
|
$procs,
|
|
$layout_cache,
|
|
assigned,
|
|
hole,
|
|
),
|
|
}
|
|
};
|
|
}
|
|
|
|
if let roc_can::pattern::Pattern::Identifier(symbol) = &def.loc_pattern.value {
|
|
return match def.loc_expr.value {
|
|
Closure(closure_data) => {
|
|
register_capturing_closure(env, procs, layout_cache, *symbol, closure_data);
|
|
|
|
lower_rest!(variable, cont.value)
|
|
}
|
|
Accessor(accessor_data) => {
|
|
let fresh_record_symbol = env.unique_symbol();
|
|
register_noncapturing_closure(
|
|
env,
|
|
procs,
|
|
*symbol,
|
|
accessor_data.to_closure_data(fresh_record_symbol),
|
|
);
|
|
|
|
lower_rest!(variable, cont.value)
|
|
}
|
|
Var(original, _) | AbilityMember(original, _, _) => {
|
|
// a variable is aliased, e.g.
|
|
//
|
|
// foo = bar
|
|
//
|
|
// or
|
|
//
|
|
// foo = RBTRee.empty
|
|
|
|
// TODO: right now we need help out rustc with the closure types;
|
|
// it isn't able to infer the right lifetime bounds. See if we
|
|
// can remove the annotations in the future.
|
|
let build_rest =
|
|
|env: &mut Env<'a, '_>,
|
|
procs: &mut Procs<'a>,
|
|
layout_cache: &mut LayoutCache<'a>| {
|
|
lower_rest!(env, procs, layout_cache, variable, cont.value)
|
|
};
|
|
|
|
return handle_variable_aliasing(
|
|
env,
|
|
procs,
|
|
layout_cache,
|
|
def.expr_var,
|
|
*symbol,
|
|
original,
|
|
build_rest,
|
|
);
|
|
}
|
|
LetNonRec(nested_def, nested_cont) => {
|
|
use roc_can::expr::Expr::*;
|
|
// We must transform
|
|
//
|
|
// let answer = 1337
|
|
// in
|
|
// let unused =
|
|
// let nested = 17
|
|
// in
|
|
// nested
|
|
// in
|
|
// answer
|
|
//
|
|
// into
|
|
//
|
|
// let answer = 1337
|
|
// in
|
|
// let nested = 17
|
|
// in
|
|
// let unused = nested
|
|
// in
|
|
// answer
|
|
|
|
let new_def = roc_can::def::Def {
|
|
loc_pattern: def.loc_pattern,
|
|
loc_expr: *nested_cont,
|
|
pattern_vars: def.pattern_vars,
|
|
annotation: def.annotation,
|
|
expr_var: def.expr_var,
|
|
};
|
|
|
|
let new_inner = LetNonRec(Box::new(new_def), cont);
|
|
|
|
let new_outer = LetNonRec(nested_def, Box::new(Loc::at_zero(new_inner)));
|
|
|
|
lower_rest!(variable, new_outer)
|
|
}
|
|
LetRec(nested_defs, nested_cont, cycle_mark) => {
|
|
use roc_can::expr::Expr::*;
|
|
// We must transform
|
|
//
|
|
// let answer = 1337
|
|
// in
|
|
// let unused =
|
|
// let nested = \{} -> nested {}
|
|
// in
|
|
// nested
|
|
// in
|
|
// answer
|
|
//
|
|
// into
|
|
//
|
|
// let answer = 1337
|
|
// in
|
|
// let nested = \{} -> nested {}
|
|
// in
|
|
// let unused = nested
|
|
// in
|
|
// answer
|
|
|
|
let new_def = roc_can::def::Def {
|
|
loc_pattern: def.loc_pattern,
|
|
loc_expr: *nested_cont,
|
|
pattern_vars: def.pattern_vars,
|
|
annotation: def.annotation,
|
|
expr_var: def.expr_var,
|
|
};
|
|
|
|
let new_inner = LetNonRec(Box::new(new_def), cont);
|
|
|
|
let new_outer = LetRec(nested_defs, Box::new(Loc::at_zero(new_inner)), cycle_mark);
|
|
|
|
lower_rest!(variable, new_outer)
|
|
}
|
|
_ => {
|
|
let rest = lower_rest!(variable, cont.value);
|
|
|
|
// Remove all the requested symbol specializations now, since this is the
|
|
// def site and hence we won't need them any higher up.
|
|
let mut needed_specializations = procs.symbol_specializations.remove(*symbol);
|
|
|
|
match needed_specializations.len() {
|
|
0 => {
|
|
// We don't need any specializations, that means this symbol is never
|
|
// referenced.
|
|
with_hole(
|
|
env,
|
|
def.loc_expr.value,
|
|
def.expr_var,
|
|
procs,
|
|
layout_cache,
|
|
*symbol,
|
|
env.arena.alloc(rest),
|
|
)
|
|
}
|
|
|
|
// We do need specializations
|
|
1 => {
|
|
let (_specialization_mark, (var, specialized_symbol, _deepest_use)) =
|
|
needed_specializations.next().unwrap();
|
|
|
|
// Make sure rigid variables in the annotation are converted to flex variables.
|
|
instantiate_rigids(env.subs, def.expr_var);
|
|
// Unify the expr_var with the requested specialization once.
|
|
let _res = env.unify(
|
|
procs.externals_we_need.values_mut(),
|
|
layout_cache,
|
|
var,
|
|
def.expr_var,
|
|
);
|
|
|
|
with_hole(
|
|
env,
|
|
def.loc_expr.value,
|
|
def.expr_var,
|
|
procs,
|
|
layout_cache,
|
|
specialized_symbol,
|
|
env.arena.alloc(rest),
|
|
)
|
|
}
|
|
_n => {
|
|
let mut stmt = rest;
|
|
|
|
// Make sure rigid variables in the annotation are converted to flex variables.
|
|
instantiate_rigids(env.subs, def.expr_var);
|
|
|
|
// Need to eat the cost and create a specialized version of the body for
|
|
// each specialization.
|
|
for (_specialization_mark, (var, specialized_symbol, _deepest_use)) in
|
|
needed_specializations
|
|
{
|
|
use roc_can::copy::deep_copy_type_vars_into_expr;
|
|
|
|
let (new_def_expr_var, specialized_expr) = deep_copy_type_vars_into_expr(
|
|
env.subs,
|
|
def.expr_var,
|
|
&def.loc_expr.value,
|
|
)
|
|
.expect(
|
|
"expr marked as having specializations, but it has no type variables!",
|
|
);
|
|
|
|
let _res = env.unify(
|
|
procs.externals_we_need.values_mut(),
|
|
layout_cache,
|
|
var,
|
|
new_def_expr_var,
|
|
);
|
|
|
|
stmt = with_hole(
|
|
env,
|
|
specialized_expr,
|
|
new_def_expr_var,
|
|
procs,
|
|
layout_cache,
|
|
specialized_symbol,
|
|
env.arena.alloc(stmt),
|
|
);
|
|
}
|
|
|
|
stmt
|
|
}
|
|
}
|
|
}
|
|
};
|
|
}
|
|
|
|
// this may be a destructure pattern
|
|
let (mono_pattern, assignments) =
|
|
match from_can_pattern(env, procs, layout_cache, &def.loc_pattern.value) {
|
|
Ok(v) => v,
|
|
Err(_) => todo!(),
|
|
};
|
|
|
|
// convert the continuation
|
|
let mut stmt = lower_rest!(variable, cont.value);
|
|
|
|
// layer on any default record fields
|
|
for (symbol, variable, expr) in assignments {
|
|
let specialization_symbol = procs
|
|
.symbol_specializations
|
|
.remove_single(symbol)
|
|
// Can happen when the symbol was never used under this body, and hence has no
|
|
// requested specialization.
|
|
.unwrap_or(symbol);
|
|
|
|
let hole = env.arena.alloc(stmt);
|
|
stmt = with_hole(
|
|
env,
|
|
expr,
|
|
variable,
|
|
procs,
|
|
layout_cache,
|
|
specialization_symbol,
|
|
hole,
|
|
);
|
|
}
|
|
|
|
match def.loc_expr.value {
|
|
roc_can::expr::Expr::Var(outer_symbol, _) if !procs.is_module_thunk(outer_symbol) => {
|
|
store_pattern(env, procs, layout_cache, &mono_pattern, outer_symbol, stmt)
|
|
}
|
|
_ => {
|
|
let outer_symbol = env.unique_symbol();
|
|
stmt = store_pattern(env, procs, layout_cache, &mono_pattern, outer_symbol, stmt);
|
|
|
|
// convert the def body, store in outer_symbol
|
|
with_hole(
|
|
env,
|
|
def.loc_expr.value,
|
|
def.expr_var,
|
|
procs,
|
|
layout_cache,
|
|
outer_symbol,
|
|
env.arena.alloc(stmt),
|
|
)
|
|
}
|
|
}
|
|
}
|
|
|
|
/// turn record/tag patterns into a when expression, e.g.
|
|
///
|
|
/// foo = \{ x } -> body
|
|
///
|
|
/// becomes
|
|
///
|
|
/// foo = \r -> when r is { x } -> body
|
|
///
|
|
/// conversion of one-pattern when expressions will do the most optimal thing
|
|
#[allow(clippy::type_complexity)]
|
|
fn patterns_to_when<'a>(
|
|
env: &mut Env<'a, '_>,
|
|
patterns: std::vec::Vec<(Variable, AnnotatedMark, Loc<roc_can::pattern::Pattern>)>,
|
|
body_var: Variable,
|
|
body: Loc<roc_can::expr::Expr>,
|
|
) -> Result<(Vec<'a, Variable>, Vec<'a, Symbol>, Loc<roc_can::expr::Expr>), Loc<RuntimeError>> {
|
|
let mut arg_vars = Vec::with_capacity_in(patterns.len(), env.arena);
|
|
let mut symbols = Vec::with_capacity_in(patterns.len(), env.arena);
|
|
let mut body = Ok(body);
|
|
|
|
// patterns that are not yet in a when (e.g. in let or function arguments) must be irrefutable
|
|
// to pass type checking. So the order in which we add them to the body does not matter: there
|
|
// are only stores anyway, no branches.
|
|
//
|
|
// NOTE this fails if the pattern contains rigid variables,
|
|
// see https://github.com/roc-lang/roc/issues/786
|
|
// this must be fixed when moving exhaustiveness checking to the new canonical AST
|
|
for (pattern_var, annotated_mark, pattern) in patterns.into_iter() {
|
|
if annotated_mark.exhaustive.is_non_exhaustive(env.subs) {
|
|
// Even if the body was Ok, replace it with this Err.
|
|
// If it was already an Err, leave it at that Err, so the first
|
|
// RuntimeError we encountered remains the first.
|
|
let value = RuntimeError::UnsupportedPattern(pattern.region);
|
|
body = body.and({
|
|
Err(Loc {
|
|
region: pattern.region,
|
|
value,
|
|
})
|
|
});
|
|
} else if let Ok(unwrapped_body) = body {
|
|
let (new_symbol, new_body) =
|
|
pattern_to_when(env, pattern_var, pattern, body_var, unwrapped_body);
|
|
|
|
symbols.push(new_symbol);
|
|
arg_vars.push(pattern_var);
|
|
|
|
body = Ok(new_body)
|
|
}
|
|
}
|
|
|
|
match body {
|
|
Ok(body) => Ok((arg_vars, symbols, body)),
|
|
Err(loc_error) => Err(loc_error),
|
|
}
|
|
}
|
|
|
|
/// turn irrefutable patterns into when. For example
|
|
///
|
|
/// foo = \{ x } -> body
|
|
///
|
|
/// Assuming the above program typechecks, the pattern match cannot fail
|
|
/// (it is irrefutable). It becomes
|
|
///
|
|
/// foo = \r ->
|
|
/// when r is
|
|
/// { x } -> body
|
|
///
|
|
/// conversion of one-pattern when expressions will do the most optimal thing
|
|
fn pattern_to_when<'a>(
|
|
env: &mut Env<'a, '_>,
|
|
pattern_var: Variable,
|
|
pattern: Loc<roc_can::pattern::Pattern>,
|
|
body_var: Variable,
|
|
body: Loc<roc_can::expr::Expr>,
|
|
) -> (Symbol, Loc<roc_can::expr::Expr>) {
|
|
use roc_can::expr::Expr::*;
|
|
use roc_can::expr::{WhenBranch, WhenBranchPattern};
|
|
use roc_can::pattern::Pattern::{self, *};
|
|
|
|
match &pattern.value {
|
|
Identifier(symbol) => (*symbol, body),
|
|
Underscore => {
|
|
// for underscore we generate a dummy Symbol
|
|
(env.unique_symbol(), body)
|
|
}
|
|
Shadowed(region, loc_ident, new_symbol) => {
|
|
let error = roc_problem::can::RuntimeError::Shadowing {
|
|
original_region: *region,
|
|
shadow: loc_ident.clone(),
|
|
kind: ShadowKind::Variable,
|
|
};
|
|
(*new_symbol, Loc::at_zero(RuntimeError(error)))
|
|
}
|
|
|
|
UnsupportedPattern(region) => {
|
|
// create the runtime error here, instead of delegating to When.
|
|
// UnsupportedPattern should then never occur in When
|
|
let error = roc_problem::can::RuntimeError::UnsupportedPattern(*region);
|
|
(env.unique_symbol(), Loc::at_zero(RuntimeError(error)))
|
|
}
|
|
|
|
MalformedPattern(problem, region) => {
|
|
// create the runtime error here, instead of delegating to When.
|
|
let error = roc_problem::can::RuntimeError::MalformedPattern(*problem, *region);
|
|
(env.unique_symbol(), Loc::at_zero(RuntimeError(error)))
|
|
}
|
|
|
|
OpaqueNotInScope(loc_ident) => {
|
|
// create the runtime error here, instead of delegating to When.
|
|
// TODO(opaques) should be `RuntimeError::OpaqueNotDefined`
|
|
let error = roc_problem::can::RuntimeError::UnsupportedPattern(loc_ident.region);
|
|
(env.unique_symbol(), Loc::at_zero(RuntimeError(error)))
|
|
}
|
|
|
|
AppliedTag { .. } | RecordDestructure { .. } | UnwrappedOpaque { .. } => {
|
|
let symbol = env.unique_symbol();
|
|
|
|
let wrapped_body = When {
|
|
cond_var: pattern_var,
|
|
expr_var: body_var,
|
|
region: Region::zero(),
|
|
loc_cond: Box::new(Loc::at_zero(Var(symbol, pattern_var))),
|
|
branches: vec![WhenBranch {
|
|
patterns: vec![WhenBranchPattern {
|
|
pattern,
|
|
degenerate: false,
|
|
}],
|
|
value: body,
|
|
guard: None,
|
|
// If this type-checked, it's non-redundant
|
|
redundant: RedundantMark::known_non_redundant(),
|
|
}],
|
|
branches_cond_var: pattern_var,
|
|
// If this type-checked, it's exhaustive
|
|
exhaustive: ExhaustiveMark::known_exhaustive(),
|
|
};
|
|
|
|
(symbol, Loc::at_zero(wrapped_body))
|
|
}
|
|
|
|
Pattern::List { .. } => todo!(),
|
|
|
|
IntLiteral(..)
|
|
| NumLiteral(..)
|
|
| FloatLiteral(..)
|
|
| StrLiteral(..)
|
|
| roc_can::pattern::Pattern::SingleQuote(..) => {
|
|
// These patters are refutable, and thus should never occur outside a `when` expression
|
|
// They should have been replaced with `UnsupportedPattern` during canonicalization
|
|
unreachable!("refutable pattern {:?} where irrefutable pattern is expected. This should never happen!", pattern.value)
|
|
}
|
|
|
|
AbilityMemberSpecialization { .. } => {
|
|
unreachable!(
|
|
"Ability member specialization {:?} should never appear in a when!",
|
|
pattern.value
|
|
)
|
|
}
|
|
}
|
|
}
|
|
|
|
fn specialize_suspended<'a>(
|
|
env: &mut Env<'a, '_>,
|
|
procs: &mut Procs<'a>,
|
|
layout_cache: &mut LayoutCache<'a>,
|
|
suspended: Suspended<'a>,
|
|
) {
|
|
let offset_variable = StorageSubs::merge_into(suspended.store, env.subs);
|
|
|
|
for (i, (symbol_or_lambda, var)) in suspended
|
|
.symbol_or_lambdas
|
|
.iter()
|
|
.zip(suspended.variables.iter())
|
|
.enumerate()
|
|
{
|
|
let name = *symbol_or_lambda;
|
|
let outside_layout = suspended.layouts[i];
|
|
|
|
let var = offset_variable(*var);
|
|
|
|
// TODO define our own Entry for Specialized?
|
|
let partial_proc = if procs
|
|
.specialized
|
|
.is_specialized(name.name(), &outside_layout)
|
|
{
|
|
// already specialized, just continue
|
|
continue;
|
|
} else {
|
|
match procs.partial_procs.symbol_to_id(name.name()) {
|
|
Some(v) => {
|
|
// Mark this proc as in-progress, so if we're dealing with
|
|
// mutually recursive functions, we don't loop forever.
|
|
// (We had a bug around this before this system existed!)
|
|
procs
|
|
.specialized
|
|
.mark_in_progress(name.name(), outside_layout);
|
|
|
|
v
|
|
}
|
|
None => {
|
|
// TODO this assumes the specialization is done by another module
|
|
// make sure this does not become a problem down the road!
|
|
debug_assert!(name.name().module_id() != name.name().module_id());
|
|
continue;
|
|
}
|
|
}
|
|
};
|
|
|
|
match specialize_variable(env, procs, name, layout_cache, var, &[], partial_proc) {
|
|
Ok((proc, _layout)) => {
|
|
// TODO this code is duplicated elsewhere
|
|
|
|
// the `layout` is a function pointer, while `_ignore_layout` can be a
|
|
// closure. We only specialize functions, storing this value with a closure
|
|
// layout will give trouble.
|
|
let arguments = Vec::from_iter_in(proc.args.iter().map(|(l, _)| *l), env.arena)
|
|
.into_bump_slice();
|
|
|
|
let proper_layout = ProcLayout {
|
|
arguments,
|
|
result: proc.ret_layout,
|
|
captures_niche: proc.name.captures_niche(),
|
|
};
|
|
if procs.is_module_thunk(proc.name.name()) {
|
|
debug_assert!(
|
|
proper_layout.arguments.is_empty(),
|
|
"{:?} from {:?}",
|
|
name,
|
|
proper_layout
|
|
);
|
|
}
|
|
|
|
// NOTE: some functions are specialized to have a closure, but don't actually
|
|
// need any closure argument. Here is where we correct this sort of thing,
|
|
// by trusting the layout of the Proc, not of what we specialize for
|
|
procs
|
|
.specialized
|
|
.remove_specialized(name.name(), &outside_layout);
|
|
procs
|
|
.specialized
|
|
.insert_specialized(name.name(), proper_layout, proc);
|
|
}
|
|
Err(SpecializeFailure {
|
|
attempted_layout, ..
|
|
}) => {
|
|
let proc = generate_runtime_error_function(
|
|
env,
|
|
layout_cache,
|
|
name.name(),
|
|
attempted_layout,
|
|
);
|
|
|
|
let top_level = ProcLayout::from_raw(
|
|
env.arena,
|
|
&layout_cache.interner,
|
|
attempted_layout,
|
|
CapturesNiche::no_niche(),
|
|
);
|
|
|
|
procs
|
|
.specialized
|
|
.insert_specialized(name.name(), top_level, proc);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn specialize_all<'a>(
|
|
env: &mut Env<'a, '_>,
|
|
mut procs: Procs<'a>,
|
|
externals_others_need: std::vec::Vec<ExternalSpecializations<'a>>,
|
|
specializations_for_host: HostSpecializations<'a>,
|
|
layout_cache: &mut LayoutCache<'a>,
|
|
) -> Procs<'a> {
|
|
// When calling from_can, pending_specializations should be unavailable.
|
|
// This must be a single pass, and we must not add any more entries to it!
|
|
let pending_specializations = std::mem::replace(
|
|
&mut procs.pending_specializations,
|
|
PendingSpecializations::Making(Suspended::new_in(env.arena)),
|
|
);
|
|
|
|
// Add all of our existing pending specializations.
|
|
match pending_specializations {
|
|
PendingSpecializations::Finding(suspended) => {
|
|
specialize_suspended(env, &mut procs, layout_cache, suspended)
|
|
}
|
|
PendingSpecializations::Making(suspended) => {
|
|
debug_assert!(
|
|
suspended.is_empty(),
|
|
"suspended specializations cannot ever start off non-empty when making"
|
|
);
|
|
}
|
|
}
|
|
|
|
// Specialize all the symbols everyone else needs.
|
|
for externals in externals_others_need {
|
|
specialize_external_specializations(env, &mut procs, layout_cache, externals);
|
|
}
|
|
|
|
// Specialize any symbols the host needs.
|
|
specialize_host_specializations(env, &mut procs, layout_cache, specializations_for_host);
|
|
|
|
// Now, we must go through and continuously complete any new suspended specializations that were
|
|
// discovered in specializing the other demanded symbols.
|
|
while !procs.pending_specializations.is_empty() {
|
|
let pending_specializations = std::mem::replace(
|
|
&mut procs.pending_specializations,
|
|
PendingSpecializations::Making(Suspended::new_in(env.arena)),
|
|
);
|
|
match pending_specializations {
|
|
PendingSpecializations::Making(suspended) => {
|
|
specialize_suspended(env, &mut procs, layout_cache, suspended);
|
|
}
|
|
PendingSpecializations::Finding(_) => {
|
|
internal_error!("should not have this variant after making specializations")
|
|
}
|
|
}
|
|
}
|
|
|
|
debug_assert!(
|
|
procs.symbol_specializations.is_empty(),
|
|
"{:?}",
|
|
&procs.symbol_specializations
|
|
);
|
|
|
|
procs
|
|
}
|
|
|
|
fn specialize_host_specializations<'a>(
|
|
env: &mut Env<'a, '_>,
|
|
procs: &mut Procs<'a>,
|
|
layout_cache: &mut LayoutCache<'a>,
|
|
host_specializations: HostSpecializations<'a>,
|
|
) {
|
|
let (store, it) = host_specializations.decompose();
|
|
|
|
let offset_variable = StorageSubs::merge_into(store, env.subs);
|
|
|
|
for (symbol, variable, host_exposed_aliases) in it {
|
|
specialize_external_help(
|
|
env,
|
|
procs,
|
|
layout_cache,
|
|
symbol,
|
|
offset_variable(variable),
|
|
&host_exposed_aliases,
|
|
)
|
|
}
|
|
}
|
|
|
|
fn specialize_external_specializations<'a>(
|
|
env: &mut Env<'a, '_>,
|
|
procs: &mut Procs<'a>,
|
|
layout_cache: &mut LayoutCache<'a>,
|
|
externals_others_need: ExternalSpecializations<'a>,
|
|
) {
|
|
let (store, it) = externals_others_need.decompose();
|
|
|
|
let offset_variable = StorageSubs::merge_into(store, env.subs);
|
|
|
|
for (symbol, solved_types) in it {
|
|
for store_variable in solved_types {
|
|
let imported_variable = offset_variable(store_variable);
|
|
|
|
roc_tracing::debug!(proc_name = ?symbol, ?store_variable, ?imported_variable, "specializing needed external");
|
|
|
|
// historical note: we used to deduplicate with a hash here,
|
|
// but the cost of that hash is very high. So for now we make
|
|
// duplicate specializations, and the insertion into a hash map
|
|
// below will deduplicate them.
|
|
|
|
specialize_external_help(env, procs, layout_cache, symbol, imported_variable, &[])
|
|
}
|
|
}
|
|
}
|
|
|
|
fn specialize_external_help<'a>(
|
|
env: &mut Env<'a, '_>,
|
|
procs: &mut Procs<'a>,
|
|
layout_cache: &mut LayoutCache<'a>,
|
|
name: LambdaName<'a>,
|
|
variable: Variable,
|
|
host_exposed_aliases: &[(Symbol, Variable)],
|
|
) {
|
|
let partial_proc_id = match procs.partial_procs.symbol_to_id(name.name()) {
|
|
Some(v) => v,
|
|
None => {
|
|
panic!("Cannot find a partial proc for {:?}", name);
|
|
}
|
|
};
|
|
|
|
let specialization_result = specialize_variable(
|
|
env,
|
|
procs,
|
|
name,
|
|
layout_cache,
|
|
variable,
|
|
host_exposed_aliases,
|
|
partial_proc_id,
|
|
);
|
|
|
|
match specialization_result {
|
|
Ok((proc, layout)) => {
|
|
let top_level = ProcLayout::from_raw(
|
|
env.arena,
|
|
&layout_cache.interner,
|
|
layout,
|
|
proc.name.captures_niche(),
|
|
);
|
|
|
|
if procs.is_module_thunk(name.name()) {
|
|
debug_assert!(top_level.arguments.is_empty());
|
|
}
|
|
|
|
procs
|
|
.specialized
|
|
.insert_specialized(name.name(), top_level, proc);
|
|
}
|
|
Err(SpecializeFailure { attempted_layout }) => {
|
|
let proc =
|
|
generate_runtime_error_function(env, layout_cache, name.name(), attempted_layout);
|
|
|
|
let top_level = ProcLayout::from_raw(
|
|
env.arena,
|
|
&layout_cache.interner,
|
|
attempted_layout,
|
|
proc.name.captures_niche(),
|
|
);
|
|
|
|
procs
|
|
.specialized
|
|
.insert_specialized(name.name(), top_level, proc);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn generate_runtime_error_function<'a>(
|
|
env: &mut Env<'a, '_>,
|
|
layout_cache: &LayoutCache<'a>,
|
|
name: Symbol,
|
|
layout: RawFunctionLayout<'a>,
|
|
) -> Proc<'a> {
|
|
let mut msg = bumpalo::collections::string::String::with_capacity_in(80, env.arena);
|
|
use std::fmt::Write;
|
|
write!(
|
|
&mut msg,
|
|
"The {:?} function could not be generated, likely due to a type error.",
|
|
name
|
|
)
|
|
.unwrap();
|
|
|
|
dbg_do!(ROC_PRINT_RUNTIME_ERROR_GEN, {
|
|
eprintln!(
|
|
"emitted runtime error function {:?} for layout {:?}",
|
|
&msg, layout
|
|
);
|
|
});
|
|
|
|
let runtime_error = runtime_error(env, msg.into_bump_str());
|
|
|
|
let (args, ret_layout) = match layout {
|
|
RawFunctionLayout::Function(arg_layouts, lambda_set, ret_layout) => {
|
|
let real_arg_layouts =
|
|
lambda_set.extend_argument_list(env.arena, &layout_cache.interner, arg_layouts);
|
|
let mut args = Vec::with_capacity_in(real_arg_layouts.len(), env.arena);
|
|
|
|
for arg in arg_layouts {
|
|
args.push((*arg, env.unique_symbol()));
|
|
}
|
|
if real_arg_layouts.len() != arg_layouts.len() {
|
|
args.push((Layout::LambdaSet(lambda_set), Symbol::ARG_CLOSURE));
|
|
}
|
|
|
|
(args.into_bump_slice(), *ret_layout)
|
|
}
|
|
RawFunctionLayout::ZeroArgumentThunk(ret_layout) => (&[] as &[_], ret_layout),
|
|
};
|
|
|
|
Proc {
|
|
name: LambdaName::no_niche(name),
|
|
args,
|
|
body: runtime_error,
|
|
closure_data_layout: None,
|
|
ret_layout,
|
|
is_self_recursive: SelfRecursive::NotSelfRecursive,
|
|
must_own_arguments: false,
|
|
host_exposed_layouts: HostExposedLayouts::NotHostExposed,
|
|
}
|
|
}
|
|
|
|
/// A snapshot of the state of types at a moment in time.
|
|
/// Includes the exact types, but also auxiliary information like layouts.
|
|
struct TypeStateSnapshot {
|
|
subs_snapshot: roc_types::subs::SubsSnapshot,
|
|
layout_snapshot: crate::layout::CacheSnapshot,
|
|
external_storage_snapshot: VecMap<ModuleId, ExternalModuleStorageSnapshot>,
|
|
}
|
|
|
|
/// Takes a snapshot of the type state. Snapshots should be taken before new specializations, and
|
|
/// accordingly [rolled back][rollback_typestate] a specialization is complete, so as to not
|
|
/// interfere with other specializations.
|
|
fn snapshot_typestate(
|
|
subs: &mut Subs,
|
|
procs: &mut Procs,
|
|
layout_cache: &mut LayoutCache<'_>,
|
|
) -> TypeStateSnapshot {
|
|
TypeStateSnapshot {
|
|
subs_snapshot: subs.snapshot(),
|
|
layout_snapshot: layout_cache.snapshot(),
|
|
external_storage_snapshot: procs
|
|
.externals_we_need
|
|
.iter_mut()
|
|
.map(|(module, es)| (*module, es.snapshot_cache()))
|
|
.collect(),
|
|
}
|
|
}
|
|
|
|
/// Rolls back the type state to the given [snapshot].
|
|
/// Should be called after a specialization is complete to avoid interfering with other
|
|
/// specializations.
|
|
fn rollback_typestate(
|
|
subs: &mut Subs,
|
|
procs: &mut Procs,
|
|
layout_cache: &mut LayoutCache<'_>,
|
|
snapshot: TypeStateSnapshot,
|
|
) {
|
|
let TypeStateSnapshot {
|
|
subs_snapshot,
|
|
layout_snapshot,
|
|
mut external_storage_snapshot,
|
|
} = snapshot;
|
|
|
|
subs.rollback_to(subs_snapshot);
|
|
layout_cache.rollback_to(layout_snapshot);
|
|
|
|
for (module, es) in procs.externals_we_need.iter_mut() {
|
|
if let Some((_, snapshot)) = external_storage_snapshot.remove(module) {
|
|
es.rollback_cache(snapshot);
|
|
} else {
|
|
es.invalidate_whole_cache();
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Specialize a single proc.
|
|
///
|
|
/// The caller should snapshot and rollback the type state before and after calling this function,
|
|
/// respectively. This function will not take snapshots itself, but will modify the type state.
|
|
fn specialize_proc_help<'a>(
|
|
env: &mut Env<'a, '_>,
|
|
procs: &mut Procs<'a>,
|
|
lambda_name: LambdaName<'a>,
|
|
layout_cache: &mut LayoutCache<'a>,
|
|
fn_var: Variable,
|
|
host_exposed_variables: &[(Symbol, Variable)],
|
|
partial_proc_id: PartialProcId,
|
|
) -> Result<Proc<'a>, LayoutProblem> {
|
|
let partial_proc = procs.partial_procs.get_id(partial_proc_id);
|
|
let captured_symbols = partial_proc.captured_symbols;
|
|
|
|
let _unified = env.unify(
|
|
procs.externals_we_need.values_mut(),
|
|
layout_cache,
|
|
partial_proc.annotation,
|
|
fn_var,
|
|
);
|
|
|
|
// This will not hold for programs with type errors
|
|
// let is_valid = matches!(unified, roc_unify::unify::Unified::Success(_));
|
|
// debug_assert!(is_valid, "unificaton failure for {:?}", proc_name);
|
|
|
|
// if this is a closure, add the closure record argument
|
|
let pattern_symbols = match partial_proc.captured_symbols {
|
|
CapturedSymbols::None => partial_proc.pattern_symbols,
|
|
CapturedSymbols::Captured([]) => partial_proc.pattern_symbols,
|
|
CapturedSymbols::Captured(_) => {
|
|
let mut temp =
|
|
Vec::from_iter_in(partial_proc.pattern_symbols.iter().copied(), env.arena);
|
|
temp.push(Symbol::ARG_CLOSURE);
|
|
temp.into_bump_slice()
|
|
}
|
|
};
|
|
|
|
let specialized =
|
|
build_specialized_proc_from_var(env, layout_cache, lambda_name, pattern_symbols, fn_var)?;
|
|
|
|
let recursivity = if partial_proc.is_self_recursive {
|
|
SelfRecursive::SelfRecursive(JoinPointId(env.unique_symbol()))
|
|
} else {
|
|
SelfRecursive::NotSelfRecursive
|
|
};
|
|
|
|
let body = partial_proc.body.clone();
|
|
let body_var = partial_proc.body_var;
|
|
|
|
// determine the layout of aliases/rigids exposed to the host
|
|
let host_exposed_layouts = if host_exposed_variables.is_empty() {
|
|
HostExposedLayouts::NotHostExposed
|
|
} else {
|
|
let mut aliases = BumpMap::new_in(env.arena);
|
|
|
|
for (symbol, variable) in host_exposed_variables {
|
|
let layout = layout_cache
|
|
.raw_from_var(env.arena, *variable, env.subs)
|
|
.unwrap();
|
|
|
|
let name = env.unique_symbol();
|
|
|
|
match layout {
|
|
RawFunctionLayout::Function(argument_layouts, lambda_set, return_layout) => {
|
|
let assigned = env.unique_symbol();
|
|
|
|
let mut argument_symbols =
|
|
Vec::with_capacity_in(argument_layouts.len(), env.arena);
|
|
let mut proc_arguments =
|
|
Vec::with_capacity_in(argument_layouts.len() + 1, env.arena);
|
|
let mut top_level_arguments =
|
|
Vec::with_capacity_in(argument_layouts.len() + 1, env.arena);
|
|
|
|
for layout in argument_layouts {
|
|
let symbol = env.unique_symbol();
|
|
|
|
proc_arguments.push((*layout, symbol));
|
|
|
|
argument_symbols.push(symbol);
|
|
top_level_arguments.push(*layout);
|
|
}
|
|
|
|
// the proc needs to take an extra closure argument
|
|
let lambda_set_layout = Layout::LambdaSet(lambda_set);
|
|
proc_arguments.push((lambda_set_layout, Symbol::ARG_CLOSURE));
|
|
|
|
// this should also be reflected in the TopLevel signature
|
|
top_level_arguments.push(lambda_set_layout);
|
|
|
|
let hole = env.arena.alloc(Stmt::Ret(assigned));
|
|
|
|
let body = match_on_lambda_set(
|
|
env,
|
|
layout_cache,
|
|
procs,
|
|
lambda_set,
|
|
Symbol::ARG_CLOSURE,
|
|
argument_symbols.into_bump_slice(),
|
|
argument_layouts,
|
|
return_layout,
|
|
assigned,
|
|
hole,
|
|
);
|
|
|
|
let proc = Proc {
|
|
name: LambdaName::no_niche(name),
|
|
args: proc_arguments.into_bump_slice(),
|
|
body,
|
|
closure_data_layout: None,
|
|
ret_layout: *return_layout,
|
|
is_self_recursive: SelfRecursive::NotSelfRecursive,
|
|
must_own_arguments: false,
|
|
host_exposed_layouts: HostExposedLayouts::NotHostExposed,
|
|
};
|
|
|
|
let top_level = ProcLayout::new(
|
|
env.arena,
|
|
top_level_arguments.into_bump_slice(),
|
|
CapturesNiche::no_niche(),
|
|
*return_layout,
|
|
);
|
|
|
|
procs.specialized.insert_specialized(name, top_level, proc);
|
|
|
|
aliases.insert(*symbol, (name, top_level, layout));
|
|
}
|
|
RawFunctionLayout::ZeroArgumentThunk(result) => {
|
|
let assigned = env.unique_symbol();
|
|
let hole = env.arena.alloc(Stmt::Ret(assigned));
|
|
let forced = force_thunk(env, lambda_name.name(), result, assigned, hole);
|
|
|
|
let proc = Proc {
|
|
name: LambdaName::no_niche(name),
|
|
args: &[],
|
|
body: forced,
|
|
closure_data_layout: None,
|
|
ret_layout: result,
|
|
is_self_recursive: SelfRecursive::NotSelfRecursive,
|
|
must_own_arguments: false,
|
|
host_exposed_layouts: HostExposedLayouts::NotHostExposed,
|
|
};
|
|
|
|
let top_level = ProcLayout::from_raw(
|
|
env.arena,
|
|
&layout_cache.interner,
|
|
layout,
|
|
CapturesNiche::no_niche(),
|
|
);
|
|
|
|
procs.specialized.insert_specialized(name, top_level, proc);
|
|
|
|
aliases.insert(
|
|
*symbol,
|
|
(
|
|
name,
|
|
ProcLayout::new(env.arena, &[], CapturesNiche::no_niche(), result),
|
|
layout,
|
|
),
|
|
);
|
|
}
|
|
}
|
|
}
|
|
|
|
HostExposedLayouts::HostExposed {
|
|
rigids: BumpMap::new_in(env.arena),
|
|
aliases,
|
|
}
|
|
};
|
|
|
|
let mut specialized_body = from_can(env, body_var, body, procs, layout_cache);
|
|
|
|
let specialized_proc = match specialized {
|
|
SpecializedLayout::FunctionPointerBody {
|
|
ret_layout,
|
|
closure: opt_closure_layout,
|
|
} => {
|
|
// this is a function body like
|
|
//
|
|
// foo = Num.add
|
|
//
|
|
// we need to expand this to
|
|
//
|
|
// foo = \x,y -> Num.add x y
|
|
|
|
let closure_data_layout = match opt_closure_layout {
|
|
Some(lambda_set) => Layout::LambdaSet(lambda_set),
|
|
None => Layout::UNIT,
|
|
};
|
|
|
|
// I'm not sure how to handle the closure case, does it ever occur?
|
|
debug_assert!(matches!(captured_symbols, CapturedSymbols::None));
|
|
|
|
Proc {
|
|
name: lambda_name,
|
|
args: &[],
|
|
body: specialized_body,
|
|
closure_data_layout: Some(closure_data_layout),
|
|
ret_layout,
|
|
is_self_recursive: recursivity,
|
|
must_own_arguments: false,
|
|
host_exposed_layouts,
|
|
}
|
|
}
|
|
SpecializedLayout::FunctionBody {
|
|
arguments: proc_args,
|
|
closure: opt_closure_layout,
|
|
ret_layout,
|
|
} => {
|
|
let mut proc_args = Vec::from_iter_in(proc_args.iter().copied(), env.arena);
|
|
|
|
// unpack the closure symbols, if any
|
|
match (opt_closure_layout, captured_symbols) {
|
|
(Some(closure_layout), CapturedSymbols::Captured(captured)) => {
|
|
// debug_assert!(!captured.is_empty());
|
|
|
|
// An argument from the closure list may have taken on a specialized symbol
|
|
// name during the evaluation of the def body. If this is the case, load the
|
|
// specialized name rather than the original captured name!
|
|
let get_specialized_name = |symbol| {
|
|
let specs_used_in_body =
|
|
procs.get_symbol_specializations_used_in_body(symbol);
|
|
|
|
match specs_used_in_body {
|
|
Some(mut specs) => {
|
|
let spec_symbol =
|
|
specs.next().map(|(_, sym)| sym).unwrap_or(symbol);
|
|
if specs.next().is_some() {
|
|
internal_error!(
|
|
"polymorphic symbol captures not supported yet"
|
|
);
|
|
}
|
|
spec_symbol
|
|
}
|
|
None => symbol,
|
|
}
|
|
};
|
|
|
|
match closure_layout
|
|
.layout_for_member_with_lambda_name(&layout_cache.interner, lambda_name)
|
|
{
|
|
ClosureRepresentation::Union {
|
|
alphabetic_order_fields: field_layouts,
|
|
union_layout,
|
|
tag_id,
|
|
..
|
|
} => {
|
|
debug_assert!(matches!(
|
|
union_layout,
|
|
UnionLayout::NonRecursive(_)
|
|
| UnionLayout::Recursive(_)
|
|
| UnionLayout::NullableUnwrapped { .. }
|
|
));
|
|
debug_assert_eq!(field_layouts.len(), captured.len());
|
|
|
|
// captured variables are in symbol-alphabetic order, but now we want
|
|
// them ordered by their alignment requirements
|
|
let mut combined = Vec::from_iter_in(
|
|
captured.iter().map(|(x, _)| x).zip(field_layouts.iter()),
|
|
env.arena,
|
|
);
|
|
|
|
let ptr_bytes = env.target_info;
|
|
|
|
combined.sort_by(|(_, layout1), (_, layout2)| {
|
|
let size1 =
|
|
layout1.alignment_bytes(&layout_cache.interner, ptr_bytes);
|
|
let size2 =
|
|
layout2.alignment_bytes(&layout_cache.interner, ptr_bytes);
|
|
|
|
size2.cmp(&size1)
|
|
});
|
|
|
|
for (index, (symbol, _)) in combined.iter().enumerate() {
|
|
let layout = union_layout.layout_at(tag_id, index);
|
|
|
|
let expr = Expr::UnionAtIndex {
|
|
tag_id,
|
|
structure: Symbol::ARG_CLOSURE,
|
|
index: index as u64,
|
|
union_layout,
|
|
};
|
|
|
|
let symbol = get_specialized_name(**symbol);
|
|
|
|
specialized_body = Stmt::Let(
|
|
symbol,
|
|
expr,
|
|
layout,
|
|
env.arena.alloc(specialized_body),
|
|
);
|
|
}
|
|
}
|
|
ClosureRepresentation::AlphabeticOrderStruct(field_layouts) => {
|
|
// captured variables are in symbol-alphabetic order, but now we want
|
|
// them ordered by their alignment requirements
|
|
//
|
|
// TODO: sort only the fields and apply the found permutation to the symbols
|
|
// TODO: can we move this ordering to `layout_for_member`?
|
|
let mut combined = Vec::from_iter_in(
|
|
captured.iter().map(|(x, _)| x).zip(field_layouts.iter()),
|
|
env.arena,
|
|
);
|
|
|
|
let ptr_bytes = env.target_info;
|
|
|
|
combined.sort_by(|(_, layout1), (_, layout2)| {
|
|
let size1 =
|
|
layout1.alignment_bytes(&layout_cache.interner, ptr_bytes);
|
|
let size2 =
|
|
layout2.alignment_bytes(&layout_cache.interner, ptr_bytes);
|
|
|
|
size2.cmp(&size1)
|
|
});
|
|
|
|
let ordered_field_layouts = Vec::from_iter_in(
|
|
combined.iter().map(|(_, layout)| **layout),
|
|
env.arena,
|
|
);
|
|
let ordered_field_layouts = ordered_field_layouts.into_bump_slice();
|
|
|
|
debug_assert_eq!(
|
|
captured.len(),
|
|
ordered_field_layouts.len(),
|
|
"{:?} captures {:?} but has layout {:?}",
|
|
lambda_name,
|
|
&captured,
|
|
&ordered_field_layouts
|
|
);
|
|
|
|
for (index, (symbol, layout)) in combined.iter().enumerate() {
|
|
let expr = Expr::StructAtIndex {
|
|
index: index as _,
|
|
field_layouts: ordered_field_layouts,
|
|
structure: Symbol::ARG_CLOSURE,
|
|
};
|
|
|
|
let symbol = get_specialized_name(**symbol);
|
|
|
|
specialized_body = Stmt::Let(
|
|
symbol,
|
|
expr,
|
|
**layout,
|
|
env.arena.alloc(specialized_body),
|
|
);
|
|
}
|
|
}
|
|
|
|
ClosureRepresentation::UnwrappedCapture(_layout) => {
|
|
debug_assert_eq!(captured.len(), 1);
|
|
let (captured_symbol, _captured_layout) = captured[0];
|
|
|
|
// The capture set is unwrapped, so simply replace the closure argument
|
|
// to the function with the unwrapped capture name.
|
|
let captured_symbol = get_specialized_name(captured_symbol);
|
|
let closure_arg = proc_args.last_mut().unwrap();
|
|
debug_assert_eq!(closure_arg.1, Symbol::ARG_CLOSURE);
|
|
closure_arg.1 = captured_symbol;
|
|
}
|
|
|
|
ClosureRepresentation::EnumDispatch(_) => {
|
|
// just ignore this value, since it's not a capture
|
|
// IDEA don't pass this value in the future
|
|
}
|
|
}
|
|
}
|
|
(None, CapturedSymbols::None) | (None, CapturedSymbols::Captured([])) => {}
|
|
_ => unreachable!("to closure or not to closure?"),
|
|
}
|
|
|
|
proc_args.iter_mut().for_each(|(_layout, symbol)| {
|
|
// Grab the specialization symbol, if it exists.
|
|
*symbol = procs
|
|
.symbol_specializations
|
|
.remove_single(*symbol)
|
|
.unwrap_or(*symbol);
|
|
});
|
|
|
|
let closure_data_layout = match opt_closure_layout {
|
|
Some(lambda_set) => Some(Layout::LambdaSet(lambda_set)),
|
|
None => None,
|
|
};
|
|
|
|
Proc {
|
|
name: lambda_name,
|
|
args: proc_args.into_bump_slice(),
|
|
body: specialized_body,
|
|
closure_data_layout,
|
|
ret_layout,
|
|
is_self_recursive: recursivity,
|
|
must_own_arguments: false,
|
|
host_exposed_layouts,
|
|
}
|
|
}
|
|
};
|
|
|
|
Ok(specialized_proc)
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
enum SpecializedLayout<'a> {
|
|
/// A body like `foo = \a,b,c -> ...`
|
|
FunctionBody {
|
|
arguments: &'a [(Layout<'a>, Symbol)],
|
|
closure: Option<LambdaSet<'a>>,
|
|
ret_layout: Layout<'a>,
|
|
},
|
|
/// A body like `foo = Num.add`
|
|
FunctionPointerBody {
|
|
closure: Option<LambdaSet<'a>>,
|
|
ret_layout: Layout<'a>,
|
|
},
|
|
}
|
|
|
|
#[allow(clippy::type_complexity)]
|
|
fn build_specialized_proc_from_var<'a>(
|
|
env: &mut Env<'a, '_>,
|
|
layout_cache: &mut LayoutCache<'a>,
|
|
lambda_name: LambdaName<'a>,
|
|
pattern_symbols: &[Symbol],
|
|
fn_var: Variable,
|
|
) -> Result<SpecializedLayout<'a>, LayoutProblem> {
|
|
match layout_cache.raw_from_var(env.arena, fn_var, env.subs)? {
|
|
RawFunctionLayout::Function(pattern_layouts, closure_layout, ret_layout) => {
|
|
let mut pattern_layouts_vec = Vec::with_capacity_in(pattern_layouts.len(), env.arena);
|
|
pattern_layouts_vec.extend_from_slice(pattern_layouts);
|
|
|
|
build_specialized_proc(
|
|
env.arena,
|
|
lambda_name,
|
|
pattern_symbols,
|
|
pattern_layouts_vec,
|
|
Some(closure_layout),
|
|
*ret_layout,
|
|
)
|
|
}
|
|
RawFunctionLayout::ZeroArgumentThunk(ret_layout) => {
|
|
// a top-level constant 0-argument thunk
|
|
build_specialized_proc(
|
|
env.arena,
|
|
lambda_name,
|
|
pattern_symbols,
|
|
Vec::new_in(env.arena),
|
|
None,
|
|
ret_layout,
|
|
)
|
|
}
|
|
}
|
|
}
|
|
|
|
#[allow(clippy::type_complexity)]
|
|
fn build_specialized_proc<'a>(
|
|
arena: &'a Bump,
|
|
lambda_name: LambdaName<'a>,
|
|
pattern_symbols: &[Symbol],
|
|
pattern_layouts: Vec<'a, Layout<'a>>,
|
|
lambda_set: Option<LambdaSet<'a>>,
|
|
ret_layout: Layout<'a>,
|
|
) -> Result<SpecializedLayout<'a>, LayoutProblem> {
|
|
use SpecializedLayout::*;
|
|
|
|
let mut proc_args = Vec::with_capacity_in(pattern_layouts.len(), arena);
|
|
|
|
let pattern_layouts_len = pattern_layouts.len();
|
|
|
|
for (arg_layout, arg_name) in pattern_layouts.into_iter().zip(pattern_symbols.iter()) {
|
|
proc_args.push((arg_layout, *arg_name));
|
|
}
|
|
|
|
// Given
|
|
//
|
|
// foo =
|
|
// x = 42
|
|
//
|
|
// f = \{} -> x
|
|
//
|
|
// We desugar that into
|
|
//
|
|
// f = \{}, x -> x
|
|
//
|
|
// foo =
|
|
// x = 42
|
|
//
|
|
// f_closure = { ptr: f, closure: x }
|
|
//
|
|
// then
|
|
|
|
let proc_name = lambda_name.name();
|
|
match lambda_set {
|
|
Some(lambda_set) if pattern_symbols.last() == Some(&Symbol::ARG_CLOSURE) => {
|
|
// here we define the lifted (now top-level) f function. Its final argument is `Symbol::ARG_CLOSURE`,
|
|
// it stores the closure structure (just an integer in this case)
|
|
proc_args.push((Layout::LambdaSet(lambda_set), Symbol::ARG_CLOSURE));
|
|
|
|
debug_assert_eq!(
|
|
pattern_layouts_len + 1,
|
|
pattern_symbols.len(),
|
|
"Tried to zip two vecs with different lengths in {:?}!",
|
|
proc_name,
|
|
);
|
|
|
|
let proc_args = proc_args.into_bump_slice();
|
|
|
|
Ok(FunctionBody {
|
|
arguments: proc_args,
|
|
closure: Some(lambda_set),
|
|
ret_layout,
|
|
})
|
|
}
|
|
Some(lambda_set) => {
|
|
// a function that returns a function, but is not itself a closure
|
|
// e.g. f = Num.add
|
|
|
|
// make sure there is not arg_closure argument without a closure layout
|
|
debug_assert!(pattern_symbols.last() != Some(&Symbol::ARG_CLOSURE));
|
|
|
|
use std::cmp::Ordering;
|
|
match pattern_layouts_len.cmp(&pattern_symbols.len()) {
|
|
Ordering::Equal => {
|
|
let proc_args = proc_args.into_bump_slice();
|
|
|
|
Ok(FunctionBody {
|
|
arguments: proc_args,
|
|
closure: None,
|
|
ret_layout,
|
|
})
|
|
}
|
|
Ordering::Greater => {
|
|
if pattern_symbols.is_empty() {
|
|
let ret_layout = Layout::LambdaSet(lambda_set);
|
|
Ok(FunctionPointerBody {
|
|
closure: None,
|
|
ret_layout,
|
|
})
|
|
} else {
|
|
// so far, the problem when hitting this branch was always somewhere else
|
|
// I think this branch should not be reachable in a bugfree compiler
|
|
panic!(
|
|
"more arguments (according to the layout) than argument symbols for {:?}",
|
|
proc_name
|
|
)
|
|
}
|
|
}
|
|
Ordering::Less => panic!(
|
|
"more argument symbols than arguments (according to the layout) for {:?}",
|
|
proc_name
|
|
),
|
|
}
|
|
}
|
|
None => {
|
|
// else we're making a normal function, no closure problems to worry about
|
|
// we'll just assert some things
|
|
|
|
// make sure there is not arg_closure argument without a closure layout
|
|
debug_assert!(pattern_symbols.last() != Some(&Symbol::ARG_CLOSURE));
|
|
|
|
use std::cmp::Ordering;
|
|
match pattern_layouts_len.cmp(&pattern_symbols.len()) {
|
|
Ordering::Equal => {
|
|
let proc_args = proc_args.into_bump_slice();
|
|
|
|
Ok(FunctionBody {
|
|
arguments: proc_args,
|
|
closure: None,
|
|
ret_layout,
|
|
})
|
|
}
|
|
Ordering::Greater => {
|
|
if pattern_symbols.is_empty() {
|
|
Ok(FunctionPointerBody {
|
|
closure: None,
|
|
ret_layout,
|
|
})
|
|
} else {
|
|
// so far, the problem when hitting this branch was always somewhere else
|
|
// I think this branch should not be reachable in a bugfree compiler
|
|
panic!(
|
|
"more arguments (according to the layout) than argument symbols for {:?}",
|
|
proc_name
|
|
)
|
|
}
|
|
}
|
|
Ordering::Less => panic!(
|
|
"more argument symbols than arguments (according to the layout) for {:?}",
|
|
proc_name
|
|
),
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
struct SpecializeFailure<'a> {
|
|
/// The layout we attempted to create
|
|
attempted_layout: RawFunctionLayout<'a>,
|
|
}
|
|
|
|
type SpecializeSuccess<'a> = (Proc<'a>, RawFunctionLayout<'a>);
|
|
|
|
fn specialize_variable<'a>(
|
|
env: &mut Env<'a, '_>,
|
|
procs: &mut Procs<'a>,
|
|
proc_name: LambdaName<'a>,
|
|
layout_cache: &mut LayoutCache<'a>,
|
|
fn_var: Variable,
|
|
host_exposed_variables: &[(Symbol, Variable)],
|
|
partial_proc_id: PartialProcId,
|
|
) -> Result<SpecializeSuccess<'a>, SpecializeFailure<'a>> {
|
|
let snapshot = snapshot_typestate(env.subs, procs, layout_cache);
|
|
|
|
// for debugging only
|
|
let raw = layout_cache
|
|
.raw_from_var(env.arena, fn_var, env.subs)
|
|
.unwrap_or_else(|err| panic!("TODO handle invalid function {:?}", err));
|
|
|
|
let raw = if procs.is_module_thunk(proc_name.name()) {
|
|
match raw {
|
|
RawFunctionLayout::Function(_, lambda_set, _) => {
|
|
RawFunctionLayout::ZeroArgumentThunk(Layout::LambdaSet(lambda_set))
|
|
}
|
|
_ => raw,
|
|
}
|
|
} else {
|
|
raw
|
|
};
|
|
|
|
// make sure rigid variables in the annotation are converted to flex variables
|
|
let annotation_var = procs.partial_procs.get_id(partial_proc_id).annotation;
|
|
instantiate_rigids(env.subs, annotation_var);
|
|
|
|
procs.push_active_specialization(proc_name.name());
|
|
roc_tracing::debug!(?proc_name, ?fn_var, fn_content = ?roc_types::subs::SubsFmtContent(env.subs.get_content_without_compacting(fn_var), env.subs), "specialization start");
|
|
|
|
let specialized = specialize_proc_help(
|
|
env,
|
|
procs,
|
|
proc_name,
|
|
layout_cache,
|
|
fn_var,
|
|
host_exposed_variables,
|
|
partial_proc_id,
|
|
);
|
|
|
|
roc_tracing::debug!(
|
|
?proc_name,
|
|
succeeded = specialized.is_ok(),
|
|
"specialization end"
|
|
);
|
|
procs.pop_active_specialization(proc_name.name());
|
|
|
|
let result = match specialized {
|
|
Ok(proc) => {
|
|
// when successful, the layout after unification should be the layout before unification
|
|
// debug_assert_eq!(
|
|
// attempted_layout,
|
|
// layout_cache
|
|
// .from_var(env.arena, fn_var, env.subs)
|
|
// .unwrap_or_else(|err| panic!("TODO handle invalid function {:?}", err))
|
|
// );
|
|
|
|
Ok((proc, raw))
|
|
}
|
|
Err(error) => {
|
|
// earlier we made this information available where we handle the failure
|
|
// but we didn't do anything useful with it. So it's here if we ever need it again
|
|
let _ = error;
|
|
|
|
Err(SpecializeFailure {
|
|
attempted_layout: raw,
|
|
})
|
|
}
|
|
};
|
|
|
|
rollback_typestate(env.subs, procs, layout_cache, snapshot);
|
|
|
|
result
|
|
}
|
|
|
|
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
|
|
pub struct ProcLayout<'a> {
|
|
pub arguments: &'a [Layout<'a>],
|
|
pub result: Layout<'a>,
|
|
pub captures_niche: CapturesNiche<'a>,
|
|
}
|
|
|
|
impl<'a> ProcLayout<'a> {
|
|
pub fn new(
|
|
arena: &'a Bump,
|
|
old_arguments: &'a [Layout<'a>],
|
|
old_captures_niche: CapturesNiche<'a>,
|
|
result: Layout<'a>,
|
|
) -> Self {
|
|
let mut arguments = Vec::with_capacity_in(old_arguments.len(), arena);
|
|
|
|
for old in old_arguments {
|
|
let other = old;
|
|
arguments.push(*other);
|
|
}
|
|
|
|
let other = result;
|
|
let new_result = other;
|
|
|
|
ProcLayout {
|
|
arguments: arguments.into_bump_slice(),
|
|
captures_niche: old_captures_niche,
|
|
result: new_result,
|
|
}
|
|
}
|
|
|
|
pub fn from_raw(
|
|
arena: &'a Bump,
|
|
interner: &LayoutInterner<'a>,
|
|
raw: RawFunctionLayout<'a>,
|
|
captures_niche: CapturesNiche<'a>,
|
|
) -> Self {
|
|
match raw {
|
|
RawFunctionLayout::Function(arguments, lambda_set, result) => {
|
|
let arguments = lambda_set.extend_argument_list(arena, interner, arguments);
|
|
ProcLayout::new(arena, arguments, captures_niche, *result)
|
|
}
|
|
RawFunctionLayout::ZeroArgumentThunk(result) => {
|
|
ProcLayout::new(arena, &[], CapturesNiche::no_niche(), result)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn specialize_naked_symbol<'a>(
|
|
env: &mut Env<'a, '_>,
|
|
variable: Variable,
|
|
procs: &mut Procs<'a>,
|
|
layout_cache: &mut LayoutCache<'a>,
|
|
assigned: Symbol,
|
|
hole: &'a Stmt<'a>,
|
|
symbol: Symbol,
|
|
) -> Stmt<'a> {
|
|
if procs.is_module_thunk(symbol) {
|
|
let fn_var = variable;
|
|
|
|
// This is a top-level declaration, which will code gen to a 0-arity thunk.
|
|
let result = call_by_name(
|
|
env,
|
|
procs,
|
|
fn_var,
|
|
symbol,
|
|
std::vec::Vec::new(),
|
|
layout_cache,
|
|
assigned,
|
|
hole,
|
|
);
|
|
|
|
return result;
|
|
} else if env.is_imported_symbol(symbol) {
|
|
match layout_cache.from_var(env.arena, variable, env.subs) {
|
|
Err(e) => panic!("invalid layout {:?}", e),
|
|
Ok(_) => {
|
|
// this is a 0-arity thunk
|
|
let result = call_by_name(
|
|
env,
|
|
procs,
|
|
variable,
|
|
symbol,
|
|
std::vec::Vec::new(),
|
|
layout_cache,
|
|
assigned,
|
|
match hole {
|
|
Stmt::Jump(id, _) => env
|
|
.arena
|
|
.alloc(Stmt::Jump(*id, env.arena.alloc([assigned]))),
|
|
Stmt::Ret(_) => env.arena.alloc(Stmt::Ret(assigned)),
|
|
hole => hole,
|
|
},
|
|
);
|
|
|
|
return result;
|
|
}
|
|
}
|
|
}
|
|
|
|
let result = match hole {
|
|
Stmt::Jump(id, _) => Stmt::Jump(*id, env.arena.alloc([symbol])),
|
|
_ => Stmt::Ret(symbol),
|
|
};
|
|
|
|
// if the symbol is a function symbol, ensure it is properly specialized!
|
|
let original = symbol;
|
|
|
|
let opt_fn_var = Some(variable);
|
|
|
|
// if this is a function symbol, ensure that it's properly specialized!
|
|
specialize_symbol(
|
|
env,
|
|
procs,
|
|
layout_cache,
|
|
opt_fn_var,
|
|
symbol,
|
|
result,
|
|
original,
|
|
)
|
|
}
|
|
|
|
fn try_make_literal<'a>(can_expr: &roc_can::expr::Expr, layout: Layout<'a>) -> Option<Literal<'a>> {
|
|
use roc_can::expr::Expr::*;
|
|
|
|
match can_expr {
|
|
Int(_, _, int_str, int, _bound) => {
|
|
Some(make_num_literal(layout, int_str, IntOrFloatValue::Int(*int)).to_expr_literal())
|
|
}
|
|
|
|
Float(_, _, float_str, float, _bound) => Some(
|
|
make_num_literal(layout, float_str, IntOrFloatValue::Float(*float)).to_expr_literal(),
|
|
),
|
|
|
|
// TODO investigate lifetime trouble
|
|
// Str(string) => Some(Literal::Str(env.arena.alloc(string))),
|
|
Num(_, num_str, num, _bound) => {
|
|
Some(make_num_literal(layout, num_str, IntOrFloatValue::Int(*num)).to_expr_literal())
|
|
}
|
|
_ => None,
|
|
}
|
|
}
|
|
|
|
pub fn with_hole<'a>(
|
|
env: &mut Env<'a, '_>,
|
|
can_expr: roc_can::expr::Expr,
|
|
variable: Variable,
|
|
procs: &mut Procs<'a>,
|
|
layout_cache: &mut LayoutCache<'a>,
|
|
assigned: Symbol,
|
|
hole: &'a Stmt<'a>,
|
|
) -> Stmt<'a> {
|
|
use roc_can::expr::Expr::*;
|
|
|
|
let arena = env.arena;
|
|
|
|
match can_expr {
|
|
Int(_, _, int_str, int, _bound) => assign_num_literal_expr(
|
|
env,
|
|
layout_cache,
|
|
assigned,
|
|
variable,
|
|
&int_str,
|
|
IntOrFloatValue::Int(int),
|
|
hole,
|
|
),
|
|
|
|
Float(_, _, float_str, float, _bound) => assign_num_literal_expr(
|
|
env,
|
|
layout_cache,
|
|
assigned,
|
|
variable,
|
|
&float_str,
|
|
IntOrFloatValue::Float(float),
|
|
hole,
|
|
),
|
|
|
|
Num(_, num_str, num, _bound) => assign_num_literal_expr(
|
|
env,
|
|
layout_cache,
|
|
assigned,
|
|
variable,
|
|
&num_str,
|
|
IntOrFloatValue::Int(num),
|
|
hole,
|
|
),
|
|
|
|
Str(string) => Stmt::Let(
|
|
assigned,
|
|
Expr::Literal(Literal::Str(arena.alloc(string))),
|
|
Layout::Builtin(Builtin::Str),
|
|
hole,
|
|
),
|
|
|
|
SingleQuote(_, _, character, _) => {
|
|
let layout = layout_cache
|
|
.from_var(env.arena, variable, env.subs)
|
|
.unwrap();
|
|
|
|
Stmt::Let(
|
|
assigned,
|
|
Expr::Literal(Literal::Int((character as i128).to_ne_bytes())),
|
|
layout,
|
|
hole,
|
|
)
|
|
}
|
|
LetNonRec(def, cont) => from_can_let(
|
|
env,
|
|
procs,
|
|
layout_cache,
|
|
def,
|
|
cont,
|
|
variable,
|
|
Some((assigned, hole)),
|
|
),
|
|
LetRec(defs, cont, _cycle_mark) => {
|
|
// because Roc is strict, only functions can be recursive!
|
|
for def in defs.into_iter() {
|
|
if let roc_can::pattern::Pattern::Identifier(symbol) = &def.loc_pattern.value {
|
|
if let Closure(closure_data) = def.loc_expr.value {
|
|
register_noncapturing_closure(env, procs, *symbol, closure_data);
|
|
|
|
continue;
|
|
}
|
|
}
|
|
unreachable!("recursive value does not have Identifier pattern")
|
|
}
|
|
|
|
with_hole(
|
|
env,
|
|
cont.value,
|
|
variable,
|
|
procs,
|
|
layout_cache,
|
|
assigned,
|
|
hole,
|
|
)
|
|
}
|
|
Var(mut symbol, _) => {
|
|
// If this symbol is a raw value, find the real name we gave to its specialized usage.
|
|
if let ReuseSymbol::Value(_symbol) = can_reuse_symbol(
|
|
env,
|
|
procs,
|
|
&roc_can::expr::Expr::Var(symbol, variable),
|
|
variable,
|
|
) {
|
|
let real_symbol =
|
|
procs.get_or_insert_symbol_specialization(env, layout_cache, symbol, variable);
|
|
symbol = real_symbol;
|
|
}
|
|
|
|
specialize_naked_symbol(env, variable, procs, layout_cache, assigned, hole, symbol)
|
|
}
|
|
AbilityMember(member, specialization_id, specialization_var) => {
|
|
let specialization_symbol = late_resolve_ability_specialization(
|
|
env,
|
|
member,
|
|
specialization_id,
|
|
specialization_var,
|
|
);
|
|
|
|
specialize_naked_symbol(
|
|
env,
|
|
variable,
|
|
procs,
|
|
layout_cache,
|
|
assigned,
|
|
hole,
|
|
specialization_symbol,
|
|
)
|
|
}
|
|
Tag {
|
|
tag_union_var: variant_var,
|
|
name: tag_name,
|
|
arguments: args,
|
|
..
|
|
} => {
|
|
let arena = env.arena;
|
|
|
|
debug_assert!(!matches!(
|
|
env.subs.get_content_without_compacting(variant_var),
|
|
Content::Structure(FlatType::Func(_, _, _))
|
|
));
|
|
convert_tag_union(
|
|
env,
|
|
variant_var,
|
|
assigned,
|
|
hole,
|
|
tag_name,
|
|
procs,
|
|
layout_cache,
|
|
args,
|
|
arena,
|
|
)
|
|
}
|
|
|
|
ZeroArgumentTag {
|
|
variant_var: _,
|
|
name: tag_name,
|
|
ext_var,
|
|
closure_name,
|
|
} => {
|
|
let arena = env.arena;
|
|
|
|
let content = env.subs.get_content_without_compacting(variable);
|
|
|
|
if let Content::Structure(FlatType::Func(arg_vars, _, ret_var)) = content {
|
|
let ret_var = *ret_var;
|
|
let arg_vars = *arg_vars;
|
|
|
|
tag_union_to_function(
|
|
env,
|
|
arg_vars,
|
|
ret_var,
|
|
tag_name,
|
|
closure_name,
|
|
ext_var,
|
|
procs,
|
|
variable,
|
|
layout_cache,
|
|
assigned,
|
|
hole,
|
|
)
|
|
} else {
|
|
convert_tag_union(
|
|
env,
|
|
variable,
|
|
assigned,
|
|
hole,
|
|
tag_name,
|
|
procs,
|
|
layout_cache,
|
|
std::vec::Vec::new(),
|
|
arena,
|
|
)
|
|
}
|
|
}
|
|
|
|
OpaqueRef { argument, .. } => {
|
|
let (arg_var, loc_arg_expr) = *argument;
|
|
|
|
match can_reuse_symbol(env, procs, &loc_arg_expr.value, arg_var) {
|
|
// Opaques decay to their argument.
|
|
ReuseSymbol::Value(symbol) => {
|
|
let real_name = procs.get_or_insert_symbol_specialization(
|
|
env,
|
|
layout_cache,
|
|
symbol,
|
|
arg_var,
|
|
);
|
|
let mut result = hole.clone();
|
|
substitute_in_exprs(arena, &mut result, assigned, real_name);
|
|
result
|
|
}
|
|
_ => with_hole(
|
|
env,
|
|
loc_arg_expr.value,
|
|
arg_var,
|
|
procs,
|
|
layout_cache,
|
|
assigned,
|
|
hole,
|
|
),
|
|
}
|
|
}
|
|
|
|
Record {
|
|
record_var,
|
|
mut fields,
|
|
..
|
|
} => {
|
|
let sorted_fields_result = {
|
|
let mut layout_env = layout::Env::from_components(
|
|
layout_cache,
|
|
env.subs,
|
|
env.arena,
|
|
env.target_info,
|
|
);
|
|
layout::sort_record_fields(&mut layout_env, record_var)
|
|
};
|
|
let sorted_fields = match sorted_fields_result {
|
|
Ok(fields) => fields,
|
|
Err(_) => return runtime_error(env, "Can't create record with improper layout"),
|
|
};
|
|
|
|
let mut field_symbols = Vec::with_capacity_in(fields.len(), env.arena);
|
|
let mut can_fields = Vec::with_capacity_in(fields.len(), env.arena);
|
|
|
|
#[allow(clippy::enum_variant_names)]
|
|
enum Field {
|
|
// TODO: rename this since it can handle unspecialized expressions now too
|
|
FunctionOrUnspecialized(Symbol, Variable),
|
|
ValueSymbol,
|
|
Field(roc_can::expr::Field),
|
|
}
|
|
|
|
for (label, variable, _) in sorted_fields.into_iter() {
|
|
// TODO how should function pointers be handled here?
|
|
use ReuseSymbol::*;
|
|
match fields.remove(&label) {
|
|
Some(field) => {
|
|
match can_reuse_symbol(env, procs, &field.loc_expr.value, field.var) {
|
|
Imported(symbol)
|
|
| LocalFunction(symbol)
|
|
| UnspecializedExpr(symbol) => {
|
|
field_symbols.push(symbol);
|
|
can_fields.push(Field::FunctionOrUnspecialized(symbol, variable));
|
|
}
|
|
Value(symbol) => {
|
|
let reusable = procs.get_or_insert_symbol_specialization(
|
|
env,
|
|
layout_cache,
|
|
symbol,
|
|
field.var,
|
|
);
|
|
field_symbols.push(reusable);
|
|
can_fields.push(Field::ValueSymbol);
|
|
}
|
|
NotASymbol => {
|
|
field_symbols.push(env.unique_symbol());
|
|
can_fields.push(Field::Field(field));
|
|
}
|
|
}
|
|
}
|
|
None => {
|
|
// this field was optional, but not given
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
// creating a record from the var will unpack it if it's just a single field.
|
|
let layout = match layout_cache.from_var(env.arena, record_var, env.subs) {
|
|
Ok(layout) => layout,
|
|
Err(_) => return runtime_error(env, "Can't create record with improper layout"),
|
|
};
|
|
|
|
let field_symbols = field_symbols.into_bump_slice();
|
|
|
|
let mut stmt = if let [only_field] = field_symbols {
|
|
let mut hole = hole.clone();
|
|
substitute_in_exprs(env.arena, &mut hole, assigned, *only_field);
|
|
hole
|
|
} else {
|
|
Stmt::Let(assigned, Expr::Struct(field_symbols), layout, hole)
|
|
};
|
|
|
|
for (opt_field, symbol) in can_fields.into_iter().rev().zip(field_symbols.iter().rev())
|
|
{
|
|
match opt_field {
|
|
Field::ValueSymbol => {
|
|
// this symbol is already defined; nothing to do
|
|
}
|
|
Field::FunctionOrUnspecialized(symbol, variable) => {
|
|
stmt = specialize_symbol(
|
|
env,
|
|
procs,
|
|
layout_cache,
|
|
Some(variable),
|
|
symbol,
|
|
stmt,
|
|
symbol,
|
|
);
|
|
}
|
|
Field::Field(field) => {
|
|
stmt = with_hole(
|
|
env,
|
|
field.loc_expr.value,
|
|
field.var,
|
|
procs,
|
|
layout_cache,
|
|
*symbol,
|
|
env.arena.alloc(stmt),
|
|
);
|
|
}
|
|
}
|
|
}
|
|
|
|
stmt
|
|
}
|
|
|
|
EmptyRecord => let_empty_struct(assigned, hole),
|
|
|
|
Expect { .. } => unreachable!("I think this is unreachable"),
|
|
ExpectFx { .. } => unreachable!("I think this is unreachable"),
|
|
Dbg { .. } => unreachable!("I think this is unreachable"),
|
|
|
|
If {
|
|
cond_var,
|
|
branch_var,
|
|
branches,
|
|
final_else,
|
|
} => {
|
|
match (
|
|
layout_cache.from_var(env.arena, branch_var, env.subs),
|
|
layout_cache.from_var(env.arena, cond_var, env.subs),
|
|
) {
|
|
(Ok(ret_layout), Ok(cond_layout)) => {
|
|
// if the hole is a return, then we don't need to merge the two
|
|
// branches together again, we can just immediately return
|
|
let is_terminated = matches!(hole, Stmt::Ret(_));
|
|
|
|
if is_terminated {
|
|
let terminator = hole;
|
|
|
|
let mut stmt = with_hole(
|
|
env,
|
|
final_else.value,
|
|
branch_var,
|
|
procs,
|
|
layout_cache,
|
|
assigned,
|
|
terminator,
|
|
);
|
|
|
|
for (loc_cond, loc_then) in branches.into_iter().rev() {
|
|
let branching_symbol = env.unique_symbol();
|
|
|
|
let then = with_hole(
|
|
env,
|
|
loc_then.value,
|
|
branch_var,
|
|
procs,
|
|
layout_cache,
|
|
assigned,
|
|
terminator,
|
|
);
|
|
|
|
stmt = cond(env, branching_symbol, cond_layout, then, stmt, ret_layout);
|
|
|
|
// add condition
|
|
stmt = with_hole(
|
|
env,
|
|
loc_cond.value,
|
|
cond_var,
|
|
procs,
|
|
layout_cache,
|
|
branching_symbol,
|
|
env.arena.alloc(stmt),
|
|
);
|
|
}
|
|
stmt
|
|
} else {
|
|
let assigned_in_jump = env.unique_symbol();
|
|
let id = JoinPointId(env.unique_symbol());
|
|
|
|
let terminator = env
|
|
.arena
|
|
.alloc(Stmt::Jump(id, env.arena.alloc([assigned_in_jump])));
|
|
|
|
let mut stmt = with_hole(
|
|
env,
|
|
final_else.value,
|
|
branch_var,
|
|
procs,
|
|
layout_cache,
|
|
assigned_in_jump,
|
|
terminator,
|
|
);
|
|
|
|
for (loc_cond, loc_then) in branches.into_iter().rev() {
|
|
let branching_symbol = possible_reuse_symbol_or_specialize(
|
|
env,
|
|
procs,
|
|
layout_cache,
|
|
&loc_cond.value,
|
|
cond_var,
|
|
);
|
|
|
|
let then = with_hole(
|
|
env,
|
|
loc_then.value,
|
|
branch_var,
|
|
procs,
|
|
layout_cache,
|
|
assigned_in_jump,
|
|
terminator,
|
|
);
|
|
|
|
stmt = cond(env, branching_symbol, cond_layout, then, stmt, ret_layout);
|
|
|
|
// add condition
|
|
stmt = assign_to_symbol(
|
|
env,
|
|
procs,
|
|
layout_cache,
|
|
cond_var,
|
|
loc_cond,
|
|
branching_symbol,
|
|
stmt,
|
|
);
|
|
}
|
|
|
|
let layout = layout_cache
|
|
.from_var(env.arena, branch_var, env.subs)
|
|
.unwrap_or_else(|err| {
|
|
panic!("TODO turn fn_var into a RuntimeError {:?}", err)
|
|
});
|
|
|
|
let param = Param {
|
|
symbol: assigned,
|
|
layout,
|
|
borrow: false,
|
|
};
|
|
|
|
Stmt::Join {
|
|
id,
|
|
parameters: env.arena.alloc([param]),
|
|
remainder: env.arena.alloc(stmt),
|
|
body: hole,
|
|
}
|
|
}
|
|
}
|
|
(Err(_), _) => runtime_error(env, "invalid ret_layout"),
|
|
(_, Err(_)) => runtime_error(env, "invalid cond_layout"),
|
|
}
|
|
}
|
|
|
|
When {
|
|
cond_var,
|
|
expr_var,
|
|
region: _,
|
|
loc_cond,
|
|
branches,
|
|
branches_cond_var: _,
|
|
exhaustive,
|
|
} => {
|
|
let cond_symbol = possible_reuse_symbol_or_specialize(
|
|
env,
|
|
procs,
|
|
layout_cache,
|
|
&loc_cond.value,
|
|
cond_var,
|
|
);
|
|
|
|
let id = JoinPointId(env.unique_symbol());
|
|
|
|
let mut stmt = from_can_when(
|
|
env,
|
|
cond_var,
|
|
expr_var,
|
|
cond_symbol,
|
|
branches,
|
|
exhaustive,
|
|
layout_cache,
|
|
procs,
|
|
Some(id),
|
|
);
|
|
|
|
// define the `when` condition
|
|
stmt = assign_to_symbol(
|
|
env,
|
|
procs,
|
|
layout_cache,
|
|
cond_var,
|
|
*loc_cond,
|
|
cond_symbol,
|
|
stmt,
|
|
);
|
|
|
|
let layout = layout_cache
|
|
.from_var(env.arena, expr_var, env.subs)
|
|
.unwrap_or_else(|err| panic!("TODO turn fn_var into a RuntimeError {:?}", err));
|
|
|
|
let param = Param {
|
|
symbol: assigned,
|
|
layout,
|
|
borrow: false,
|
|
};
|
|
|
|
Stmt::Join {
|
|
id,
|
|
parameters: env.arena.alloc([param]),
|
|
remainder: env.arena.alloc(stmt),
|
|
body: env.arena.alloc(hole),
|
|
}
|
|
}
|
|
|
|
List {
|
|
loc_elems,
|
|
elem_var,
|
|
..
|
|
} if loc_elems.is_empty() => {
|
|
// because an empty list has an unknown element type, it is handled differently
|
|
let opt_elem_layout = layout_cache.from_var(env.arena, elem_var, env.subs);
|
|
|
|
match opt_elem_layout {
|
|
Ok(elem_layout) => {
|
|
let expr = Expr::EmptyArray;
|
|
Stmt::Let(
|
|
assigned,
|
|
expr,
|
|
Layout::Builtin(Builtin::List(env.arena.alloc(elem_layout))),
|
|
hole,
|
|
)
|
|
}
|
|
Err(LayoutProblem::UnresolvedTypeVar(_)) => {
|
|
let expr = Expr::EmptyArray;
|
|
Stmt::Let(
|
|
assigned,
|
|
expr,
|
|
Layout::Builtin(Builtin::List(&Layout::VOID)),
|
|
hole,
|
|
)
|
|
}
|
|
Err(LayoutProblem::Erroneous) => panic!("list element is error type"),
|
|
}
|
|
}
|
|
|
|
List {
|
|
elem_var,
|
|
loc_elems,
|
|
} => {
|
|
let mut arg_symbols = Vec::with_capacity_in(loc_elems.len(), env.arena);
|
|
let mut elements = Vec::with_capacity_in(loc_elems.len(), env.arena);
|
|
|
|
let mut symbol_exprs = Vec::with_capacity_in(loc_elems.len(), env.arena);
|
|
|
|
let elem_layout = layout_cache
|
|
.from_var(env.arena, elem_var, env.subs)
|
|
.unwrap_or_else(|err| panic!("TODO turn fn_var into a RuntimeError {:?}", err));
|
|
|
|
for arg_expr in loc_elems.into_iter() {
|
|
if let Some(literal) = try_make_literal(&arg_expr.value, elem_layout) {
|
|
elements.push(ListLiteralElement::Literal(literal));
|
|
} else {
|
|
let symbol = possible_reuse_symbol_or_specialize(
|
|
env,
|
|
procs,
|
|
layout_cache,
|
|
&arg_expr.value,
|
|
elem_var,
|
|
);
|
|
|
|
elements.push(ListLiteralElement::Symbol(symbol));
|
|
arg_symbols.push(symbol);
|
|
symbol_exprs.push(arg_expr);
|
|
}
|
|
}
|
|
let arg_symbols = arg_symbols.into_bump_slice();
|
|
|
|
let expr = Expr::Array {
|
|
elem_layout,
|
|
elems: elements.into_bump_slice(),
|
|
};
|
|
|
|
let stmt = Stmt::Let(
|
|
assigned,
|
|
expr,
|
|
Layout::Builtin(Builtin::List(env.arena.alloc(elem_layout))),
|
|
hole,
|
|
);
|
|
|
|
let iter = symbol_exprs
|
|
.into_iter()
|
|
.rev()
|
|
.map(|e| (elem_var, e))
|
|
.zip(arg_symbols.iter().rev());
|
|
|
|
assign_to_symbols(env, procs, layout_cache, iter, stmt)
|
|
}
|
|
|
|
Access {
|
|
record_var,
|
|
field_var,
|
|
field,
|
|
loc_expr,
|
|
..
|
|
} => {
|
|
let sorted_fields_result = {
|
|
let mut layout_env = layout::Env::from_components(
|
|
layout_cache,
|
|
env.subs,
|
|
env.arena,
|
|
env.target_info,
|
|
);
|
|
layout::sort_record_fields(&mut layout_env, record_var)
|
|
};
|
|
let sorted_fields = match sorted_fields_result {
|
|
Ok(fields) => fields,
|
|
Err(_) => return runtime_error(env, "Can't access record with improper layout"),
|
|
};
|
|
|
|
let mut index = None;
|
|
let mut field_layouts = Vec::with_capacity_in(sorted_fields.len(), env.arena);
|
|
|
|
let mut current = 0;
|
|
for (label, _, opt_field_layout) in sorted_fields.into_iter() {
|
|
match opt_field_layout {
|
|
Err(_) => {
|
|
// this was an optional field, and now does not exist!
|
|
// do not increment `current`!
|
|
}
|
|
Ok(field_layout) => {
|
|
field_layouts.push(field_layout);
|
|
|
|
if label == field {
|
|
index = Some(current);
|
|
}
|
|
|
|
current += 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
let record_symbol = possible_reuse_symbol_or_specialize(
|
|
env,
|
|
procs,
|
|
layout_cache,
|
|
&loc_expr.value,
|
|
record_var,
|
|
);
|
|
|
|
let mut stmt = match field_layouts.as_slice() {
|
|
[_] => {
|
|
let mut hole = hole.clone();
|
|
substitute_in_exprs(env.arena, &mut hole, assigned, record_symbol);
|
|
|
|
hole
|
|
}
|
|
_ => {
|
|
let expr = Expr::StructAtIndex {
|
|
index: index.expect("field not in its own type") as u64,
|
|
field_layouts: field_layouts.into_bump_slice(),
|
|
structure: record_symbol,
|
|
};
|
|
|
|
let layout = layout_cache
|
|
.from_var(env.arena, field_var, env.subs)
|
|
.unwrap_or_else(|err| {
|
|
panic!("TODO turn fn_var into a RuntimeError {:?}", err)
|
|
});
|
|
|
|
Stmt::Let(assigned, expr, layout, hole)
|
|
}
|
|
};
|
|
|
|
stmt = assign_to_symbol(
|
|
env,
|
|
procs,
|
|
layout_cache,
|
|
record_var,
|
|
*loc_expr,
|
|
record_symbol,
|
|
stmt,
|
|
);
|
|
|
|
stmt
|
|
}
|
|
|
|
Accessor(accessor_data) => {
|
|
let field_var = accessor_data.field_var;
|
|
let fresh_record_symbol = env.unique_symbol();
|
|
|
|
let ClosureData {
|
|
name,
|
|
function_type,
|
|
arguments,
|
|
loc_body,
|
|
..
|
|
} = accessor_data.to_closure_data(fresh_record_symbol);
|
|
|
|
match procs.insert_anonymous(
|
|
env,
|
|
LambdaName::no_niche(name),
|
|
function_type,
|
|
arguments,
|
|
*loc_body,
|
|
CapturedSymbols::None,
|
|
field_var,
|
|
layout_cache,
|
|
) {
|
|
Ok(_) => {
|
|
let raw_layout = return_on_layout_error!(
|
|
env,
|
|
layout_cache.raw_from_var(env.arena, function_type, env.subs),
|
|
"Expr::Accessor"
|
|
);
|
|
|
|
match raw_layout {
|
|
RawFunctionLayout::Function(_, lambda_set, _) => {
|
|
let lambda_name =
|
|
find_lambda_name(env, layout_cache, lambda_set, name, &[]);
|
|
construct_closure_data(
|
|
env,
|
|
procs,
|
|
layout_cache,
|
|
lambda_set,
|
|
lambda_name,
|
|
&[],
|
|
assigned,
|
|
hole,
|
|
)
|
|
}
|
|
RawFunctionLayout::ZeroArgumentThunk(_) => unreachable!(),
|
|
}
|
|
}
|
|
|
|
Err(_error) => runtime_error(
|
|
env,
|
|
"TODO convert anonymous function error to a RuntimeError string",
|
|
),
|
|
}
|
|
}
|
|
|
|
OpaqueWrapFunction(wrap_fn_data) => {
|
|
let opaque_var = wrap_fn_data.opaque_var;
|
|
let arg_symbol = env.unique_symbol();
|
|
|
|
let ClosureData {
|
|
name,
|
|
function_type,
|
|
arguments,
|
|
loc_body,
|
|
..
|
|
} = wrap_fn_data.to_closure_data(arg_symbol);
|
|
|
|
match procs.insert_anonymous(
|
|
env,
|
|
LambdaName::no_niche(name),
|
|
function_type,
|
|
arguments,
|
|
*loc_body,
|
|
CapturedSymbols::None,
|
|
opaque_var,
|
|
layout_cache,
|
|
) {
|
|
Ok(_) => {
|
|
let raw_layout = return_on_layout_error!(
|
|
env,
|
|
layout_cache.raw_from_var(env.arena, function_type, env.subs),
|
|
"Expr::OpaqueWrapFunction"
|
|
);
|
|
|
|
match raw_layout {
|
|
RawFunctionLayout::Function(_, lambda_set, _) => {
|
|
let lambda_name =
|
|
find_lambda_name(env, layout_cache, lambda_set, name, &[]);
|
|
construct_closure_data(
|
|
env,
|
|
procs,
|
|
layout_cache,
|
|
lambda_set,
|
|
lambda_name,
|
|
&[],
|
|
assigned,
|
|
hole,
|
|
)
|
|
}
|
|
RawFunctionLayout::ZeroArgumentThunk(_) => {
|
|
internal_error!("should not be a thunk!")
|
|
}
|
|
}
|
|
}
|
|
|
|
Err(_error) => runtime_error(
|
|
env,
|
|
"TODO convert anonymous function error to a RuntimeError string",
|
|
),
|
|
}
|
|
}
|
|
|
|
Update {
|
|
record_var,
|
|
symbol: structure,
|
|
updates,
|
|
..
|
|
} => {
|
|
use FieldType::*;
|
|
|
|
enum FieldType<'a> {
|
|
CopyExisting(u64),
|
|
UpdateExisting(&'a roc_can::expr::Field),
|
|
}
|
|
|
|
// Strategy: turn a record update into the creation of a new record.
|
|
// This has the benefit that we don't need to do anything special for reference
|
|
// counting
|
|
|
|
let sorted_fields_result = {
|
|
let mut layout_env = layout::Env::from_components(
|
|
layout_cache,
|
|
env.subs,
|
|
env.arena,
|
|
env.target_info,
|
|
);
|
|
layout::sort_record_fields(&mut layout_env, record_var)
|
|
};
|
|
|
|
let sorted_fields = match sorted_fields_result {
|
|
Ok(fields) => fields,
|
|
Err(_) => return runtime_error(env, "Can't update record with improper layout"),
|
|
};
|
|
|
|
let mut field_layouts = Vec::with_capacity_in(sorted_fields.len(), env.arena);
|
|
|
|
let mut symbols = Vec::with_capacity_in(sorted_fields.len(), env.arena);
|
|
let mut fields = Vec::with_capacity_in(sorted_fields.len(), env.arena);
|
|
|
|
let mut current = 0;
|
|
for (label, _, opt_field_layout) in sorted_fields.into_iter() {
|
|
match opt_field_layout {
|
|
Err(_) => {
|
|
debug_assert!(!updates.contains_key(&label));
|
|
// this was an optional field, and now does not exist!
|
|
// do not increment `current`!
|
|
}
|
|
Ok(field_layout) => {
|
|
field_layouts.push(field_layout);
|
|
|
|
if let Some(field) = updates.get(&label) {
|
|
let field_symbol = possible_reuse_symbol_or_specialize(
|
|
env,
|
|
procs,
|
|
layout_cache,
|
|
&field.loc_expr.value,
|
|
field.var,
|
|
);
|
|
|
|
fields.push(UpdateExisting(field));
|
|
symbols.push(field_symbol);
|
|
} else {
|
|
fields.push(CopyExisting(current));
|
|
symbols.push(env.unique_symbol());
|
|
}
|
|
|
|
current += 1;
|
|
}
|
|
}
|
|
}
|
|
let symbols = symbols.into_bump_slice();
|
|
|
|
let record_layout = layout_cache
|
|
.from_var(env.arena, record_var, env.subs)
|
|
.unwrap_or_else(|err| panic!("TODO turn fn_var into a RuntimeError {:?}", err));
|
|
|
|
let field_layouts = match &record_layout {
|
|
Layout::Struct { field_layouts, .. } => *field_layouts,
|
|
other => arena.alloc([*other]),
|
|
};
|
|
|
|
debug_assert_eq!(field_layouts.len(), symbols.len());
|
|
debug_assert_eq!(fields.len(), symbols.len());
|
|
|
|
if symbols.len() == 1 {
|
|
// TODO we can probably special-case this more, skippiing the generation of
|
|
// UpdateExisting
|
|
let mut stmt = hole.clone();
|
|
|
|
let what_to_do = &fields[0];
|
|
|
|
match what_to_do {
|
|
UpdateExisting(field) => {
|
|
substitute_in_exprs(env.arena, &mut stmt, assigned, symbols[0]);
|
|
|
|
stmt = assign_to_symbol(
|
|
env,
|
|
procs,
|
|
layout_cache,
|
|
field.var,
|
|
*field.loc_expr.clone(),
|
|
symbols[0],
|
|
stmt,
|
|
);
|
|
}
|
|
CopyExisting(_) => {
|
|
unreachable!(
|
|
r"when a record has just one field and is updated, it must update that one field"
|
|
);
|
|
}
|
|
}
|
|
|
|
stmt
|
|
} else {
|
|
let expr = Expr::Struct(symbols);
|
|
let mut stmt = Stmt::Let(assigned, expr, record_layout, hole);
|
|
|
|
let it = field_layouts.iter().zip(symbols.iter()).zip(fields);
|
|
|
|
for ((field_layout, symbol), what_to_do) in it {
|
|
match what_to_do {
|
|
UpdateExisting(field) => {
|
|
stmt = assign_to_symbol(
|
|
env,
|
|
procs,
|
|
layout_cache,
|
|
field.var,
|
|
*field.loc_expr.clone(),
|
|
*symbol,
|
|
stmt,
|
|
);
|
|
}
|
|
CopyExisting(index) => {
|
|
let record_needs_specialization =
|
|
procs.ability_member_aliases.get(structure).is_some();
|
|
let specialized_structure_sym = if record_needs_specialization {
|
|
// We need to specialize the record now; create a new one for it.
|
|
// TODO: reuse this symbol for all updates
|
|
env.unique_symbol()
|
|
} else {
|
|
// The record is already good.
|
|
structure
|
|
};
|
|
|
|
let access_expr = Expr::StructAtIndex {
|
|
structure: specialized_structure_sym,
|
|
index,
|
|
field_layouts,
|
|
};
|
|
stmt =
|
|
Stmt::Let(*symbol, access_expr, *field_layout, arena.alloc(stmt));
|
|
|
|
// If the records needs specialization or it's a thunk, we need to
|
|
// create the specialized definition or force the thunk, respectively.
|
|
// Both cases are handled below.
|
|
if record_needs_specialization || procs.is_module_thunk(structure) {
|
|
stmt = specialize_symbol(
|
|
env,
|
|
procs,
|
|
layout_cache,
|
|
Some(record_var),
|
|
specialized_structure_sym,
|
|
stmt,
|
|
structure,
|
|
);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
stmt
|
|
}
|
|
}
|
|
|
|
Closure(ClosureData {
|
|
function_type,
|
|
return_type,
|
|
name,
|
|
arguments,
|
|
captured_symbols,
|
|
loc_body: boxed_body,
|
|
..
|
|
}) => {
|
|
let loc_body = *boxed_body;
|
|
|
|
let raw = layout_cache.raw_from_var(env.arena, function_type, env.subs);
|
|
|
|
match return_on_layout_error!(env, raw, "Expr::Closure") {
|
|
RawFunctionLayout::ZeroArgumentThunk(_) => {
|
|
unreachable!("a closure syntactically always must have at least one argument")
|
|
}
|
|
RawFunctionLayout::Function(_argument_layouts, lambda_set, _ret_layout) => {
|
|
let mut captured_symbols = Vec::from_iter_in(captured_symbols, env.arena);
|
|
captured_symbols.sort();
|
|
let captured_symbols = captured_symbols.into_bump_slice();
|
|
|
|
let symbols =
|
|
Vec::from_iter_in(captured_symbols.iter(), env.arena).into_bump_slice();
|
|
|
|
let lambda_name = find_lambda_name(
|
|
env,
|
|
layout_cache,
|
|
lambda_set,
|
|
name,
|
|
symbols.iter().copied(),
|
|
);
|
|
|
|
let inserted = procs.insert_anonymous(
|
|
env,
|
|
lambda_name,
|
|
function_type,
|
|
arguments,
|
|
loc_body,
|
|
CapturedSymbols::Captured(captured_symbols),
|
|
return_type,
|
|
layout_cache,
|
|
);
|
|
|
|
if let Err(e) = inserted {
|
|
return runtime_error(
|
|
env,
|
|
env.arena.alloc(format!("RuntimeError: {:?}", e,)),
|
|
);
|
|
} else {
|
|
drop(inserted);
|
|
}
|
|
|
|
// define the closure data
|
|
|
|
construct_closure_data(
|
|
env,
|
|
procs,
|
|
layout_cache,
|
|
lambda_set,
|
|
lambda_name,
|
|
symbols.iter().copied(),
|
|
assigned,
|
|
hole,
|
|
)
|
|
}
|
|
}
|
|
}
|
|
|
|
Call(boxed, loc_args, _) => {
|
|
let (fn_var, loc_expr, _lambda_set_var, _ret_var) = *boxed;
|
|
|
|
// even if a call looks like it's by name, it may in fact be by-pointer.
|
|
// E.g. in `(\f, x -> f x)` the call is in fact by pointer.
|
|
// So we check the function name against the list of partial procedures,
|
|
// the procedures that we have lifted to the top-level and can call by name
|
|
// if it's in there, it's a call by name, otherwise it's a call by pointer
|
|
let is_known = |key| {
|
|
// a proc in this module, or an imported symbol
|
|
procs.partial_procs.contains_key(key)
|
|
|| (env.is_imported_symbol(key) && !procs.is_imported_module_thunk(key))
|
|
};
|
|
|
|
match loc_expr.value {
|
|
roc_can::expr::Expr::Var(proc_name, _) if is_known(proc_name) => {
|
|
// a call by a known name
|
|
call_by_name(
|
|
env,
|
|
procs,
|
|
fn_var,
|
|
proc_name,
|
|
loc_args,
|
|
layout_cache,
|
|
assigned,
|
|
hole,
|
|
)
|
|
}
|
|
roc_can::expr::Expr::AbilityMember(member, specialization_id, _) => {
|
|
let specialization_proc_name =
|
|
late_resolve_ability_specialization(env, member, specialization_id, fn_var);
|
|
|
|
call_by_name(
|
|
env,
|
|
procs,
|
|
fn_var,
|
|
specialization_proc_name,
|
|
loc_args,
|
|
layout_cache,
|
|
assigned,
|
|
hole,
|
|
)
|
|
}
|
|
_ => {
|
|
// Call by pointer - the closure was anonymous, e.g.
|
|
//
|
|
// ((\a -> a) 5)
|
|
//
|
|
// It might even be the anonymous result of a conditional:
|
|
//
|
|
// ((if x > 0 then \a -> a else \_ -> 0) 5)
|
|
//
|
|
// It could be named too:
|
|
//
|
|
// ((if x > 0 then foo else bar) 5)
|
|
//
|
|
// also this occurs for functions passed in as arguments, e.g.
|
|
//
|
|
// (\f, x -> f x)
|
|
|
|
let arg_symbols = Vec::from_iter_in(
|
|
loc_args.iter().map(|(var, arg_expr)| {
|
|
possible_reuse_symbol_or_specialize(
|
|
env,
|
|
procs,
|
|
layout_cache,
|
|
&arg_expr.value,
|
|
*var,
|
|
)
|
|
}),
|
|
arena,
|
|
)
|
|
.into_bump_slice();
|
|
|
|
let full_layout = return_on_layout_error!(
|
|
env,
|
|
layout_cache.raw_from_var(env.arena, fn_var, env.subs),
|
|
"Expr::Call"
|
|
);
|
|
|
|
// if the function expression (loc_expr) is already a symbol,
|
|
// re-use that symbol, and don't define its value again
|
|
let mut result;
|
|
use ReuseSymbol::*;
|
|
match can_reuse_symbol(env, procs, &loc_expr.value, fn_var) {
|
|
LocalFunction(_) => {
|
|
unreachable!("if this was known to be a function, we would not be here")
|
|
}
|
|
Imported(thunk_name) => {
|
|
debug_assert!(procs.is_imported_module_thunk(thunk_name));
|
|
|
|
add_needed_external(
|
|
procs,
|
|
env,
|
|
fn_var,
|
|
LambdaName::no_niche(thunk_name),
|
|
);
|
|
|
|
let function_symbol = env.unique_symbol();
|
|
|
|
match full_layout {
|
|
RawFunctionLayout::Function(
|
|
arg_layouts,
|
|
lambda_set,
|
|
ret_layout,
|
|
) => {
|
|
let closure_data_symbol = function_symbol;
|
|
|
|
result = match_on_lambda_set(
|
|
env,
|
|
layout_cache,
|
|
procs,
|
|
lambda_set,
|
|
closure_data_symbol,
|
|
arg_symbols,
|
|
arg_layouts,
|
|
ret_layout,
|
|
assigned,
|
|
hole,
|
|
);
|
|
|
|
result = force_thunk(
|
|
env,
|
|
thunk_name,
|
|
Layout::LambdaSet(lambda_set),
|
|
function_symbol,
|
|
env.arena.alloc(result),
|
|
);
|
|
}
|
|
RawFunctionLayout::ZeroArgumentThunk(_) => {
|
|
unreachable!("calling a non-closure layout")
|
|
}
|
|
}
|
|
}
|
|
Value(function_symbol) => {
|
|
let function_symbol = procs.get_or_insert_symbol_specialization(
|
|
env,
|
|
layout_cache,
|
|
function_symbol,
|
|
fn_var,
|
|
);
|
|
|
|
match full_layout {
|
|
RawFunctionLayout::Function(
|
|
arg_layouts,
|
|
lambda_set,
|
|
ret_layout,
|
|
) => {
|
|
let closure_data_symbol = function_symbol;
|
|
|
|
result = match_on_lambda_set(
|
|
env,
|
|
layout_cache,
|
|
procs,
|
|
lambda_set,
|
|
closure_data_symbol,
|
|
arg_symbols,
|
|
arg_layouts,
|
|
ret_layout,
|
|
assigned,
|
|
hole,
|
|
);
|
|
}
|
|
RawFunctionLayout::ZeroArgumentThunk(_) => {
|
|
unreachable!("calling a non-closure layout")
|
|
}
|
|
}
|
|
}
|
|
UnspecializedExpr(symbol) => {
|
|
match procs.ability_member_aliases.get(symbol).unwrap() {
|
|
&self::AbilityMember(member) => {
|
|
let resolved_proc = resolve_ability_specialization(env.home, env.subs, &env.abilities, member, fn_var)
|
|
.expect("Recorded as an ability member, but it doesn't have a specialization");
|
|
|
|
let resolved_proc = match resolved_proc {
|
|
Resolved::Specialization(symbol) => symbol,
|
|
Resolved::NeedsGenerated(_) => {
|
|
todo_abilities!("Generate impls for structural types")
|
|
}
|
|
};
|
|
|
|
// a call by a known name
|
|
return call_by_name(
|
|
env,
|
|
procs,
|
|
fn_var,
|
|
resolved_proc,
|
|
loc_args,
|
|
layout_cache,
|
|
assigned,
|
|
hole,
|
|
);
|
|
}
|
|
}
|
|
}
|
|
NotASymbol => {
|
|
// the expression is not a symbol. That means it's an expression
|
|
// evaluating to a function value.
|
|
|
|
match full_layout {
|
|
RawFunctionLayout::Function(
|
|
arg_layouts,
|
|
lambda_set,
|
|
ret_layout,
|
|
) => {
|
|
let closure_data_symbol = env.unique_symbol();
|
|
|
|
result = match_on_lambda_set(
|
|
env,
|
|
layout_cache,
|
|
procs,
|
|
lambda_set,
|
|
closure_data_symbol,
|
|
arg_symbols,
|
|
arg_layouts,
|
|
ret_layout,
|
|
assigned,
|
|
hole,
|
|
);
|
|
|
|
result = with_hole(
|
|
env,
|
|
loc_expr.value,
|
|
fn_var,
|
|
procs,
|
|
layout_cache,
|
|
closure_data_symbol,
|
|
env.arena.alloc(result),
|
|
);
|
|
}
|
|
RawFunctionLayout::ZeroArgumentThunk(_) => {
|
|
unreachable!(
|
|
"{:?} cannot be called in the source language",
|
|
full_layout
|
|
)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
let iter = loc_args.into_iter().rev().zip(arg_symbols.iter().rev());
|
|
assign_to_symbols(env, procs, layout_cache, iter, result)
|
|
}
|
|
}
|
|
}
|
|
|
|
ForeignCall {
|
|
foreign_symbol,
|
|
args,
|
|
ret_var,
|
|
} => {
|
|
let mut arg_symbols = Vec::with_capacity_in(args.len(), env.arena);
|
|
|
|
for (var, arg_expr) in args.iter() {
|
|
arg_symbols.push(possible_reuse_symbol_or_specialize(
|
|
env,
|
|
procs,
|
|
layout_cache,
|
|
arg_expr,
|
|
*var,
|
|
));
|
|
}
|
|
let arg_symbols = arg_symbols.into_bump_slice();
|
|
|
|
// layout of the return type
|
|
let layout = return_on_layout_error!(
|
|
env,
|
|
layout_cache.from_var(env.arena, ret_var, env.subs),
|
|
"ForeignCall"
|
|
);
|
|
|
|
let call = self::Call {
|
|
call_type: CallType::Foreign {
|
|
foreign_symbol,
|
|
ret_layout: env.arena.alloc(layout),
|
|
},
|
|
arguments: arg_symbols,
|
|
};
|
|
|
|
let result = build_call(env, call, assigned, layout, hole);
|
|
|
|
let iter = args
|
|
.into_iter()
|
|
.rev()
|
|
.map(|(a, b)| (a, Loc::at_zero(b)))
|
|
.zip(arg_symbols.iter().rev());
|
|
assign_to_symbols(env, procs, layout_cache, iter, result)
|
|
}
|
|
|
|
RunLowLevel { op, args, ret_var } => {
|
|
let mut arg_symbols = Vec::with_capacity_in(args.len(), env.arena);
|
|
|
|
for (var, arg_expr) in args.iter() {
|
|
arg_symbols.push(possible_reuse_symbol_or_specialize(
|
|
env,
|
|
procs,
|
|
layout_cache,
|
|
arg_expr,
|
|
*var,
|
|
));
|
|
}
|
|
let arg_symbols = arg_symbols.into_bump_slice();
|
|
|
|
// layout of the return type
|
|
let layout = return_on_layout_error!(
|
|
env,
|
|
layout_cache.from_var(env.arena, ret_var, env.subs),
|
|
"RunLowLevel"
|
|
);
|
|
|
|
macro_rules! match_on_closure_argument {
|
|
( $ho:ident, [$($x:ident),* $(,)?]) => {{
|
|
let closure_index = op.function_argument_position();
|
|
let closure_data_symbol = arg_symbols[closure_index];
|
|
let closure_data_var = args[closure_index].0;
|
|
|
|
let closure_data_layout = return_on_layout_error!(
|
|
env,
|
|
layout_cache.raw_from_var(env.arena, closure_data_var, env.subs),
|
|
"match_on_closure_argument"
|
|
);
|
|
|
|
// NB: I don't think the top_level here can have a captures niche?
|
|
let top_level_capture_niche = CapturesNiche::no_niche();
|
|
let top_level = ProcLayout::from_raw(env.arena, &layout_cache.interner, closure_data_layout, top_level_capture_niche);
|
|
|
|
let arena = env.arena;
|
|
|
|
let arg_layouts = top_level.arguments;
|
|
let ret_layout = top_level.result;
|
|
|
|
match closure_data_layout {
|
|
RawFunctionLayout::Function(_, lambda_set, _) => {
|
|
lowlevel_match_on_lambda_set(
|
|
env,
|
|
layout_cache,
|
|
lambda_set,
|
|
op,
|
|
closure_data_symbol,
|
|
|(top_level_function, closure_data, closure_env_layout, specialization_id, update_mode)| {
|
|
let passed_function = PassedFunction {
|
|
name: top_level_function,
|
|
captured_environment: closure_data_symbol,
|
|
owns_captured_environment: false,
|
|
specialization_id,
|
|
argument_layouts: arg_layouts,
|
|
return_layout: ret_layout,
|
|
};
|
|
|
|
|
|
let higher_order = HigherOrderLowLevel {
|
|
op: crate::low_level::HigherOrder::$ho { $($x,)* },
|
|
closure_env_layout,
|
|
update_mode,
|
|
passed_function,
|
|
};
|
|
|
|
self::Call {
|
|
call_type: CallType::HigherOrder(arena.alloc(higher_order)),
|
|
arguments: arena.alloc([$($x,)* top_level_function.name(), closure_data]),
|
|
}
|
|
},
|
|
layout,
|
|
assigned,
|
|
hole,
|
|
)
|
|
}
|
|
RawFunctionLayout::ZeroArgumentThunk(_) => unreachable!("match_on_closure_argument received a zero-argument thunk"),
|
|
}
|
|
}};
|
|
}
|
|
|
|
use LowLevel::*;
|
|
match op {
|
|
ListMap => {
|
|
debug_assert_eq!(arg_symbols.len(), 2);
|
|
let xs = arg_symbols[0];
|
|
match_on_closure_argument!(ListMap, [xs])
|
|
}
|
|
ListSortWith => {
|
|
debug_assert_eq!(arg_symbols.len(), 2);
|
|
let xs = arg_symbols[0];
|
|
match_on_closure_argument!(ListSortWith, [xs])
|
|
}
|
|
ListMap2 => {
|
|
debug_assert_eq!(arg_symbols.len(), 3);
|
|
|
|
let xs = arg_symbols[0];
|
|
let ys = arg_symbols[1];
|
|
|
|
match_on_closure_argument!(ListMap2, [xs, ys])
|
|
}
|
|
ListMap3 => {
|
|
debug_assert_eq!(arg_symbols.len(), 4);
|
|
|
|
let xs = arg_symbols[0];
|
|
let ys = arg_symbols[1];
|
|
let zs = arg_symbols[2];
|
|
|
|
match_on_closure_argument!(ListMap3, [xs, ys, zs])
|
|
}
|
|
ListMap4 => {
|
|
debug_assert_eq!(arg_symbols.len(), 5);
|
|
|
|
let xs = arg_symbols[0];
|
|
let ys = arg_symbols[1];
|
|
let zs = arg_symbols[2];
|
|
let ws = arg_symbols[3];
|
|
|
|
match_on_closure_argument!(ListMap4, [xs, ys, zs, ws])
|
|
}
|
|
BoxExpr => {
|
|
debug_assert_eq!(arg_symbols.len(), 1);
|
|
let x = arg_symbols[0];
|
|
|
|
Stmt::Let(assigned, Expr::ExprBox { symbol: x }, layout, hole)
|
|
}
|
|
UnboxExpr => {
|
|
debug_assert_eq!(arg_symbols.len(), 1);
|
|
let x = arg_symbols[0];
|
|
|
|
Stmt::Let(assigned, Expr::ExprUnbox { symbol: x }, layout, hole)
|
|
}
|
|
_ => {
|
|
let call = self::Call {
|
|
call_type: CallType::LowLevel {
|
|
op,
|
|
update_mode: env.next_update_mode_id(),
|
|
},
|
|
arguments: arg_symbols,
|
|
};
|
|
|
|
let result = build_call(env, call, assigned, layout, hole);
|
|
|
|
let iter = args
|
|
.into_iter()
|
|
.rev()
|
|
.map(|(a, b)| (a, Loc::at_zero(b)))
|
|
.zip(arg_symbols.iter().rev());
|
|
assign_to_symbols(env, procs, layout_cache, iter, result)
|
|
}
|
|
}
|
|
}
|
|
TypedHole(_) => runtime_error(env, "Hit a blank"),
|
|
RuntimeError(e) => runtime_error(env, env.arena.alloc(e.runtime_message())),
|
|
Crash { msg, ret_var: _ } => {
|
|
let msg_sym = possible_reuse_symbol_or_specialize(
|
|
env,
|
|
procs,
|
|
layout_cache,
|
|
&msg.value,
|
|
Variable::STR,
|
|
);
|
|
let stmt = Stmt::Crash(msg_sym, CrashTag::User);
|
|
|
|
assign_to_symbol(env, procs, layout_cache, Variable::STR, *msg, msg_sym, stmt)
|
|
}
|
|
}
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn late_resolve_ability_specialization<'a>(
|
|
env: &mut Env<'a, '_>,
|
|
member: Symbol,
|
|
specialization_id: Option<SpecializationId>,
|
|
specialization_var: Variable,
|
|
) -> Symbol {
|
|
let opt_resolved = specialization_id.and_then(|id| {
|
|
env.abilities
|
|
.with_module_abilities_store(env.home, |store| store.get_resolved(id))
|
|
});
|
|
|
|
if let Some(spec_symbol) = opt_resolved {
|
|
// Fast path: specialization is monomorphic, was found during solving.
|
|
spec_symbol
|
|
} else if let Content::Structure(FlatType::Func(_, lambda_set, _)) =
|
|
env.subs.get_content_without_compacting(specialization_var)
|
|
{
|
|
// Fast path: the member is a function, so the lambda set will tell us the
|
|
// specialization.
|
|
use roc_types::subs::LambdaSet;
|
|
let LambdaSet {
|
|
solved,
|
|
unspecialized,
|
|
recursion_var: _,
|
|
ambient_function: _,
|
|
} = env.subs.get_lambda_set(*lambda_set);
|
|
|
|
debug_assert!(unspecialized.is_empty());
|
|
let mut iter_lambda_set = solved.iter_all();
|
|
debug_assert_eq!(iter_lambda_set.len(), 1);
|
|
let spec_symbol_index = iter_lambda_set.next().unwrap().0;
|
|
env.subs[spec_symbol_index]
|
|
} else {
|
|
// Otherwise, resolve by checking the able var.
|
|
let specialization = resolve_ability_specialization(
|
|
env.home,
|
|
env.subs,
|
|
&env.abilities,
|
|
member,
|
|
specialization_var,
|
|
)
|
|
.expect("Ability specialization is unknown - code generation cannot proceed!");
|
|
|
|
match specialization {
|
|
Resolved::Specialization(symbol) => symbol,
|
|
Resolved::NeedsGenerated(var) => {
|
|
let derive_key = roc_derive_key::Derived::builtin(
|
|
member.try_into().expect("derived symbols must be builtins"),
|
|
env.subs,
|
|
var,
|
|
)
|
|
.expect("specialization var not derivable!");
|
|
|
|
match derive_key {
|
|
roc_derive_key::Derived::Immediate(imm)
|
|
| roc_derive_key::Derived::SingleLambdaSetImmediate(imm) => {
|
|
// The immediate may be an ability member itself, so it must be resolved!
|
|
late_resolve_ability_specialization(env, imm, None, specialization_var)
|
|
}
|
|
roc_derive_key::Derived::Key(derive_key) => {
|
|
let mut derived_module = env
|
|
.derived_module
|
|
.lock()
|
|
.expect("derived module unavailable");
|
|
|
|
derived_module
|
|
.get_or_insert(env.exposed_by_module, derive_key)
|
|
.0
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn find_lambda_name<'a, I>(
|
|
env: &mut Env<'a, '_>,
|
|
layout_cache: &mut LayoutCache<'a>,
|
|
lambda_set: LambdaSet<'a>,
|
|
function_name: Symbol,
|
|
captures: I,
|
|
) -> LambdaName<'a>
|
|
where
|
|
I: IntoIterator<Item = &'a (Symbol, Variable)>,
|
|
{
|
|
let this_function_captures_layouts = captures
|
|
.into_iter()
|
|
.map(|(_, var)| {
|
|
layout_cache
|
|
.from_var(env.arena, *var, env.subs)
|
|
.expect("layout problem for capture")
|
|
})
|
|
.collect_in::<Vec<_>>(env.arena);
|
|
lambda_set.find_lambda_name(
|
|
&layout_cache.interner,
|
|
function_name,
|
|
&this_function_captures_layouts,
|
|
)
|
|
}
|
|
|
|
#[allow(clippy::too_many_arguments)]
|
|
fn construct_closure_data<'a, I>(
|
|
env: &mut Env<'a, '_>,
|
|
procs: &mut Procs<'a>,
|
|
layout_cache: &mut LayoutCache<'a>,
|
|
lambda_set: LambdaSet<'a>,
|
|
name: LambdaName<'a>,
|
|
symbols: I,
|
|
assigned: Symbol,
|
|
hole: &'a Stmt<'a>,
|
|
) -> Stmt<'a>
|
|
where
|
|
I: IntoIterator<Item = &'a (Symbol, Variable)>,
|
|
I::IntoIter: ExactSizeIterator,
|
|
{
|
|
let lambda_set_layout = Layout::LambdaSet(lambda_set);
|
|
let symbols = symbols.into_iter();
|
|
|
|
let result = match lambda_set.layout_for_member_with_lambda_name(&layout_cache.interner, name) {
|
|
ClosureRepresentation::Union {
|
|
tag_id,
|
|
alphabetic_order_fields: field_layouts,
|
|
union_layout,
|
|
closure_name: _,
|
|
} => {
|
|
// captured variables are in symbol-alphabetic order, but now we want
|
|
// them ordered by their alignment requirements
|
|
let mut combined = Vec::with_capacity_in(symbols.len(), env.arena);
|
|
for ((symbol, _variable), layout) in symbols.zip(field_layouts.iter()) {
|
|
combined.push((*symbol, layout))
|
|
}
|
|
|
|
let ptr_bytes = env.target_info;
|
|
|
|
combined.sort_by(|(_, layout1), (_, layout2)| {
|
|
let size1 = layout1.alignment_bytes(&layout_cache.interner, ptr_bytes);
|
|
let size2 = layout2.alignment_bytes(&layout_cache.interner, ptr_bytes);
|
|
|
|
size2.cmp(&size1)
|
|
});
|
|
|
|
let symbols =
|
|
Vec::from_iter_in(combined.iter().map(|(a, _)| *a), env.arena).into_bump_slice();
|
|
|
|
let expr = Expr::Tag {
|
|
tag_id,
|
|
tag_layout: union_layout,
|
|
arguments: symbols,
|
|
};
|
|
|
|
Stmt::Let(assigned, expr, lambda_set_layout, env.arena.alloc(hole))
|
|
}
|
|
ClosureRepresentation::AlphabeticOrderStruct(field_layouts) => {
|
|
debug_assert_eq!(field_layouts.len(), symbols.len());
|
|
|
|
// captured variables are in symbol-alphabetic order, but now we want
|
|
// them ordered by their alignment requirements
|
|
let mut combined = Vec::with_capacity_in(symbols.len(), env.arena);
|
|
for ((symbol, _variable), layout) in symbols.zip(field_layouts.iter()) {
|
|
combined.push((*symbol, layout))
|
|
}
|
|
|
|
let ptr_bytes = env.target_info;
|
|
|
|
combined.sort_by(|(_, layout1), (_, layout2)| {
|
|
let size1 = layout1.alignment_bytes(&layout_cache.interner, ptr_bytes);
|
|
let size2 = layout2.alignment_bytes(&layout_cache.interner, ptr_bytes);
|
|
|
|
size2.cmp(&size1)
|
|
});
|
|
|
|
let symbols =
|
|
Vec::from_iter_in(combined.iter().map(|(a, _)| *a), env.arena).into_bump_slice();
|
|
let field_layouts =
|
|
Vec::from_iter_in(combined.iter().map(|(_, b)| **b), env.arena).into_bump_slice();
|
|
|
|
debug_assert_eq!(
|
|
Layout::struct_no_name_order(field_layouts),
|
|
lambda_set.runtime_representation(&layout_cache.interner)
|
|
);
|
|
|
|
let expr = Expr::Struct(symbols);
|
|
|
|
Stmt::Let(assigned, expr, lambda_set_layout, hole)
|
|
}
|
|
ClosureRepresentation::UnwrappedCapture(_layout) => {
|
|
debug_assert_eq!(symbols.len(), 1);
|
|
|
|
let mut symbols = symbols;
|
|
let (captured_symbol, captured_var) = symbols.next().unwrap();
|
|
|
|
let captured_symbol = procs.get_or_insert_symbol_specialization(
|
|
env,
|
|
layout_cache,
|
|
*captured_symbol,
|
|
*captured_var,
|
|
);
|
|
|
|
// The capture set is unwrapped, so just replaced the assigned capture symbol with the
|
|
// only capture.
|
|
let mut hole = hole.clone();
|
|
substitute_in_exprs(env.arena, &mut hole, assigned, captured_symbol);
|
|
hole
|
|
}
|
|
ClosureRepresentation::EnumDispatch(repr) => match repr {
|
|
EnumDispatch::Bool => {
|
|
debug_assert_eq!(symbols.len(), 0);
|
|
|
|
debug_assert_eq!(lambda_set.len(), 2);
|
|
let tag_id = name.name() != lambda_set.iter_set().next().unwrap().name();
|
|
let expr = Expr::Literal(Literal::Bool(tag_id));
|
|
|
|
Stmt::Let(assigned, expr, lambda_set_layout, hole)
|
|
}
|
|
EnumDispatch::U8 => {
|
|
debug_assert_eq!(symbols.len(), 0);
|
|
|
|
debug_assert!(lambda_set.len() > 2);
|
|
let tag_id = lambda_set
|
|
.iter_set()
|
|
.position(|s| s.name() == name.name())
|
|
.unwrap() as u8;
|
|
|
|
let expr = Expr::Literal(Literal::Byte(tag_id));
|
|
|
|
Stmt::Let(assigned, expr, lambda_set_layout, hole)
|
|
}
|
|
},
|
|
};
|
|
|
|
result
|
|
}
|
|
|
|
#[allow(clippy::too_many_arguments)]
|
|
fn convert_tag_union<'a>(
|
|
env: &mut Env<'a, '_>,
|
|
variant_var: Variable,
|
|
assigned: Symbol,
|
|
hole: &'a Stmt<'a>,
|
|
tag_name: TagName,
|
|
procs: &mut Procs<'a>,
|
|
layout_cache: &mut LayoutCache<'a>,
|
|
args: std::vec::Vec<(Variable, Loc<roc_can::expr::Expr>)>,
|
|
arena: &'a Bump,
|
|
) -> Stmt<'a> {
|
|
use crate::layout::UnionVariant::*;
|
|
let res_variant = {
|
|
let mut layout_env =
|
|
layout::Env::from_components(layout_cache, env.subs, env.arena, env.target_info);
|
|
crate::layout::union_sorted_tags(&mut layout_env, variant_var)
|
|
};
|
|
let variant = match res_variant {
|
|
Ok(cached) => cached,
|
|
Err(LayoutProblem::UnresolvedTypeVar(_)) => {
|
|
return runtime_error(
|
|
env,
|
|
env.arena.alloc(format!(
|
|
"Unresolved type variable for tag {}",
|
|
tag_name.0.as_str()
|
|
)),
|
|
)
|
|
}
|
|
Err(LayoutProblem::Erroneous) => {
|
|
return runtime_error(
|
|
env,
|
|
env.arena.alloc(format!(
|
|
"Tag {} was part of a type error!",
|
|
tag_name.0.as_str()
|
|
)),
|
|
);
|
|
}
|
|
};
|
|
|
|
match variant {
|
|
Never => unreachable!(
|
|
"The `[]` type has no constructors, source var {:?}",
|
|
variant_var
|
|
),
|
|
Unit => Stmt::Let(assigned, Expr::Struct(&[]), Layout::UNIT, hole),
|
|
BoolUnion { ttrue, .. } => Stmt::Let(
|
|
assigned,
|
|
Expr::Literal(Literal::Bool(&tag_name == ttrue.expect_tag_ref())),
|
|
Layout::Builtin(Builtin::Bool),
|
|
hole,
|
|
),
|
|
ByteUnion(tag_names) => {
|
|
let opt_tag_id = tag_names
|
|
.iter()
|
|
.position(|key| key.expect_tag_ref() == &tag_name);
|
|
|
|
match opt_tag_id {
|
|
Some(tag_id) => Stmt::Let(
|
|
assigned,
|
|
Expr::Literal(Literal::Byte(tag_id as u8)),
|
|
Layout::Builtin(Builtin::Int(IntWidth::U8)),
|
|
hole,
|
|
),
|
|
None => runtime_error(env, "tag must be in its own type"),
|
|
}
|
|
}
|
|
|
|
Newtype {
|
|
arguments: field_layouts,
|
|
..
|
|
} => {
|
|
let field_symbols_temp = sorted_field_symbols(env, procs, layout_cache, args);
|
|
|
|
let mut field_symbols = Vec::with_capacity_in(field_layouts.len(), env.arena);
|
|
field_symbols.extend(field_symbols_temp.iter().map(|r| r.1));
|
|
let field_symbols = field_symbols.into_bump_slice();
|
|
|
|
// Layout will unpack this unwrapped tack if it only has one (non-zero-sized) field
|
|
let layout = layout_cache
|
|
.from_var(env.arena, variant_var, env.subs)
|
|
.unwrap_or_else(|err| panic!("TODO turn fn_var into a RuntimeError {:?}", err));
|
|
|
|
// even though this was originally a Tag, we treat it as a Struct from now on
|
|
let stmt = if let [only_field] = field_symbols {
|
|
let mut hole = hole.clone();
|
|
substitute_in_exprs(env.arena, &mut hole, assigned, *only_field);
|
|
hole
|
|
} else {
|
|
Stmt::Let(assigned, Expr::Struct(field_symbols), layout, hole)
|
|
};
|
|
|
|
let iter = field_symbols_temp.into_iter().map(|(_, _, data)| data);
|
|
assign_to_symbols(env, procs, layout_cache, iter, stmt)
|
|
}
|
|
NewtypeByVoid {
|
|
data_tag_arguments: field_layouts,
|
|
data_tag_name,
|
|
..
|
|
} => {
|
|
let dataful_tag = data_tag_name.expect_tag();
|
|
|
|
if dataful_tag != tag_name {
|
|
// this tag is not represented, and hence will never be reached, at runtime.
|
|
runtime_error(env, "voided tag constructor is unreachable")
|
|
} else {
|
|
let field_symbols_temp = sorted_field_symbols(env, procs, layout_cache, args);
|
|
|
|
let mut field_symbols = Vec::with_capacity_in(field_layouts.len(), env.arena);
|
|
field_symbols.extend(field_symbols_temp.iter().map(|r| r.1));
|
|
let field_symbols = field_symbols.into_bump_slice();
|
|
|
|
// Layout will unpack this unwrapped tack if it only has one (non-zero-sized) field
|
|
let layout = layout_cache
|
|
.from_var(env.arena, variant_var, env.subs)
|
|
.unwrap_or_else(|err| panic!("TODO turn fn_var into a RuntimeError {:?}", err));
|
|
|
|
// even though this was originally a Tag, we treat it as a Struct from now on
|
|
let stmt = if let [only_field] = field_symbols {
|
|
let mut hole = hole.clone();
|
|
substitute_in_exprs(env.arena, &mut hole, assigned, *only_field);
|
|
hole
|
|
} else {
|
|
Stmt::Let(assigned, Expr::Struct(field_symbols), layout, hole)
|
|
};
|
|
|
|
let iter = field_symbols_temp.into_iter().map(|(_, _, data)| data);
|
|
assign_to_symbols(env, procs, layout_cache, iter, stmt)
|
|
}
|
|
}
|
|
Wrapped(variant) => {
|
|
let (tag_id, _) = variant.tag_name_to_id(&tag_name);
|
|
|
|
let field_symbols_temp = sorted_field_symbols(env, procs, layout_cache, args);
|
|
|
|
let field_symbols;
|
|
|
|
// we must derive the union layout from the whole_var, building it up
|
|
// from `layouts` would unroll recursive tag unions, and that leads to
|
|
// problems down the line because we hash layouts and an unrolled
|
|
// version is not the same as the minimal version.
|
|
let union_layout = match return_on_layout_error!(
|
|
env,
|
|
layout_cache.from_var(env.arena, variant_var, env.subs),
|
|
"Wrapped"
|
|
) {
|
|
Layout::Union(ul) => ul,
|
|
other => internal_error!(
|
|
"unexpected layout {:?} for {:?}",
|
|
other,
|
|
roc_types::subs::SubsFmtContent(
|
|
env.subs.get_content_without_compacting(variant_var),
|
|
env.subs
|
|
)
|
|
),
|
|
};
|
|
|
|
use WrappedVariant::*;
|
|
let (tag, union_layout) = match variant {
|
|
Recursive { sorted_tag_layouts } => {
|
|
debug_assert!(sorted_tag_layouts.len() > 1);
|
|
|
|
field_symbols = {
|
|
let mut temp = Vec::with_capacity_in(field_symbols_temp.len() + 1, arena);
|
|
|
|
temp.extend(field_symbols_temp.iter().map(|r| r.1));
|
|
|
|
temp.into_bump_slice()
|
|
};
|
|
|
|
let mut layouts: Vec<&'a [Layout<'a>]> =
|
|
Vec::with_capacity_in(sorted_tag_layouts.len(), env.arena);
|
|
|
|
for (_, arg_layouts) in sorted_tag_layouts.into_iter() {
|
|
layouts.push(arg_layouts);
|
|
}
|
|
|
|
let tag = Expr::Tag {
|
|
tag_layout: union_layout,
|
|
tag_id: tag_id as _,
|
|
arguments: field_symbols,
|
|
};
|
|
|
|
(tag, union_layout)
|
|
}
|
|
NonNullableUnwrapped {
|
|
tag_name: wrapped_tag_name,
|
|
..
|
|
} => {
|
|
debug_assert_eq!(wrapped_tag_name.expect_tag(), tag_name);
|
|
|
|
field_symbols = {
|
|
let mut temp = Vec::with_capacity_in(field_symbols_temp.len(), arena);
|
|
|
|
temp.extend(field_symbols_temp.iter().map(|r| r.1));
|
|
|
|
temp.into_bump_slice()
|
|
};
|
|
|
|
let tag = Expr::Tag {
|
|
tag_layout: union_layout,
|
|
tag_id: tag_id as _,
|
|
arguments: field_symbols,
|
|
};
|
|
|
|
(tag, union_layout)
|
|
}
|
|
NonRecursive { sorted_tag_layouts } => {
|
|
field_symbols = {
|
|
let mut temp = Vec::with_capacity_in(field_symbols_temp.len(), arena);
|
|
|
|
temp.extend(field_symbols_temp.iter().map(|r| r.1));
|
|
|
|
temp.into_bump_slice()
|
|
};
|
|
|
|
let mut layouts: Vec<&'a [Layout<'a>]> =
|
|
Vec::with_capacity_in(sorted_tag_layouts.len(), env.arena);
|
|
|
|
for (_, arg_layouts) in sorted_tag_layouts.into_iter() {
|
|
layouts.push(arg_layouts);
|
|
}
|
|
|
|
let tag = Expr::Tag {
|
|
tag_layout: union_layout,
|
|
tag_id: tag_id as _,
|
|
arguments: field_symbols,
|
|
};
|
|
|
|
(tag, union_layout)
|
|
}
|
|
NullableWrapped {
|
|
sorted_tag_layouts, ..
|
|
} => {
|
|
field_symbols = {
|
|
let mut temp = Vec::with_capacity_in(field_symbols_temp.len() + 1, arena);
|
|
|
|
temp.extend(field_symbols_temp.iter().map(|r| r.1));
|
|
|
|
temp.into_bump_slice()
|
|
};
|
|
|
|
let mut layouts: Vec<&'a [Layout<'a>]> =
|
|
Vec::with_capacity_in(sorted_tag_layouts.len(), env.arena);
|
|
|
|
for (_, arg_layouts) in sorted_tag_layouts.into_iter() {
|
|
layouts.push(arg_layouts);
|
|
}
|
|
|
|
let tag = Expr::Tag {
|
|
tag_layout: union_layout,
|
|
tag_id: tag_id as _,
|
|
arguments: field_symbols,
|
|
};
|
|
|
|
(tag, union_layout)
|
|
}
|
|
NullableUnwrapped { .. } => {
|
|
field_symbols = {
|
|
let mut temp = Vec::with_capacity_in(field_symbols_temp.len() + 1, arena);
|
|
|
|
temp.extend(field_symbols_temp.iter().map(|r| r.1));
|
|
|
|
temp.into_bump_slice()
|
|
};
|
|
|
|
let tag = Expr::Tag {
|
|
tag_layout: union_layout,
|
|
tag_id: tag_id as _,
|
|
arguments: field_symbols,
|
|
};
|
|
|
|
(tag, union_layout)
|
|
}
|
|
};
|
|
|
|
let stmt = Stmt::Let(assigned, tag, Layout::Union(union_layout), hole);
|
|
let iter = field_symbols_temp
|
|
.into_iter()
|
|
.map(|x| x.2 .0)
|
|
.rev()
|
|
.zip(field_symbols.iter().rev());
|
|
|
|
assign_to_symbols(env, procs, layout_cache, iter, stmt)
|
|
}
|
|
}
|
|
}
|
|
|
|
#[allow(clippy::too_many_arguments)]
|
|
fn tag_union_to_function<'a>(
|
|
env: &mut Env<'a, '_>,
|
|
argument_variables: VariableSubsSlice,
|
|
return_variable: Variable,
|
|
tag_name: TagName,
|
|
proc_symbol: Symbol,
|
|
ext_var: Variable,
|
|
procs: &mut Procs<'a>,
|
|
whole_var: Variable,
|
|
layout_cache: &mut LayoutCache<'a>,
|
|
assigned: Symbol,
|
|
hole: &'a Stmt<'a>,
|
|
) -> Stmt<'a> {
|
|
let mut loc_pattern_args = vec![];
|
|
let mut loc_expr_args = vec![];
|
|
|
|
for index in argument_variables {
|
|
let arg_var = env.subs[index];
|
|
|
|
let arg_symbol = env.unique_symbol();
|
|
|
|
let loc_pattern = Loc::at_zero(roc_can::pattern::Pattern::Identifier(arg_symbol));
|
|
|
|
let loc_expr = Loc::at_zero(roc_can::expr::Expr::Var(arg_symbol, arg_var));
|
|
|
|
loc_pattern_args.push((arg_var, AnnotatedMark::known_exhaustive(), loc_pattern));
|
|
loc_expr_args.push((arg_var, loc_expr));
|
|
}
|
|
|
|
let loc_body = Loc::at_zero(roc_can::expr::Expr::Tag {
|
|
tag_union_var: return_variable,
|
|
name: tag_name,
|
|
arguments: loc_expr_args,
|
|
ext_var,
|
|
});
|
|
|
|
// Lambda does not capture anything, can't have a captures niche
|
|
let lambda_name = LambdaName::no_niche(proc_symbol);
|
|
|
|
let inserted = procs.insert_anonymous(
|
|
env,
|
|
lambda_name,
|
|
whole_var,
|
|
loc_pattern_args,
|
|
loc_body,
|
|
CapturedSymbols::None,
|
|
return_variable,
|
|
layout_cache,
|
|
);
|
|
|
|
match inserted {
|
|
Ok(_layout) => {
|
|
// only need to construct closure data
|
|
let raw_layout = return_on_layout_error!(
|
|
env,
|
|
layout_cache.raw_from_var(env.arena, whole_var, env.subs),
|
|
"tag_union_to_function"
|
|
);
|
|
|
|
match raw_layout {
|
|
RawFunctionLayout::Function(_, lambda_set, _) => {
|
|
let lambda_name =
|
|
find_lambda_name(env, layout_cache, lambda_set, proc_symbol, &[]);
|
|
debug_assert!(lambda_name.no_captures());
|
|
construct_closure_data(
|
|
env,
|
|
procs,
|
|
layout_cache,
|
|
lambda_set,
|
|
lambda_name,
|
|
&[],
|
|
assigned,
|
|
hole,
|
|
)
|
|
}
|
|
RawFunctionLayout::ZeroArgumentThunk(_) => unreachable!(),
|
|
}
|
|
}
|
|
|
|
Err(e) => runtime_error(
|
|
env,
|
|
env.arena.alloc(format!(
|
|
"Could not produce tag function due to a runtime error: {:?}",
|
|
e,
|
|
)),
|
|
),
|
|
}
|
|
}
|
|
|
|
#[allow(clippy::type_complexity)]
|
|
fn sorted_field_symbols<'a>(
|
|
env: &mut Env<'a, '_>,
|
|
procs: &mut Procs<'a>,
|
|
layout_cache: &mut LayoutCache<'a>,
|
|
mut args: std::vec::Vec<(Variable, Loc<roc_can::expr::Expr>)>,
|
|
) -> Vec<
|
|
'a,
|
|
(
|
|
u32,
|
|
Symbol,
|
|
((Variable, Loc<roc_can::expr::Expr>), &'a Symbol),
|
|
),
|
|
> {
|
|
let mut field_symbols_temp = Vec::with_capacity_in(args.len(), env.arena);
|
|
|
|
for (var, mut arg) in args.drain(..) {
|
|
// Layout will unpack this unwrapped tag if it only has one (non-zero-sized) field
|
|
let layout = match layout_cache.from_var(env.arena, var, env.subs) {
|
|
Ok(cached) => cached,
|
|
Err(LayoutProblem::UnresolvedTypeVar(_)) => {
|
|
// this argument has type `forall a. a`, which is isomorphic to
|
|
// the empty type (Void, Never, the empty tag union `[]`)
|
|
// Note it does not catch the use of `[]` currently.
|
|
use roc_can::expr::Expr;
|
|
arg.value = Expr::RuntimeError(RuntimeError::VoidValue);
|
|
Layout::UNIT
|
|
}
|
|
Err(LayoutProblem::Erroneous) => {
|
|
// something went very wrong
|
|
panic!("TODO turn fn_var into a RuntimeError")
|
|
}
|
|
};
|
|
|
|
let alignment = layout.alignment_bytes(&layout_cache.interner, env.target_info);
|
|
|
|
let symbol = possible_reuse_symbol_or_specialize(env, procs, layout_cache, &arg.value, var);
|
|
field_symbols_temp.push((alignment, symbol, ((var, arg), &*env.arena.alloc(symbol))));
|
|
}
|
|
field_symbols_temp.sort_by(|a, b| b.0.cmp(&a.0));
|
|
|
|
field_symbols_temp
|
|
}
|
|
|
|
/// Insert a closure that does capture symbols (because it is top-level) to the list of partial procs
|
|
fn register_noncapturing_closure<'a>(
|
|
env: &mut Env<'a, '_>,
|
|
procs: &mut Procs<'a>,
|
|
closure_name: Symbol,
|
|
closure_data: ClosureData,
|
|
) {
|
|
let ClosureData {
|
|
function_type,
|
|
return_type,
|
|
recursive,
|
|
arguments,
|
|
loc_body: boxed_body,
|
|
captured_symbols,
|
|
..
|
|
} = closure_data;
|
|
|
|
// Extract Procs, but discard the resulting Expr::Load.
|
|
// That Load looks up the pointer, which we won't use here!
|
|
|
|
let loc_body = *boxed_body;
|
|
|
|
let is_self_recursive = !matches!(recursive, roc_can::expr::Recursive::NotRecursive);
|
|
|
|
// this should be a top-level declaration, and hence have no captured symbols
|
|
// if we ever do hit this (and it's not a bug), we should make sure to put the
|
|
// captured symbols into a CapturedSymbols and give it to PartialProc::from_named_function
|
|
debug_assert!(captured_symbols.is_empty());
|
|
|
|
let partial_proc = PartialProc::from_named_function(
|
|
env,
|
|
function_type,
|
|
arguments,
|
|
loc_body,
|
|
CapturedSymbols::None,
|
|
is_self_recursive,
|
|
return_type,
|
|
);
|
|
|
|
procs.partial_procs.insert(closure_name, partial_proc);
|
|
}
|
|
|
|
/// Insert a closure that may capture symbols to the list of partial procs
|
|
fn register_capturing_closure<'a>(
|
|
env: &mut Env<'a, '_>,
|
|
procs: &mut Procs<'a>,
|
|
layout_cache: &mut LayoutCache<'a>,
|
|
closure_name: Symbol,
|
|
closure_data: ClosureData,
|
|
) {
|
|
// the function surrounding the closure definition may be specialized multiple times,
|
|
// hence in theory this partial proc may be added multiple times. That would be wasteful
|
|
// so we check whether this partial proc is already there.
|
|
//
|
|
// (the `gen_primitives::task_always_twice` test has this behavior)
|
|
if !procs.partial_procs.contains_key(closure_name) {
|
|
let ClosureData {
|
|
function_type,
|
|
return_type,
|
|
closure_type,
|
|
recursive,
|
|
arguments,
|
|
loc_body: boxed_body,
|
|
captured_symbols,
|
|
..
|
|
} = closure_data;
|
|
let loc_body = *boxed_body;
|
|
|
|
let is_self_recursive = !matches!(recursive, roc_can::expr::Recursive::NotRecursive);
|
|
|
|
let captured_symbols = match *env.subs.get_content_without_compacting(function_type) {
|
|
Content::Structure(FlatType::Func(_, closure_var, _)) => {
|
|
let lambda_set_layout = {
|
|
LambdaSet::from_var_pub(
|
|
layout_cache,
|
|
env.arena,
|
|
env.subs,
|
|
closure_var,
|
|
env.target_info,
|
|
)
|
|
};
|
|
|
|
match lambda_set_layout {
|
|
Ok(lambda_set) => {
|
|
if lambda_set.is_represented(&layout_cache.interner).is_none() {
|
|
CapturedSymbols::None
|
|
} else {
|
|
let mut temp = Vec::from_iter_in(captured_symbols, env.arena);
|
|
temp.sort();
|
|
CapturedSymbols::Captured(temp.into_bump_slice())
|
|
}
|
|
}
|
|
Err(_) => {
|
|
// just allow this. see https://github.com/roc-lang/roc/issues/1585
|
|
if captured_symbols.is_empty() {
|
|
CapturedSymbols::None
|
|
} else {
|
|
let mut temp = Vec::from_iter_in(captured_symbols, env.arena);
|
|
temp.sort();
|
|
CapturedSymbols::Captured(temp.into_bump_slice())
|
|
}
|
|
}
|
|
}
|
|
}
|
|
_ => {
|
|
// This is a value (zero-argument thunk); it cannot capture any variables.
|
|
debug_assert!(
|
|
captured_symbols.is_empty(),
|
|
"{:?} with layout {:?} {:?} {:?}",
|
|
&captured_symbols,
|
|
layout_cache.raw_from_var(env.arena, function_type, env.subs,),
|
|
env.subs,
|
|
(function_type, closure_type),
|
|
);
|
|
CapturedSymbols::None
|
|
}
|
|
};
|
|
|
|
let partial_proc = PartialProc::from_named_function(
|
|
env,
|
|
function_type,
|
|
arguments,
|
|
loc_body,
|
|
captured_symbols,
|
|
is_self_recursive,
|
|
return_type,
|
|
);
|
|
|
|
procs.partial_procs.insert(closure_name, partial_proc);
|
|
}
|
|
}
|
|
|
|
pub fn from_can<'a>(
|
|
env: &mut Env<'a, '_>,
|
|
variable: Variable,
|
|
can_expr: roc_can::expr::Expr,
|
|
procs: &mut Procs<'a>,
|
|
layout_cache: &mut LayoutCache<'a>,
|
|
) -> Stmt<'a> {
|
|
use roc_can::expr::Expr::*;
|
|
|
|
match can_expr {
|
|
When {
|
|
cond_var,
|
|
expr_var,
|
|
region: _,
|
|
loc_cond,
|
|
branches,
|
|
branches_cond_var: _,
|
|
exhaustive,
|
|
} => {
|
|
let cond_symbol = possible_reuse_symbol_or_specialize(
|
|
env,
|
|
procs,
|
|
layout_cache,
|
|
&loc_cond.value,
|
|
cond_var,
|
|
);
|
|
|
|
let stmt = from_can_when(
|
|
env,
|
|
cond_var,
|
|
expr_var,
|
|
cond_symbol,
|
|
branches,
|
|
exhaustive,
|
|
layout_cache,
|
|
procs,
|
|
None,
|
|
);
|
|
|
|
// define the `when` condition
|
|
assign_to_symbol(
|
|
env,
|
|
procs,
|
|
layout_cache,
|
|
cond_var,
|
|
*loc_cond,
|
|
cond_symbol,
|
|
stmt,
|
|
)
|
|
}
|
|
If {
|
|
cond_var,
|
|
branch_var,
|
|
branches,
|
|
final_else,
|
|
} => {
|
|
let ret_layout = layout_cache
|
|
.from_var(env.arena, branch_var, env.subs)
|
|
.expect("invalid ret_layout");
|
|
let cond_layout = layout_cache
|
|
.from_var(env.arena, cond_var, env.subs)
|
|
.expect("invalid cond_layout");
|
|
|
|
let mut stmt = from_can(env, branch_var, final_else.value, procs, layout_cache);
|
|
|
|
for (loc_cond, loc_then) in branches.into_iter().rev() {
|
|
let branching_symbol = possible_reuse_symbol_or_specialize(
|
|
env,
|
|
procs,
|
|
layout_cache,
|
|
&loc_cond.value,
|
|
cond_var,
|
|
);
|
|
let then = from_can(env, branch_var, loc_then.value, procs, layout_cache);
|
|
|
|
stmt = cond(env, branching_symbol, cond_layout, then, stmt, ret_layout);
|
|
|
|
stmt = assign_to_symbol(
|
|
env,
|
|
procs,
|
|
layout_cache,
|
|
cond_var,
|
|
loc_cond,
|
|
branching_symbol,
|
|
stmt,
|
|
);
|
|
}
|
|
|
|
stmt
|
|
}
|
|
|
|
Expect {
|
|
loc_condition,
|
|
loc_continuation,
|
|
lookups_in_cond,
|
|
} => {
|
|
let rest = from_can(env, variable, loc_continuation.value, procs, layout_cache);
|
|
let cond_symbol = env.unique_symbol();
|
|
|
|
let mut lookups = Vec::with_capacity_in(lookups_in_cond.len(), env.arena);
|
|
let mut layouts = Vec::with_capacity_in(lookups_in_cond.len(), env.arena);
|
|
|
|
for ExpectLookup {
|
|
symbol,
|
|
var,
|
|
ability_info,
|
|
} in lookups_in_cond
|
|
{
|
|
let symbol = match ability_info {
|
|
Some(specialization_id) => late_resolve_ability_specialization(
|
|
env,
|
|
symbol,
|
|
Some(specialization_id),
|
|
var,
|
|
),
|
|
None => symbol,
|
|
};
|
|
let res_layout = layout_cache.from_var(env.arena, var, env.subs);
|
|
let layout = return_on_layout_error!(env, res_layout, "Expect");
|
|
if !matches!(layout, Layout::LambdaSet(..)) {
|
|
// Exclude functions from lookups
|
|
lookups.push(symbol);
|
|
layouts.push(layout);
|
|
}
|
|
}
|
|
|
|
let mut stmt = Stmt::Expect {
|
|
condition: cond_symbol,
|
|
region: loc_condition.region,
|
|
lookups: lookups.into_bump_slice(),
|
|
layouts: layouts.into_bump_slice(),
|
|
remainder: env.arena.alloc(rest),
|
|
};
|
|
|
|
stmt = with_hole(
|
|
env,
|
|
loc_condition.value,
|
|
Variable::BOOL,
|
|
procs,
|
|
layout_cache,
|
|
cond_symbol,
|
|
env.arena.alloc(stmt),
|
|
);
|
|
|
|
stmt
|
|
}
|
|
|
|
ExpectFx {
|
|
loc_condition,
|
|
loc_continuation,
|
|
lookups_in_cond,
|
|
} => {
|
|
let rest = from_can(env, variable, loc_continuation.value, procs, layout_cache);
|
|
let cond_symbol = env.unique_symbol();
|
|
|
|
let mut lookups = Vec::with_capacity_in(lookups_in_cond.len(), env.arena);
|
|
let mut layouts = Vec::with_capacity_in(lookups_in_cond.len(), env.arena);
|
|
|
|
for ExpectLookup {
|
|
symbol,
|
|
var,
|
|
ability_info,
|
|
} in lookups_in_cond
|
|
{
|
|
let symbol = match ability_info {
|
|
Some(specialization_id) => late_resolve_ability_specialization(
|
|
env,
|
|
symbol,
|
|
Some(specialization_id),
|
|
var,
|
|
),
|
|
None => symbol,
|
|
};
|
|
let res_layout = layout_cache.from_var(env.arena, var, env.subs);
|
|
let layout = return_on_layout_error!(env, res_layout, "Expect");
|
|
if !matches!(layout, Layout::LambdaSet(..)) {
|
|
// Exclude functions from lookups
|
|
lookups.push(symbol);
|
|
layouts.push(layout);
|
|
}
|
|
}
|
|
|
|
let mut stmt = Stmt::ExpectFx {
|
|
condition: cond_symbol,
|
|
region: loc_condition.region,
|
|
lookups: lookups.into_bump_slice(),
|
|
layouts: layouts.into_bump_slice(),
|
|
remainder: env.arena.alloc(rest),
|
|
};
|
|
|
|
stmt = with_hole(
|
|
env,
|
|
loc_condition.value,
|
|
Variable::BOOL,
|
|
procs,
|
|
layout_cache,
|
|
cond_symbol,
|
|
env.arena.alloc(stmt),
|
|
);
|
|
|
|
stmt
|
|
}
|
|
|
|
Dbg {
|
|
loc_condition,
|
|
loc_continuation,
|
|
variable,
|
|
symbol: dbg_symbol,
|
|
} => {
|
|
let rest = from_can(env, variable, loc_continuation.value, procs, layout_cache);
|
|
|
|
let call = crate::ir::Call {
|
|
call_type: CallType::LowLevel {
|
|
op: LowLevel::Dbg,
|
|
update_mode: env.next_update_mode_id(),
|
|
},
|
|
arguments: env.arena.alloc([dbg_symbol]),
|
|
};
|
|
|
|
let dbg_layout = layout_cache
|
|
.from_var(env.arena, variable, env.subs)
|
|
.expect("invalid dbg_layout");
|
|
|
|
let expr = Expr::Call(call);
|
|
let mut stmt = Stmt::Let(dbg_symbol, expr, dbg_layout, env.arena.alloc(rest));
|
|
|
|
let symbol_is_reused = matches!(
|
|
can_reuse_symbol(env, procs, &loc_condition.value, variable),
|
|
ReuseSymbol::Value(_)
|
|
);
|
|
|
|
// skip evaluating the condition if it's just a symbol
|
|
if !symbol_is_reused {
|
|
stmt = with_hole(
|
|
env,
|
|
loc_condition.value,
|
|
variable,
|
|
procs,
|
|
layout_cache,
|
|
dbg_symbol,
|
|
env.arena.alloc(stmt),
|
|
);
|
|
}
|
|
|
|
stmt
|
|
}
|
|
|
|
LetRec(defs, cont, _cycle_mark) => {
|
|
// because Roc is strict, only functions can be recursive!
|
|
for def in defs.into_iter() {
|
|
if let roc_can::pattern::Pattern::Identifier(symbol) = &def.loc_pattern.value {
|
|
// Now that we know for sure it's a closure, get an owned
|
|
// version of these variant args so we can use them properly.
|
|
match def.loc_expr.value {
|
|
Closure(closure_data) => {
|
|
register_capturing_closure(
|
|
env,
|
|
procs,
|
|
layout_cache,
|
|
*symbol,
|
|
closure_data,
|
|
);
|
|
|
|
continue;
|
|
}
|
|
_ => unreachable!("recursive value is not a function"),
|
|
}
|
|
}
|
|
unreachable!("recursive value does not have Identifier pattern")
|
|
}
|
|
|
|
from_can(env, variable, cont.value, procs, layout_cache)
|
|
}
|
|
LetNonRec(def, cont) => from_can_let(env, procs, layout_cache, def, cont, variable, None),
|
|
_ => {
|
|
let symbol = env.unique_symbol();
|
|
let hole = env.arena.alloc(Stmt::Ret(symbol));
|
|
with_hole(env, can_expr, variable, procs, layout_cache, symbol, hole)
|
|
}
|
|
}
|
|
}
|
|
|
|
fn to_opt_branches<'a>(
|
|
env: &mut Env<'a, '_>,
|
|
procs: &mut Procs<'a>,
|
|
branches: std::vec::Vec<roc_can::expr::WhenBranch>,
|
|
exhaustive_mark: ExhaustiveMark,
|
|
layout_cache: &mut LayoutCache<'a>,
|
|
) -> std::vec::Vec<(
|
|
Pattern<'a>,
|
|
Option<Loc<roc_can::expr::Expr>>,
|
|
roc_can::expr::Expr,
|
|
)> {
|
|
debug_assert!(!branches.is_empty());
|
|
|
|
let mut opt_branches = std::vec::Vec::new();
|
|
|
|
for when_branch in branches {
|
|
if when_branch.redundant.is_redundant(env.subs) {
|
|
// Don't codegen this branch since it's redundant.
|
|
continue;
|
|
}
|
|
|
|
for loc_pattern in when_branch.patterns {
|
|
match from_can_pattern(env, procs, layout_cache, &loc_pattern.pattern.value) {
|
|
Ok((mono_pattern, assignments)) => {
|
|
let loc_expr = if !loc_pattern.degenerate {
|
|
let mut loc_expr = when_branch.value.clone();
|
|
|
|
let region = loc_pattern.pattern.region;
|
|
for (symbol, variable, expr) in assignments.into_iter().rev() {
|
|
let def = roc_can::def::Def {
|
|
annotation: None,
|
|
expr_var: variable,
|
|
loc_expr: Loc::at(region, expr),
|
|
loc_pattern: Loc::at(
|
|
region,
|
|
roc_can::pattern::Pattern::Identifier(symbol),
|
|
),
|
|
pattern_vars: std::iter::once((symbol, variable)).collect(),
|
|
};
|
|
let new_expr =
|
|
roc_can::expr::Expr::LetNonRec(Box::new(def), Box::new(loc_expr));
|
|
loc_expr = Loc::at(region, new_expr);
|
|
}
|
|
|
|
loc_expr
|
|
} else {
|
|
// This pattern is degenerate; when it's reached we must emit a runtime
|
|
// error.
|
|
Loc::at_zero(roc_can::expr::Expr::RuntimeError(
|
|
RuntimeError::DegenerateBranch(loc_pattern.pattern.region),
|
|
))
|
|
};
|
|
|
|
// TODO remove clone?
|
|
opt_branches.push((mono_pattern, when_branch.guard.clone(), loc_expr.value));
|
|
}
|
|
Err(runtime_error) => {
|
|
// TODO remove clone?
|
|
opt_branches.push((
|
|
Pattern::Underscore,
|
|
when_branch.guard.clone(),
|
|
roc_can::expr::Expr::RuntimeError(runtime_error),
|
|
));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if exhaustive_mark.is_non_exhaustive(env.subs) {
|
|
// In contrast to elm (currently), we still do codegen even if a pattern is non-exhaustive.
|
|
// So we not only report exhaustiveness errors, but also correct them
|
|
opt_branches.push((
|
|
Pattern::Underscore,
|
|
None,
|
|
roc_can::expr::Expr::RuntimeError(roc_problem::can::RuntimeError::NonExhaustivePattern),
|
|
));
|
|
}
|
|
|
|
opt_branches
|
|
}
|
|
|
|
#[allow(clippy::too_many_arguments)]
|
|
fn from_can_when<'a>(
|
|
env: &mut Env<'a, '_>,
|
|
cond_var: Variable,
|
|
expr_var: Variable,
|
|
cond_symbol: Symbol,
|
|
branches: std::vec::Vec<roc_can::expr::WhenBranch>,
|
|
exhaustive_mark: ExhaustiveMark,
|
|
layout_cache: &mut LayoutCache<'a>,
|
|
procs: &mut Procs<'a>,
|
|
join_point: Option<JoinPointId>,
|
|
) -> Stmt<'a> {
|
|
if branches.is_empty() {
|
|
// A when-expression with no branches is a runtime error.
|
|
// We can't know what to return!
|
|
return runtime_error(env, "Hit a 0-branch when expression");
|
|
}
|
|
let opt_branches = to_opt_branches(env, procs, branches, exhaustive_mark, layout_cache);
|
|
|
|
let cond_layout = return_on_layout_error!(
|
|
env,
|
|
layout_cache.from_var(env.arena, cond_var, env.subs),
|
|
"from_can_when cond_layout"
|
|
);
|
|
|
|
let ret_layout = return_on_layout_error!(
|
|
env,
|
|
layout_cache.from_var(env.arena, expr_var, env.subs),
|
|
"from_can_when ret_layout"
|
|
);
|
|
|
|
let arena = env.arena;
|
|
let it = opt_branches
|
|
.into_iter()
|
|
.filter_map(|(pattern, opt_guard, can_expr)| {
|
|
// If the pattern has a void layout we can drop it; however, we must still perform the
|
|
// work of building the body, because that may contain specializations we must
|
|
// discover for use elsewhere. See
|
|
// `unreachable_branch_is_eliminated_but_produces_lambda_specializations` in test_mono
|
|
// for an example.
|
|
let should_eliminate_branch = pattern.is_voided();
|
|
|
|
// If we're going to eliminate the branch, we need to take a snapshot of the symbol
|
|
// specializations before we enter the branch, because any new specializations that
|
|
// will be added in the branch body will never need to be resolved!
|
|
let specialization_symbol_snapshot = if should_eliminate_branch {
|
|
Some(std::mem::take(&mut procs.symbol_specializations))
|
|
} else {
|
|
None
|
|
};
|
|
|
|
let branch_stmt = match join_point {
|
|
None => from_can(env, expr_var, can_expr, procs, layout_cache),
|
|
Some(id) => {
|
|
let symbol = env.unique_symbol();
|
|
let arguments = bumpalo::vec![in env.arena; symbol].into_bump_slice();
|
|
let jump = env.arena.alloc(Stmt::Jump(id, arguments));
|
|
|
|
with_hole(env, can_expr, expr_var, procs, layout_cache, symbol, jump)
|
|
}
|
|
};
|
|
|
|
use crate::decision_tree::Guard;
|
|
let result = if let Some(loc_expr) = opt_guard {
|
|
let id = JoinPointId(env.unique_symbol());
|
|
let symbol = env.unique_symbol();
|
|
let jump = env.arena.alloc(Stmt::Jump(id, env.arena.alloc([symbol])));
|
|
|
|
let guard_stmt = with_hole(
|
|
env,
|
|
loc_expr.value,
|
|
Variable::BOOL,
|
|
procs,
|
|
layout_cache,
|
|
symbol,
|
|
jump,
|
|
);
|
|
|
|
(
|
|
pattern.clone(),
|
|
Guard::Guard {
|
|
id,
|
|
pattern,
|
|
stmt: guard_stmt,
|
|
},
|
|
branch_stmt,
|
|
)
|
|
} else {
|
|
(pattern, Guard::NoGuard, branch_stmt)
|
|
};
|
|
|
|
if should_eliminate_branch {
|
|
procs.symbol_specializations = specialization_symbol_snapshot.unwrap();
|
|
None
|
|
} else {
|
|
Some(result)
|
|
}
|
|
});
|
|
let mono_branches = Vec::from_iter_in(it, arena);
|
|
|
|
crate::decision_tree::optimize_when(
|
|
env,
|
|
procs,
|
|
layout_cache,
|
|
cond_symbol,
|
|
cond_layout,
|
|
ret_layout,
|
|
mono_branches,
|
|
)
|
|
}
|
|
|
|
fn substitute(substitutions: &BumpMap<Symbol, Symbol>, s: Symbol) -> Option<Symbol> {
|
|
match substitutions.get(&s) {
|
|
Some(new) => {
|
|
debug_assert!(!substitutions.contains_key(new));
|
|
Some(*new)
|
|
}
|
|
None => None,
|
|
}
|
|
}
|
|
|
|
fn substitute_in_exprs<'a>(arena: &'a Bump, stmt: &mut Stmt<'a>, from: Symbol, to: Symbol) {
|
|
let mut subs = BumpMap::with_capacity_in(1, arena);
|
|
subs.insert(from, to);
|
|
|
|
// TODO clean this up
|
|
let ref_stmt = arena.alloc(stmt.clone());
|
|
if let Some(new) = substitute_in_stmt_help(arena, ref_stmt, &subs) {
|
|
*stmt = new.clone();
|
|
}
|
|
}
|
|
|
|
fn substitute_in_stmt_help<'a>(
|
|
arena: &'a Bump,
|
|
stmt: &'a Stmt<'a>,
|
|
subs: &BumpMap<Symbol, Symbol>,
|
|
) -> Option<&'a Stmt<'a>> {
|
|
use Stmt::*;
|
|
|
|
match stmt {
|
|
Let(symbol, expr, layout, cont) => {
|
|
let opt_cont = substitute_in_stmt_help(arena, cont, subs);
|
|
let opt_expr = substitute_in_expr(arena, expr, subs);
|
|
|
|
if opt_expr.is_some() || opt_cont.is_some() {
|
|
let cont = opt_cont.unwrap_or(cont);
|
|
let expr = opt_expr.unwrap_or_else(|| expr.clone());
|
|
|
|
Some(arena.alloc(Let(*symbol, expr, *layout, cont)))
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
Join {
|
|
id,
|
|
parameters,
|
|
remainder,
|
|
body: continuation,
|
|
} => {
|
|
let opt_remainder = substitute_in_stmt_help(arena, remainder, subs);
|
|
let opt_continuation = substitute_in_stmt_help(arena, continuation, subs);
|
|
|
|
if opt_remainder.is_some() || opt_continuation.is_some() {
|
|
let remainder = opt_remainder.unwrap_or(remainder);
|
|
let continuation = opt_continuation.unwrap_or(*continuation);
|
|
|
|
Some(arena.alloc(Join {
|
|
id: *id,
|
|
parameters,
|
|
remainder,
|
|
body: continuation,
|
|
}))
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
Switch {
|
|
cond_symbol,
|
|
cond_layout,
|
|
branches,
|
|
default_branch,
|
|
ret_layout,
|
|
} => {
|
|
let opt_default = substitute_in_stmt_help(arena, default_branch.1, subs);
|
|
|
|
let mut did_change = false;
|
|
|
|
let opt_branches = Vec::from_iter_in(
|
|
branches.iter().map(|(label, info, branch)| {
|
|
match substitute_in_stmt_help(arena, branch, subs) {
|
|
None => None,
|
|
Some(branch) => {
|
|
did_change = true;
|
|
Some((*label, info.clone(), branch.clone()))
|
|
}
|
|
}
|
|
}),
|
|
arena,
|
|
);
|
|
|
|
if opt_default.is_some() || did_change {
|
|
let default_branch = (
|
|
default_branch.0.clone(),
|
|
opt_default.unwrap_or(default_branch.1),
|
|
);
|
|
|
|
let branches = if did_change {
|
|
let new = Vec::from_iter_in(
|
|
opt_branches.into_iter().zip(branches.iter()).map(
|
|
|(opt_branch, branch)| match opt_branch {
|
|
None => branch.clone(),
|
|
Some(new_branch) => new_branch,
|
|
},
|
|
),
|
|
arena,
|
|
);
|
|
|
|
new.into_bump_slice()
|
|
} else {
|
|
branches
|
|
};
|
|
|
|
Some(arena.alloc(Switch {
|
|
cond_symbol: *cond_symbol,
|
|
cond_layout: *cond_layout,
|
|
default_branch,
|
|
branches,
|
|
ret_layout: *ret_layout,
|
|
}))
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
Ret(s) => match substitute(subs, *s) {
|
|
Some(s) => Some(arena.alloc(Ret(s))),
|
|
None => None,
|
|
},
|
|
Refcounting(modify, cont) => {
|
|
// TODO should we substitute in the ModifyRc?
|
|
match substitute_in_stmt_help(arena, cont, subs) {
|
|
Some(cont) => Some(arena.alloc(Refcounting(*modify, cont))),
|
|
None => None,
|
|
}
|
|
}
|
|
|
|
Expect {
|
|
condition,
|
|
region,
|
|
lookups,
|
|
layouts,
|
|
remainder,
|
|
} => {
|
|
let new_remainder =
|
|
substitute_in_stmt_help(arena, remainder, subs).unwrap_or(remainder);
|
|
|
|
let new_lookups = Vec::from_iter_in(
|
|
lookups.iter().map(|s| substitute(subs, *s).unwrap_or(*s)),
|
|
arena,
|
|
);
|
|
|
|
let expect = Expect {
|
|
condition: substitute(subs, *condition).unwrap_or(*condition),
|
|
region: *region,
|
|
lookups: new_lookups.into_bump_slice(),
|
|
layouts,
|
|
remainder: new_remainder,
|
|
};
|
|
|
|
Some(arena.alloc(expect))
|
|
}
|
|
|
|
ExpectFx {
|
|
condition,
|
|
region,
|
|
lookups,
|
|
layouts,
|
|
remainder,
|
|
} => {
|
|
let new_remainder =
|
|
substitute_in_stmt_help(arena, remainder, subs).unwrap_or(remainder);
|
|
|
|
let new_lookups = Vec::from_iter_in(
|
|
lookups.iter().map(|s| substitute(subs, *s).unwrap_or(*s)),
|
|
arena,
|
|
);
|
|
|
|
let expect = ExpectFx {
|
|
condition: substitute(subs, *condition).unwrap_or(*condition),
|
|
region: *region,
|
|
lookups: new_lookups.into_bump_slice(),
|
|
layouts,
|
|
remainder: new_remainder,
|
|
};
|
|
|
|
Some(arena.alloc(expect))
|
|
}
|
|
|
|
Jump(id, args) => {
|
|
let mut did_change = false;
|
|
let new_args = Vec::from_iter_in(
|
|
args.iter().map(|s| match substitute(subs, *s) {
|
|
None => *s,
|
|
Some(s) => {
|
|
did_change = true;
|
|
s
|
|
}
|
|
}),
|
|
arena,
|
|
);
|
|
|
|
if did_change {
|
|
let args = new_args.into_bump_slice();
|
|
|
|
Some(arena.alloc(Jump(*id, args)))
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
Crash(msg, tag) => substitute(subs, *msg).map(|new| &*arena.alloc(Crash(new, *tag))),
|
|
}
|
|
}
|
|
|
|
fn substitute_in_call<'a>(
|
|
arena: &'a Bump,
|
|
call: &'a Call<'a>,
|
|
subs: &BumpMap<Symbol, Symbol>,
|
|
) -> Option<Call<'a>> {
|
|
let Call {
|
|
call_type,
|
|
arguments,
|
|
} = call;
|
|
|
|
let opt_call_type = match call_type {
|
|
CallType::ByName {
|
|
name,
|
|
arg_layouts,
|
|
ret_layout,
|
|
specialization_id,
|
|
} => substitute(subs, name.name()).map(|new| CallType::ByName {
|
|
name: name.replace_name(new),
|
|
arg_layouts,
|
|
ret_layout,
|
|
specialization_id: *specialization_id,
|
|
}),
|
|
CallType::Foreign { .. } => None,
|
|
CallType::LowLevel { .. } => None,
|
|
CallType::HigherOrder { .. } => None,
|
|
};
|
|
|
|
let mut did_change = false;
|
|
let new_args = Vec::from_iter_in(
|
|
arguments.iter().map(|s| match substitute(subs, *s) {
|
|
None => *s,
|
|
Some(s) => {
|
|
did_change = true;
|
|
s
|
|
}
|
|
}),
|
|
arena,
|
|
);
|
|
|
|
if did_change || opt_call_type.is_some() {
|
|
let call_type = opt_call_type.unwrap_or_else(|| call_type.clone());
|
|
|
|
let arguments = new_args.into_bump_slice();
|
|
|
|
Some(self::Call {
|
|
call_type,
|
|
arguments,
|
|
})
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
fn substitute_in_expr<'a>(
|
|
arena: &'a Bump,
|
|
expr: &'a Expr<'a>,
|
|
subs: &BumpMap<Symbol, Symbol>,
|
|
) -> Option<Expr<'a>> {
|
|
use Expr::*;
|
|
|
|
match expr {
|
|
Literal(_) | EmptyArray | RuntimeErrorFunction(_) => None,
|
|
|
|
Call(call) => substitute_in_call(arena, call, subs).map(Expr::Call),
|
|
|
|
Tag {
|
|
tag_layout,
|
|
tag_id,
|
|
arguments: args,
|
|
} => {
|
|
let mut did_change = false;
|
|
let new_args = Vec::from_iter_in(
|
|
args.iter().map(|s| match substitute(subs, *s) {
|
|
None => *s,
|
|
Some(s) => {
|
|
did_change = true;
|
|
s
|
|
}
|
|
}),
|
|
arena,
|
|
);
|
|
|
|
if did_change {
|
|
let arguments = new_args.into_bump_slice();
|
|
|
|
Some(Tag {
|
|
tag_layout: *tag_layout,
|
|
tag_id: *tag_id,
|
|
arguments,
|
|
})
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
Reuse { .. } | Reset { .. } => unreachable!("reset/reuse have not been introduced yet"),
|
|
|
|
Struct(args) => {
|
|
let mut did_change = false;
|
|
let new_args = Vec::from_iter_in(
|
|
args.iter().map(|s| match substitute(subs, *s) {
|
|
None => *s,
|
|
Some(s) => {
|
|
did_change = true;
|
|
s
|
|
}
|
|
}),
|
|
arena,
|
|
);
|
|
|
|
if did_change {
|
|
let args = new_args.into_bump_slice();
|
|
|
|
Some(Struct(args))
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
Array {
|
|
elems: args,
|
|
elem_layout,
|
|
} => {
|
|
let mut did_change = false;
|
|
let new_args = Vec::from_iter_in(
|
|
args.iter().map(|e| {
|
|
if let ListLiteralElement::Symbol(s) = e {
|
|
match substitute(subs, *s) {
|
|
None => ListLiteralElement::Symbol(*s),
|
|
Some(s) => {
|
|
did_change = true;
|
|
ListLiteralElement::Symbol(s)
|
|
}
|
|
}
|
|
} else {
|
|
*e
|
|
}
|
|
}),
|
|
arena,
|
|
);
|
|
|
|
if did_change {
|
|
let args = new_args.into_bump_slice();
|
|
|
|
Some(Array {
|
|
elem_layout: *elem_layout,
|
|
elems: args,
|
|
})
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
ExprBox { symbol } => {
|
|
substitute(subs, *symbol).map(|new_symbol| ExprBox { symbol: new_symbol })
|
|
}
|
|
|
|
ExprUnbox { symbol } => {
|
|
substitute(subs, *symbol).map(|new_symbol| ExprUnbox { symbol: new_symbol })
|
|
}
|
|
|
|
StructAtIndex {
|
|
index,
|
|
structure,
|
|
field_layouts,
|
|
} => match substitute(subs, *structure) {
|
|
Some(structure) => Some(StructAtIndex {
|
|
index: *index,
|
|
field_layouts,
|
|
structure,
|
|
}),
|
|
None => None,
|
|
},
|
|
|
|
GetTagId {
|
|
structure,
|
|
union_layout,
|
|
} => match substitute(subs, *structure) {
|
|
Some(structure) => Some(GetTagId {
|
|
structure,
|
|
union_layout: *union_layout,
|
|
}),
|
|
None => None,
|
|
},
|
|
|
|
UnionAtIndex {
|
|
structure,
|
|
tag_id,
|
|
index,
|
|
union_layout,
|
|
} => match substitute(subs, *structure) {
|
|
Some(structure) => Some(UnionAtIndex {
|
|
structure,
|
|
tag_id: *tag_id,
|
|
index: *index,
|
|
union_layout: *union_layout,
|
|
}),
|
|
None => None,
|
|
},
|
|
}
|
|
}
|
|
|
|
#[allow(clippy::too_many_arguments)]
|
|
pub fn store_pattern<'a>(
|
|
env: &mut Env<'a, '_>,
|
|
procs: &mut Procs<'a>,
|
|
layout_cache: &mut LayoutCache<'a>,
|
|
can_pat: &Pattern<'a>,
|
|
outer_symbol: Symbol,
|
|
stmt: Stmt<'a>,
|
|
) -> Stmt<'a> {
|
|
match store_pattern_help(env, procs, layout_cache, can_pat, outer_symbol, stmt) {
|
|
StorePattern::Productive(new) => new,
|
|
StorePattern::NotProductive(new) => new,
|
|
}
|
|
}
|
|
|
|
enum StorePattern<'a> {
|
|
/// we bound new symbols
|
|
Productive(Stmt<'a>),
|
|
/// no new symbols were bound in this pattern
|
|
NotProductive(Stmt<'a>),
|
|
}
|
|
|
|
/// It is crucial for correct RC insertion that we don't create dead variables!
|
|
#[allow(clippy::too_many_arguments)]
|
|
fn store_pattern_help<'a>(
|
|
env: &mut Env<'a, '_>,
|
|
procs: &mut Procs<'a>,
|
|
layout_cache: &mut LayoutCache<'a>,
|
|
can_pat: &Pattern<'a>,
|
|
outer_symbol: Symbol,
|
|
mut stmt: Stmt<'a>,
|
|
) -> StorePattern<'a> {
|
|
use Pattern::*;
|
|
|
|
match can_pat {
|
|
Identifier(symbol) => {
|
|
// An identifier in a pattern can define at most one specialization!
|
|
// Remove any requested specializations for this name now, since this is the definition site.
|
|
let specialization_symbol = procs
|
|
.symbol_specializations
|
|
.remove_single(*symbol)
|
|
// Can happen when the symbol was never used under this body, and hence has no
|
|
// requested specialization.
|
|
.unwrap_or(*symbol);
|
|
|
|
substitute_in_exprs(env.arena, &mut stmt, specialization_symbol, outer_symbol);
|
|
}
|
|
Underscore => {
|
|
// do nothing
|
|
return StorePattern::NotProductive(stmt);
|
|
}
|
|
IntLiteral(_, _)
|
|
| FloatLiteral(_, _)
|
|
| DecimalLiteral(_)
|
|
| EnumLiteral { .. }
|
|
| BitLiteral { .. }
|
|
| StrLiteral(_) => {
|
|
return StorePattern::NotProductive(stmt);
|
|
}
|
|
NewtypeDestructure { arguments, .. } => match arguments.as_slice() {
|
|
[(pattern, _layout)] => {
|
|
return store_pattern_help(env, procs, layout_cache, pattern, outer_symbol, stmt);
|
|
}
|
|
_ => {
|
|
let mut fields = Vec::with_capacity_in(arguments.len(), env.arena);
|
|
fields.extend(arguments.iter().map(|x| x.1));
|
|
|
|
let layout = Layout::struct_no_name_order(fields.into_bump_slice());
|
|
|
|
return store_newtype_pattern(
|
|
env,
|
|
procs,
|
|
layout_cache,
|
|
outer_symbol,
|
|
&layout,
|
|
arguments,
|
|
stmt,
|
|
);
|
|
}
|
|
},
|
|
AppliedTag {
|
|
arguments,
|
|
layout,
|
|
tag_id,
|
|
..
|
|
} => {
|
|
return store_tag_pattern(
|
|
env,
|
|
procs,
|
|
layout_cache,
|
|
outer_symbol,
|
|
*layout,
|
|
arguments,
|
|
*tag_id,
|
|
stmt,
|
|
);
|
|
}
|
|
|
|
List {
|
|
arity,
|
|
element_layout,
|
|
elements,
|
|
} => {
|
|
return store_list_pattern(
|
|
env,
|
|
procs,
|
|
layout_cache,
|
|
outer_symbol,
|
|
*arity,
|
|
*element_layout,
|
|
elements,
|
|
stmt,
|
|
)
|
|
}
|
|
|
|
Voided { .. } => {
|
|
return StorePattern::NotProductive(stmt);
|
|
}
|
|
|
|
OpaqueUnwrap { argument, .. } => {
|
|
let (pattern, _layout) = &**argument;
|
|
return store_pattern_help(env, procs, layout_cache, pattern, outer_symbol, stmt);
|
|
}
|
|
|
|
RecordDestructure(destructs, [_single_field]) => {
|
|
for destruct in destructs {
|
|
match &destruct.typ {
|
|
DestructType::Required(symbol) => {
|
|
let specialization_symbol = procs
|
|
.symbol_specializations
|
|
.remove_single(*symbol)
|
|
// Can happen when the symbol was never used under this body, and hence has no
|
|
// requested specialization.
|
|
.unwrap_or(*symbol);
|
|
|
|
substitute_in_exprs(
|
|
env.arena,
|
|
&mut stmt,
|
|
specialization_symbol,
|
|
outer_symbol,
|
|
);
|
|
}
|
|
DestructType::Guard(guard_pattern) => {
|
|
return store_pattern_help(
|
|
env,
|
|
procs,
|
|
layout_cache,
|
|
guard_pattern,
|
|
outer_symbol,
|
|
stmt,
|
|
);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
RecordDestructure(destructs, sorted_fields) => {
|
|
let mut is_productive = false;
|
|
for (index, destruct) in destructs.iter().enumerate().rev() {
|
|
match store_record_destruct(
|
|
env,
|
|
procs,
|
|
layout_cache,
|
|
destruct,
|
|
index as u64,
|
|
outer_symbol,
|
|
sorted_fields,
|
|
stmt,
|
|
) {
|
|
StorePattern::Productive(new) => {
|
|
is_productive = true;
|
|
stmt = new;
|
|
}
|
|
StorePattern::NotProductive(new) => {
|
|
stmt = new;
|
|
}
|
|
}
|
|
}
|
|
|
|
if !is_productive {
|
|
return StorePattern::NotProductive(stmt);
|
|
}
|
|
}
|
|
}
|
|
|
|
StorePattern::Productive(stmt)
|
|
}
|
|
|
|
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
|
|
pub(crate) struct ListIndex(
|
|
/// Positive if we should index from the head, negative if we should index from the tail
|
|
/// 0 is lst[0]
|
|
/// -1 is lst[List.len lst - 1]
|
|
i64,
|
|
);
|
|
|
|
impl ListIndex {
|
|
pub fn from_pattern_index(index: usize, arity: ListArity) -> Self {
|
|
match arity {
|
|
ListArity::Exact(_) => Self(index as _),
|
|
ListArity::Slice(head, tail) => {
|
|
if index < head {
|
|
Self(index as _)
|
|
} else {
|
|
// Slice(head=2, tail=5)
|
|
//
|
|
// s t ... w y z x q
|
|
// 0 1 2 3 4 5 6 index
|
|
// 0 1 2 3 4 (index - head)
|
|
// 5 4 3 2 1 (tail - (index - head))
|
|
Self(-((tail - (index - head)) as i64))
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pub(crate) type Store<'a> = (Symbol, Layout<'a>, Expr<'a>);
|
|
|
|
/// Builds the list index we should index into
|
|
#[must_use]
|
|
pub(crate) fn build_list_index_probe<'a>(
|
|
env: &mut Env<'a, '_>,
|
|
list_sym: Symbol,
|
|
list_index: &ListIndex,
|
|
) -> (Symbol, impl DoubleEndedIterator<Item = Store<'a>>) {
|
|
let usize_layout = Layout::usize(env.target_info);
|
|
|
|
let list_index = list_index.0;
|
|
let index_sym = env.unique_symbol();
|
|
|
|
let (opt_len_store, opt_offset_store, index_store) = if list_index >= 0 {
|
|
let index_expr = Expr::Literal(Literal::Int((list_index as i128).to_ne_bytes()));
|
|
|
|
let index_store = (index_sym, usize_layout, index_expr);
|
|
|
|
(None, None, index_store)
|
|
} else {
|
|
let len_sym = env.unique_symbol();
|
|
let len_expr = Expr::Call(Call {
|
|
call_type: CallType::LowLevel {
|
|
op: LowLevel::ListLen,
|
|
update_mode: env.next_update_mode_id(),
|
|
},
|
|
arguments: env.arena.alloc([list_sym]),
|
|
});
|
|
|
|
let offset = list_index.abs();
|
|
let offset_sym = env.unique_symbol();
|
|
let offset_expr = Expr::Literal(Literal::Int((offset as i128).to_ne_bytes()));
|
|
|
|
let index_expr = Expr::Call(Call {
|
|
call_type: CallType::LowLevel {
|
|
op: LowLevel::NumSub,
|
|
update_mode: env.next_update_mode_id(),
|
|
},
|
|
arguments: env.arena.alloc([len_sym, offset_sym]),
|
|
});
|
|
|
|
let len_store = (len_sym, usize_layout, len_expr);
|
|
let offset_store = (offset_sym, usize_layout, offset_expr);
|
|
let index_store = (index_sym, usize_layout, index_expr);
|
|
|
|
(Some(len_store), Some(offset_store), index_store)
|
|
};
|
|
|
|
let stores = (opt_len_store.into_iter())
|
|
.chain(opt_offset_store)
|
|
.chain([index_store]);
|
|
|
|
(index_sym, stores)
|
|
}
|
|
|
|
#[allow(clippy::too_many_arguments)]
|
|
fn store_list_pattern<'a>(
|
|
env: &mut Env<'a, '_>,
|
|
procs: &mut Procs<'a>,
|
|
layout_cache: &mut LayoutCache<'a>,
|
|
list_sym: Symbol,
|
|
list_arity: ListArity,
|
|
element_layout: Layout<'a>,
|
|
elements: &[Pattern<'a>],
|
|
mut stmt: Stmt<'a>,
|
|
) -> StorePattern<'a> {
|
|
use Pattern::*;
|
|
|
|
let mut is_productive = false;
|
|
|
|
for (index, element) in elements.iter().enumerate().rev() {
|
|
let compute_element_load = |env: &mut Env<'a, '_>| {
|
|
let list_index = ListIndex::from_pattern_index(index, list_arity);
|
|
|
|
let (index_sym, needed_stores) = build_list_index_probe(env, list_sym, &list_index);
|
|
|
|
let load = Expr::Call(Call {
|
|
call_type: CallType::LowLevel {
|
|
op: LowLevel::ListGetUnsafe,
|
|
update_mode: env.next_update_mode_id(),
|
|
},
|
|
arguments: env.arena.alloc([list_sym, index_sym]),
|
|
});
|
|
|
|
(load, needed_stores)
|
|
};
|
|
|
|
let (store_loaded, needed_stores) = match element {
|
|
Identifier(symbol) => {
|
|
let (load, needed_stores) = compute_element_load(env);
|
|
|
|
// Pattern can define only one specialization
|
|
let symbol = procs
|
|
.symbol_specializations
|
|
.remove_single(*symbol)
|
|
.unwrap_or(*symbol);
|
|
|
|
// store immediately in the given symbol
|
|
(
|
|
Stmt::Let(symbol, load, element_layout, env.arena.alloc(stmt)),
|
|
needed_stores,
|
|
)
|
|
}
|
|
Underscore
|
|
| IntLiteral(_, _)
|
|
| FloatLiteral(_, _)
|
|
| DecimalLiteral(_)
|
|
| EnumLiteral { .. }
|
|
| BitLiteral { .. }
|
|
| StrLiteral(_) => {
|
|
// ignore
|
|
continue;
|
|
}
|
|
_ => {
|
|
// store the field in a symbol, and continue matching on it
|
|
let symbol = env.unique_symbol();
|
|
|
|
// first recurse, continuing to unpack symbol
|
|
match store_pattern_help(env, procs, layout_cache, element, symbol, stmt) {
|
|
StorePattern::Productive(new) => {
|
|
stmt = new;
|
|
let (load, needed_stores) = compute_element_load(env);
|
|
|
|
// only if we bind one of its (sub)fields to a used name should we
|
|
// extract the field
|
|
(
|
|
Stmt::Let(symbol, load, element_layout, env.arena.alloc(stmt)),
|
|
needed_stores,
|
|
)
|
|
}
|
|
StorePattern::NotProductive(new) => {
|
|
// do nothing
|
|
stmt = new;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
is_productive = true;
|
|
|
|
stmt = store_loaded;
|
|
for (sym, lay, expr) in needed_stores.rev() {
|
|
stmt = Stmt::Let(sym, expr, lay, env.arena.alloc(stmt));
|
|
}
|
|
}
|
|
|
|
if is_productive {
|
|
StorePattern::Productive(stmt)
|
|
} else {
|
|
StorePattern::NotProductive(stmt)
|
|
}
|
|
}
|
|
|
|
#[allow(clippy::too_many_arguments)]
|
|
fn store_tag_pattern<'a>(
|
|
env: &mut Env<'a, '_>,
|
|
procs: &mut Procs<'a>,
|
|
layout_cache: &mut LayoutCache<'a>,
|
|
structure: Symbol,
|
|
union_layout: UnionLayout<'a>,
|
|
arguments: &[(Pattern<'a>, Layout<'a>)],
|
|
tag_id: TagIdIntType,
|
|
mut stmt: Stmt<'a>,
|
|
) -> StorePattern<'a> {
|
|
use Pattern::*;
|
|
|
|
let mut is_productive = false;
|
|
|
|
for (index, (argument, arg_layout)) in arguments.iter().enumerate().rev() {
|
|
let mut arg_layout = *arg_layout;
|
|
|
|
if let Layout::RecursivePointer = arg_layout {
|
|
arg_layout = Layout::Union(union_layout);
|
|
}
|
|
|
|
let load = Expr::UnionAtIndex {
|
|
index: index as u64,
|
|
structure,
|
|
tag_id,
|
|
union_layout,
|
|
};
|
|
|
|
match argument {
|
|
Identifier(symbol) => {
|
|
// Pattern can define only one specialization
|
|
let symbol = procs
|
|
.symbol_specializations
|
|
.remove_single(*symbol)
|
|
.unwrap_or(*symbol);
|
|
|
|
// store immediately in the given symbol
|
|
stmt = Stmt::Let(symbol, load, arg_layout, env.arena.alloc(stmt));
|
|
is_productive = true;
|
|
}
|
|
Underscore => {
|
|
// ignore
|
|
}
|
|
IntLiteral(_, _)
|
|
| FloatLiteral(_, _)
|
|
| DecimalLiteral(_)
|
|
| EnumLiteral { .. }
|
|
| BitLiteral { .. }
|
|
| StrLiteral(_) => {}
|
|
_ => {
|
|
// store the field in a symbol, and continue matching on it
|
|
let symbol = env.unique_symbol();
|
|
|
|
// first recurse, continuing to unpack symbol
|
|
match store_pattern_help(env, procs, layout_cache, argument, symbol, stmt) {
|
|
StorePattern::Productive(new) => {
|
|
is_productive = true;
|
|
stmt = new;
|
|
// only if we bind one of its (sub)fields to a used name should we
|
|
// extract the field
|
|
stmt = Stmt::Let(symbol, load, arg_layout, env.arena.alloc(stmt));
|
|
}
|
|
StorePattern::NotProductive(new) => {
|
|
// do nothing
|
|
stmt = new;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if is_productive {
|
|
StorePattern::Productive(stmt)
|
|
} else {
|
|
StorePattern::NotProductive(stmt)
|
|
}
|
|
}
|
|
|
|
#[allow(clippy::too_many_arguments)]
|
|
fn store_newtype_pattern<'a>(
|
|
env: &mut Env<'a, '_>,
|
|
procs: &mut Procs<'a>,
|
|
layout_cache: &mut LayoutCache<'a>,
|
|
structure: Symbol,
|
|
layout: &Layout<'a>,
|
|
arguments: &[(Pattern<'a>, Layout<'a>)],
|
|
mut stmt: Stmt<'a>,
|
|
) -> StorePattern<'a> {
|
|
use Pattern::*;
|
|
|
|
let mut arg_layouts = Vec::with_capacity_in(arguments.len(), env.arena);
|
|
let mut is_productive = false;
|
|
|
|
for (_, layout) in arguments {
|
|
arg_layouts.push(*layout);
|
|
}
|
|
|
|
for (index, (argument, arg_layout)) in arguments.iter().enumerate().rev() {
|
|
let mut arg_layout = *arg_layout;
|
|
|
|
if let Layout::RecursivePointer = arg_layout {
|
|
arg_layout = *layout;
|
|
}
|
|
|
|
let load = Expr::StructAtIndex {
|
|
index: index as u64,
|
|
field_layouts: arg_layouts.clone().into_bump_slice(),
|
|
structure,
|
|
};
|
|
|
|
match argument {
|
|
Identifier(symbol) => {
|
|
// store immediately in the given symbol, removing it specialization if it had any
|
|
let specialization_symbol = procs
|
|
.symbol_specializations
|
|
.remove_single(*symbol)
|
|
// Can happen when the symbol was never used under this body, and hence has no
|
|
// requested specialization.
|
|
.unwrap_or(*symbol);
|
|
|
|
stmt = Stmt::Let(
|
|
specialization_symbol,
|
|
load,
|
|
arg_layout,
|
|
env.arena.alloc(stmt),
|
|
);
|
|
is_productive = true;
|
|
}
|
|
Underscore => {
|
|
// ignore
|
|
}
|
|
IntLiteral(_, _)
|
|
| FloatLiteral(_, _)
|
|
| DecimalLiteral(_)
|
|
| EnumLiteral { .. }
|
|
| BitLiteral { .. }
|
|
| StrLiteral(_) => {}
|
|
_ => {
|
|
// store the field in a symbol, and continue matching on it
|
|
let symbol = env.unique_symbol();
|
|
|
|
// first recurse, continuing to unpack symbol
|
|
match store_pattern_help(env, procs, layout_cache, argument, symbol, stmt) {
|
|
StorePattern::Productive(new) => {
|
|
is_productive = true;
|
|
stmt = new;
|
|
// only if we bind one of its (sub)fields to a used name should we
|
|
// extract the field
|
|
stmt = Stmt::Let(symbol, load, arg_layout, env.arena.alloc(stmt));
|
|
}
|
|
StorePattern::NotProductive(new) => {
|
|
// do nothing
|
|
stmt = new;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if is_productive {
|
|
StorePattern::Productive(stmt)
|
|
} else {
|
|
StorePattern::NotProductive(stmt)
|
|
}
|
|
}
|
|
|
|
#[allow(clippy::too_many_arguments)]
|
|
fn store_record_destruct<'a>(
|
|
env: &mut Env<'a, '_>,
|
|
procs: &mut Procs<'a>,
|
|
layout_cache: &mut LayoutCache<'a>,
|
|
destruct: &RecordDestruct<'a>,
|
|
index: u64,
|
|
outer_symbol: Symbol,
|
|
sorted_fields: &'a [Layout<'a>],
|
|
mut stmt: Stmt<'a>,
|
|
) -> StorePattern<'a> {
|
|
use Pattern::*;
|
|
|
|
let load = Expr::StructAtIndex {
|
|
index,
|
|
field_layouts: sorted_fields,
|
|
structure: outer_symbol,
|
|
};
|
|
|
|
match &destruct.typ {
|
|
DestructType::Required(symbol) => {
|
|
// A destructure can define at most one specialization!
|
|
// Remove any requested specializations for this name now, since this is the definition site.
|
|
let specialization_symbol = procs
|
|
.symbol_specializations
|
|
.remove_single(*symbol)
|
|
// Can happen when the symbol was never used under this body, and hence has no
|
|
// requested specialization.
|
|
.unwrap_or(*symbol);
|
|
|
|
stmt = Stmt::Let(
|
|
specialization_symbol,
|
|
load,
|
|
destruct.layout,
|
|
env.arena.alloc(stmt),
|
|
);
|
|
}
|
|
DestructType::Guard(guard_pattern) => match &guard_pattern {
|
|
Identifier(symbol) => {
|
|
let specialization_symbol = procs
|
|
.symbol_specializations
|
|
.remove_single(*symbol)
|
|
// Can happen when the symbol was never used under this body, and hence has no
|
|
// requested specialization.
|
|
.unwrap_or(*symbol);
|
|
|
|
stmt = Stmt::Let(
|
|
specialization_symbol,
|
|
load,
|
|
destruct.layout,
|
|
env.arena.alloc(stmt),
|
|
);
|
|
}
|
|
Underscore => {
|
|
// important that this is special-cased to do nothing: mono record patterns will extract all the
|
|
// fields, but those not bound in the source code are guarded with the underscore
|
|
// pattern. So given some record `{ x : a, y : b }`, a match
|
|
//
|
|
// { x } -> ...
|
|
//
|
|
// is actually
|
|
//
|
|
// { x, y: _ } -> ...
|
|
//
|
|
// internally. But `y` is never used, so we must make sure it't not stored/loaded.
|
|
return StorePattern::NotProductive(stmt);
|
|
}
|
|
IntLiteral(_, _)
|
|
| FloatLiteral(_, _)
|
|
| DecimalLiteral(_)
|
|
| EnumLiteral { .. }
|
|
| BitLiteral { .. }
|
|
| StrLiteral(_) => {
|
|
return StorePattern::NotProductive(stmt);
|
|
}
|
|
|
|
_ => {
|
|
let symbol = env.unique_symbol();
|
|
|
|
match store_pattern_help(env, procs, layout_cache, guard_pattern, symbol, stmt) {
|
|
StorePattern::Productive(new) => {
|
|
stmt = new;
|
|
stmt = Stmt::Let(symbol, load, destruct.layout, env.arena.alloc(stmt));
|
|
}
|
|
StorePattern::NotProductive(stmt) => return StorePattern::NotProductive(stmt),
|
|
}
|
|
}
|
|
},
|
|
}
|
|
|
|
StorePattern::Productive(stmt)
|
|
}
|
|
|
|
/// We want to re-use symbols that are not function symbols
|
|
/// for any other expression, we create a new symbol, and will
|
|
/// later make sure it gets assigned the correct value.
|
|
|
|
#[derive(Debug)]
|
|
enum ReuseSymbol {
|
|
Imported(Symbol),
|
|
LocalFunction(Symbol),
|
|
Value(Symbol),
|
|
UnspecializedExpr(Symbol),
|
|
NotASymbol,
|
|
}
|
|
|
|
fn can_reuse_symbol<'a>(
|
|
env: &mut Env<'a, '_>,
|
|
procs: &Procs<'a>,
|
|
expr: &roc_can::expr::Expr,
|
|
expr_var: Variable,
|
|
) -> ReuseSymbol {
|
|
use roc_can::expr::Expr::*;
|
|
use ReuseSymbol::*;
|
|
|
|
let symbol = match expr {
|
|
AbilityMember(member, specialization_id, _) => {
|
|
late_resolve_ability_specialization(env, *member, *specialization_id, expr_var)
|
|
}
|
|
Var(symbol, _) => *symbol,
|
|
_ => return NotASymbol,
|
|
};
|
|
|
|
let arguments = [
|
|
Symbol::ARG_1,
|
|
Symbol::ARG_2,
|
|
Symbol::ARG_3,
|
|
Symbol::ARG_4,
|
|
Symbol::ARG_5,
|
|
Symbol::ARG_6,
|
|
Symbol::ARG_7,
|
|
];
|
|
|
|
if arguments.contains(&symbol) {
|
|
Value(symbol)
|
|
} else if env.is_imported_symbol(symbol) || env.is_unloaded_derived_symbol(symbol, procs) {
|
|
Imported(symbol)
|
|
} else if procs.partial_procs.contains_key(symbol) {
|
|
LocalFunction(symbol)
|
|
} else if procs.ability_member_aliases.get(symbol).is_some() {
|
|
UnspecializedExpr(symbol)
|
|
} else {
|
|
Value(symbol)
|
|
}
|
|
}
|
|
|
|
fn possible_reuse_symbol_or_specialize<'a>(
|
|
env: &mut Env<'a, '_>,
|
|
procs: &mut Procs<'a>,
|
|
layout_cache: &mut LayoutCache<'a>,
|
|
expr: &roc_can::expr::Expr,
|
|
var: Variable,
|
|
) -> Symbol {
|
|
match can_reuse_symbol(env, procs, expr, var) {
|
|
ReuseSymbol::Value(symbol) => {
|
|
procs.get_or_insert_symbol_specialization(env, layout_cache, symbol, var)
|
|
}
|
|
_ => env.unique_symbol(),
|
|
}
|
|
}
|
|
|
|
fn handle_variable_aliasing<'a, BuildRest>(
|
|
env: &mut Env<'a, '_>,
|
|
procs: &mut Procs<'a>,
|
|
layout_cache: &mut LayoutCache<'a>,
|
|
variable: Variable,
|
|
left: Symbol,
|
|
right: Symbol,
|
|
build_rest: BuildRest,
|
|
) -> Stmt<'a>
|
|
where
|
|
BuildRest: FnOnce(&mut Env<'a, '_>, &mut Procs<'a>, &mut LayoutCache<'a>) -> Stmt<'a>,
|
|
{
|
|
// 1. Handle references to ability members - we could be aliasing an ability member, or another
|
|
// alias to an ability member.
|
|
{
|
|
let is_ability_member = env
|
|
.abilities
|
|
.with_module_abilities_store(env.home, |store| store.is_ability_member_name(right));
|
|
|
|
if is_ability_member {
|
|
procs
|
|
.ability_member_aliases
|
|
.insert(left, AbilityMember(right));
|
|
return build_rest(env, procs, layout_cache);
|
|
}
|
|
if let Some(&ability_member) = procs.ability_member_aliases.get(right) {
|
|
procs.ability_member_aliases.insert(left, ability_member);
|
|
return build_rest(env, procs, layout_cache);
|
|
}
|
|
}
|
|
|
|
// 2. Handle references to a known proc - again, we may be either aliasing the proc, or another
|
|
// alias to a proc.
|
|
if procs.partial_procs.contains_key(right) {
|
|
// This is an alias to a function defined in this module.
|
|
// Attach the alias, then build the rest of the module, so that we reference and specialize
|
|
// the correct proc.
|
|
procs.partial_procs.insert_alias(left, right);
|
|
return build_rest(env, procs, layout_cache);
|
|
}
|
|
|
|
// Otherwise we're dealing with an alias whose usages will tell us what specializations we
|
|
// need. So let's figure those out first.
|
|
let result = build_rest(env, procs, layout_cache);
|
|
|
|
// The specializations we wanted of the symbol on the LHS of this alias.
|
|
let needed_specializations_of_left = procs.symbol_specializations.remove(left);
|
|
|
|
if procs.is_imported_module_thunk(right) {
|
|
// if this is an imported symbol, then we must make sure it is
|
|
// specialized, and wrap the original in a function pointer.
|
|
let mut result = result;
|
|
|
|
let no_specializations_needed = needed_specializations_of_left.len() == 0;
|
|
let needed_specializations_of_left = needed_specializations_of_left
|
|
.map(|(_, spec)| Some(spec))
|
|
// HACK: sometimes specializations can be lost, for example for `x` in
|
|
// x = Bool.true
|
|
// p = \_ -> x == 1
|
|
// that's because when specializing `p`, we collect specializations for `x`, but then
|
|
// drop all of them when leaving the body of `p`, because `x` is an argument of `p` in
|
|
// such a case.
|
|
// So, if we have no recorded specializations, suppose we are in a case like this, and
|
|
// generate the default implementation.
|
|
//
|
|
// TODO: we should fix this properly. I think the way to do it is to only have proc
|
|
// specialization only drop specializations of non-captured symbols. That's because
|
|
// captured symbols can only ever be specialized outside the closure.
|
|
// After that is done, remove this hack.
|
|
.chain(if no_specializations_needed {
|
|
[Some((
|
|
variable,
|
|
left,
|
|
procs.specialization_stack.current_use_depth(),
|
|
))]
|
|
} else {
|
|
[None]
|
|
})
|
|
.flatten();
|
|
|
|
for (variable, left, _deepest_use) in needed_specializations_of_left {
|
|
add_needed_external(procs, env, variable, LambdaName::no_niche(right));
|
|
|
|
let res_layout = layout_cache.from_var(env.arena, variable, env.subs);
|
|
let layout = return_on_layout_error!(env, res_layout, "handle_variable_aliasing");
|
|
|
|
result = force_thunk(env, right, layout, left, env.arena.alloc(result));
|
|
}
|
|
result
|
|
} else if env.is_imported_symbol(right) {
|
|
// if this is an imported symbol, then we must make sure it is
|
|
// specialized, and wrap the original in a function pointer.
|
|
add_needed_external(procs, env, variable, LambdaName::no_niche(right));
|
|
|
|
// then we must construct its closure; since imported symbols have no closure, we use the empty struct
|
|
let_empty_struct(left, env.arena.alloc(result))
|
|
} else {
|
|
// Otherwise, we are referencing a non-proc value.
|
|
|
|
// We need to lift all specializations of "left" to be specializations of "right".
|
|
let mut scratchpad_update_specializations = std::vec::Vec::new();
|
|
|
|
let left_had_specialization_symbols = needed_specializations_of_left.len() > 0;
|
|
|
|
for (specialization_mark, (specialized_var, specialized_sym, deepest_use)) in
|
|
needed_specializations_of_left
|
|
{
|
|
let old_specialized_sym = procs.symbol_specializations.get_or_insert_known(
|
|
right,
|
|
specialization_mark,
|
|
specialized_var,
|
|
specialized_sym,
|
|
deepest_use,
|
|
);
|
|
|
|
if let Some((_, old_specialized_sym, _)) = old_specialized_sym {
|
|
scratchpad_update_specializations.push((old_specialized_sym, specialized_sym));
|
|
}
|
|
}
|
|
|
|
let mut result = result;
|
|
if left_had_specialization_symbols {
|
|
// If the symbol is specialized, only the specializations need to be updated.
|
|
for (old_specialized_sym, specialized_sym) in
|
|
scratchpad_update_specializations.into_iter()
|
|
{
|
|
substitute_in_exprs(env.arena, &mut result, old_specialized_sym, specialized_sym);
|
|
}
|
|
} else {
|
|
substitute_in_exprs(env.arena, &mut result, left, right);
|
|
}
|
|
|
|
result
|
|
}
|
|
}
|
|
|
|
fn force_thunk<'a>(
|
|
env: &mut Env<'a, '_>,
|
|
thunk_name: Symbol,
|
|
layout: Layout<'a>,
|
|
assigned: Symbol,
|
|
hole: &'a Stmt<'a>,
|
|
) -> Stmt<'a> {
|
|
let call = self::Call {
|
|
call_type: CallType::ByName {
|
|
name: LambdaName::no_niche(thunk_name),
|
|
ret_layout: env.arena.alloc(layout),
|
|
arg_layouts: &[],
|
|
specialization_id: env.next_call_specialization_id(),
|
|
},
|
|
arguments: &[],
|
|
};
|
|
|
|
build_call(env, call, assigned, layout, env.arena.alloc(hole))
|
|
}
|
|
|
|
fn let_empty_struct<'a>(assigned: Symbol, hole: &'a Stmt<'a>) -> Stmt<'a> {
|
|
Stmt::Let(assigned, Expr::Struct(&[]), Layout::UNIT, hole)
|
|
}
|
|
|
|
/// If the symbol is a function or polymorphic value, make sure it is properly specialized
|
|
fn specialize_symbol<'a>(
|
|
env: &mut Env<'a, '_>,
|
|
procs: &mut Procs<'a>,
|
|
layout_cache: &mut LayoutCache<'a>,
|
|
arg_var: Option<Variable>,
|
|
symbol: Symbol,
|
|
result: Stmt<'a>,
|
|
original: Symbol,
|
|
) -> Stmt<'a> {
|
|
match procs.get_partial_proc(original) {
|
|
None => {
|
|
match arg_var {
|
|
Some(arg_var)
|
|
if env.is_imported_symbol(original)
|
|
|| env.is_unloaded_derived_symbol(original, procs) =>
|
|
{
|
|
let raw = match layout_cache.raw_from_var(env.arena, arg_var, env.subs) {
|
|
Ok(v) => v,
|
|
Err(e) => return_on_layout_error_help!(env, e, "specialize_symbol"),
|
|
};
|
|
|
|
if procs.is_imported_module_thunk(original) {
|
|
let layout = match raw {
|
|
RawFunctionLayout::ZeroArgumentThunk(layout) => layout,
|
|
RawFunctionLayout::Function(_, lambda_set, _) => {
|
|
Layout::LambdaSet(lambda_set)
|
|
}
|
|
};
|
|
|
|
let raw = RawFunctionLayout::ZeroArgumentThunk(layout);
|
|
let top_level = ProcLayout::from_raw(
|
|
env.arena,
|
|
&layout_cache.interner,
|
|
raw,
|
|
CapturesNiche::no_niche(),
|
|
);
|
|
|
|
procs.insert_passed_by_name(
|
|
env,
|
|
arg_var,
|
|
LambdaName::no_niche(original),
|
|
top_level,
|
|
layout_cache,
|
|
);
|
|
|
|
force_thunk(env, original, layout, symbol, env.arena.alloc(result))
|
|
} else {
|
|
// Imported symbol, so it must have no captures niche (since
|
|
// top-levels can't capture)
|
|
let top_level = ProcLayout::from_raw(
|
|
env.arena,
|
|
&layout_cache.interner,
|
|
raw,
|
|
CapturesNiche::no_niche(),
|
|
);
|
|
procs.insert_passed_by_name(
|
|
env,
|
|
arg_var,
|
|
LambdaName::no_niche(original),
|
|
top_level,
|
|
layout_cache,
|
|
);
|
|
|
|
let_empty_struct(symbol, env.arena.alloc(result))
|
|
}
|
|
}
|
|
|
|
_ => {
|
|
// danger: a foreign symbol may not be specialized!
|
|
debug_assert!(
|
|
!env.is_imported_symbol(original),
|
|
"symbol {:?} while processing module {:?}",
|
|
original,
|
|
(env.home, &arg_var),
|
|
);
|
|
result
|
|
}
|
|
}
|
|
}
|
|
|
|
Some(partial_proc) => {
|
|
let arg_var = arg_var.unwrap_or(partial_proc.annotation);
|
|
// this symbol is a function, that is used by-name (e.g. as an argument to another
|
|
// function). Register it with the current variable, then create a function pointer
|
|
// to it in the IR.
|
|
let res_layout = return_on_layout_error!(
|
|
env,
|
|
layout_cache.raw_from_var(env.arena, arg_var, env.subs),
|
|
"specialize_symbol res_layout"
|
|
);
|
|
|
|
// we have three kinds of functions really. Plain functions, closures by capture,
|
|
// and closures by unification. Here we record whether this function captures
|
|
// anything.
|
|
let captures = partial_proc.captured_symbols.captures();
|
|
let captured = partial_proc.captured_symbols;
|
|
|
|
match res_layout {
|
|
RawFunctionLayout::Function(_, lambda_set, _) => {
|
|
if captures {
|
|
let symbols = match captured {
|
|
CapturedSymbols::Captured(captured_symbols) => {
|
|
Vec::from_iter_in(captured_symbols.iter(), env.arena)
|
|
.into_bump_slice()
|
|
}
|
|
CapturedSymbols::None => unreachable!(),
|
|
};
|
|
|
|
let lambda_name = find_lambda_name(
|
|
env,
|
|
layout_cache,
|
|
lambda_set,
|
|
original,
|
|
symbols.iter().copied(),
|
|
);
|
|
|
|
// define the function pointer
|
|
let function_ptr_layout = ProcLayout::from_raw(
|
|
env.arena,
|
|
&layout_cache.interner,
|
|
res_layout,
|
|
lambda_name.captures_niche(),
|
|
);
|
|
|
|
// this is a closure by capture, meaning it itself captures local variables.
|
|
procs.insert_passed_by_name(
|
|
env,
|
|
arg_var,
|
|
lambda_name,
|
|
function_ptr_layout,
|
|
layout_cache,
|
|
);
|
|
|
|
let closure_data = symbol;
|
|
|
|
construct_closure_data(
|
|
env,
|
|
procs,
|
|
layout_cache,
|
|
lambda_set,
|
|
lambda_name,
|
|
symbols.iter().copied(),
|
|
closure_data,
|
|
env.arena.alloc(result),
|
|
)
|
|
} else if procs.is_module_thunk(original) {
|
|
// this is a 0-argument thunk
|
|
|
|
// TODO suspicious
|
|
// let layout = Layout::Closure(argument_layouts, lambda_set, ret_layout);
|
|
// panic!("suspicious");
|
|
let layout = Layout::LambdaSet(lambda_set);
|
|
let top_level =
|
|
ProcLayout::new(env.arena, &[], CapturesNiche::no_niche(), layout);
|
|
procs.insert_passed_by_name(
|
|
env,
|
|
arg_var,
|
|
LambdaName::no_niche(original),
|
|
top_level,
|
|
layout_cache,
|
|
);
|
|
|
|
force_thunk(env, original, layout, symbol, env.arena.alloc(result))
|
|
} else {
|
|
// even though this function may not itself capture,
|
|
// unification may still cause it to have an extra argument
|
|
let lambda_name =
|
|
find_lambda_name(env, layout_cache, lambda_set, original, &[]);
|
|
|
|
debug_assert!(lambda_name.no_captures());
|
|
|
|
// define the function pointer
|
|
let function_ptr_layout = ProcLayout::from_raw(
|
|
env.arena,
|
|
&layout_cache.interner,
|
|
res_layout,
|
|
lambda_name.captures_niche(),
|
|
);
|
|
|
|
procs.insert_passed_by_name(
|
|
env,
|
|
arg_var,
|
|
lambda_name,
|
|
function_ptr_layout,
|
|
layout_cache,
|
|
);
|
|
|
|
construct_closure_data(
|
|
env,
|
|
procs,
|
|
layout_cache,
|
|
lambda_set,
|
|
lambda_name,
|
|
&[],
|
|
symbol,
|
|
env.arena.alloc(result),
|
|
)
|
|
}
|
|
}
|
|
RawFunctionLayout::ZeroArgumentThunk(ret_layout) => {
|
|
// this is a 0-argument thunk
|
|
let top_level =
|
|
ProcLayout::new(env.arena, &[], CapturesNiche::no_niche(), ret_layout);
|
|
procs.insert_passed_by_name(
|
|
env,
|
|
arg_var,
|
|
LambdaName::no_niche(original),
|
|
top_level,
|
|
layout_cache,
|
|
);
|
|
|
|
force_thunk(env, original, ret_layout, symbol, env.arena.alloc(result))
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn assign_to_symbol<'a>(
|
|
env: &mut Env<'a, '_>,
|
|
procs: &mut Procs<'a>,
|
|
layout_cache: &mut LayoutCache<'a>,
|
|
arg_var: Variable,
|
|
loc_arg: Loc<roc_can::expr::Expr>,
|
|
symbol: Symbol,
|
|
result: Stmt<'a>,
|
|
) -> Stmt<'a> {
|
|
use ReuseSymbol::*;
|
|
match can_reuse_symbol(env, procs, &loc_arg.value, arg_var) {
|
|
Imported(original) | LocalFunction(original) | UnspecializedExpr(original) => {
|
|
// for functions we must make sure they are specialized correctly
|
|
specialize_symbol(
|
|
env,
|
|
procs,
|
|
layout_cache,
|
|
Some(arg_var),
|
|
symbol,
|
|
result,
|
|
original,
|
|
)
|
|
}
|
|
Value(_symbol) => result,
|
|
NotASymbol => with_hole(
|
|
env,
|
|
loc_arg.value,
|
|
arg_var,
|
|
procs,
|
|
layout_cache,
|
|
symbol,
|
|
env.arena.alloc(result),
|
|
),
|
|
}
|
|
}
|
|
|
|
fn assign_to_symbols<'a, I>(
|
|
env: &mut Env<'a, '_>,
|
|
procs: &mut Procs<'a>,
|
|
layout_cache: &mut LayoutCache<'a>,
|
|
iter: I,
|
|
mut result: Stmt<'a>,
|
|
) -> Stmt<'a>
|
|
where
|
|
I: Iterator<Item = ((Variable, Loc<roc_can::expr::Expr>), &'a Symbol)>,
|
|
{
|
|
for ((arg_var, loc_arg), symbol) in iter {
|
|
result = assign_to_symbol(env, procs, layout_cache, arg_var, loc_arg, *symbol, result);
|
|
}
|
|
|
|
result
|
|
}
|
|
|
|
fn add_needed_external<'a>(
|
|
procs: &mut Procs<'a>,
|
|
env: &mut Env<'a, '_>,
|
|
fn_var: Variable,
|
|
name: LambdaName<'a>,
|
|
) {
|
|
// call of a function that is not in this module
|
|
use hashbrown::hash_map::Entry::{Occupied, Vacant};
|
|
|
|
let existing = match procs.externals_we_need.entry(name.name().module_id()) {
|
|
Vacant(entry) => entry.insert(ExternalSpecializations::new()),
|
|
Occupied(entry) => entry.into_mut(),
|
|
};
|
|
|
|
roc_tracing::debug!(proc_name = ?name, ?fn_var, fn_content = ?roc_types::subs::SubsFmtContent(env.subs.get_content_without_compacting(fn_var), env.subs), "needed external");
|
|
|
|
existing.insert_external(name, env.subs, fn_var);
|
|
}
|
|
|
|
fn build_call<'a>(
|
|
_env: &mut Env<'a, '_>,
|
|
call: Call<'a>,
|
|
assigned: Symbol,
|
|
return_layout: Layout<'a>,
|
|
hole: &'a Stmt<'a>,
|
|
) -> Stmt<'a> {
|
|
Stmt::Let(assigned, Expr::Call(call), return_layout, hole)
|
|
}
|
|
|
|
/// See https://github.com/roc-lang/roc/issues/1549
|
|
///
|
|
/// What happened is that a function has a type error, but the arguments are not processed.
|
|
/// That means specializations were missing. Normally that is not a problem, but because
|
|
/// of our closure strategy, internal functions can "leak". That's what happened here.
|
|
///
|
|
/// The solution is to evaluate the arguments as normal, and only when calling the function give an error
|
|
fn evaluate_arguments_then_runtime_error<'a>(
|
|
env: &mut Env<'a, '_>,
|
|
procs: &mut Procs<'a>,
|
|
layout_cache: &mut LayoutCache<'a>,
|
|
msg: String,
|
|
loc_args: std::vec::Vec<(Variable, Loc<roc_can::expr::Expr>)>,
|
|
) -> Stmt<'a> {
|
|
let arena = env.arena;
|
|
|
|
// eventually we will throw this runtime error
|
|
let result = runtime_error(env, env.arena.alloc(msg));
|
|
|
|
// but, we also still evaluate and specialize the arguments to give better error messages
|
|
let arg_symbols = Vec::from_iter_in(
|
|
loc_args.iter().map(|(var, arg_expr)| {
|
|
possible_reuse_symbol_or_specialize(env, procs, layout_cache, &arg_expr.value, *var)
|
|
}),
|
|
arena,
|
|
)
|
|
.into_bump_slice();
|
|
|
|
let iter = loc_args.into_iter().rev().zip(arg_symbols.iter().rev());
|
|
assign_to_symbols(env, procs, layout_cache, iter, result)
|
|
}
|
|
|
|
#[allow(clippy::too_many_arguments)]
|
|
fn call_by_name<'a>(
|
|
env: &mut Env<'a, '_>,
|
|
procs: &mut Procs<'a>,
|
|
fn_var: Variable,
|
|
proc_name: Symbol,
|
|
loc_args: std::vec::Vec<(Variable, Loc<roc_can::expr::Expr>)>,
|
|
layout_cache: &mut LayoutCache<'a>,
|
|
assigned: Symbol,
|
|
hole: &'a Stmt<'a>,
|
|
) -> Stmt<'a> {
|
|
// Register a pending_specialization for this function
|
|
match layout_cache.raw_from_var(env.arena, fn_var, env.subs) {
|
|
Err(LayoutProblem::UnresolvedTypeVar(var)) => {
|
|
let msg = format!(
|
|
"Hit an unresolved type variable {:?} when creating a layout for {:?} (var {:?})",
|
|
var, proc_name, fn_var
|
|
);
|
|
|
|
evaluate_arguments_then_runtime_error(env, procs, layout_cache, msg, loc_args)
|
|
}
|
|
Err(LayoutProblem::Erroneous) => {
|
|
let msg = format!(
|
|
"Hit an erroneous type when creating a layout for {:?}",
|
|
proc_name
|
|
);
|
|
|
|
evaluate_arguments_then_runtime_error(env, procs, layout_cache, msg, loc_args)
|
|
}
|
|
Ok(RawFunctionLayout::Function(arg_layouts, lambda_set, ret_layout)) => {
|
|
if procs.is_module_thunk(proc_name) {
|
|
if loc_args.is_empty() {
|
|
call_by_name_module_thunk(
|
|
env,
|
|
procs,
|
|
fn_var,
|
|
proc_name,
|
|
env.arena.alloc(Layout::LambdaSet(lambda_set)),
|
|
layout_cache,
|
|
assigned,
|
|
hole,
|
|
)
|
|
} else {
|
|
// here we turn a call to a module thunk into forcing of that thunk
|
|
// the thunk represents the closure environment for the body, so we then match
|
|
// on the closure environment to perform the call that the body represents.
|
|
//
|
|
// Example:
|
|
//
|
|
// > main = parseA "foo" "bar"
|
|
// > parseA = Str.concat
|
|
|
|
let closure_data_symbol = env.unique_symbol();
|
|
|
|
let arena = env.arena;
|
|
let arg_symbols = Vec::from_iter_in(
|
|
loc_args.iter().map(|(arg_var, arg_expr)| {
|
|
possible_reuse_symbol_or_specialize(
|
|
env,
|
|
procs,
|
|
layout_cache,
|
|
&arg_expr.value,
|
|
*arg_var,
|
|
)
|
|
}),
|
|
arena,
|
|
)
|
|
.into_bump_slice();
|
|
|
|
debug_assert_eq!(arg_symbols.len(), arg_layouts.len());
|
|
|
|
let result = match_on_lambda_set(
|
|
env,
|
|
layout_cache,
|
|
procs,
|
|
lambda_set,
|
|
closure_data_symbol,
|
|
arg_symbols,
|
|
arg_layouts,
|
|
ret_layout,
|
|
assigned,
|
|
hole,
|
|
);
|
|
|
|
let result = call_by_name_module_thunk(
|
|
env,
|
|
procs,
|
|
fn_var,
|
|
proc_name,
|
|
env.arena.alloc(Layout::LambdaSet(lambda_set)),
|
|
layout_cache,
|
|
closure_data_symbol,
|
|
env.arena.alloc(result),
|
|
);
|
|
|
|
let iter = loc_args.into_iter().rev().zip(arg_symbols.iter().rev());
|
|
assign_to_symbols(env, procs, layout_cache, iter, result)
|
|
}
|
|
} else {
|
|
call_by_name_help(
|
|
env,
|
|
procs,
|
|
fn_var,
|
|
proc_name,
|
|
loc_args,
|
|
lambda_set,
|
|
arg_layouts,
|
|
ret_layout,
|
|
layout_cache,
|
|
assigned,
|
|
hole,
|
|
)
|
|
}
|
|
}
|
|
Ok(RawFunctionLayout::ZeroArgumentThunk(ret_layout)) => {
|
|
if procs.is_module_thunk(proc_name) {
|
|
// here we turn a call to a module thunk into forcing of that thunk
|
|
call_by_name_module_thunk(
|
|
env,
|
|
procs,
|
|
fn_var,
|
|
proc_name,
|
|
env.arena.alloc(ret_layout),
|
|
layout_cache,
|
|
assigned,
|
|
hole,
|
|
)
|
|
} else if env.is_imported_symbol(proc_name) {
|
|
add_needed_external(procs, env, fn_var, LambdaName::no_niche(proc_name));
|
|
force_thunk(env, proc_name, ret_layout, assigned, hole)
|
|
} else {
|
|
panic!("most likely we're trying to call something that is not a function");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#[allow(clippy::too_many_arguments)]
|
|
fn call_by_name_help<'a>(
|
|
env: &mut Env<'a, '_>,
|
|
procs: &mut Procs<'a>,
|
|
fn_var: Variable,
|
|
proc_name: Symbol,
|
|
loc_args: std::vec::Vec<(Variable, Loc<roc_can::expr::Expr>)>,
|
|
lambda_set: LambdaSet<'a>,
|
|
argument_layouts: &'a [Layout<'a>],
|
|
ret_layout: &'a Layout<'a>,
|
|
layout_cache: &mut LayoutCache<'a>,
|
|
assigned: Symbol,
|
|
hole: &'a Stmt<'a>,
|
|
) -> Stmt<'a> {
|
|
let original_fn_var = fn_var;
|
|
let arena = env.arena;
|
|
|
|
// the arguments given to the function, stored in symbols
|
|
let mut field_symbols = Vec::with_capacity_in(loc_args.len(), arena);
|
|
field_symbols.extend(loc_args.iter().map(|(arg_var, arg_expr)| {
|
|
possible_reuse_symbol_or_specialize(env, procs, layout_cache, &arg_expr.value, *arg_var)
|
|
}));
|
|
|
|
// THEORY: with a call by name, there are three options:
|
|
// - this is actually a thunk, and the lambda set is empty
|
|
// - the name references a function directly, like `main = \x -> ...`. In this case the
|
|
// lambda set includes only the function itself, and hence there is exactly one captures
|
|
// niche for the function.
|
|
// - the name references a value that yields a function, like
|
|
// `main = if b then \x -> .. else \y -> ..`. In that case the name being called never
|
|
// actually appears in the lambda set, and in fact has no capture set, and hence no
|
|
// captures niche.
|
|
// So, if this function has any captures niche, it will be the first one.
|
|
let mut iter_lambda_names = lambda_set
|
|
.iter_set()
|
|
.filter(|lam_name| lam_name.name() == proc_name);
|
|
let proc_name = match iter_lambda_names.next() {
|
|
Some(name) => {
|
|
debug_assert!(
|
|
iter_lambda_names.next().is_none(),
|
|
"Somehow, call by name for {:?} has multiple capture niches: {:?}",
|
|
proc_name,
|
|
lambda_set
|
|
);
|
|
name
|
|
}
|
|
None => LambdaName::no_niche(proc_name),
|
|
};
|
|
|
|
// If required, add an extra argument to the layout that is the captured environment
|
|
// afterwards, we MUST make sure the number of arguments in the layout matches the
|
|
// number of arguments actually passed.
|
|
let top_level_layout = {
|
|
let argument_layouts =
|
|
lambda_set.extend_argument_list(env.arena, &layout_cache.interner, argument_layouts);
|
|
ProcLayout::new(
|
|
env.arena,
|
|
argument_layouts,
|
|
proc_name.captures_niche(),
|
|
*ret_layout,
|
|
)
|
|
};
|
|
|
|
// the variables of the given arguments
|
|
let mut pattern_vars = Vec::with_capacity_in(loc_args.len(), arena);
|
|
for (var, _) in &loc_args {
|
|
match layout_cache.from_var(env.arena, *var, env.subs) {
|
|
Ok(_) => {
|
|
pattern_vars.push(*var);
|
|
}
|
|
Err(_) => {
|
|
// One of this function's arguments code gens to a runtime error,
|
|
// so attempting to call it will immediately crash.
|
|
return runtime_error(env, "TODO runtime error for invalid layout");
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we've already specialized this one, no further work is needed.
|
|
if procs
|
|
.specialized
|
|
.is_specialized(proc_name.name(), &top_level_layout)
|
|
{
|
|
debug_assert_eq!(
|
|
argument_layouts.len(),
|
|
field_symbols.len(),
|
|
"see call_by_name for background (scroll down a bit), function is {:?}",
|
|
proc_name,
|
|
);
|
|
call_specialized_proc(
|
|
env,
|
|
procs,
|
|
proc_name,
|
|
lambda_set,
|
|
RawFunctionLayout::Function(argument_layouts, lambda_set, ret_layout),
|
|
top_level_layout,
|
|
field_symbols.into_bump_slice(),
|
|
loc_args,
|
|
layout_cache,
|
|
assigned,
|
|
hole,
|
|
)
|
|
} else if env.is_imported_symbol(proc_name.name())
|
|
|| env.is_unloaded_derived_symbol(proc_name.name(), procs)
|
|
{
|
|
add_needed_external(procs, env, original_fn_var, proc_name);
|
|
|
|
debug_assert_ne!(proc_name.name().module_id(), ModuleId::ATTR);
|
|
|
|
if procs.is_imported_module_thunk(proc_name.name()) {
|
|
force_thunk(
|
|
env,
|
|
proc_name.name(),
|
|
Layout::LambdaSet(lambda_set),
|
|
assigned,
|
|
hole,
|
|
)
|
|
} else if field_symbols.is_empty() {
|
|
// this is a case like `Str.concat`, an imported standard function, applied to zero arguments
|
|
|
|
// imported symbols cannot capture anything
|
|
let captured = &[];
|
|
debug_assert!(proc_name.no_captures());
|
|
|
|
construct_closure_data(
|
|
env,
|
|
procs,
|
|
layout_cache,
|
|
lambda_set,
|
|
proc_name,
|
|
captured,
|
|
assigned,
|
|
hole,
|
|
)
|
|
} else {
|
|
debug_assert_eq!(
|
|
argument_layouts.len(),
|
|
field_symbols.len(),
|
|
"see call_by_name for background (scroll down a bit), function is {:?}",
|
|
proc_name,
|
|
);
|
|
|
|
let field_symbols = field_symbols.into_bump_slice();
|
|
|
|
let call = self::Call {
|
|
call_type: CallType::ByName {
|
|
name: proc_name,
|
|
ret_layout,
|
|
arg_layouts: argument_layouts,
|
|
specialization_id: env.next_call_specialization_id(),
|
|
},
|
|
arguments: field_symbols,
|
|
};
|
|
|
|
let result = build_call(env, call, assigned, *ret_layout, hole);
|
|
|
|
let iter = loc_args.into_iter().rev().zip(field_symbols.iter().rev());
|
|
assign_to_symbols(env, procs, layout_cache, iter, result)
|
|
}
|
|
} else {
|
|
// When requested (that is, when procs.pending_specializations is `Some`),
|
|
// store a pending specialization rather than specializing immediately.
|
|
//
|
|
// We do this so that we can do specialization in two passes: first,
|
|
// build the mono_expr with all the specialized calls in place (but
|
|
// no specializations performed yet), and then second, *after*
|
|
// de-duplicating requested specializations (since multiple modules
|
|
// which could be getting monomorphized in parallel might request
|
|
// the same specialization independently), we work through the
|
|
// queue of pending specializations to complete each specialization
|
|
// exactly once.
|
|
if procs.is_module_thunk(proc_name.name()) {
|
|
debug_assert!(top_level_layout.arguments.is_empty());
|
|
}
|
|
|
|
let needs_suspended_specialization =
|
|
procs.symbol_needs_suspended_specialization(proc_name.name());
|
|
match (
|
|
&mut procs.pending_specializations,
|
|
needs_suspended_specialization,
|
|
) {
|
|
(PendingSpecializations::Finding(suspended), _)
|
|
| (PendingSpecializations::Making(suspended), true) => {
|
|
debug_assert!(!env.is_imported_symbol(proc_name.name()));
|
|
|
|
// register the pending specialization, so this gets code genned later
|
|
suspended.specialization(env.subs, proc_name, top_level_layout, fn_var);
|
|
|
|
debug_assert_eq!(
|
|
argument_layouts.len(),
|
|
field_symbols.len(),
|
|
"see call_by_name for background (scroll down a bit), function is {:?}",
|
|
proc_name,
|
|
);
|
|
|
|
let field_symbols = field_symbols.into_bump_slice();
|
|
|
|
call_specialized_proc(
|
|
env,
|
|
procs,
|
|
proc_name,
|
|
lambda_set,
|
|
RawFunctionLayout::Function(argument_layouts, lambda_set, ret_layout),
|
|
top_level_layout,
|
|
field_symbols,
|
|
loc_args,
|
|
layout_cache,
|
|
assigned,
|
|
hole,
|
|
)
|
|
}
|
|
(PendingSpecializations::Making(_), false) => {
|
|
let opt_partial_proc = procs.partial_procs.symbol_to_id(proc_name.name());
|
|
|
|
let field_symbols = field_symbols.into_bump_slice();
|
|
|
|
match opt_partial_proc {
|
|
Some(partial_proc) => {
|
|
// Mark this proc as in-progress, so if we're dealing with
|
|
// mutually recursive functions, we don't loop forever.
|
|
// (We had a bug around this before this system existed!)
|
|
procs
|
|
.specialized
|
|
.mark_in_progress(proc_name.name(), top_level_layout);
|
|
|
|
match specialize_variable(
|
|
env,
|
|
procs,
|
|
proc_name,
|
|
layout_cache,
|
|
fn_var,
|
|
&[],
|
|
partial_proc,
|
|
) {
|
|
Ok((proc, layout)) => {
|
|
let proc_name = proc.name;
|
|
let function_layout = ProcLayout::from_raw(
|
|
env.arena,
|
|
&layout_cache.interner,
|
|
layout,
|
|
proc_name.captures_niche(),
|
|
);
|
|
procs.specialized.insert_specialized(
|
|
proc_name.name(),
|
|
function_layout,
|
|
proc,
|
|
);
|
|
|
|
// now we just call our freshly-specialized function
|
|
call_specialized_proc(
|
|
env,
|
|
procs,
|
|
proc_name,
|
|
lambda_set,
|
|
layout,
|
|
function_layout,
|
|
field_symbols,
|
|
loc_args,
|
|
layout_cache,
|
|
assigned,
|
|
hole,
|
|
)
|
|
}
|
|
Err(SpecializeFailure { attempted_layout }) => {
|
|
let proc = generate_runtime_error_function(
|
|
env,
|
|
layout_cache,
|
|
proc_name.name(),
|
|
attempted_layout,
|
|
);
|
|
|
|
let proc_name = proc.name;
|
|
let function_layout = ProcLayout::from_raw(
|
|
env.arena,
|
|
&layout_cache.interner,
|
|
attempted_layout,
|
|
proc_name.captures_niche(),
|
|
);
|
|
procs.specialized.insert_specialized(
|
|
proc_name.name(),
|
|
function_layout,
|
|
proc,
|
|
);
|
|
|
|
call_specialized_proc(
|
|
env,
|
|
procs,
|
|
proc_name,
|
|
lambda_set,
|
|
attempted_layout,
|
|
function_layout,
|
|
field_symbols,
|
|
loc_args,
|
|
layout_cache,
|
|
assigned,
|
|
hole,
|
|
)
|
|
}
|
|
}
|
|
}
|
|
|
|
None => {
|
|
unreachable!("Proc name {:?} is invalid", proc_name)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#[allow(clippy::too_many_arguments)]
|
|
fn call_by_name_module_thunk<'a>(
|
|
env: &mut Env<'a, '_>,
|
|
procs: &mut Procs<'a>,
|
|
fn_var: Variable,
|
|
proc_name: Symbol,
|
|
ret_layout: &'a Layout<'a>,
|
|
layout_cache: &mut LayoutCache<'a>,
|
|
assigned: Symbol,
|
|
hole: &'a Stmt<'a>,
|
|
) -> Stmt<'a> {
|
|
let top_level_layout = ProcLayout::new(env.arena, &[], CapturesNiche::no_niche(), *ret_layout);
|
|
|
|
let inner_layout = *ret_layout;
|
|
|
|
// If we've already specialized this one, no further work is needed.
|
|
let already_specialized = procs
|
|
.specialized
|
|
.is_specialized(proc_name, &top_level_layout);
|
|
|
|
if already_specialized {
|
|
force_thunk(env, proc_name, inner_layout, assigned, hole)
|
|
} else {
|
|
// When requested (that is, when procs.pending_specializations is `Some`),
|
|
// store a pending specialization rather than specializing immediately.
|
|
//
|
|
// We do this so that we can do specialization in two passes: first,
|
|
// build the mono_expr with all the specialized calls in place (but
|
|
// no specializations performed yet), and then second, *after*
|
|
// de-duplicating requested specializations (since multiple modules
|
|
// which could be getting monomorphized in parallel might request
|
|
// the same specialization independently), we work through the
|
|
// queue of pending specializations to complete each specialization
|
|
// exactly once.
|
|
if procs.is_module_thunk(proc_name) {
|
|
debug_assert!(top_level_layout.arguments.is_empty());
|
|
}
|
|
|
|
let needs_suspended_specialization = procs.symbol_needs_suspended_specialization(proc_name);
|
|
match (
|
|
&mut procs.pending_specializations,
|
|
needs_suspended_specialization,
|
|
) {
|
|
(PendingSpecializations::Finding(suspended), _)
|
|
| (PendingSpecializations::Making(suspended), true) => {
|
|
debug_assert!(!env.is_imported_symbol(proc_name));
|
|
|
|
// register the pending specialization, so this gets code genned later
|
|
suspended.specialization(
|
|
env.subs,
|
|
LambdaName::no_niche(proc_name),
|
|
top_level_layout,
|
|
fn_var,
|
|
);
|
|
|
|
force_thunk(env, proc_name, inner_layout, assigned, hole)
|
|
}
|
|
(PendingSpecializations::Making(_), false) => {
|
|
let opt_partial_proc = procs.partial_procs.symbol_to_id(proc_name);
|
|
|
|
match opt_partial_proc {
|
|
Some(partial_proc) => {
|
|
// Mark this proc as in-progress, so if we're dealing with
|
|
// mutually recursive functions, we don't loop forever.
|
|
// (We had a bug around this before this system existed!)
|
|
procs
|
|
.specialized
|
|
.mark_in_progress(proc_name, top_level_layout);
|
|
|
|
match specialize_variable(
|
|
env,
|
|
procs,
|
|
LambdaName::no_niche(proc_name),
|
|
layout_cache,
|
|
fn_var,
|
|
&[],
|
|
partial_proc,
|
|
) {
|
|
Ok((proc, raw_layout)) => {
|
|
debug_assert!(
|
|
raw_layout.is_zero_argument_thunk(),
|
|
"but actually {:?}",
|
|
raw_layout
|
|
);
|
|
|
|
let was_present = procs
|
|
.specialized
|
|
.remove_specialized(proc_name, &top_level_layout);
|
|
debug_assert!(was_present);
|
|
|
|
procs.specialized.insert_specialized(
|
|
proc_name,
|
|
top_level_layout,
|
|
proc,
|
|
);
|
|
|
|
force_thunk(env, proc_name, inner_layout, assigned, hole)
|
|
}
|
|
Err(SpecializeFailure { attempted_layout }) => {
|
|
let proc = generate_runtime_error_function(
|
|
env,
|
|
layout_cache,
|
|
proc_name,
|
|
attempted_layout,
|
|
);
|
|
|
|
let was_present = procs
|
|
.specialized
|
|
.remove_specialized(proc_name, &top_level_layout);
|
|
debug_assert!(was_present);
|
|
|
|
procs.specialized.insert_specialized(
|
|
proc_name,
|
|
top_level_layout,
|
|
proc,
|
|
);
|
|
|
|
force_thunk(env, proc_name, inner_layout, assigned, hole)
|
|
}
|
|
}
|
|
}
|
|
|
|
None => {
|
|
unreachable!("Proc name {:?} is invalid", proc_name)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#[allow(clippy::too_many_arguments)]
|
|
fn call_specialized_proc<'a>(
|
|
env: &mut Env<'a, '_>,
|
|
procs: &mut Procs<'a>,
|
|
proc_name: LambdaName<'a>,
|
|
lambda_set: LambdaSet<'a>,
|
|
layout: RawFunctionLayout<'a>,
|
|
function_layout: ProcLayout<'a>,
|
|
field_symbols: &'a [Symbol],
|
|
loc_args: std::vec::Vec<(Variable, Loc<roc_can::expr::Expr>)>,
|
|
layout_cache: &mut LayoutCache<'a>,
|
|
assigned: Symbol,
|
|
hole: &'a Stmt<'a>,
|
|
) -> Stmt<'a> {
|
|
if field_symbols.is_empty() {
|
|
debug_assert!(loc_args.is_empty());
|
|
|
|
// This happens when we return a function, e.g.
|
|
//
|
|
// foo = Num.add
|
|
//
|
|
// Even though the layout (and type) are functions,
|
|
// there are no arguments. This confuses our IR,
|
|
// and we have to fix it here.
|
|
match layout {
|
|
RawFunctionLayout::Function(_, lambda_set, _) => {
|
|
// when the body is a closure, the function will return the closure environment
|
|
let call = self::Call {
|
|
call_type: CallType::ByName {
|
|
name: proc_name,
|
|
ret_layout: env.arena.alloc(function_layout.result),
|
|
arg_layouts: function_layout.arguments,
|
|
specialization_id: env.next_call_specialization_id(),
|
|
},
|
|
arguments: field_symbols,
|
|
};
|
|
|
|
// the closure argument is already added here (to get the right specialization)
|
|
// but now we need to remove it because the `match_on_lambda_set` will add it again
|
|
build_call(env, call, assigned, Layout::LambdaSet(lambda_set), hole)
|
|
}
|
|
RawFunctionLayout::ZeroArgumentThunk(_) => {
|
|
unreachable!()
|
|
}
|
|
}
|
|
} else {
|
|
let iter = loc_args.into_iter().rev().zip(field_symbols.iter().rev());
|
|
|
|
match procs
|
|
.partial_procs
|
|
.get_symbol(proc_name.name())
|
|
.map(|pp| &pp.captured_symbols)
|
|
{
|
|
Some(&CapturedSymbols::Captured(captured_symbols)) => {
|
|
let symbols =
|
|
Vec::from_iter_in(captured_symbols.iter(), env.arena).into_bump_slice();
|
|
|
|
let closure_data_symbol = env.unique_symbol();
|
|
|
|
// the closure argument is already added here (to get the right specialization)
|
|
// but now we need to remove it because the `match_on_lambda_set` will add it again
|
|
let mut argument_layouts =
|
|
Vec::from_iter_in(function_layout.arguments.iter().copied(), env.arena);
|
|
argument_layouts.pop().unwrap();
|
|
|
|
debug_assert_eq!(argument_layouts.len(), field_symbols.len(),);
|
|
|
|
let new_hole = match_on_lambda_set(
|
|
env,
|
|
layout_cache,
|
|
procs,
|
|
lambda_set,
|
|
closure_data_symbol,
|
|
field_symbols,
|
|
argument_layouts.into_bump_slice(),
|
|
env.arena.alloc(function_layout.result),
|
|
assigned,
|
|
hole,
|
|
);
|
|
|
|
let result = construct_closure_data(
|
|
env,
|
|
procs,
|
|
layout_cache,
|
|
lambda_set,
|
|
proc_name,
|
|
symbols.iter().copied(),
|
|
closure_data_symbol,
|
|
env.arena.alloc(new_hole),
|
|
);
|
|
|
|
assign_to_symbols(env, procs, layout_cache, iter, result)
|
|
}
|
|
_ => {
|
|
debug_assert_eq!(
|
|
function_layout.arguments.len(),
|
|
field_symbols.len(),
|
|
"function {:?} with layout {:#?} expects {:?} arguments, but is applied to {:?}",
|
|
proc_name,
|
|
function_layout,
|
|
function_layout.arguments.len(),
|
|
field_symbols.len(),
|
|
);
|
|
|
|
let call = self::Call {
|
|
call_type: CallType::ByName {
|
|
name: proc_name,
|
|
ret_layout: env.arena.alloc(function_layout.result),
|
|
arg_layouts: function_layout.arguments,
|
|
specialization_id: env.next_call_specialization_id(),
|
|
},
|
|
arguments: field_symbols,
|
|
};
|
|
|
|
let result = build_call(env, call, assigned, function_layout.result, hole);
|
|
|
|
assign_to_symbols(env, procs, layout_cache, iter, result)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// A pattern, including possible problems (e.g. shadowing) so that
|
|
/// codegen can generate a runtime error if this pattern is reached.
|
|
#[derive(Clone, Debug, PartialEq)]
|
|
pub enum Pattern<'a> {
|
|
Identifier(Symbol),
|
|
Underscore,
|
|
IntLiteral([u8; 16], IntWidth),
|
|
FloatLiteral(u64, FloatWidth),
|
|
DecimalLiteral([u8; 16]),
|
|
BitLiteral {
|
|
value: bool,
|
|
tag_name: TagName,
|
|
union: roc_exhaustive::Union,
|
|
},
|
|
EnumLiteral {
|
|
tag_id: u8,
|
|
tag_name: TagName,
|
|
union: roc_exhaustive::Union,
|
|
},
|
|
StrLiteral(Box<str>),
|
|
|
|
RecordDestructure(Vec<'a, RecordDestruct<'a>>, &'a [Layout<'a>]),
|
|
NewtypeDestructure {
|
|
tag_name: TagName,
|
|
arguments: Vec<'a, (Pattern<'a>, Layout<'a>)>,
|
|
},
|
|
AppliedTag {
|
|
tag_name: TagName,
|
|
tag_id: TagIdIntType,
|
|
arguments: Vec<'a, (Pattern<'a>, Layout<'a>)>,
|
|
layout: UnionLayout<'a>,
|
|
union: roc_exhaustive::Union,
|
|
},
|
|
Voided {
|
|
tag_name: TagName,
|
|
},
|
|
OpaqueUnwrap {
|
|
opaque: Symbol,
|
|
argument: Box<(Pattern<'a>, Layout<'a>)>,
|
|
},
|
|
List {
|
|
arity: ListArity,
|
|
element_layout: Layout<'a>,
|
|
elements: Vec<'a, Pattern<'a>>,
|
|
},
|
|
}
|
|
|
|
impl<'a> Pattern<'a> {
|
|
/// This pattern contains a pattern match on Void (i.e. [], the empty tag union)
|
|
/// such branches are not reachable at runtime
|
|
pub fn is_voided(&self) -> bool {
|
|
let mut stack: std::vec::Vec<&Pattern> = vec![self];
|
|
|
|
while let Some(pattern) = stack.pop() {
|
|
match pattern {
|
|
Pattern::Identifier(_)
|
|
| Pattern::Underscore
|
|
| Pattern::IntLiteral(_, _)
|
|
| Pattern::FloatLiteral(_, _)
|
|
| Pattern::DecimalLiteral(_)
|
|
| Pattern::BitLiteral { .. }
|
|
| Pattern::EnumLiteral { .. }
|
|
| Pattern::StrLiteral(_) => { /* terminal */ }
|
|
Pattern::RecordDestructure(destructs, _) => {
|
|
for destruct in destructs {
|
|
match &destruct.typ {
|
|
DestructType::Required(_) => { /* do nothing */ }
|
|
DestructType::Guard(pattern) => {
|
|
stack.push(pattern);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
Pattern::NewtypeDestructure { arguments, .. } => {
|
|
stack.extend(arguments.iter().map(|(t, _)| t))
|
|
}
|
|
Pattern::Voided { .. } => return true,
|
|
Pattern::AppliedTag { arguments, .. } => {
|
|
stack.extend(arguments.iter().map(|(t, _)| t))
|
|
}
|
|
Pattern::OpaqueUnwrap { argument, .. } => stack.push(&argument.0),
|
|
Pattern::List { elements, .. } => stack.extend(elements),
|
|
}
|
|
}
|
|
|
|
false
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Debug, PartialEq)]
|
|
pub struct RecordDestruct<'a> {
|
|
pub label: Lowercase,
|
|
pub variable: Variable,
|
|
pub layout: Layout<'a>,
|
|
pub typ: DestructType<'a>,
|
|
}
|
|
|
|
#[derive(Clone, Debug, PartialEq)]
|
|
pub enum DestructType<'a> {
|
|
Required(Symbol),
|
|
Guard(Pattern<'a>),
|
|
}
|
|
|
|
#[derive(Clone, Debug, PartialEq)]
|
|
pub struct WhenBranch<'a> {
|
|
pub patterns: Vec<'a, Pattern<'a>>,
|
|
pub value: Expr<'a>,
|
|
pub guard: Option<Stmt<'a>>,
|
|
}
|
|
|
|
#[allow(clippy::type_complexity)]
|
|
fn from_can_pattern<'a>(
|
|
env: &mut Env<'a, '_>,
|
|
procs: &mut Procs<'a>,
|
|
layout_cache: &mut LayoutCache<'a>,
|
|
can_pattern: &roc_can::pattern::Pattern,
|
|
) -> Result<
|
|
(
|
|
Pattern<'a>,
|
|
Vec<'a, (Symbol, Variable, roc_can::expr::Expr)>,
|
|
),
|
|
RuntimeError,
|
|
> {
|
|
let mut assignments = Vec::new_in(env.arena);
|
|
let pattern = from_can_pattern_help(env, procs, layout_cache, can_pattern, &mut assignments)?;
|
|
|
|
Ok((pattern, assignments))
|
|
}
|
|
|
|
fn from_can_pattern_help<'a>(
|
|
env: &mut Env<'a, '_>,
|
|
procs: &mut Procs<'a>,
|
|
layout_cache: &mut LayoutCache<'a>,
|
|
can_pattern: &roc_can::pattern::Pattern,
|
|
assignments: &mut Vec<'a, (Symbol, Variable, roc_can::expr::Expr)>,
|
|
) -> Result<Pattern<'a>, RuntimeError> {
|
|
use roc_can::pattern::Pattern::*;
|
|
|
|
match can_pattern {
|
|
Underscore => Ok(Pattern::Underscore),
|
|
Identifier(symbol) => Ok(Pattern::Identifier(*symbol)),
|
|
AbilityMemberSpecialization { ident, .. } => Ok(Pattern::Identifier(*ident)),
|
|
IntLiteral(var, _, int_str, int, _bound) => Ok(make_num_literal_pattern(
|
|
env,
|
|
layout_cache,
|
|
*var,
|
|
int_str,
|
|
IntOrFloatValue::Int(*int),
|
|
)),
|
|
FloatLiteral(var, _, float_str, float, _bound) => Ok(make_num_literal_pattern(
|
|
env,
|
|
layout_cache,
|
|
*var,
|
|
float_str,
|
|
IntOrFloatValue::Float(*float),
|
|
)),
|
|
StrLiteral(v) => Ok(Pattern::StrLiteral(v.clone())),
|
|
SingleQuote(var, _, c, _) => match layout_cache.from_var(env.arena, *var, env.subs) {
|
|
Ok(Layout::Builtin(Builtin::Int(width))) => {
|
|
Ok(Pattern::IntLiteral((*c as i128).to_ne_bytes(), width))
|
|
}
|
|
o => internal_error!("an integer width was expected, but we found {:?}", o),
|
|
},
|
|
Shadowed(region, ident, _new_symbol) => Err(RuntimeError::Shadowing {
|
|
original_region: *region,
|
|
shadow: ident.clone(),
|
|
kind: ShadowKind::Variable,
|
|
}),
|
|
UnsupportedPattern(region) => Err(RuntimeError::UnsupportedPattern(*region)),
|
|
MalformedPattern(_problem, region) => {
|
|
// TODO preserve malformed problem information here?
|
|
Err(RuntimeError::UnsupportedPattern(*region))
|
|
}
|
|
OpaqueNotInScope(loc_ident) => {
|
|
// TODO(opaques) should be `RuntimeError::OpaqueNotDefined`
|
|
Err(RuntimeError::UnsupportedPattern(loc_ident.region))
|
|
}
|
|
NumLiteral(var, num_str, num, _bound) => Ok(make_num_literal_pattern(
|
|
env,
|
|
layout_cache,
|
|
*var,
|
|
num_str,
|
|
IntOrFloatValue::Int(*num),
|
|
)),
|
|
|
|
AppliedTag {
|
|
whole_var,
|
|
tag_name,
|
|
arguments,
|
|
..
|
|
} => {
|
|
use crate::layout::UnionVariant::*;
|
|
use roc_exhaustive::Union;
|
|
|
|
let res_variant = {
|
|
let mut layout_env = layout::Env::from_components(
|
|
layout_cache,
|
|
env.subs,
|
|
env.arena,
|
|
env.target_info,
|
|
);
|
|
crate::layout::union_sorted_tags(&mut layout_env, *whole_var).map_err(Into::into)
|
|
};
|
|
|
|
let variant = match res_variant {
|
|
Ok(cached) => cached,
|
|
Err(LayoutProblem::UnresolvedTypeVar(_)) => {
|
|
return Err(RuntimeError::UnresolvedTypeVar)
|
|
}
|
|
Err(LayoutProblem::Erroneous) => return Err(RuntimeError::ErroneousType),
|
|
};
|
|
|
|
let result = match variant {
|
|
Never => unreachable!(
|
|
"there is no pattern of type `[]`, union var {:?}",
|
|
*whole_var
|
|
),
|
|
Unit => Pattern::EnumLiteral {
|
|
tag_id: 0,
|
|
tag_name: tag_name.clone(),
|
|
union: Union {
|
|
render_as: RenderAs::Tag,
|
|
alternatives: vec![Ctor {
|
|
tag_id: TagId(0),
|
|
name: CtorName::Tag(tag_name.clone()),
|
|
arity: 0,
|
|
}],
|
|
},
|
|
},
|
|
BoolUnion { ttrue, ffalse } => {
|
|
let (ttrue, ffalse) = (ttrue.expect_tag(), ffalse.expect_tag());
|
|
Pattern::BitLiteral {
|
|
value: tag_name == &ttrue,
|
|
tag_name: tag_name.clone(),
|
|
union: Union {
|
|
render_as: RenderAs::Tag,
|
|
alternatives: vec![
|
|
Ctor {
|
|
tag_id: TagId(0),
|
|
name: CtorName::Tag(ffalse),
|
|
arity: 0,
|
|
},
|
|
Ctor {
|
|
tag_id: TagId(1),
|
|
name: CtorName::Tag(ttrue),
|
|
arity: 0,
|
|
},
|
|
],
|
|
},
|
|
}
|
|
}
|
|
ByteUnion(tag_names) => {
|
|
let tag_id = tag_names
|
|
.iter()
|
|
.position(|key| tag_name == key.expect_tag_ref())
|
|
.expect("tag must be in its own type");
|
|
|
|
let mut ctors = std::vec::Vec::with_capacity(tag_names.len());
|
|
for (i, tag_name) in tag_names.into_iter().enumerate() {
|
|
ctors.push(Ctor {
|
|
tag_id: TagId(i as _),
|
|
name: CtorName::Tag(tag_name.expect_tag()),
|
|
arity: 0,
|
|
})
|
|
}
|
|
|
|
let union = roc_exhaustive::Union {
|
|
render_as: RenderAs::Tag,
|
|
alternatives: ctors,
|
|
};
|
|
|
|
Pattern::EnumLiteral {
|
|
tag_id: tag_id as u8,
|
|
tag_name: tag_name.clone(),
|
|
union,
|
|
}
|
|
}
|
|
Newtype {
|
|
arguments: field_layouts,
|
|
..
|
|
} => {
|
|
let mut arguments = arguments.clone();
|
|
|
|
arguments.sort_by(|arg1, arg2| {
|
|
let size1 = layout_cache
|
|
.from_var(env.arena, arg1.0, env.subs)
|
|
.map(|x| x.alignment_bytes(&layout_cache.interner, env.target_info))
|
|
.unwrap_or(0);
|
|
|
|
let size2 = layout_cache
|
|
.from_var(env.arena, arg2.0, env.subs)
|
|
.map(|x| x.alignment_bytes(&layout_cache.interner, env.target_info))
|
|
.unwrap_or(0);
|
|
|
|
size2.cmp(&size1)
|
|
});
|
|
|
|
let mut mono_args = Vec::with_capacity_in(arguments.len(), env.arena);
|
|
for ((_, loc_pat), layout) in arguments.iter().zip(field_layouts.iter()) {
|
|
mono_args.push((
|
|
from_can_pattern_help(
|
|
env,
|
|
procs,
|
|
layout_cache,
|
|
&loc_pat.value,
|
|
assignments,
|
|
)?,
|
|
*layout,
|
|
));
|
|
}
|
|
|
|
Pattern::NewtypeDestructure {
|
|
tag_name: tag_name.clone(),
|
|
arguments: mono_args,
|
|
}
|
|
}
|
|
NewtypeByVoid {
|
|
data_tag_arguments,
|
|
data_tag_name,
|
|
..
|
|
} => {
|
|
let data_tag_name = data_tag_name.expect_tag();
|
|
|
|
if tag_name != &data_tag_name {
|
|
// this tag is not represented at runtime
|
|
Pattern::Voided {
|
|
tag_name: tag_name.clone(),
|
|
}
|
|
} else {
|
|
let mut arguments = arguments.clone();
|
|
|
|
arguments.sort_by(|arg1, arg2| {
|
|
let size1 = layout_cache
|
|
.from_var(env.arena, arg1.0, env.subs)
|
|
.map(|x| x.alignment_bytes(&layout_cache.interner, env.target_info))
|
|
.unwrap_or(0);
|
|
|
|
let size2 = layout_cache
|
|
.from_var(env.arena, arg2.0, env.subs)
|
|
.map(|x| x.alignment_bytes(&layout_cache.interner, env.target_info))
|
|
.unwrap_or(0);
|
|
|
|
size2.cmp(&size1)
|
|
});
|
|
|
|
let mut mono_args = Vec::with_capacity_in(arguments.len(), env.arena);
|
|
let it = arguments.iter().zip(data_tag_arguments.iter());
|
|
for ((_, loc_pat), layout) in it {
|
|
mono_args.push((
|
|
from_can_pattern_help(
|
|
env,
|
|
procs,
|
|
layout_cache,
|
|
&loc_pat.value,
|
|
assignments,
|
|
)?,
|
|
*layout,
|
|
));
|
|
}
|
|
|
|
Pattern::NewtypeDestructure {
|
|
tag_name: tag_name.clone(),
|
|
arguments: mono_args,
|
|
}
|
|
}
|
|
}
|
|
|
|
Wrapped(variant) => {
|
|
let (tag_id, argument_layouts) = variant.tag_name_to_id(tag_name);
|
|
let number_of_tags = variant.number_of_tags();
|
|
let mut ctors = std::vec::Vec::with_capacity(number_of_tags);
|
|
|
|
let arguments = {
|
|
let mut temp = arguments.clone();
|
|
|
|
temp.sort_by(|arg1, arg2| {
|
|
let layout1 =
|
|
layout_cache.from_var(env.arena, arg1.0, env.subs).unwrap();
|
|
let layout2 =
|
|
layout_cache.from_var(env.arena, arg2.0, env.subs).unwrap();
|
|
|
|
let size1 =
|
|
layout1.alignment_bytes(&layout_cache.interner, env.target_info);
|
|
let size2 =
|
|
layout2.alignment_bytes(&layout_cache.interner, env.target_info);
|
|
|
|
size2.cmp(&size1)
|
|
});
|
|
|
|
temp
|
|
};
|
|
|
|
// we must derive the union layout from the whole_var, building it up
|
|
// from `layouts` would unroll recursive tag unions, and that leads to
|
|
// problems down the line because we hash layouts and an unrolled
|
|
// version is not the same as the minimal version.
|
|
let layout = match layout_cache.from_var(env.arena, *whole_var, env.subs) {
|
|
Ok(Layout::Union(ul)) => ul,
|
|
_ => unreachable!(),
|
|
};
|
|
|
|
use WrappedVariant::*;
|
|
match variant {
|
|
NonRecursive {
|
|
sorted_tag_layouts: ref tags,
|
|
} => {
|
|
debug_assert!(tags.len() > 1);
|
|
|
|
for (i, (tag_name, args)) in tags.iter().enumerate() {
|
|
ctors.push(Ctor {
|
|
tag_id: TagId(i as _),
|
|
name: CtorName::Tag(tag_name.expect_tag_ref().clone()),
|
|
arity: args.len(),
|
|
})
|
|
}
|
|
|
|
let union = roc_exhaustive::Union {
|
|
render_as: RenderAs::Tag,
|
|
alternatives: ctors,
|
|
};
|
|
|
|
let mut mono_args = Vec::with_capacity_in(arguments.len(), env.arena);
|
|
|
|
debug_assert_eq!(
|
|
arguments.len(),
|
|
argument_layouts.len(),
|
|
"The {:?} tag got {} arguments, but its layout expects {}!",
|
|
tag_name,
|
|
arguments.len(),
|
|
argument_layouts.len(),
|
|
);
|
|
let it = argument_layouts.iter();
|
|
|
|
for ((_, loc_pat), layout) in arguments.iter().zip(it) {
|
|
mono_args.push((
|
|
from_can_pattern_help(
|
|
env,
|
|
procs,
|
|
layout_cache,
|
|
&loc_pat.value,
|
|
assignments,
|
|
)?,
|
|
*layout,
|
|
));
|
|
}
|
|
|
|
Pattern::AppliedTag {
|
|
tag_name: tag_name.clone(),
|
|
tag_id: tag_id as _,
|
|
arguments: mono_args,
|
|
union,
|
|
layout,
|
|
}
|
|
}
|
|
|
|
Recursive {
|
|
sorted_tag_layouts: ref tags,
|
|
} => {
|
|
debug_assert!(tags.len() > 1);
|
|
|
|
for (i, (tag_name, args)) in tags.iter().enumerate() {
|
|
ctors.push(Ctor {
|
|
tag_id: TagId(i as _),
|
|
name: CtorName::Tag(tag_name.expect_tag_ref().clone()),
|
|
// don't include tag discriminant in arity
|
|
arity: args.len() - 1,
|
|
})
|
|
}
|
|
|
|
let union = roc_exhaustive::Union {
|
|
render_as: RenderAs::Tag,
|
|
alternatives: ctors,
|
|
};
|
|
|
|
let mut mono_args = Vec::with_capacity_in(arguments.len(), env.arena);
|
|
|
|
debug_assert_eq!(arguments.len(), argument_layouts.len());
|
|
let it = argument_layouts.iter();
|
|
|
|
for ((_, loc_pat), layout) in arguments.iter().zip(it) {
|
|
mono_args.push((
|
|
from_can_pattern_help(
|
|
env,
|
|
procs,
|
|
layout_cache,
|
|
&loc_pat.value,
|
|
assignments,
|
|
)?,
|
|
*layout,
|
|
));
|
|
}
|
|
|
|
Pattern::AppliedTag {
|
|
tag_name: tag_name.clone(),
|
|
tag_id: tag_id as _,
|
|
arguments: mono_args,
|
|
union,
|
|
layout,
|
|
}
|
|
}
|
|
|
|
NonNullableUnwrapped {
|
|
tag_name: w_tag_name,
|
|
fields,
|
|
} => {
|
|
debug_assert_eq!(w_tag_name.expect_tag_ref(), tag_name);
|
|
|
|
ctors.push(Ctor {
|
|
tag_id: TagId(0),
|
|
name: CtorName::Tag(tag_name.clone()),
|
|
arity: fields.len(),
|
|
});
|
|
|
|
let union = roc_exhaustive::Union {
|
|
render_as: RenderAs::Tag,
|
|
alternatives: ctors,
|
|
};
|
|
|
|
let mut mono_args = Vec::with_capacity_in(arguments.len(), env.arena);
|
|
|
|
debug_assert_eq!(arguments.len(), argument_layouts.len());
|
|
let it = argument_layouts.iter();
|
|
|
|
for ((_, loc_pat), layout) in arguments.iter().zip(it) {
|
|
mono_args.push((
|
|
from_can_pattern_help(
|
|
env,
|
|
procs,
|
|
layout_cache,
|
|
&loc_pat.value,
|
|
assignments,
|
|
)?,
|
|
*layout,
|
|
));
|
|
}
|
|
|
|
Pattern::AppliedTag {
|
|
tag_name: tag_name.clone(),
|
|
tag_id: tag_id as _,
|
|
arguments: mono_args,
|
|
union,
|
|
layout,
|
|
}
|
|
}
|
|
|
|
NullableWrapped {
|
|
sorted_tag_layouts: ref tags,
|
|
nullable_id,
|
|
nullable_name,
|
|
} => {
|
|
debug_assert!(!tags.is_empty());
|
|
|
|
let mut i = 0;
|
|
for (tag_name, args) in tags.iter() {
|
|
if i == nullable_id as usize {
|
|
ctors.push(Ctor {
|
|
tag_id: TagId(i as _),
|
|
name: CtorName::Tag(nullable_name.expect_tag_ref().clone()),
|
|
// don't include tag discriminant in arity
|
|
arity: 0,
|
|
});
|
|
|
|
i += 1;
|
|
}
|
|
|
|
ctors.push(Ctor {
|
|
tag_id: TagId(i as _),
|
|
name: CtorName::Tag(tag_name.expect_tag_ref().clone()),
|
|
// don't include tag discriminant in arity
|
|
arity: args.len() - 1,
|
|
});
|
|
|
|
i += 1;
|
|
}
|
|
|
|
if i == nullable_id as usize {
|
|
ctors.push(Ctor {
|
|
tag_id: TagId(i as _),
|
|
name: CtorName::Tag(nullable_name.expect_tag_ref().clone()),
|
|
// don't include tag discriminant in arity
|
|
arity: 0,
|
|
});
|
|
}
|
|
|
|
let union = roc_exhaustive::Union {
|
|
render_as: RenderAs::Tag,
|
|
alternatives: ctors,
|
|
};
|
|
|
|
let mut mono_args = Vec::with_capacity_in(arguments.len(), env.arena);
|
|
|
|
let it = if tag_name == nullable_name.expect_tag_ref() {
|
|
[].iter()
|
|
} else {
|
|
argument_layouts.iter()
|
|
};
|
|
|
|
for ((_, loc_pat), layout) in arguments.iter().zip(it) {
|
|
mono_args.push((
|
|
from_can_pattern_help(
|
|
env,
|
|
procs,
|
|
layout_cache,
|
|
&loc_pat.value,
|
|
assignments,
|
|
)?,
|
|
*layout,
|
|
));
|
|
}
|
|
|
|
Pattern::AppliedTag {
|
|
tag_name: tag_name.clone(),
|
|
tag_id: tag_id as _,
|
|
arguments: mono_args,
|
|
union,
|
|
layout,
|
|
}
|
|
}
|
|
|
|
NullableUnwrapped {
|
|
other_fields,
|
|
nullable_id,
|
|
nullable_name,
|
|
other_name: _,
|
|
} => {
|
|
debug_assert!(!other_fields.is_empty());
|
|
|
|
ctors.push(Ctor {
|
|
tag_id: TagId(nullable_id as _),
|
|
name: CtorName::Tag(nullable_name.expect_tag_ref().clone()),
|
|
arity: 0,
|
|
});
|
|
|
|
ctors.push(Ctor {
|
|
tag_id: TagId(!nullable_id as _),
|
|
name: CtorName::Tag(nullable_name.expect_tag_ref().clone()),
|
|
// FIXME drop tag
|
|
arity: other_fields.len() - 1,
|
|
});
|
|
|
|
let union = roc_exhaustive::Union {
|
|
render_as: RenderAs::Tag,
|
|
alternatives: ctors,
|
|
};
|
|
|
|
let mut mono_args = Vec::with_capacity_in(arguments.len(), env.arena);
|
|
|
|
let it = if tag_name == nullable_name.expect_tag_ref() {
|
|
[].iter()
|
|
} else {
|
|
// FIXME drop tag
|
|
argument_layouts.iter()
|
|
};
|
|
|
|
for ((_, loc_pat), layout) in arguments.iter().zip(it) {
|
|
mono_args.push((
|
|
from_can_pattern_help(
|
|
env,
|
|
procs,
|
|
layout_cache,
|
|
&loc_pat.value,
|
|
assignments,
|
|
)?,
|
|
*layout,
|
|
));
|
|
}
|
|
|
|
Pattern::AppliedTag {
|
|
tag_name: tag_name.clone(),
|
|
tag_id: tag_id as _,
|
|
arguments: mono_args,
|
|
union,
|
|
layout,
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
Ok(result)
|
|
}
|
|
|
|
UnwrappedOpaque {
|
|
opaque, argument, ..
|
|
} => {
|
|
let (arg_var, loc_arg_pattern) = &(**argument);
|
|
let arg_layout = layout_cache
|
|
.from_var(env.arena, *arg_var, env.subs)
|
|
.unwrap();
|
|
let mono_arg_pattern = from_can_pattern_help(
|
|
env,
|
|
procs,
|
|
layout_cache,
|
|
&loc_arg_pattern.value,
|
|
assignments,
|
|
)?;
|
|
Ok(Pattern::OpaqueUnwrap {
|
|
opaque: *opaque,
|
|
argument: Box::new((mono_arg_pattern, arg_layout)),
|
|
})
|
|
}
|
|
|
|
RecordDestructure {
|
|
whole_var,
|
|
destructs,
|
|
..
|
|
} => {
|
|
// sorted fields based on the type
|
|
let sorted_fields = {
|
|
let mut layout_env = layout::Env::from_components(
|
|
layout_cache,
|
|
env.subs,
|
|
env.arena,
|
|
env.target_info,
|
|
);
|
|
crate::layout::sort_record_fields(&mut layout_env, *whole_var)
|
|
.map_err(RuntimeError::from)?
|
|
};
|
|
|
|
// sorted fields based on the destruct
|
|
let mut mono_destructs = Vec::with_capacity_in(destructs.len(), env.arena);
|
|
let mut destructs_by_label = BumpMap::with_capacity_in(destructs.len(), env.arena);
|
|
destructs_by_label.extend(destructs.iter().map(|x| (&x.value.label, x)));
|
|
|
|
let mut field_layouts = Vec::with_capacity_in(sorted_fields.len(), env.arena);
|
|
|
|
// next we step through both sequences of fields. The outer loop is the sequence based
|
|
// on the type, since not all fields need to actually be destructured in the source
|
|
// language.
|
|
//
|
|
// However in mono patterns, we do destruct all patterns (but use Underscore) when
|
|
// in the source the field is not matche in the source language.
|
|
//
|
|
// Optional fields somewhat complicate the matter here
|
|
|
|
for (label, variable, res_layout) in sorted_fields.into_iter() {
|
|
match res_layout {
|
|
Ok(field_layout) => {
|
|
// the field is non-optional according to the type
|
|
|
|
match destructs_by_label.remove(&label) {
|
|
Some(destruct) => {
|
|
// this field is destructured by the pattern
|
|
mono_destructs.push(from_can_record_destruct(
|
|
env,
|
|
procs,
|
|
layout_cache,
|
|
&destruct.value,
|
|
field_layout,
|
|
assignments,
|
|
)?);
|
|
}
|
|
None => {
|
|
// this field is not destructured by the pattern
|
|
// put in an underscore
|
|
mono_destructs.push(RecordDestruct {
|
|
label: label.clone(),
|
|
variable,
|
|
layout: field_layout,
|
|
typ: DestructType::Guard(Pattern::Underscore),
|
|
});
|
|
}
|
|
}
|
|
|
|
// the layout of this field is part of the layout of the record
|
|
field_layouts.push(field_layout);
|
|
}
|
|
Err(field_layout) => {
|
|
// the field is optional according to the type
|
|
match destructs_by_label.remove(&label) {
|
|
Some(destruct) => {
|
|
// this field is destructured by the pattern
|
|
match &destruct.value.typ {
|
|
roc_can::pattern::DestructType::Optional(_, loc_expr) => {
|
|
// if we reach this stage, the optional field is not present
|
|
// so we push the default assignment into the branch
|
|
assignments.push((
|
|
destruct.value.symbol,
|
|
variable,
|
|
loc_expr.value.clone(),
|
|
));
|
|
}
|
|
_ => unreachable!(
|
|
"only optional destructs can be optional fields"
|
|
),
|
|
};
|
|
}
|
|
None => {
|
|
// this field is not destructured by the pattern
|
|
// put in an underscore
|
|
mono_destructs.push(RecordDestruct {
|
|
label: label.clone(),
|
|
variable,
|
|
layout: field_layout,
|
|
typ: DestructType::Guard(Pattern::Underscore),
|
|
});
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (_, destruct) in destructs_by_label.drain() {
|
|
// this destruct is not in the type, but is in the pattern
|
|
// it must be an optional field, and we will use the default
|
|
match &destruct.value.typ {
|
|
roc_can::pattern::DestructType::Optional(field_var, loc_expr) => {
|
|
// TODO these don't match up in the uniqueness inference; when we remove
|
|
// that, reinstate this assert!
|
|
//
|
|
// dbg!(&env.subs.get_content_without_compacting(*field_var));
|
|
// dbg!(&env.subs.get_content_without_compacting(destruct.var).content);
|
|
// debug_assert_eq!(
|
|
// env.subs.get_root_key_without_compacting(*field_var),
|
|
// env.subs.get_root_key_without_compacting(destruct.value.var)
|
|
// );
|
|
assignments.push((
|
|
destruct.value.symbol,
|
|
// destruct.value.var,
|
|
*field_var,
|
|
loc_expr.value.clone(),
|
|
));
|
|
}
|
|
_ => unreachable!("only optional destructs can be optional fields"),
|
|
}
|
|
}
|
|
|
|
Ok(Pattern::RecordDestructure(
|
|
mono_destructs,
|
|
field_layouts.into_bump_slice(),
|
|
))
|
|
}
|
|
|
|
List {
|
|
list_var: _,
|
|
elem_var,
|
|
patterns,
|
|
} => {
|
|
let element_layout = match layout_cache.from_var(env.arena, *elem_var, env.subs) {
|
|
Ok(lay) => lay,
|
|
Err(LayoutProblem::UnresolvedTypeVar(_)) => {
|
|
return Err(RuntimeError::UnresolvedTypeVar)
|
|
}
|
|
Err(LayoutProblem::Erroneous) => return Err(RuntimeError::ErroneousType),
|
|
};
|
|
|
|
let arity = patterns.arity();
|
|
|
|
let mut mono_patterns = Vec::with_capacity_in(patterns.patterns.len(), env.arena);
|
|
for loc_pat in patterns.patterns.iter() {
|
|
let mono_pat =
|
|
from_can_pattern_help(env, procs, layout_cache, &loc_pat.value, assignments)?;
|
|
mono_patterns.push(mono_pat);
|
|
}
|
|
|
|
Ok(Pattern::List {
|
|
arity,
|
|
element_layout,
|
|
elements: mono_patterns,
|
|
})
|
|
}
|
|
}
|
|
}
|
|
|
|
fn from_can_record_destruct<'a>(
|
|
env: &mut Env<'a, '_>,
|
|
procs: &mut Procs<'a>,
|
|
layout_cache: &mut LayoutCache<'a>,
|
|
can_rd: &roc_can::pattern::RecordDestruct,
|
|
field_layout: Layout<'a>,
|
|
assignments: &mut Vec<'a, (Symbol, Variable, roc_can::expr::Expr)>,
|
|
) -> Result<RecordDestruct<'a>, RuntimeError> {
|
|
Ok(RecordDestruct {
|
|
label: can_rd.label.clone(),
|
|
variable: can_rd.var,
|
|
layout: field_layout,
|
|
typ: match &can_rd.typ {
|
|
roc_can::pattern::DestructType::Required => DestructType::Required(can_rd.symbol),
|
|
roc_can::pattern::DestructType::Optional(_, _) => {
|
|
// if we reach this stage, the optional field is present
|
|
DestructType::Required(can_rd.symbol)
|
|
}
|
|
roc_can::pattern::DestructType::Guard(_, loc_pattern) => DestructType::Guard(
|
|
from_can_pattern_help(env, procs, layout_cache, &loc_pattern.value, assignments)?,
|
|
),
|
|
},
|
|
})
|
|
}
|
|
|
|
enum IntOrFloatValue {
|
|
Int(IntValue),
|
|
Float(f64),
|
|
}
|
|
|
|
enum NumLiteral {
|
|
Int([u8; 16], IntWidth),
|
|
U128([u8; 16]),
|
|
Float(f64, FloatWidth),
|
|
Decimal([u8; 16]),
|
|
}
|
|
|
|
impl NumLiteral {
|
|
fn to_expr_literal(&self) -> Literal<'static> {
|
|
match *self {
|
|
NumLiteral::Int(n, _) => Literal::Int(n),
|
|
NumLiteral::U128(n) => Literal::U128(n),
|
|
NumLiteral::Float(n, _) => Literal::Float(n),
|
|
NumLiteral::Decimal(n) => Literal::Decimal(n),
|
|
}
|
|
}
|
|
fn to_pattern(&self) -> Pattern<'static> {
|
|
match *self {
|
|
NumLiteral::Int(n, w) => Pattern::IntLiteral(n, w),
|
|
NumLiteral::U128(n) => Pattern::IntLiteral(n, IntWidth::U128),
|
|
NumLiteral::Float(n, w) => Pattern::FloatLiteral(f64::to_bits(n), w),
|
|
NumLiteral::Decimal(n) => Pattern::DecimalLiteral(n),
|
|
}
|
|
}
|
|
}
|
|
|
|
fn make_num_literal(layout: Layout<'_>, num_str: &str, num_value: IntOrFloatValue) -> NumLiteral {
|
|
match layout {
|
|
Layout::Builtin(Builtin::Int(width)) => match num_value {
|
|
IntOrFloatValue::Int(IntValue::I128(n)) => NumLiteral::Int(n, width),
|
|
IntOrFloatValue::Int(IntValue::U128(n)) => NumLiteral::U128(n),
|
|
IntOrFloatValue::Float(..) => {
|
|
internal_error!("Float value where int was expected, should have been a type error")
|
|
}
|
|
},
|
|
Layout::Builtin(Builtin::Float(width)) => match num_value {
|
|
IntOrFloatValue::Float(n) => NumLiteral::Float(n, width),
|
|
IntOrFloatValue::Int(int_value) => match int_value {
|
|
IntValue::I128(n) => NumLiteral::Float(i128::from_ne_bytes(n) as f64, width),
|
|
IntValue::U128(n) => NumLiteral::Float(u128::from_ne_bytes(n) as f64, width),
|
|
},
|
|
},
|
|
Layout::Builtin(Builtin::Decimal) => {
|
|
let dec = match RocDec::from_str(num_str) {
|
|
Some(d) => d,
|
|
None => internal_error!(
|
|
"Invalid decimal for float literal = {}. This should be a type error!",
|
|
num_str
|
|
),
|
|
};
|
|
NumLiteral::Decimal(dec.to_ne_bytes())
|
|
}
|
|
layout => internal_error!(
|
|
"Found a non-num layout where a number was expected: {:?}",
|
|
layout
|
|
),
|
|
}
|
|
}
|
|
|
|
fn assign_num_literal_expr<'a>(
|
|
env: &mut Env<'a, '_>,
|
|
layout_cache: &mut LayoutCache<'a>,
|
|
assigned: Symbol,
|
|
variable: Variable,
|
|
num_str: &str,
|
|
num_value: IntOrFloatValue,
|
|
hole: &'a Stmt<'a>,
|
|
) -> Stmt<'a> {
|
|
let layout = layout_cache
|
|
.from_var(env.arena, variable, env.subs)
|
|
.unwrap();
|
|
let literal = make_num_literal(layout, num_str, num_value).to_expr_literal();
|
|
|
|
Stmt::Let(assigned, Expr::Literal(literal), layout, hole)
|
|
}
|
|
|
|
fn make_num_literal_pattern<'a>(
|
|
env: &mut Env<'a, '_>,
|
|
layout_cache: &mut LayoutCache<'a>,
|
|
variable: Variable,
|
|
num_str: &str,
|
|
num_value: IntOrFloatValue,
|
|
) -> Pattern<'a> {
|
|
let layout = layout_cache
|
|
.from_var(env.arena, variable, env.subs)
|
|
.unwrap();
|
|
let literal = make_num_literal(layout, num_str, num_value);
|
|
literal.to_pattern()
|
|
}
|
|
|
|
type ToLowLevelCallArguments<'a> = (
|
|
LambdaName<'a>,
|
|
Symbol,
|
|
Option<Layout<'a>>,
|
|
CallSpecId,
|
|
UpdateModeId,
|
|
);
|
|
|
|
/// Use the lambda set to figure out how to make a lowlevel call
|
|
#[allow(clippy::too_many_arguments)]
|
|
fn lowlevel_match_on_lambda_set<'a, ToLowLevelCall>(
|
|
env: &mut Env<'a, '_>,
|
|
layout_cache: &LayoutCache<'a>,
|
|
lambda_set: LambdaSet<'a>,
|
|
op: LowLevel,
|
|
closure_data_symbol: Symbol,
|
|
to_lowlevel_call: ToLowLevelCall,
|
|
return_layout: Layout<'a>,
|
|
assigned: Symbol,
|
|
hole: &'a Stmt<'a>,
|
|
) -> Stmt<'a>
|
|
where
|
|
ToLowLevelCall: Fn(ToLowLevelCallArguments<'a>) -> Call<'a> + Copy,
|
|
{
|
|
match lambda_set.call_by_name_options(&layout_cache.interner) {
|
|
ClosureCallOptions::Void => empty_lambda_set_error(env),
|
|
ClosureCallOptions::Union(union_layout) => {
|
|
let closure_tag_id_symbol = env.unique_symbol();
|
|
|
|
let result = lowlevel_union_lambda_set_to_switch(
|
|
env,
|
|
lambda_set.iter_set(),
|
|
closure_tag_id_symbol,
|
|
union_layout.tag_id_layout(),
|
|
closure_data_symbol,
|
|
lambda_set.is_represented(&layout_cache.interner),
|
|
to_lowlevel_call,
|
|
return_layout,
|
|
assigned,
|
|
hole,
|
|
);
|
|
|
|
// extract & assign the closure_tag_id_symbol
|
|
let expr = Expr::GetTagId {
|
|
structure: closure_data_symbol,
|
|
union_layout,
|
|
};
|
|
|
|
Stmt::Let(
|
|
closure_tag_id_symbol,
|
|
expr,
|
|
union_layout.tag_id_layout(),
|
|
env.arena.alloc(result),
|
|
)
|
|
}
|
|
ClosureCallOptions::Struct { .. } => match lambda_set.iter_set().next() {
|
|
Some(lambda_name) => {
|
|
let call_spec_id = env.next_call_specialization_id();
|
|
let update_mode = env.next_update_mode_id();
|
|
let call = to_lowlevel_call((
|
|
lambda_name,
|
|
closure_data_symbol,
|
|
lambda_set.is_represented(&layout_cache.interner),
|
|
call_spec_id,
|
|
update_mode,
|
|
));
|
|
|
|
build_call(env, call, assigned, return_layout, env.arena.alloc(hole))
|
|
}
|
|
None => {
|
|
eprintln!(
|
|
"a function passed to `{:?}` LowLevel call has an empty lambda set!
|
|
The most likely reason is that some symbol you use is not in scope.
|
|
",
|
|
op
|
|
);
|
|
|
|
hole.clone()
|
|
}
|
|
},
|
|
ClosureCallOptions::UnwrappedCapture(_) => {
|
|
let lambda_name = lambda_set
|
|
.iter_set()
|
|
.next()
|
|
.expect("no function in lambda set");
|
|
|
|
let call_spec_id = env.next_call_specialization_id();
|
|
let update_mode = env.next_update_mode_id();
|
|
let call = to_lowlevel_call((
|
|
lambda_name,
|
|
closure_data_symbol,
|
|
lambda_set.is_represented(&layout_cache.interner),
|
|
call_spec_id,
|
|
update_mode,
|
|
));
|
|
|
|
build_call(env, call, assigned, return_layout, env.arena.alloc(hole))
|
|
}
|
|
ClosureCallOptions::EnumDispatch(repr) => match repr {
|
|
EnumDispatch::Bool => {
|
|
let closure_tag_id_symbol = closure_data_symbol;
|
|
|
|
lowlevel_enum_lambda_set_to_switch(
|
|
env,
|
|
lambda_set.iter_set(),
|
|
closure_tag_id_symbol,
|
|
Layout::Builtin(Builtin::Bool),
|
|
closure_data_symbol,
|
|
lambda_set.is_represented(&layout_cache.interner),
|
|
to_lowlevel_call,
|
|
return_layout,
|
|
assigned,
|
|
hole,
|
|
)
|
|
}
|
|
EnumDispatch::U8 => {
|
|
let closure_tag_id_symbol = closure_data_symbol;
|
|
|
|
lowlevel_enum_lambda_set_to_switch(
|
|
env,
|
|
lambda_set.iter_set(),
|
|
closure_tag_id_symbol,
|
|
Layout::Builtin(Builtin::Int(IntWidth::U8)),
|
|
closure_data_symbol,
|
|
lambda_set.is_represented(&layout_cache.interner),
|
|
to_lowlevel_call,
|
|
return_layout,
|
|
assigned,
|
|
hole,
|
|
)
|
|
}
|
|
},
|
|
}
|
|
}
|
|
|
|
#[allow(clippy::too_many_arguments)]
|
|
fn lowlevel_union_lambda_set_to_switch<'a, ToLowLevelCall>(
|
|
env: &mut Env<'a, '_>,
|
|
lambda_set: impl ExactSizeIterator<Item = LambdaName<'a>> + 'a,
|
|
closure_tag_id_symbol: Symbol,
|
|
closure_tag_id_layout: Layout<'a>,
|
|
closure_data_symbol: Symbol,
|
|
closure_env_layout: Option<Layout<'a>>,
|
|
to_lowlevel_call: ToLowLevelCall,
|
|
return_layout: Layout<'a>,
|
|
assigned: Symbol,
|
|
hole: &'a Stmt<'a>,
|
|
) -> Stmt<'a>
|
|
where
|
|
ToLowLevelCall: Fn(ToLowLevelCallArguments<'a>) -> Call<'a> + Copy,
|
|
{
|
|
debug_assert_ne!(lambda_set.len(), 0);
|
|
|
|
let join_point_id = JoinPointId(env.unique_symbol());
|
|
|
|
let mut branches = Vec::with_capacity_in(lambda_set.len(), env.arena);
|
|
|
|
for (i, lambda_name) in lambda_set.into_iter().enumerate() {
|
|
let assigned = env.unique_symbol();
|
|
|
|
let hole = Stmt::Jump(join_point_id, env.arena.alloc([assigned]));
|
|
|
|
let call_spec_id = env.next_call_specialization_id();
|
|
let update_mode = env.next_update_mode_id();
|
|
let call = to_lowlevel_call((
|
|
lambda_name,
|
|
closure_data_symbol,
|
|
closure_env_layout,
|
|
call_spec_id,
|
|
update_mode,
|
|
));
|
|
let stmt = build_call(env, call, assigned, return_layout, env.arena.alloc(hole));
|
|
|
|
branches.push((i as u64, BranchInfo::None, stmt));
|
|
}
|
|
|
|
let default_branch = {
|
|
let (_, info, stmt) = branches.pop().unwrap();
|
|
|
|
(info, &*env.arena.alloc(stmt))
|
|
};
|
|
|
|
let switch = Stmt::Switch {
|
|
cond_symbol: closure_tag_id_symbol,
|
|
cond_layout: closure_tag_id_layout,
|
|
branches: branches.into_bump_slice(),
|
|
default_branch,
|
|
ret_layout: return_layout,
|
|
};
|
|
|
|
let param = Param {
|
|
symbol: assigned,
|
|
layout: return_layout,
|
|
borrow: false,
|
|
};
|
|
|
|
Stmt::Join {
|
|
id: join_point_id,
|
|
parameters: &*env.arena.alloc([param]),
|
|
body: hole,
|
|
remainder: env.arena.alloc(switch),
|
|
}
|
|
}
|
|
|
|
fn empty_lambda_set_error<'a>(env: &mut Env<'a, '_>) -> Stmt<'a> {
|
|
let msg = "a Lambda Set is empty. Most likely there is a type error in your program.";
|
|
runtime_error(env, msg)
|
|
}
|
|
|
|
/// Use the lambda set to figure out how to make a call-by-name
|
|
#[allow(clippy::too_many_arguments)]
|
|
fn match_on_lambda_set<'a>(
|
|
env: &mut Env<'a, '_>,
|
|
layout_cache: &LayoutCache<'a>,
|
|
procs: &mut Procs<'a>,
|
|
lambda_set: LambdaSet<'a>,
|
|
closure_data_symbol: Symbol,
|
|
argument_symbols: &'a [Symbol],
|
|
argument_layouts: &'a [Layout<'a>],
|
|
return_layout: &'a Layout<'a>,
|
|
assigned: Symbol,
|
|
hole: &'a Stmt<'a>,
|
|
) -> Stmt<'a> {
|
|
match lambda_set.call_by_name_options(&layout_cache.interner) {
|
|
ClosureCallOptions::Void => empty_lambda_set_error(env),
|
|
ClosureCallOptions::Union(union_layout) => {
|
|
let closure_tag_id_symbol = env.unique_symbol();
|
|
|
|
let result = union_lambda_set_to_switch(
|
|
env,
|
|
layout_cache,
|
|
lambda_set,
|
|
closure_tag_id_symbol,
|
|
union_layout.tag_id_layout(),
|
|
closure_data_symbol,
|
|
argument_symbols,
|
|
argument_layouts,
|
|
return_layout,
|
|
assigned,
|
|
hole,
|
|
);
|
|
|
|
// extract & assign the closure_tag_id_symbol
|
|
let expr = Expr::GetTagId {
|
|
structure: closure_data_symbol,
|
|
union_layout,
|
|
};
|
|
|
|
Stmt::Let(
|
|
closure_tag_id_symbol,
|
|
expr,
|
|
union_layout.tag_id_layout(),
|
|
env.arena.alloc(result),
|
|
)
|
|
}
|
|
ClosureCallOptions::Struct {
|
|
field_layouts,
|
|
field_order_hash: _,
|
|
} => {
|
|
let function_symbol = match lambda_set.iter_set().next() {
|
|
Some(function_symbol) => function_symbol,
|
|
None => {
|
|
// Lambda set is empty, so this function is never called; synthesize a function
|
|
// that always yields a runtime error.
|
|
let name = env.unique_symbol();
|
|
let function_layout =
|
|
RawFunctionLayout::Function(argument_layouts, lambda_set, return_layout);
|
|
let proc =
|
|
generate_runtime_error_function(env, layout_cache, name, function_layout);
|
|
let top_level = ProcLayout::from_raw(
|
|
env.arena,
|
|
&layout_cache.interner,
|
|
function_layout,
|
|
CapturesNiche::no_niche(),
|
|
);
|
|
|
|
procs.specialized.insert_specialized(name, top_level, proc);
|
|
LambdaName::no_niche(name)
|
|
}
|
|
};
|
|
|
|
let closure_info = match field_layouts {
|
|
[] => ClosureInfo::DoesNotCapture,
|
|
_ => ClosureInfo::Captures {
|
|
lambda_set,
|
|
closure_data_symbol,
|
|
},
|
|
};
|
|
|
|
union_lambda_set_branch_help(
|
|
env,
|
|
layout_cache,
|
|
function_symbol,
|
|
closure_info,
|
|
argument_symbols,
|
|
argument_layouts,
|
|
return_layout,
|
|
assigned,
|
|
hole,
|
|
)
|
|
}
|
|
ClosureCallOptions::UnwrappedCapture(_) => {
|
|
let function_symbol = lambda_set
|
|
.iter_set()
|
|
.next()
|
|
.expect("no function in lambda set");
|
|
|
|
let closure_info = ClosureInfo::Captures {
|
|
lambda_set,
|
|
closure_data_symbol,
|
|
};
|
|
|
|
union_lambda_set_branch_help(
|
|
env,
|
|
layout_cache,
|
|
function_symbol,
|
|
closure_info,
|
|
argument_symbols,
|
|
argument_layouts,
|
|
return_layout,
|
|
assigned,
|
|
hole,
|
|
)
|
|
}
|
|
ClosureCallOptions::EnumDispatch(repr) => match repr {
|
|
EnumDispatch::Bool => {
|
|
let closure_tag_id_symbol = closure_data_symbol;
|
|
|
|
enum_lambda_set_to_switch(
|
|
env,
|
|
lambda_set.iter_set(),
|
|
closure_tag_id_symbol,
|
|
Layout::Builtin(Builtin::Bool),
|
|
argument_symbols,
|
|
argument_layouts,
|
|
return_layout,
|
|
assigned,
|
|
hole,
|
|
)
|
|
}
|
|
EnumDispatch::U8 => {
|
|
let closure_tag_id_symbol = closure_data_symbol;
|
|
|
|
enum_lambda_set_to_switch(
|
|
env,
|
|
lambda_set.iter_set(),
|
|
closure_tag_id_symbol,
|
|
Layout::Builtin(Builtin::Int(IntWidth::U8)),
|
|
argument_symbols,
|
|
argument_layouts,
|
|
return_layout,
|
|
assigned,
|
|
hole,
|
|
)
|
|
}
|
|
},
|
|
}
|
|
}
|
|
|
|
#[allow(clippy::too_many_arguments)]
|
|
fn union_lambda_set_to_switch<'a>(
|
|
env: &mut Env<'a, '_>,
|
|
layout_cache: &LayoutCache<'a>,
|
|
lambda_set: LambdaSet<'a>,
|
|
closure_tag_id_symbol: Symbol,
|
|
closure_tag_id_layout: Layout<'a>,
|
|
closure_data_symbol: Symbol,
|
|
argument_symbols: &'a [Symbol],
|
|
argument_layouts: &'a [Layout<'a>],
|
|
return_layout: &'a Layout<'a>,
|
|
assigned: Symbol,
|
|
hole: &'a Stmt<'a>,
|
|
) -> Stmt<'a> {
|
|
if lambda_set.is_empty() {
|
|
// NOTE this can happen if there is a type error somewhere. Since the lambda set is empty,
|
|
// there is really nothing we can do here. We generate a runtime error here which allows
|
|
// code gen to proceed. We then assume that we hit another (more descriptive) error before
|
|
// hitting this one
|
|
return empty_lambda_set_error(env);
|
|
}
|
|
|
|
let join_point_id = JoinPointId(env.unique_symbol());
|
|
|
|
let mut branches = Vec::with_capacity_in(lambda_set.len(), env.arena);
|
|
|
|
for (i, lambda_name) in lambda_set.iter_set().enumerate() {
|
|
let closure_info = if lambda_name.no_captures() {
|
|
ClosureInfo::DoesNotCapture
|
|
} else {
|
|
ClosureInfo::Captures {
|
|
lambda_set,
|
|
closure_data_symbol,
|
|
}
|
|
};
|
|
|
|
let stmt = union_lambda_set_branch(
|
|
env,
|
|
layout_cache,
|
|
join_point_id,
|
|
lambda_name,
|
|
closure_info,
|
|
argument_symbols,
|
|
argument_layouts,
|
|
return_layout,
|
|
);
|
|
branches.push((i as u64, BranchInfo::None, stmt));
|
|
}
|
|
|
|
let default_branch = {
|
|
let (_, info, stmt) = branches.pop().unwrap();
|
|
|
|
(info, &*env.arena.alloc(stmt))
|
|
};
|
|
|
|
let switch = Stmt::Switch {
|
|
cond_symbol: closure_tag_id_symbol,
|
|
cond_layout: closure_tag_id_layout,
|
|
branches: branches.into_bump_slice(),
|
|
default_branch,
|
|
ret_layout: *return_layout,
|
|
};
|
|
|
|
let param = Param {
|
|
symbol: assigned,
|
|
layout: *return_layout,
|
|
borrow: false,
|
|
};
|
|
|
|
Stmt::Join {
|
|
id: join_point_id,
|
|
parameters: &*env.arena.alloc([param]),
|
|
body: hole,
|
|
remainder: env.arena.alloc(switch),
|
|
}
|
|
}
|
|
|
|
#[allow(clippy::too_many_arguments)]
|
|
fn union_lambda_set_branch<'a>(
|
|
env: &mut Env<'a, '_>,
|
|
layout_cache: &LayoutCache<'a>,
|
|
join_point_id: JoinPointId,
|
|
lambda_name: LambdaName<'a>,
|
|
closure_info: ClosureInfo<'a>,
|
|
argument_symbols_slice: &'a [Symbol],
|
|
argument_layouts_slice: &'a [Layout<'a>],
|
|
return_layout: &'a Layout<'a>,
|
|
) -> Stmt<'a> {
|
|
let result_symbol = env.unique_symbol();
|
|
|
|
let hole = Stmt::Jump(join_point_id, env.arena.alloc([result_symbol]));
|
|
|
|
union_lambda_set_branch_help(
|
|
env,
|
|
layout_cache,
|
|
lambda_name,
|
|
closure_info,
|
|
argument_symbols_slice,
|
|
argument_layouts_slice,
|
|
return_layout,
|
|
result_symbol,
|
|
env.arena.alloc(hole),
|
|
)
|
|
}
|
|
|
|
#[derive(Clone, Copy)]
|
|
enum ClosureInfo<'a> {
|
|
Captures {
|
|
closure_data_symbol: Symbol,
|
|
/// The whole lambda set representation this closure is a variant of
|
|
lambda_set: LambdaSet<'a>,
|
|
},
|
|
DoesNotCapture,
|
|
}
|
|
|
|
#[allow(clippy::too_many_arguments)]
|
|
fn union_lambda_set_branch_help<'a>(
|
|
env: &mut Env<'a, '_>,
|
|
layout_cache: &LayoutCache<'a>,
|
|
lambda_name: LambdaName<'a>,
|
|
closure_info: ClosureInfo<'a>,
|
|
argument_symbols_slice: &'a [Symbol],
|
|
argument_layouts_slice: &'a [Layout<'a>],
|
|
return_layout: &'a Layout<'a>,
|
|
assigned: Symbol,
|
|
hole: &'a Stmt<'a>,
|
|
) -> Stmt<'a> {
|
|
let (argument_layouts, argument_symbols) = match closure_info {
|
|
ClosureInfo::Captures {
|
|
lambda_set,
|
|
closure_data_symbol,
|
|
} => {
|
|
let argument_layouts = lambda_set.extend_argument_list(
|
|
env.arena,
|
|
&layout_cache.interner,
|
|
argument_layouts_slice,
|
|
);
|
|
let argument_symbols = if argument_layouts.len() > argument_layouts_slice.len() {
|
|
// extend symbols with the symbol of the closure environment
|
|
let mut argument_symbols =
|
|
Vec::with_capacity_in(argument_symbols_slice.len() + 1, env.arena);
|
|
argument_symbols.extend(argument_symbols_slice);
|
|
argument_symbols.push(closure_data_symbol);
|
|
argument_symbols.into_bump_slice()
|
|
} else {
|
|
argument_symbols_slice
|
|
};
|
|
(argument_layouts, argument_symbols)
|
|
}
|
|
ClosureInfo::DoesNotCapture => {
|
|
// sometimes unification causes a function that does not itself capture anything
|
|
// to still get a lambda set that does store information. We must not pass a closure
|
|
// argument in this case
|
|
|
|
(argument_layouts_slice, argument_symbols_slice)
|
|
}
|
|
};
|
|
|
|
// build the call
|
|
let call = self::Call {
|
|
call_type: CallType::ByName {
|
|
name: lambda_name,
|
|
ret_layout: return_layout,
|
|
arg_layouts: argument_layouts,
|
|
specialization_id: env.next_call_specialization_id(),
|
|
},
|
|
arguments: argument_symbols,
|
|
};
|
|
|
|
build_call(env, call, assigned, *return_layout, hole)
|
|
}
|
|
|
|
/// Switches over a enum lambda set, which may dispatch to different functions, none of which
|
|
/// capture.
|
|
#[allow(clippy::too_many_arguments)]
|
|
fn enum_lambda_set_to_switch<'a>(
|
|
env: &mut Env<'a, '_>,
|
|
lambda_set: impl ExactSizeIterator<Item = LambdaName<'a>>,
|
|
closure_tag_id_symbol: Symbol,
|
|
closure_tag_id_layout: Layout<'a>,
|
|
argument_symbols: &'a [Symbol],
|
|
argument_layouts: &'a [Layout<'a>],
|
|
return_layout: &'a Layout<'a>,
|
|
assigned: Symbol,
|
|
hole: &'a Stmt<'a>,
|
|
) -> Stmt<'a> {
|
|
debug_assert_ne!(lambda_set.len(), 0);
|
|
|
|
let join_point_id = JoinPointId(env.unique_symbol());
|
|
|
|
let mut branches = Vec::with_capacity_in(lambda_set.len(), env.arena);
|
|
|
|
for (i, lambda_name) in lambda_set.into_iter().enumerate() {
|
|
let stmt = enum_lambda_set_branch(
|
|
env,
|
|
join_point_id,
|
|
lambda_name,
|
|
argument_symbols,
|
|
argument_layouts,
|
|
return_layout,
|
|
);
|
|
branches.push((i as u64, BranchInfo::None, stmt));
|
|
}
|
|
|
|
let default_branch = {
|
|
let (_, info, stmt) = branches.pop().unwrap();
|
|
|
|
(info, &*env.arena.alloc(stmt))
|
|
};
|
|
|
|
let switch = Stmt::Switch {
|
|
cond_symbol: closure_tag_id_symbol,
|
|
cond_layout: closure_tag_id_layout,
|
|
branches: branches.into_bump_slice(),
|
|
default_branch,
|
|
ret_layout: *return_layout,
|
|
};
|
|
|
|
let param = Param {
|
|
symbol: assigned,
|
|
layout: *return_layout,
|
|
borrow: false,
|
|
};
|
|
|
|
Stmt::Join {
|
|
id: join_point_id,
|
|
parameters: &*env.arena.alloc([param]),
|
|
body: hole,
|
|
remainder: env.arena.alloc(switch),
|
|
}
|
|
}
|
|
|
|
/// A branch for an enum lambda set branch dispatch, which never capture!
|
|
#[allow(clippy::too_many_arguments)]
|
|
fn enum_lambda_set_branch<'a>(
|
|
env: &mut Env<'a, '_>,
|
|
join_point_id: JoinPointId,
|
|
lambda_name: LambdaName<'a>,
|
|
argument_symbols: &'a [Symbol],
|
|
argument_layouts: &'a [Layout<'a>],
|
|
return_layout: &'a Layout<'a>,
|
|
) -> Stmt<'a> {
|
|
let result_symbol = env.unique_symbol();
|
|
|
|
let hole = Stmt::Jump(join_point_id, env.arena.alloc([result_symbol]));
|
|
|
|
let assigned = result_symbol;
|
|
|
|
let call = self::Call {
|
|
call_type: CallType::ByName {
|
|
name: lambda_name,
|
|
ret_layout: return_layout,
|
|
arg_layouts: argument_layouts,
|
|
specialization_id: env.next_call_specialization_id(),
|
|
},
|
|
arguments: argument_symbols,
|
|
};
|
|
build_call(env, call, assigned, *return_layout, env.arena.alloc(hole))
|
|
}
|
|
|
|
#[allow(clippy::too_many_arguments)]
|
|
fn lowlevel_enum_lambda_set_to_switch<'a, ToLowLevelCall>(
|
|
env: &mut Env<'a, '_>,
|
|
lambda_set: impl ExactSizeIterator<Item = LambdaName<'a>>,
|
|
closure_tag_id_symbol: Symbol,
|
|
closure_tag_id_layout: Layout<'a>,
|
|
closure_data_symbol: Symbol,
|
|
closure_env_layout: Option<Layout<'a>>,
|
|
to_lowlevel_call: ToLowLevelCall,
|
|
return_layout: Layout<'a>,
|
|
assigned: Symbol,
|
|
hole: &'a Stmt<'a>,
|
|
) -> Stmt<'a>
|
|
where
|
|
ToLowLevelCall: Fn(ToLowLevelCallArguments<'a>) -> Call<'a> + Copy,
|
|
{
|
|
debug_assert_ne!(lambda_set.len(), 0);
|
|
|
|
let join_point_id = JoinPointId(env.unique_symbol());
|
|
|
|
let mut branches = Vec::with_capacity_in(lambda_set.len(), env.arena);
|
|
|
|
for (i, function_symbol) in lambda_set.into_iter().enumerate() {
|
|
let result_symbol = env.unique_symbol();
|
|
|
|
let hole = Stmt::Jump(join_point_id, env.arena.alloc([result_symbol]));
|
|
|
|
let call_spec_id = env.next_call_specialization_id();
|
|
let update_mode = env.next_update_mode_id();
|
|
let call = to_lowlevel_call((
|
|
function_symbol,
|
|
closure_data_symbol,
|
|
closure_env_layout,
|
|
call_spec_id,
|
|
update_mode,
|
|
));
|
|
let stmt = build_call(
|
|
env,
|
|
call,
|
|
result_symbol,
|
|
return_layout,
|
|
env.arena.alloc(hole),
|
|
);
|
|
|
|
branches.push((i as u64, BranchInfo::None, stmt));
|
|
}
|
|
|
|
let default_branch = {
|
|
let (_, info, stmt) = branches.pop().unwrap();
|
|
|
|
(info, &*env.arena.alloc(stmt))
|
|
};
|
|
|
|
let switch = Stmt::Switch {
|
|
cond_symbol: closure_tag_id_symbol,
|
|
cond_layout: closure_tag_id_layout,
|
|
branches: branches.into_bump_slice(),
|
|
default_branch,
|
|
ret_layout: return_layout,
|
|
};
|
|
|
|
let param = Param {
|
|
symbol: assigned,
|
|
layout: return_layout,
|
|
borrow: false,
|
|
};
|
|
|
|
Stmt::Join {
|
|
id: join_point_id,
|
|
parameters: &*env.arena.alloc([param]),
|
|
body: hole,
|
|
remainder: env.arena.alloc(switch),
|
|
}
|
|
}
|