roc/crates/compiler/solve/src/solve.rs
2022-07-05 22:16:52 -04:00

3624 lines
132 KiB
Rust

use crate::ability::{
resolve_ability_specialization, type_implementing_specialization, AbilityImplError,
DeferredObligations, PendingDerivesTable, RequestedDeriveKey, Resolved, Unfulfilled,
};
use bumpalo::Bump;
use roc_can::abilities::{AbilitiesStore, MemberSpecialization};
use roc_can::constraint::Constraint::{self, *};
use roc_can::constraint::{Constraints, Cycle, LetConstraint, OpportunisticResolve};
use roc_can::expected::{Expected, PExpected};
use roc_can::expr::PendingDerives;
use roc_collections::all::MutMap;
use roc_collections::VecSet;
use roc_debug_flags::dbg_do;
#[cfg(debug_assertions)]
use roc_debug_flags::ROC_VERIFY_RIGID_LET_GENERALIZED;
use roc_derive_key::{DeriveError, Derived, GlobalDerivedSymbols};
use roc_error_macros::internal_error;
use roc_module::ident::TagName;
use roc_module::symbol::{ModuleId, Symbol};
use roc_problem::can::CycleEntry;
use roc_region::all::{Loc, Region};
use roc_types::solved_types::Solved;
use roc_types::subs::{
self, AliasVariables, Content, Descriptor, FlatType, LambdaSet, Mark, OptVariable, Rank,
RecordFields, Subs, SubsIndex, SubsSlice, UlsOfVar, UnionLabels, UnionLambdas, UnionTags,
Variable, VariableSubsSlice,
};
use roc_types::types::Type::{self, *};
use roc_types::types::{
gather_fields_unsorted_iter, AliasCommon, AliasKind, Category, ErrorType, OptAbleType,
OptAbleVar, PatternCategory, Reason, TypeExtension, Uls,
};
use roc_unify::unify::{
unify, unify_introduced_ability_specialization, Mode, Obligated, SpecializationLsetCollector,
Unified::*,
};
// Type checking system adapted from Elm by Evan Czaplicki, BSD-3-Clause Licensed
// https://github.com/elm/compiler
// Thank you, Evan!
// A lot of energy was put into making type inference fast. That means it's pretty intimidating.
//
// Fundamentally, type inference assigns very general types based on syntax, and then tries to
// make all the pieces fit together. For instance when writing
//
// > f x
//
// We know that `f` is a function, and thus must have some type `a -> b`.
// `x` is just a variable, that gets the type `c`
//
// Next comes constraint generation. For `f x` to be well-typed,
// it must be the case that `c = a`, So a constraint `Eq(c, a)` is generated.
// But `Eq` is a bit special: `c` does not need to equal `a` exactly, but they need to be equivalent.
// This allows for instance the use of aliases. `c` could be an alias, and so looks different from
// `a`, but they still represent the same type.
//
// Then we get to solving, which happens in this file.
//
// When we hit an `Eq` constraint, then we check whether the two involved types are in fact
// equivalent using unification, and when they are, we can substitute one for the other.
//
// When all constraints are processed, and no unification errors have occurred, then the program
// is type-correct. Otherwise the errors are reported.
//
// Now, coming back to efficiency, this type checker uses *ranks* to optimize
// The rank tracks the number of let-bindings a variable is "under". Top-level definitions
// have rank 1. A let in a top-level definition gets rank 2, and so on.
//
// This has to do with generalization of type variables. This is described here
//
// http://okmij.org/ftp/ML/generalization.html#levels
//
// The problem is that when doing inference naively, this program would fail to typecheck
//
// f =
// id = \x -> x
//
// { a: id 1, b: id "foo" }
//
// Because `id` is applied to an integer, the type `Int -> Int` is inferred, which then gives a
// type error for `id "foo"`.
//
// Thus instead the inferred type for `id` is generalized (see the `generalize` function) to `a -> a`.
// Ranks are used to limit the number of type variables considered for generalization. Only those inside
// of the let (so those used in inferring the type of `\x -> x`) are considered.
#[derive(Debug, Clone)]
pub enum TypeError {
BadExpr(Region, Category, ErrorType, Expected<ErrorType>),
BadPattern(Region, PatternCategory, ErrorType, PExpected<ErrorType>),
CircularType(Region, Symbol, ErrorType),
CircularDef(Vec<CycleEntry>),
BadType(roc_types::types::Problem),
UnexposedLookup(Symbol),
UnfulfilledAbility(Unfulfilled),
BadExprMissingAbility(Region, Category, ErrorType, Vec<Unfulfilled>),
BadPatternMissingAbility(Region, PatternCategory, ErrorType, Vec<Unfulfilled>),
Exhaustive(roc_exhaustive::Error),
StructuralSpecialization {
region: Region,
typ: ErrorType,
ability: Symbol,
member: Symbol,
},
DominatedDerive {
opaque: Symbol,
ability: Symbol,
derive_region: Region,
impl_region: Region,
},
}
use roc_types::types::Alias;
#[derive(Debug, Clone, Copy)]
struct DelayedAliasVariables {
start: u32,
type_variables_len: u8,
lambda_set_variables_len: u8,
recursion_variables_len: u8,
}
impl DelayedAliasVariables {
fn recursion_variables(self, variables: &mut [OptAbleVar]) -> &mut [OptAbleVar] {
let start = self.start as usize
+ (self.type_variables_len + self.lambda_set_variables_len) as usize;
let length = self.recursion_variables_len as usize;
&mut variables[start..][..length]
}
fn lambda_set_variables(self, variables: &mut [OptAbleVar]) -> &mut [OptAbleVar] {
let start = self.start as usize + self.type_variables_len as usize;
let length = self.lambda_set_variables_len as usize;
&mut variables[start..][..length]
}
fn type_variables(self, variables: &mut [OptAbleVar]) -> &mut [OptAbleVar] {
let start = self.start as usize;
let length = self.type_variables_len as usize;
&mut variables[start..][..length]
}
}
#[derive(Debug, Default)]
pub struct Aliases {
aliases: Vec<(Symbol, Type, DelayedAliasVariables, AliasKind)>,
variables: Vec<OptAbleVar>,
}
impl Aliases {
pub fn insert(&mut self, symbol: Symbol, alias: Alias) {
let alias_variables =
{
let start = self.variables.len() as _;
self.variables.extend(
alias
.type_variables
.iter()
.map(|x| OptAbleVar::from(&x.value)),
);
self.variables.extend(alias.lambda_set_variables.iter().map(
|x| match x.as_inner() {
Type::Variable(v) => OptAbleVar::unbound(*v),
_ => unreachable!("lambda set type is not a variable"),
},
));
let recursion_variables_len = alias.recursion_variables.len() as _;
self.variables.extend(
alias
.recursion_variables
.iter()
.copied()
.map(OptAbleVar::unbound),
);
DelayedAliasVariables {
start,
type_variables_len: alias.type_variables.len() as _,
lambda_set_variables_len: alias.lambda_set_variables.len() as _,
recursion_variables_len,
}
};
self.aliases
.push((symbol, alias.typ, alias_variables, alias.kind));
}
fn instantiate_result_result(
subs: &mut Subs,
rank: Rank,
pools: &mut Pools,
alias_variables: AliasVariables,
) -> Variable {
let tag_names_slice = Subs::RESULT_TAG_NAMES;
let err_slice = SubsSlice::new(alias_variables.variables_start + 1, 1);
let ok_slice = SubsSlice::new(alias_variables.variables_start, 1);
let variable_slices =
SubsSlice::extend_new(&mut subs.variable_slices, [err_slice, ok_slice]);
let union_tags = UnionTags::from_slices(tag_names_slice, variable_slices);
let ext_var = Variable::EMPTY_TAG_UNION;
let flat_type = FlatType::TagUnion(union_tags, ext_var);
let content = Content::Structure(flat_type);
register(subs, rank, pools, content)
}
/// Build an alias of the form `Num range := range`
fn build_num_opaque(
subs: &mut Subs,
rank: Rank,
pools: &mut Pools,
symbol: Symbol,
range_var: Variable,
) -> Variable {
let content = Content::Alias(
symbol,
AliasVariables::insert_into_subs(subs, [range_var], []),
range_var,
AliasKind::Opaque,
);
register(subs, rank, pools, content)
}
fn instantiate_builtin_aliases_real_var(
&mut self,
subs: &mut Subs,
rank: Rank,
pools: &mut Pools,
symbol: Symbol,
alias_variables: AliasVariables,
) -> Option<(Variable, AliasKind)> {
match symbol {
Symbol::RESULT_RESULT => {
let var = Self::instantiate_result_result(subs, rank, pools, alias_variables);
Some((var, AliasKind::Structural))
}
Symbol::NUM_NUM | Symbol::NUM_INTEGER | Symbol::NUM_FLOATINGPOINT => {
// Num range := range | Integer range := range | FloatingPoint range := range
let range_var = subs.variables[alias_variables.variables_start as usize];
Some((range_var, AliasKind::Opaque))
}
Symbol::NUM_INT => {
// Int range : Num (Integer range)
//
// build `Integer range := range`
let integer_content_var = Self::build_num_opaque(
subs,
rank,
pools,
Symbol::NUM_INTEGER,
subs.variables[alias_variables.variables_start as usize],
);
// build `Num (Integer range) := Integer range`
let num_content_var =
Self::build_num_opaque(subs, rank, pools, Symbol::NUM_NUM, integer_content_var);
Some((num_content_var, AliasKind::Structural))
}
Symbol::NUM_FRAC => {
// Frac range : Num (FloatingPoint range)
//
// build `FloatingPoint range := range`
let fpoint_content_var = Self::build_num_opaque(
subs,
rank,
pools,
Symbol::NUM_FLOATINGPOINT,
subs.variables[alias_variables.variables_start as usize],
);
// build `Num (FloatingPoint range) := FloatingPoint range`
let num_content_var =
Self::build_num_opaque(subs, rank, pools, Symbol::NUM_NUM, fpoint_content_var);
Some((num_content_var, AliasKind::Structural))
}
_ => None,
}
}
fn instantiate_real_var(
&mut self,
subs: &mut Subs,
rank: Rank,
pools: &mut Pools,
arena: &bumpalo::Bump,
symbol: Symbol,
alias_variables: AliasVariables,
) -> (Variable, AliasKind) {
// hardcoded instantiations for builtin aliases
if let Some((var, kind)) = Self::instantiate_builtin_aliases_real_var(
self,
subs,
rank,
pools,
symbol,
alias_variables,
) {
return (var, kind);
}
let (typ, delayed_variables, &mut kind) =
match self.aliases.iter_mut().find(|(s, _, _, _)| *s == symbol) {
None => internal_error!(
"Alias not registered in delayed aliases! {:?}",
&self.aliases
),
Some((_, typ, delayed_variables, kind)) => (typ, delayed_variables, kind),
};
let mut substitutions: MutMap<_, _> = Default::default();
for OptAbleVar {
var: rec_var,
opt_ability,
} in delayed_variables
.recursion_variables(&mut self.variables)
.iter_mut()
{
debug_assert!(opt_ability.is_none());
let new_var = subs.fresh_unnamed_flex_var();
substitutions.insert(*rec_var, new_var);
*rec_var = new_var;
}
let old_type_variables = delayed_variables.type_variables(&mut self.variables);
let new_type_variables = &subs.variables[alias_variables.type_variables().indices()];
for (old, new) in old_type_variables.iter_mut().zip(new_type_variables) {
// if constraint gen duplicated a type these variables could be the same
// (happens very often in practice)
if old.var != *new {
substitutions.insert(old.var, *new);
old.var = *new;
}
}
let old_lambda_set_variables = delayed_variables.lambda_set_variables(&mut self.variables);
let new_lambda_set_variables =
&subs.variables[alias_variables.lambda_set_variables().indices()];
for (old, new) in old_lambda_set_variables
.iter_mut()
.zip(new_lambda_set_variables)
{
debug_assert!(old.opt_ability.is_none());
if old.var != *new {
substitutions.insert(old.var, *new);
old.var = *new;
}
}
if !substitutions.is_empty() {
typ.substitute_variables(&substitutions);
}
let mut t = Type::EmptyRec;
std::mem::swap(typ, &mut t);
// assumption: an alias does not (transitively) syntactically contain itself
// (if it did it would have to be a recursive tag union, which we should have fixed up
// during canonicalization)
let alias_variable = type_to_variable(subs, rank, pools, arena, self, &t);
{
match self.aliases.iter_mut().find(|(s, _, _, _)| *s == symbol) {
None => unreachable!(),
Some((_, typ, _, _)) => {
// swap typ back
std::mem::swap(typ, &mut t);
}
}
}
(alias_variable, kind)
}
}
#[derive(Clone, Debug, Default)]
pub struct Env {
symbols: Vec<Symbol>,
variables: Vec<Variable>,
}
impl Env {
pub fn vars_by_symbol(&self) -> impl Iterator<Item = (Symbol, Variable)> + '_ {
let it1 = self.symbols.iter().copied();
let it2 = self.variables.iter().copied();
it1.zip(it2)
}
#[inline(always)]
fn get_var_by_symbol(&self, symbol: &Symbol) -> Option<Variable> {
self.symbols
.iter()
.position(|s| s == symbol)
.map(|index| self.variables[index])
}
#[inline(always)]
fn insert_symbol_var_if_vacant(&mut self, symbol: Symbol, var: Variable) {
match self.symbols.iter().position(|s| *s == symbol) {
None => {
// symbol is not in vars_by_symbol yet; insert it
self.symbols.push(symbol);
self.variables.push(var);
}
Some(_) => {
// do nothing
}
}
}
}
const DEFAULT_POOLS: usize = 8;
#[derive(Clone, Debug)]
pub struct Pools(Vec<Vec<Variable>>);
impl Default for Pools {
fn default() -> Self {
Pools::new(DEFAULT_POOLS)
}
}
impl Pools {
pub fn new(num_pools: usize) -> Self {
Pools(vec![Vec::new(); num_pools])
}
pub fn len(&self) -> usize {
self.0.len()
}
pub fn is_empty(&self) -> bool {
self.0.is_empty()
}
pub fn get_mut(&mut self, rank: Rank) -> &mut Vec<Variable> {
match self.0.get_mut(rank.into_usize()) {
Some(reference) => reference,
None => panic!("Compiler bug: could not find pool at rank {}", rank),
}
}
pub fn get(&self, rank: Rank) -> &Vec<Variable> {
match self.0.get(rank.into_usize()) {
Some(reference) => reference,
None => panic!("Compiler bug: could not find pool at rank {}", rank),
}
}
pub fn iter(&self) -> std::slice::Iter<'_, Vec<Variable>> {
self.0.iter()
}
pub fn split_last(mut self) -> (Vec<Variable>, Vec<Vec<Variable>>) {
let last = self
.0
.pop()
.unwrap_or_else(|| panic!("Attempted to split_last() on non-empty Pools"));
(last, self.0)
}
pub fn extend_to(&mut self, n: usize) {
for _ in self.len()..n {
self.0.push(Vec::new());
}
}
}
/// What phase in the compiler is reaching out to solve types.
/// This is important to distinguish subtle differences in the behavior of the solving algorithm.
pub trait Phase {
/// The regular type-solving phase, or during some later phase of compilation.
/// During the solving phase we must anticipate that some information is still unknown and react to
/// that; during late phases, we expect that all information is resolved.
const IS_LATE: bool;
fn with_module_abilities_store<T, F>(&self, module: ModuleId, f: F) -> T
where
F: FnMut(&AbilitiesStore) -> T;
fn copy_lambda_set_var_to_home_subs(
&self,
external_lambda_set_var: Variable,
external_module_id: ModuleId,
home_subs: &mut Subs,
) -> Variable;
}
struct SolvePhase<'a> {
abilities_store: &'a AbilitiesStore,
}
impl Phase for SolvePhase<'_> {
const IS_LATE: bool = false;
fn with_module_abilities_store<T, F>(&self, _module: ModuleId, mut f: F) -> T
where
F: FnMut(&AbilitiesStore) -> T,
{
// During solving we're only aware of our module's abilities store.
f(self.abilities_store)
}
fn copy_lambda_set_var_to_home_subs(
&self,
external_lambda_set_var: Variable,
_external_module_id: ModuleId,
home_subs: &mut Subs,
) -> Variable {
// During solving we're only aware of our module's abilities store, the var must
// be in our module store. Even if the specialization lambda set comes from another
// module, we should have taken care to import it before starting solving in this module.
debug_assert!(matches!(
home_subs.get_content_without_compacting(external_lambda_set_var),
Content::LambdaSet(..)
));
external_lambda_set_var
}
}
#[derive(Clone)]
struct State {
env: Env,
mark: Mark,
}
#[allow(clippy::too_many_arguments)] // TODO: put params in a context/env var
pub fn run(
constraints: &Constraints,
problems: &mut Vec<TypeError>,
mut subs: Subs,
aliases: &mut Aliases,
constraint: &Constraint,
pending_derives: PendingDerives,
abilities_store: &mut AbilitiesStore,
derived_symbols: GlobalDerivedSymbols,
) -> (Solved<Subs>, Env) {
let env = run_in_place(
constraints,
problems,
&mut subs,
aliases,
constraint,
pending_derives,
abilities_store,
derived_symbols,
);
(Solved(subs), env)
}
/// Modify an existing subs in-place instead
#[allow(clippy::too_many_arguments)] // TODO: put params in a context/env var
fn run_in_place(
constraints: &Constraints,
problems: &mut Vec<TypeError>,
subs: &mut Subs,
aliases: &mut Aliases,
constraint: &Constraint,
pending_derives: PendingDerives,
abilities_store: &mut AbilitiesStore,
derived_symbols: GlobalDerivedSymbols,
) -> Env {
let mut pools = Pools::default();
let state = State {
env: Env::default(),
mark: Mark::NONE.next(),
};
let rank = Rank::toplevel();
let arena = Bump::new();
let pending_derives = PendingDerivesTable::new(subs, aliases, pending_derives);
let mut deferred_obligations = DeferredObligations::new(pending_derives);
// Because we don't know what ability specializations are available until the entire module is
// solved, we must wait to solve unspecialized lambda sets then.
let mut deferred_uls_to_resolve = UlsOfVar::default();
let state = solve(
&arena,
constraints,
state,
rank,
&mut pools,
problems,
aliases,
subs,
constraint,
abilities_store,
&mut deferred_obligations,
&mut deferred_uls_to_resolve,
);
// Now that the module has been solved, we can run through and check all
// types claimed to implement abilities. This will also tell us what derives
// are legal, which we need to register.
let (obligation_problems, _derived) = deferred_obligations.check_all(subs, abilities_store);
problems.extend(obligation_problems);
compact_lambda_sets_of_vars(
subs,
&arena,
&mut pools,
deferred_uls_to_resolve,
&SolvePhase { abilities_store },
&derived_symbols,
);
state.env
}
enum Work<'a> {
Constraint {
env: &'a Env,
rank: Rank,
constraint: &'a Constraint,
},
CheckForInfiniteTypes(LocalDefVarsVec<(Symbol, Loc<Variable>)>),
/// The ret_con part of a let constraint that does NOT introduces rigid and/or flex variables
LetConNoVariables {
env: &'a Env,
rank: Rank,
let_con: &'a LetConstraint,
/// The variables used to store imported types in the Subs.
/// The `Contents` are copied from the source module, but to
/// mimic `type_to_var`, we must add these variables to `Pools`
/// at the correct rank
pool_variables: &'a [Variable],
},
/// The ret_con part of a let constraint that introduces rigid and/or flex variables
///
/// These introduced variables must be generalized, hence this variant
/// is more complex than `LetConNoVariables`.
LetConIntroducesVariables {
env: &'a Env,
rank: Rank,
let_con: &'a LetConstraint,
/// The variables used to store imported types in the Subs.
/// The `Contents` are copied from the source module, but to
/// mimic `type_to_var`, we must add these variables to `Pools`
/// at the correct rank
pool_variables: &'a [Variable],
},
}
#[allow(clippy::too_many_arguments)]
fn solve(
arena: &Bump,
constraints: &Constraints,
mut state: State,
rank: Rank,
pools: &mut Pools,
problems: &mut Vec<TypeError>,
aliases: &mut Aliases,
subs: &mut Subs,
constraint: &Constraint,
abilities_store: &mut AbilitiesStore,
deferred_obligations: &mut DeferredObligations,
deferred_uls_to_resolve: &mut UlsOfVar,
) -> State {
let initial = Work::Constraint {
env: &Env::default(),
rank,
constraint,
};
let mut stack = vec![initial];
while let Some(work_item) = stack.pop() {
let (env, rank, constraint) = match work_item {
Work::Constraint {
env,
rank,
constraint,
} => {
// the default case; actually solve this constraint
(env, rank, constraint)
}
Work::CheckForInfiniteTypes(def_vars) => {
// after a LetCon, we must check if any of the variables that we introduced
// loop back to themselves after solving the ret_constraint
for (symbol, loc_var) in def_vars.iter() {
check_for_infinite_type(subs, problems, *symbol, *loc_var);
}
continue;
}
Work::LetConNoVariables {
env,
rank,
let_con,
pool_variables,
} => {
// NOTE be extremely careful with shadowing here
let offset = let_con.defs_and_ret_constraint.index();
let ret_constraint = &constraints.constraints[offset + 1];
// Add a variable for each def to new_vars_by_env.
let local_def_vars = LocalDefVarsVec::from_def_types(
constraints,
rank,
pools,
aliases,
subs,
let_con.def_types,
);
pools.get_mut(rank).extend(pool_variables);
let mut new_env = env.clone();
for (symbol, loc_var) in local_def_vars.iter() {
check_ability_specialization(
arena,
subs,
pools,
rank,
abilities_store,
problems,
deferred_obligations,
deferred_uls_to_resolve,
*symbol,
*loc_var,
);
new_env.insert_symbol_var_if_vacant(*symbol, loc_var.value);
}
stack.push(Work::CheckForInfiniteTypes(local_def_vars));
stack.push(Work::Constraint {
env: arena.alloc(new_env),
rank,
constraint: ret_constraint,
});
continue;
}
Work::LetConIntroducesVariables {
env,
rank,
let_con,
pool_variables,
} => {
// NOTE be extremely careful with shadowing here
let offset = let_con.defs_and_ret_constraint.index();
let ret_constraint = &constraints.constraints[offset + 1];
let next_rank = rank.next();
let mark = state.mark;
let saved_env = state.env;
let young_mark = mark;
let visit_mark = young_mark.next();
let final_mark = visit_mark.next();
// Add a variable for each def to local_def_vars.
let local_def_vars = LocalDefVarsVec::from_def_types(
constraints,
next_rank,
pools,
aliases,
subs,
let_con.def_types,
);
pools.get_mut(next_rank).extend(pool_variables);
debug_assert_eq!(
// Check that no variable ended up in a higher rank than the next rank.. that
// would mean we generalized one level more than we need to!
{
let offenders = pools
.get(next_rank)
.iter()
.filter(|var| {
subs.get_rank(**var).into_usize() > next_rank.into_usize()
})
.collect::<Vec<_>>();
let result = offenders.len();
if result > 0 {
eprintln!("subs = {:?}", &subs);
eprintln!("offenders = {:?}", &offenders);
eprintln!("let_con.def_types = {:?}", &let_con.def_types);
}
result
},
0
);
// pop pool
generalize(subs, young_mark, visit_mark, next_rank, pools);
debug_assert!(pools.get(next_rank).is_empty());
// check that things went well
dbg_do!(ROC_VERIFY_RIGID_LET_GENERALIZED, {
let rigid_vars = &constraints.variables[let_con.rigid_vars.indices()];
// NOTE the `subs.redundant` check does not come from elm.
// It's unclear whether this is a bug with our implementation
// (something is redundant that shouldn't be)
// or that it just never came up in elm.
let mut it = rigid_vars
.iter()
.filter(|&var| !subs.redundant(*var) && subs.get_rank(*var) != Rank::NONE)
.peekable();
if it.peek().is_some() {
let failing: Vec<_> = it.collect();
println!("Rigids {:?}", &rigid_vars);
println!("Failing {:?}", failing);
debug_assert!(false);
}
});
let mut new_env = env.clone();
for (symbol, loc_var) in local_def_vars.iter() {
check_ability_specialization(
arena,
subs,
pools,
rank,
abilities_store,
problems,
deferred_obligations,
deferred_uls_to_resolve,
*symbol,
*loc_var,
);
new_env.insert_symbol_var_if_vacant(*symbol, loc_var.value);
}
// Note that this vars_by_symbol is the one returned by the
// previous call to solve()
let state_for_ret_con = State {
env: saved_env,
mark: final_mark,
};
// Now solve the body, using the new vars_by_symbol which includes
// the assignments' name-to-variable mappings.
stack.push(Work::CheckForInfiniteTypes(local_def_vars));
stack.push(Work::Constraint {
env: arena.alloc(new_env),
rank,
constraint: ret_constraint,
});
state = state_for_ret_con;
continue;
}
};
state = match constraint {
True => state,
SaveTheEnvironment => {
let mut copy = state;
copy.env = env.clone();
copy
}
Eq(roc_can::constraint::Eq(type_index, expectation_index, category_index, region)) => {
let category = &constraints.categories[category_index.index()];
let actual =
either_type_index_to_var(constraints, subs, rank, pools, aliases, *type_index);
let expectation = &constraints.expectations[expectation_index.index()];
let expected = type_to_var(subs, rank, pools, aliases, expectation.get_type_ref());
match unify(subs, actual, expected, Mode::EQ) {
Success {
vars,
must_implement_ability,
lambda_sets_to_specialize,
extra_metadata: _,
} => {
introduce(subs, rank, pools, &vars);
if !must_implement_ability.is_empty() {
deferred_obligations.add(
must_implement_ability,
AbilityImplError::BadExpr(*region, category.clone(), actual),
);
}
deferred_uls_to_resolve.union(lambda_sets_to_specialize);
state
}
Failure(vars, actual_type, expected_type, _bad_impls) => {
introduce(subs, rank, pools, &vars);
let problem = TypeError::BadExpr(
*region,
category.clone(),
actual_type,
expectation.clone().replace(expected_type),
);
problems.push(problem);
state
}
BadType(vars, problem) => {
introduce(subs, rank, pools, &vars);
problems.push(TypeError::BadType(problem));
state
}
}
}
Store(source_index, target, _filename, _linenr) => {
// a special version of Eq that is used to store types in the AST.
// IT DOES NOT REPORT ERRORS!
let actual = either_type_index_to_var(
constraints,
subs,
rank,
pools,
aliases,
*source_index,
);
let target = *target;
match unify(subs, actual, target, Mode::EQ) {
Success {
vars,
// ERROR NOT REPORTED
must_implement_ability: _,
lambda_sets_to_specialize,
extra_metadata: _,
} => {
introduce(subs, rank, pools, &vars);
deferred_uls_to_resolve.union(lambda_sets_to_specialize);
state
}
Failure(vars, _actual_type, _expected_type, _bad_impls) => {
introduce(subs, rank, pools, &vars);
// ERROR NOT REPORTED
state
}
BadType(vars, _) => {
introduce(subs, rank, pools, &vars);
// ERROR NOT REPORTED
state
}
}
}
Lookup(symbol, expectation_index, region) => {
match env.get_var_by_symbol(symbol) {
Some(var) => {
// Deep copy the vars associated with this symbol before unifying them.
// Otherwise, suppose we have this:
//
// identity = \a -> a
//
// x = identity 5
//
// When we call (identity 5), it's important that we not unify
// on identity's original vars. If we do, the type of `identity` will be
// mutated to be `Int -> Int` instead of `a -> `, which would be incorrect;
// the type of `identity` is more general than that!
//
// Instead, we want to unify on a *copy* of its vars. If the copy unifies
// successfully (in this case, to `Int -> Int`), we can use that to
// infer the type of this lookup (in this case, `Int`) without ever
// having mutated the original.
//
// If this Lookup is targeting a value in another module,
// then we copy from that module's Subs into our own. If the value
// is being looked up in this module, then we use our Subs as both
// the source and destination.
let actual = deep_copy_var_in(subs, rank, pools, var, arena);
let expectation = &constraints.expectations[expectation_index.index()];
let expected =
type_to_var(subs, rank, pools, aliases, expectation.get_type_ref());
match unify(subs, actual, expected, Mode::EQ) {
Success {
vars,
must_implement_ability,
lambda_sets_to_specialize,
extra_metadata: _,
} => {
introduce(subs, rank, pools, &vars);
if !must_implement_ability.is_empty() {
deferred_obligations.add(
must_implement_ability,
AbilityImplError::BadExpr(
*region,
Category::Lookup(*symbol),
actual,
),
);
}
deferred_uls_to_resolve.union(lambda_sets_to_specialize);
state
}
Failure(vars, actual_type, expected_type, _bad_impls) => {
introduce(subs, rank, pools, &vars);
let problem = TypeError::BadExpr(
*region,
Category::Lookup(*symbol),
actual_type,
expectation.clone().replace(expected_type),
);
problems.push(problem);
state
}
BadType(vars, problem) => {
introduce(subs, rank, pools, &vars);
problems.push(TypeError::BadType(problem));
state
}
}
}
None => {
problems.push(TypeError::UnexposedLookup(*symbol));
state
}
}
}
And(slice) => {
let it = constraints.constraints[slice.indices()].iter().rev();
for sub_constraint in it {
stack.push(Work::Constraint {
env,
rank,
constraint: sub_constraint,
})
}
state
}
Pattern(type_index, expectation_index, category_index, region)
| PatternPresence(type_index, expectation_index, category_index, region) => {
let category = &constraints.pattern_categories[category_index.index()];
let actual =
either_type_index_to_var(constraints, subs, rank, pools, aliases, *type_index);
let expectation = &constraints.pattern_expectations[expectation_index.index()];
let expected = type_to_var(subs, rank, pools, aliases, expectation.get_type_ref());
let mode = match constraint {
PatternPresence(..) => Mode::PRESENT,
_ => Mode::EQ,
};
match unify(subs, actual, expected, mode) {
Success {
vars,
must_implement_ability,
lambda_sets_to_specialize,
extra_metadata: _,
} => {
introduce(subs, rank, pools, &vars);
if !must_implement_ability.is_empty() {
deferred_obligations.add(
must_implement_ability,
AbilityImplError::BadPattern(*region, category.clone(), actual),
);
}
deferred_uls_to_resolve.union(lambda_sets_to_specialize);
state
}
Failure(vars, actual_type, expected_type, _bad_impls) => {
introduce(subs, rank, pools, &vars);
let problem = TypeError::BadPattern(
*region,
category.clone(),
actual_type,
expectation.clone().replace(expected_type),
);
problems.push(problem);
state
}
BadType(vars, problem) => {
introduce(subs, rank, pools, &vars);
problems.push(TypeError::BadType(problem));
state
}
}
}
Let(index, pool_slice) => {
let let_con = &constraints.let_constraints[index.index()];
let offset = let_con.defs_and_ret_constraint.index();
let defs_constraint = &constraints.constraints[offset];
let ret_constraint = &constraints.constraints[offset + 1];
let flex_vars = &constraints.variables[let_con.flex_vars.indices()];
let rigid_vars = &constraints.variables[let_con.rigid_vars.indices()];
let pool_variables = &constraints.variables[pool_slice.indices()];
if matches!(&ret_constraint, True) && let_con.rigid_vars.is_empty() {
debug_assert!(pool_variables.is_empty());
introduce(subs, rank, pools, flex_vars);
// If the return expression is guaranteed to solve,
// solve the assignments themselves and move on.
stack.push(Work::Constraint {
env,
rank,
constraint: defs_constraint,
});
state
} else if let_con.rigid_vars.is_empty() && let_con.flex_vars.is_empty() {
// items are popped from the stack in reverse order. That means that we'll
// first solve then defs_constraint, and then (eventually) the ret_constraint.
//
// Note that the LetConSimple gets the current env and rank,
// and not the env/rank from after solving the defs_constraint
stack.push(Work::LetConNoVariables {
env,
rank,
let_con,
pool_variables,
});
stack.push(Work::Constraint {
env,
rank,
constraint: defs_constraint,
});
state
} else {
// work in the next pool to localize header
let next_rank = rank.next();
// introduce variables
for &var in rigid_vars.iter().chain(flex_vars.iter()) {
subs.set_rank(var, next_rank);
}
// determine the next pool
if next_rank.into_usize() < pools.len() {
// Nothing to do, we already accounted for the next rank, no need to
// adjust the pools
} else {
// we should be off by one at this point
debug_assert_eq!(next_rank.into_usize(), 1 + pools.len());
pools.extend_to(next_rank.into_usize());
}
let pool: &mut Vec<Variable> = pools.get_mut(next_rank);
// Replace the contents of this pool with rigid_vars and flex_vars
pool.clear();
pool.reserve(rigid_vars.len() + flex_vars.len());
pool.extend(rigid_vars.iter());
pool.extend(flex_vars.iter());
// run solver in next pool
// items are popped from the stack in reverse order. That means that we'll
// first solve then defs_constraint, and then (eventually) the ret_constraint.
//
// Note that the LetConSimple gets the current env and rank,
// and not the env/rank from after solving the defs_constraint
stack.push(Work::LetConIntroducesVariables {
env,
rank,
let_con,
pool_variables,
});
stack.push(Work::Constraint {
env,
rank: next_rank,
constraint: defs_constraint,
});
state
}
}
IsOpenType(type_index) => {
let actual =
either_type_index_to_var(constraints, subs, rank, pools, aliases, *type_index);
open_tag_union(subs, actual);
state
}
IncludesTag(index) => {
let includes_tag = &constraints.includes_tags[index.index()];
let roc_can::constraint::IncludesTag {
type_index,
tag_name,
types,
pattern_category,
region,
} = includes_tag;
let typ = &constraints.types[type_index.index()];
let tys = &constraints.types[types.indices()];
let pattern_category = &constraints.pattern_categories[pattern_category.index()];
let actual = type_to_var(subs, rank, pools, aliases, typ);
let tag_ty = Type::TagUnion(
vec![(tag_name.clone(), tys.to_vec())],
TypeExtension::Closed,
);
let includes = type_to_var(subs, rank, pools, aliases, &tag_ty);
match unify(subs, actual, includes, Mode::PRESENT) {
Success {
vars,
must_implement_ability,
lambda_sets_to_specialize,
extra_metadata: _,
} => {
introduce(subs, rank, pools, &vars);
if !must_implement_ability.is_empty() {
deferred_obligations.add(
must_implement_ability,
AbilityImplError::BadPattern(
*region,
pattern_category.clone(),
actual,
),
);
}
deferred_uls_to_resolve.union(lambda_sets_to_specialize);
state
}
Failure(vars, actual_type, expected_to_include_type, _bad_impls) => {
introduce(subs, rank, pools, &vars);
let problem = TypeError::BadPattern(
*region,
pattern_category.clone(),
expected_to_include_type,
PExpected::NoExpectation(actual_type),
);
problems.push(problem);
state
}
BadType(vars, problem) => {
introduce(subs, rank, pools, &vars);
problems.push(TypeError::BadType(problem));
state
}
}
}
&Exhaustive(eq, sketched_rows, context, exhaustive_mark) => {
// A few cases:
// 1. Either condition or branch types already have a type error. In this case just
// propagate it.
// 2. Types are correct, but there are redundancies. In this case we want
// exhaustiveness checking to pull those out.
// 3. Condition and branch types are "almost equal", that is one or the other is
// only missing a few more tags. In this case we want to run
// exhaustiveness checking both ways, to see which one is missing tags.
// 4. Condition and branch types aren't "almost equal", this is just a normal type
// error.
let (real_var, real_region, expected_type, category_and_expected) = match eq {
Ok(eq) => {
let roc_can::constraint::Eq(real_var, expected, category, real_region) =
constraints.eq[eq.index()];
let expected = &constraints.expectations[expected.index()];
(
real_var,
real_region,
expected.get_type_ref(),
Ok((category, expected)),
)
}
Err(peq) => {
let roc_can::constraint::PatternEq(
real_var,
expected,
category,
real_region,
) = constraints.pattern_eq[peq.index()];
let expected = &constraints.pattern_expectations[expected.index()];
(
real_var,
real_region,
expected.get_type_ref(),
Err((category, expected)),
)
}
};
let real_var =
either_type_index_to_var(constraints, subs, rank, pools, aliases, real_var);
let branches_var = type_to_var(subs, rank, pools, aliases, expected_type);
let real_content = subs.get_content_without_compacting(real_var);
let branches_content = subs.get_content_without_compacting(branches_var);
let already_have_error = matches!(
(real_content, branches_content),
(
Content::Error | Content::Structure(FlatType::Erroneous(_)),
_
) | (
_,
Content::Error | Content::Structure(FlatType::Erroneous(_))
)
);
let snapshot = subs.snapshot();
let outcome = unify(subs, real_var, branches_var, Mode::EQ);
let should_check_exhaustiveness;
match outcome {
Success {
vars,
must_implement_ability,
lambda_sets_to_specialize,
extra_metadata: _,
} => {
subs.commit_snapshot(snapshot);
introduce(subs, rank, pools, &vars);
if !must_implement_ability.is_empty() {
internal_error!("Didn't expect ability vars to land here");
}
deferred_uls_to_resolve.union(lambda_sets_to_specialize);
// Case 1: unify error types, but don't check exhaustiveness.
// Case 2: run exhaustiveness to check for redundant branches.
should_check_exhaustiveness = !already_have_error;
}
Failure(..) => {
// Rollback and check for almost-equality.
subs.rollback_to(snapshot);
let almost_eq_snapshot = subs.snapshot();
// TODO: turn this on for bidirectional exhaustiveness checking
// open_tag_union(subs, real_var);
open_tag_union(subs, branches_var);
let almost_eq = matches!(
unify(subs, real_var, branches_var, Mode::EQ),
Success { .. }
);
subs.rollback_to(almost_eq_snapshot);
if almost_eq {
// Case 3: almost equal, check exhaustiveness.
should_check_exhaustiveness = true;
} else {
// Case 4: incompatible types, report type error.
// Re-run first failed unification to get the type diff.
match unify(subs, real_var, branches_var, Mode::EQ) {
Failure(vars, actual_type, expected_type, _bad_impls) => {
introduce(subs, rank, pools, &vars);
// Figure out the problem - it might be pattern or value
// related.
let problem = match category_and_expected {
Ok((category, expected)) => {
let real_category =
constraints.categories[category.index()].clone();
TypeError::BadExpr(
real_region,
real_category,
actual_type,
expected.replace_ref(expected_type),
)
}
Err((category, expected)) => {
let real_category = constraints.pattern_categories
[category.index()]
.clone();
TypeError::BadPattern(
real_region,
real_category,
expected_type,
expected.replace_ref(actual_type),
)
}
};
problems.push(problem);
should_check_exhaustiveness = false;
}
_ => internal_error!("Must be failure"),
}
}
}
BadType(vars, problem) => {
subs.commit_snapshot(snapshot);
introduce(subs, rank, pools, &vars);
problems.push(TypeError::BadType(problem));
should_check_exhaustiveness = false;
}
}
let sketched_rows = constraints.sketched_rows[sketched_rows.index()].clone();
if should_check_exhaustiveness {
use roc_can::exhaustive::{check, ExhaustiveSummary};
let ExhaustiveSummary {
errors,
exhaustive,
redundancies,
} = check(subs, sketched_rows, context);
// Store information about whether the "when" is exhaustive, and
// which (if any) of its branches are redundant. Codegen may use
// this for branch-fixing and redundant elimination.
if !exhaustive {
exhaustive_mark.set_non_exhaustive(subs);
}
for redundant_mark in redundancies {
redundant_mark.set_redundant(subs);
}
// Store the errors.
problems.extend(errors.into_iter().map(TypeError::Exhaustive));
}
state
}
&Resolve(OpportunisticResolve {
specialization_variable,
specialization_expectation,
member,
specialization_id,
}) => {
if let Some(Resolved::Specialization(specialization)) =
resolve_ability_specialization(
subs,
abilities_store,
member,
specialization_variable,
)
{
abilities_store.insert_resolved(specialization_id, specialization);
// We must now refine the current type state to account for this specialization.
let lookup_constr = arena.alloc(Constraint::Lookup(
specialization,
specialization_expectation,
Region::zero(),
));
stack.push(Work::Constraint {
env,
rank,
constraint: lookup_constr,
});
}
state
}
CheckCycle(cycle, cycle_mark) => {
let Cycle {
def_names,
expr_regions,
} = &constraints.cycles[cycle.index()];
let symbols = &constraints.loc_symbols[def_names.indices()];
// If the type of a symbol is not a function, that's an error.
// Roc is strict, so only functions can be mutually recursive.
let any_is_bad = {
use Content::*;
symbols.iter().any(|(s, _)| {
let var = env.get_var_by_symbol(s).expect("Symbol not solved!");
let content = subs.get_content_without_compacting(var);
!matches!(content, Error | Structure(FlatType::Func(..)))
})
};
if any_is_bad {
// expr regions are stored in loc_symbols (that turned out to be convenient).
// The symbol is just a dummy, and should not be used
let expr_regions = &constraints.loc_symbols[expr_regions.indices()];
let cycle = symbols
.iter()
.zip(expr_regions.iter())
.map(|(&(symbol, symbol_region), &(_, expr_region))| CycleEntry {
symbol,
symbol_region,
expr_region,
})
.collect();
problems.push(TypeError::CircularDef(cycle));
cycle_mark.set_illegal(subs);
}
state
}
};
}
state
}
fn open_tag_union(subs: &mut Subs, var: Variable) {
let mut stack = vec![var];
while let Some(var) = stack.pop() {
use {Content::*, FlatType::*};
let desc = subs.get(var);
if let Structure(TagUnion(tags, ext)) = desc.content {
if let Structure(EmptyTagUnion) = subs.get_content_without_compacting(ext) {
let new_ext = subs.fresh_unnamed_flex_var();
subs.set_rank(new_ext, desc.rank);
let new_union = Structure(TagUnion(tags, new_ext));
subs.set_content(var, new_union);
}
// Also open up all nested tag unions.
let all_vars = tags.variables().into_iter();
stack.extend(all_vars.flat_map(|slice| subs[slice]).map(|var| subs[var]));
}
// Today, an "open" constraint doesn't affect any types
// other than tag unions. Recursive tag unions are constructed
// at a later time (during occurs checks after tag unions are
// resolved), so that's not handled here either.
// NB: Handle record types here if we add presence constraints
// to their type inference as well.
}
}
/// If a symbol claims to specialize an ability member, check that its solved type in fact
/// does specialize the ability, and record the specialization.
#[allow(clippy::too_many_arguments)]
// Aggressive but necessary - there aren't many usages.
#[inline(always)]
fn check_ability_specialization(
arena: &Bump,
subs: &mut Subs,
pools: &mut Pools,
rank: Rank,
abilities_store: &mut AbilitiesStore,
problems: &mut Vec<TypeError>,
deferred_obligations: &mut DeferredObligations,
deferred_uls_to_resolve: &mut UlsOfVar,
symbol: Symbol,
symbol_loc_var: Loc<Variable>,
) {
// If the symbol specializes an ability member, we need to make sure that the
// inferred type for the specialization actually aligns with the expected
// implementation.
if let Some((ability_member, root_data)) = abilities_store.root_name_and_def(symbol) {
let root_signature_var = root_data.signature_var();
let parent_ability = root_data.parent_ability;
// Check if they unify - if they don't, then the claimed specialization isn't really one,
// and that's a type error!
// This also fixes any latent type variables that need to be specialized to exactly what
// the ability signature expects.
// We need to freshly instantiate the root signature so that all unifications are reflected
// in the specialization type, but not the original signature type.
let root_signature_var =
deep_copy_var_in(subs, Rank::toplevel(), pools, root_signature_var, arena);
let snapshot = subs.snapshot();
let unified = unify_introduced_ability_specialization(
subs,
root_signature_var,
symbol_loc_var.value,
Mode::EQ,
);
match unified {
Success {
vars,
must_implement_ability,
lambda_sets_to_specialize: other_lambda_sets_to_specialize,
extra_metadata: SpecializationLsetCollector(specialization_lambda_sets),
} => {
let specialization_type =
type_implementing_specialization(&must_implement_ability, parent_ability);
match specialization_type {
Some(Obligated::Opaque(opaque)) => {
// This is a specialization for an opaque - that's allowed.
subs.commit_snapshot(snapshot);
introduce(subs, rank, pools, &vars);
let specialization_lambda_sets = specialization_lambda_sets
.into_iter()
.map(|((symbol, region), var)| {
debug_assert_eq!(symbol, ability_member);
(region, var)
})
.collect();
deferred_uls_to_resolve.union(other_lambda_sets_to_specialize);
let specialization_region = symbol_loc_var.region;
let specialization =
MemberSpecialization::new(symbol, specialization_lambda_sets);
abilities_store.register_specialization_for_type(
ability_member,
opaque,
specialization,
);
// Make sure we check that the opaque has specialized all members of the
// ability, after we finish solving the module.
deferred_obligations
.add(must_implement_ability, AbilityImplError::IncompleteAbility);
// This specialization dominates any derives that might be present.
deferred_obligations.dominate(
RequestedDeriveKey {
opaque,
ability: parent_ability,
},
specialization_region,
);
}
Some(Obligated::Adhoc(var)) => {
// This is a specialization of a structural type - never allowed.
// Commit so that `var` persists in subs.
subs.commit_snapshot(snapshot);
let (typ, _problems) = subs.var_to_error_type(var);
let problem = TypeError::StructuralSpecialization {
region: symbol_loc_var.region,
typ,
ability: parent_ability,
member: ability_member,
};
problems.push(problem);
}
None => {
// This can happen when every ability constriant on a type variable went
// through only another type variable. That means this def is not specialized
// for one concrete type - we won't admit this.
// Rollback the snapshot so we unlink the root signature with the specialization,
// so we can have two separate error types.
subs.rollback_to(snapshot);
let (expected_type, _problems) = subs.var_to_error_type(root_signature_var);
let (actual_type, _problems) = subs.var_to_error_type(symbol_loc_var.value);
let reason = Reason::GeneralizedAbilityMemberSpecialization {
member_name: ability_member,
def_region: root_data.region,
};
let problem = TypeError::BadExpr(
symbol_loc_var.region,
Category::AbilityMemberSpecialization(ability_member),
actual_type,
Expected::ForReason(reason, expected_type, symbol_loc_var.region),
);
problems.push(problem);
}
}
}
Failure(vars, expected_type, actual_type, unimplemented_abilities) => {
subs.commit_snapshot(snapshot);
introduce(subs, rank, pools, &vars);
let reason = Reason::InvalidAbilityMemberSpecialization {
member_name: ability_member,
def_region: root_data.region,
unimplemented_abilities,
};
let problem = TypeError::BadExpr(
symbol_loc_var.region,
Category::AbilityMemberSpecialization(ability_member),
actual_type,
Expected::ForReason(reason, expected_type, symbol_loc_var.region),
);
problems.push(problem);
}
BadType(vars, problem) => {
subs.commit_snapshot(snapshot);
introduce(subs, rank, pools, &vars);
problems.push(TypeError::BadType(problem));
}
}
}
}
pub fn compact_lambda_sets_of_vars<P: Phase>(
subs: &mut Subs,
arena: &Bump,
pools: &mut Pools,
uls_of_var: UlsOfVar,
phase: &P,
derived_symbols: &GlobalDerivedSymbols,
) {
let mut seen = VecSet::default();
for (_, lambda_sets) in uls_of_var.drain() {
for lset in lambda_sets {
let root_lset = subs.get_root_key_without_compacting(lset);
if seen.contains(&root_lset) {
continue;
}
compact_lambda_set(subs, arena, pools, root_lset, phase, derived_symbols);
seen.insert(root_lset);
}
}
}
fn compact_lambda_set<P: Phase>(
subs: &mut Subs,
arena: &Bump,
pools: &mut Pools,
this_lambda_set: Variable,
phase: &P,
derived_symbols: &GlobalDerivedSymbols,
) {
let LambdaSet {
solved,
recursion_var,
unspecialized,
} = subs.get_lambda_set(this_lambda_set);
let target_rank = subs.get_rank(this_lambda_set);
if unspecialized.is_empty() {
return;
}
let mut new_unspecialized = vec![];
let mut specialized_to_unify_with = Vec::with_capacity(1);
for uls_index in unspecialized.into_iter() {
let uls @ Uls(var, member, region) = subs[uls_index];
use Content::*;
let opaque = match subs.get_content_without_compacting(var) {
FlexAbleVar(_, _) => {
/* not specialized yet */
new_unspecialized.push(uls);
continue;
}
Structure(_) | Alias(_, _, _, AliasKind::Structural) => {
// This is a structural type, find the name of the derived ability function it
// should use.
match Derived::encoding(subs, var) {
Ok(derived) => {
let specialization_symbol = match derived {
Derived::Immediate(symbol) => symbol,
Derived::Key(derive_key) => {
let mut derived_symbols = derived_symbols.lock().unwrap();
derived_symbols.get_or_insert(derive_key)
}
};
let specialization_symbol_slice = UnionLabels::insert_into_subs(
subs,
vec![(specialization_symbol, vec![])],
);
let lambda_set_for_derived = subs.fresh(Descriptor {
content: LambdaSet(subs::LambdaSet {
solved: specialization_symbol_slice,
recursion_var: OptVariable::NONE,
unspecialized: SubsSlice::default(),
}),
rank: target_rank,
mark: Mark::NONE,
copy: OptVariable::NONE,
});
specialized_to_unify_with.push(lambda_set_for_derived);
continue;
}
Err(DeriveError::UnboundVar) => {
// not specialized yet
new_unspecialized.push(uls);
continue;
}
Err(DeriveError::Underivable) => {
// we should have reported an error for this; drop the lambda set.
continue;
}
};
}
Alias(opaque, _, _, AliasKind::Opaque) => opaque,
Error => {
/* skip */
continue;
}
RigidVar(..)
| RigidAbleVar(..)
| FlexVar(..)
| RecursionVar { .. }
| LambdaSet(..)
| RangedNumber(_) => {
internal_error!("unexpected")
}
};
enum Spec {
Some(Variable),
Skip,
}
let opaque_home = opaque.module_id();
let specialized_lambda_set =
phase.with_module_abilities_store(opaque_home, |abilities_store| {
let opt_specialization = abilities_store.get_specialization(member, *opaque);
match (P::IS_LATE, opt_specialization) {
(false, None) => {
// doesn't specialize, we'll have reported an error for this
Spec::Skip
}
(true, None) => {
internal_error!(
"expected to know a specialization for {:?}#{:?}, but it wasn't found",
opaque,
member,
);
}
(_, Some(specialization)) => {
let specialized_lambda_set = *specialization
.specialization_lambda_sets
.get(&region)
.unwrap_or_else(|| {
internal_error!(
"lambda set region ({:?}, {}) not resolved",
member,
region
)
});
Spec::Some(specialized_lambda_set)
}
}
});
let specialized_lambda_set = match specialized_lambda_set {
Spec::Some(lset) => phase.copy_lambda_set_var_to_home_subs(lset, opaque_home, subs),
Spec::Skip => continue,
};
// Ensure the specialization lambda set is already compacted.
if subs.get_root_key(specialized_lambda_set) != subs.get_root_key(this_lambda_set) {
compact_lambda_set(
subs,
arena,
pools,
specialized_lambda_set,
phase,
derived_symbols,
);
}
// Ensure the specialization lambda set we'll unify with is not a generalized one, but one
// at the rank of the lambda set being compacted.
let copy_specialized_lambda_set =
deep_copy_var_in(subs, target_rank, pools, specialized_lambda_set, arena);
specialized_to_unify_with.push(copy_specialized_lambda_set);
}
let new_unspecialized_slice =
SubsSlice::extend_new(&mut subs.unspecialized_lambda_sets, new_unspecialized);
let partial_compacted_lambda_set = Content::LambdaSet(LambdaSet {
solved,
recursion_var,
unspecialized: new_unspecialized_slice,
});
subs.set_content(this_lambda_set, partial_compacted_lambda_set);
for other_specialized in specialized_to_unify_with.into_iter() {
let (vars, must_implement_ability, lambda_sets_to_specialize, _meta) =
unify(subs, this_lambda_set, other_specialized, Mode::EQ)
.expect_success("lambda sets don't unify");
introduce(subs, target_rank, pools, &vars);
debug_assert!(
must_implement_ability.is_empty(),
"didn't expect abilities instantiated in this position"
);
debug_assert!(
lambda_sets_to_specialize.is_empty(),
"didn't expect more lambda sets in this position"
);
}
}
#[derive(Debug)]
enum LocalDefVarsVec<T> {
Stack(arrayvec::ArrayVec<T, 32>),
Heap(Vec<T>),
}
impl<T> LocalDefVarsVec<T> {
#[inline(always)]
fn with_length(length: usize) -> Self {
if length <= 32 {
Self::Stack(Default::default())
} else {
Self::Heap(Default::default())
}
}
fn push(&mut self, element: T) {
match self {
LocalDefVarsVec::Stack(vec) => vec.push(element),
LocalDefVarsVec::Heap(vec) => vec.push(element),
}
}
fn iter(&self) -> impl Iterator<Item = &T> {
match self {
LocalDefVarsVec::Stack(vec) => vec.iter(),
LocalDefVarsVec::Heap(vec) => vec.iter(),
}
}
}
impl LocalDefVarsVec<(Symbol, Loc<Variable>)> {
fn from_def_types(
constraints: &Constraints,
rank: Rank,
pools: &mut Pools,
aliases: &mut Aliases,
subs: &mut Subs,
def_types_slice: roc_can::constraint::DefTypes,
) -> Self {
let types_slice = &constraints.types[def_types_slice.types.indices()];
let loc_symbols_slice = &constraints.loc_symbols[def_types_slice.loc_symbols.indices()];
let mut local_def_vars = Self::with_length(types_slice.len());
for (&(symbol, region), typ) in (loc_symbols_slice.iter()).zip(types_slice) {
let var = type_to_var(subs, rank, pools, aliases, typ);
local_def_vars.push((symbol, Loc { value: var, region }));
}
local_def_vars
}
}
use std::cell::RefCell;
use std::ops::ControlFlow;
std::thread_local! {
/// Scratchpad arena so we don't need to allocate a new one all the time
static SCRATCHPAD: RefCell<Option<bumpalo::Bump>> = RefCell::new(Some(bumpalo::Bump::with_capacity(4 * 1024)));
}
fn take_scratchpad() -> bumpalo::Bump {
SCRATCHPAD.with(|f| f.take().unwrap())
}
fn put_scratchpad(scratchpad: bumpalo::Bump) {
SCRATCHPAD.with(|f| {
f.replace(Some(scratchpad));
});
}
fn either_type_index_to_var(
constraints: &Constraints,
subs: &mut Subs,
rank: Rank,
pools: &mut Pools,
aliases: &mut Aliases,
either_type_index: roc_collections::soa::EitherIndex<Type, Variable>,
) -> Variable {
match either_type_index.split() {
Ok(type_index) => {
let typ = &constraints.types[type_index.index()];
type_to_var(subs, rank, pools, aliases, typ)
}
Err(var_index) => {
// we cheat, and store the variable directly in the index
unsafe { Variable::from_index(var_index.index() as _) }
}
}
}
pub(crate) fn type_to_var(
subs: &mut Subs,
rank: Rank,
pools: &mut Pools,
aliases: &mut Aliases,
typ: &Type,
) -> Variable {
if let Type::Variable(var) = typ {
*var
} else {
let mut arena = take_scratchpad();
let var = type_to_variable(subs, rank, pools, &arena, aliases, typ);
arena.reset();
put_scratchpad(arena);
var
}
}
enum RegisterVariable {
/// Based on the Type, we already know what variable this will be
Direct(Variable),
/// This Type needs more complicated Content. We reserve a Variable
/// for it, but put a placeholder Content in subs
Deferred,
}
impl RegisterVariable {
fn from_type(
subs: &mut Subs,
rank: Rank,
pools: &mut Pools,
arena: &'_ bumpalo::Bump,
typ: &Type,
) -> Self {
use RegisterVariable::*;
match typ {
Type::Variable(var) => Direct(*var),
EmptyRec => Direct(Variable::EMPTY_RECORD),
EmptyTagUnion => Direct(Variable::EMPTY_TAG_UNION),
Type::DelayedAlias(AliasCommon { symbol, .. }) => {
if let Some(reserved) = Variable::get_reserved(*symbol) {
if rank.is_none() {
// reserved variables are stored with rank NONE
return Direct(reserved);
} else {
// for any other rank, we need to copy; it takes care of adjusting the rank
let copied = deep_copy_var_in(subs, rank, pools, reserved, arena);
return Direct(copied);
}
}
Deferred
}
Type::Alias { symbol, .. } => {
if let Some(reserved) = Variable::get_reserved(*symbol) {
if rank.is_none() {
// reserved variables are stored with rank NONE
return Direct(reserved);
} else {
// for any other rank, we need to copy; it takes care of adjusting the rank
let copied = deep_copy_var_in(subs, rank, pools, reserved, arena);
return Direct(copied);
}
}
Deferred
}
_ => Deferred,
}
}
#[inline(always)]
fn with_stack<'a>(
subs: &mut Subs,
rank: Rank,
pools: &mut Pools,
arena: &'_ bumpalo::Bump,
typ: &'a Type,
stack: &mut bumpalo::collections::Vec<'_, TypeToVar<'a>>,
) -> Variable {
match Self::from_type(subs, rank, pools, arena, typ) {
Self::Direct(var) => var,
Self::Deferred => {
let var = subs.fresh_unnamed_flex_var();
stack.push(TypeToVar::Defer(typ, var));
var
}
}
}
}
#[derive(Debug)]
enum TypeToVar<'a> {
Defer(&'a Type, Variable),
}
fn type_to_variable<'a>(
subs: &mut Subs,
rank: Rank,
pools: &mut Pools,
arena: &'a bumpalo::Bump,
aliases: &mut Aliases,
typ: &Type,
) -> Variable {
use bumpalo::collections::Vec;
let mut stack = Vec::with_capacity_in(8, arena);
macro_rules! helper {
($typ:expr) => {{
match RegisterVariable::from_type(subs, rank, pools, arena, $typ) {
RegisterVariable::Direct(var) => var,
RegisterVariable::Deferred => {
let var = subs.fresh_unnamed_flex_var();
stack.push(TypeToVar::Defer($typ, var));
var
}
}
}};
}
let result = helper!(typ);
while let Some(TypeToVar::Defer(typ, destination)) = stack.pop() {
match typ {
Variable(_) | EmptyRec | EmptyTagUnion => {
unreachable!("This variant should never be deferred!")
}
RangedNumber(range) => {
let content = Content::RangedNumber(*range);
register_with_known_var(subs, destination, rank, pools, content)
}
Apply(symbol, arguments, _) => {
let new_arguments = VariableSubsSlice::reserve_into_subs(subs, arguments.len());
for (target_index, var_index) in (new_arguments.indices()).zip(arguments) {
let var = helper!(var_index);
subs.variables[target_index] = var;
}
let flat_type = FlatType::Apply(*symbol, new_arguments);
let content = Content::Structure(flat_type);
register_with_known_var(subs, destination, rank, pools, content)
}
ClosureTag { name, captures } => {
let union_lambdas =
create_union_lambda(subs, rank, pools, arena, *name, captures, &mut stack);
let content = Content::LambdaSet(subs::LambdaSet {
solved: union_lambdas,
// We may figure out the lambda set is recursive during solving, but it never
// is to begin with.
recursion_var: OptVariable::NONE,
unspecialized: SubsSlice::default(),
});
register_with_known_var(subs, destination, rank, pools, content)
}
UnspecializedLambdaSet(uls) => {
let unspecialized = SubsSlice::extend_new(
&mut subs.unspecialized_lambda_sets,
std::iter::once(*uls),
);
let content = Content::LambdaSet(subs::LambdaSet {
unspecialized,
solved: UnionLabels::default(),
recursion_var: OptVariable::NONE,
});
register_with_known_var(subs, destination, rank, pools, content)
}
// This case is important for the rank of boolean variables
Function(arguments, closure_type, ret_type) => {
let new_arguments = VariableSubsSlice::reserve_into_subs(subs, arguments.len());
for (target_index, var_index) in (new_arguments.indices()).zip(arguments) {
let var = helper!(var_index);
subs.variables[target_index] = var;
}
let ret_var = helper!(ret_type);
let closure_var = helper!(closure_type);
let content =
Content::Structure(FlatType::Func(new_arguments, closure_var, ret_var));
register_with_known_var(subs, destination, rank, pools, content)
}
Record(fields, ext) => {
// An empty fields is inefficient (but would be correct)
// If hit, try to turn the value into an EmptyRecord in canonicalization
debug_assert!(!fields.is_empty() || !ext.is_closed());
let mut field_vars = Vec::with_capacity_in(fields.len(), arena);
for (field, field_type) in fields {
let field_var = {
use roc_types::types::RecordField::*;
match &field_type {
Optional(t) => Optional(helper!(t)),
Required(t) => Required(helper!(t)),
Demanded(t) => Demanded(helper!(t)),
}
};
field_vars.push((field.clone(), field_var));
}
let temp_ext_var = match ext {
TypeExtension::Open(ext) => helper!(ext),
TypeExtension::Closed => Variable::EMPTY_RECORD,
};
let (it, new_ext_var) =
gather_fields_unsorted_iter(subs, RecordFields::empty(), temp_ext_var)
.expect("Something ended up weird in this record type");
let it = it
.into_iter()
.map(|(field, field_type)| (field.clone(), field_type));
field_vars.extend(it);
insertion_sort_by(&mut field_vars, RecordFields::compare);
let record_fields = RecordFields::insert_into_subs(subs, field_vars);
let content = Content::Structure(FlatType::Record(record_fields, new_ext_var));
register_with_known_var(subs, destination, rank, pools, content)
}
TagUnion(tags, ext) => {
// An empty tags is inefficient (but would be correct)
// If hit, try to turn the value into an EmptyTagUnion in canonicalization
debug_assert!(!tags.is_empty() || !ext.is_closed());
let (union_tags, ext) =
type_to_union_tags(subs, rank, pools, arena, tags, ext, &mut stack);
let content = Content::Structure(FlatType::TagUnion(union_tags, ext));
register_with_known_var(subs, destination, rank, pools, content)
}
FunctionOrTagUnion(tag_name, symbol, ext) => {
let temp_ext_var = match ext {
TypeExtension::Open(ext) => helper!(ext),
TypeExtension::Closed => Variable::EMPTY_TAG_UNION,
};
let (it, ext) = roc_types::types::gather_tags_unsorted_iter(
subs,
UnionTags::default(),
temp_ext_var,
);
for _ in it {
unreachable!("we assert that the ext var is empty; otherwise we'd already know it was a tag union!");
}
let slice = SubsIndex::new(subs.tag_names.len() as u32);
subs.tag_names.push(tag_name.clone());
let content = Content::Structure(FlatType::FunctionOrTagUnion(slice, *symbol, ext));
register_with_known_var(subs, destination, rank, pools, content)
}
RecursiveTagUnion(rec_var, tags, ext) => {
// An empty tags is inefficient (but would be correct)
// If hit, try to turn the value into an EmptyTagUnion in canonicalization
debug_assert!(!tags.is_empty() || !ext.is_closed());
let (union_tags, ext) =
type_to_union_tags(subs, rank, pools, arena, tags, ext, &mut stack);
let content =
Content::Structure(FlatType::RecursiveTagUnion(*rec_var, union_tags, ext));
let tag_union_var = destination;
register_with_known_var(subs, tag_union_var, rank, pools, content);
register_with_known_var(
subs,
*rec_var,
rank,
pools,
Content::RecursionVar {
opt_name: None,
structure: tag_union_var,
},
);
tag_union_var
}
Type::DelayedAlias(AliasCommon {
symbol,
type_arguments,
lambda_set_variables,
}) => {
let alias_variables = {
let length = type_arguments.len() + lambda_set_variables.len();
let new_variables = VariableSubsSlice::reserve_into_subs(subs, length);
for (target_index, arg_type) in (new_variables.indices()).zip(type_arguments) {
let copy_var = helper!(arg_type);
subs.variables[target_index] = copy_var;
}
let it = (new_variables.indices().skip(type_arguments.len()))
.zip(lambda_set_variables);
for (target_index, ls) in it {
let copy_var = helper!(&ls.0);
subs.variables[target_index] = copy_var;
}
AliasVariables {
variables_start: new_variables.start,
type_variables_len: type_arguments.len() as _,
all_variables_len: length as _,
}
};
let (alias_variable, kind) = aliases.instantiate_real_var(
subs,
rank,
pools,
arena,
*symbol,
alias_variables,
);
let content = Content::Alias(*symbol, alias_variables, alias_variable, kind);
register_with_known_var(subs, destination, rank, pools, content)
}
Type::Alias {
symbol,
type_arguments,
actual,
lambda_set_variables,
kind,
} => {
debug_assert!(Variable::get_reserved(*symbol).is_none());
let alias_variables = {
let length = type_arguments.len() + lambda_set_variables.len();
let new_variables = VariableSubsSlice::reserve_into_subs(subs, length);
for (target_index, OptAbleType { typ, opt_ability }) in
(new_variables.indices()).zip(type_arguments)
{
let copy_var = match opt_ability {
None => helper!(typ),
Some(ability) => {
// If this type argument is marked as being bound to an ability, we must
// now correctly instantiate it as so.
match RegisterVariable::from_type(subs, rank, pools, arena, typ) {
RegisterVariable::Direct(var) => {
use Content::*;
match *subs.get_content_without_compacting(var) {
FlexVar(opt_name) => subs
.set_content(var, FlexAbleVar(opt_name, *ability)),
RigidVar(..) => internal_error!("Rigid var in type arg for {:?} - this is a bug in the solver, or our understanding", actual),
RigidAbleVar(..) | FlexAbleVar(..) => internal_error!("Able var in type arg for {:?} - this is a bug in the solver, or our understanding", actual),
_ => {
// TODO associate the type to the bound ability, and check
// that it correctly implements the ability.
}
}
var
}
RegisterVariable::Deferred => {
// TODO associate the type to the bound ability, and check
// that it correctly implements the ability.
let var = subs.fresh_unnamed_flex_var();
stack.push(TypeToVar::Defer(typ, var));
var
}
}
}
};
subs.variables[target_index] = copy_var;
}
let it = (new_variables.indices().skip(type_arguments.len()))
.zip(lambda_set_variables);
for (target_index, ls) in it {
let copy_var = helper!(&ls.0);
subs.variables[target_index] = copy_var;
}
AliasVariables {
variables_start: new_variables.start,
type_variables_len: type_arguments.len() as _,
all_variables_len: length as _,
}
};
let alias_variable = if let Symbol::RESULT_RESULT = *symbol {
roc_result_to_var(subs, rank, pools, arena, actual, &mut stack)
} else {
helper!(actual)
};
let content = Content::Alias(*symbol, alias_variables, alias_variable, *kind);
register_with_known_var(subs, destination, rank, pools, content)
}
HostExposedAlias {
name: symbol,
type_arguments,
actual: alias_type,
actual_var,
lambda_set_variables,
..
} => {
let alias_variables = {
let length = type_arguments.len() + lambda_set_variables.len();
let new_variables = VariableSubsSlice::reserve_into_subs(subs, length);
for (target_index, arg_type) in (new_variables.indices()).zip(type_arguments) {
let copy_var = helper!(arg_type);
subs.variables[target_index] = copy_var;
}
AliasVariables {
variables_start: new_variables.start,
type_variables_len: type_arguments.len() as _,
all_variables_len: length as _,
}
};
// cannot use helper! here because this variable may be involved in unification below
let alias_variable =
type_to_variable(subs, rank, pools, arena, aliases, alias_type);
// TODO(opaques): I think host-exposed aliases should always be structural
// (when does it make sense to give a host an opaque type?)
let content = Content::Alias(
*symbol,
alias_variables,
alias_variable,
AliasKind::Structural,
);
// let result = register(subs, rank, pools, content);
let result = register_with_known_var(subs, destination, rank, pools, content);
// We only want to unify the actual_var with the alias once
// if it's already redirected (and therefore, redundant)
// don't do it again
if !subs.redundant(*actual_var) {
let descriptor = subs.get(result);
subs.union(result, *actual_var, descriptor);
}
result
}
Erroneous(problem) => {
let problem_index = SubsIndex::push_new(&mut subs.problems, problem.clone());
let content = Content::Structure(FlatType::Erroneous(problem_index));
register_with_known_var(subs, destination, rank, pools, content)
}
};
}
result
}
#[inline(always)]
fn roc_result_to_var<'a>(
subs: &mut Subs,
rank: Rank,
pools: &mut Pools,
arena: &'_ bumpalo::Bump,
result_type: &'a Type,
stack: &mut bumpalo::collections::Vec<'_, TypeToVar<'a>>,
) -> Variable {
match result_type {
Type::TagUnion(tags, ext) => {
debug_assert!(ext.is_closed());
debug_assert!(tags.len() == 2);
if let [(err, err_args), (ok, ok_args)] = &tags[..] {
debug_assert_eq!(err, &subs.tag_names[0]);
debug_assert_eq!(ok, &subs.tag_names[1]);
if let ([err_type], [ok_type]) = (err_args.as_slice(), ok_args.as_slice()) {
let err_var =
RegisterVariable::with_stack(subs, rank, pools, arena, err_type, stack);
let ok_var =
RegisterVariable::with_stack(subs, rank, pools, arena, ok_type, stack);
let start = subs.variables.len() as u32;
let err_slice = SubsSlice::new(start, 1);
let ok_slice = SubsSlice::new(start + 1, 1);
subs.variables.push(err_var);
subs.variables.push(ok_var);
let variables = SubsSlice::new(subs.variable_slices.len() as _, 2);
subs.variable_slices.push(err_slice);
subs.variable_slices.push(ok_slice);
let union_tags = UnionTags::from_slices(Subs::RESULT_TAG_NAMES, variables);
let ext = Variable::EMPTY_TAG_UNION;
let content = Content::Structure(FlatType::TagUnion(union_tags, ext));
return register(subs, rank, pools, content);
}
}
unreachable!("invalid arguments to Result.Result; canonicalization should catch this!")
}
_ => unreachable!("not a valid type inside a Result.Result alias"),
}
}
fn insertion_sort_by<T, F>(arr: &mut [T], mut compare: F)
where
F: FnMut(&T, &T) -> std::cmp::Ordering,
{
for i in 1..arr.len() {
let val = &arr[i];
let mut j = i;
let pos = arr[..i]
.binary_search_by(|x| compare(x, val))
.unwrap_or_else(|pos| pos);
// Swap all elements until specific position.
while j > pos {
arr.swap(j - 1, j);
j -= 1;
}
}
}
fn sorted_no_duplicates<T>(slice: &[(TagName, T)]) -> bool {
match slice.split_first() {
None => true,
Some(((first, _), rest)) => {
let mut current = first;
for (next, _) in rest {
if current >= next {
return false;
} else {
current = next;
}
}
true
}
}
}
fn sort_and_deduplicate<T>(tag_vars: &mut bumpalo::collections::Vec<(TagName, T)>) {
insertion_sort_by(tag_vars, |(a, _), (b, _)| a.cmp(b));
// deduplicate, keeping the right-most occurrence of a tag name
let mut i = 0;
while i < tag_vars.len() {
match (tag_vars.get(i), tag_vars.get(i + 1)) {
(Some((t1, _)), Some((t2, _))) => {
if t1 == t2 {
tag_vars.remove(i);
} else {
i += 1;
}
}
_ => break,
}
}
}
/// Find whether the current run of tag names is in the subs.tag_names array already. If so,
/// we take a SubsSlice to the existing tag names, so we don't have to add/clone those tag names
/// and keep subs memory consumption low
fn find_tag_name_run<T>(slice: &[(TagName, T)], subs: &mut Subs) -> Option<SubsSlice<TagName>> {
use std::cmp::Ordering;
let tag_name = &slice.get(0)?.0;
let mut result = None;
// the `SubsSlice<TagName>` that inserting `slice` into subs would give
let bigger_slice = SubsSlice::new(subs.tag_names.len() as _, slice.len() as _);
match subs.tag_name_cache.get_mut(tag_name) {
Some(occupied) => {
let subs_slice = *occupied;
let prefix_slice = SubsSlice::new(subs_slice.start, slice.len() as _);
if slice.len() == 1 {
return Some(prefix_slice);
}
match slice.len().cmp(&subs_slice.len()) {
Ordering::Less => {
// we might have a prefix
let tag_names = &subs.tag_names[subs_slice.start as usize..];
for (from_subs, (from_slice, _)) in tag_names.iter().zip(slice.iter()) {
if from_subs != from_slice {
return None;
}
}
result = Some(prefix_slice);
}
Ordering::Equal => {
let tag_names = &subs.tag_names[subs_slice.indices()];
for (from_subs, (from_slice, _)) in tag_names.iter().zip(slice.iter()) {
if from_subs != from_slice {
return None;
}
}
result = Some(subs_slice);
}
Ordering::Greater => {
// switch to the bigger slice that is not inserted yet, but will be soon
*occupied = bigger_slice;
}
}
}
None => {
subs.tag_name_cache.push(tag_name, bigger_slice);
}
}
result
}
#[inline(always)]
fn register_tag_arguments<'a>(
subs: &mut Subs,
rank: Rank,
pools: &mut Pools,
arena: &'_ bumpalo::Bump,
stack: &mut bumpalo::collections::Vec<'_, TypeToVar<'a>>,
arguments: &'a [Type],
) -> VariableSubsSlice {
if arguments.is_empty() {
VariableSubsSlice::default()
} else {
let new_variables = VariableSubsSlice::reserve_into_subs(subs, arguments.len());
let it = new_variables.indices().zip(arguments);
for (target_index, argument) in it {
let var = RegisterVariable::with_stack(subs, rank, pools, arena, argument, stack);
subs.variables[target_index] = var;
}
new_variables
}
}
/// Assumes that the tags are sorted and there are no duplicates!
fn insert_tags_fast_path<'a>(
subs: &mut Subs,
rank: Rank,
pools: &mut Pools,
arena: &'_ bumpalo::Bump,
tags: &'a [(TagName, Vec<Type>)],
stack: &mut bumpalo::collections::Vec<'_, TypeToVar<'a>>,
) -> UnionTags {
if let [(TagName(tag_name), arguments)] = tags {
let variable_slice =
register_tag_arguments(subs, rank, pools, arena, stack, arguments.as_slice());
let new_variable_slices =
SubsSlice::extend_new(&mut subs.variable_slices, [variable_slice]);
macro_rules! subs_tag_name {
($tag_name_slice:expr) => {
return UnionTags::from_slices($tag_name_slice, new_variable_slices)
};
}
match tag_name.as_str() {
"Ok" => subs_tag_name!(Subs::TAG_NAME_OK.as_slice()),
"Err" => subs_tag_name!(Subs::TAG_NAME_ERR.as_slice()),
"InvalidNumStr" => subs_tag_name!(Subs::TAG_NAME_INVALID_NUM_STR.as_slice()),
"BadUtf8" => subs_tag_name!(Subs::TAG_NAME_BAD_UTF_8.as_slice()),
"OutOfBounds" => subs_tag_name!(Subs::TAG_NAME_OUT_OF_BOUNDS.as_slice()),
_other => {}
}
}
let new_variable_slices = SubsSlice::reserve_variable_slices(subs, tags.len());
match find_tag_name_run(tags, subs) {
Some(new_tag_names) => {
let it = (new_variable_slices.indices()).zip(tags);
for (variable_slice_index, (_, arguments)) in it {
subs.variable_slices[variable_slice_index] =
register_tag_arguments(subs, rank, pools, arena, stack, arguments.as_slice());
}
UnionTags::from_slices(new_tag_names, new_variable_slices)
}
None => {
let new_tag_names = SubsSlice::reserve_tag_names(subs, tags.len());
let it = (new_variable_slices.indices())
.zip(new_tag_names.indices())
.zip(tags);
for ((variable_slice_index, tag_name_index), (tag_name, arguments)) in it {
subs.variable_slices[variable_slice_index] =
register_tag_arguments(subs, rank, pools, arena, stack, arguments.as_slice());
subs.tag_names[tag_name_index] = tag_name.clone();
}
UnionTags::from_slices(new_tag_names, new_variable_slices)
}
}
}
fn insert_tags_slow_path<'a>(
subs: &mut Subs,
rank: Rank,
pools: &mut Pools,
arena: &'_ bumpalo::Bump,
tags: &'a [(TagName, Vec<Type>)],
mut tag_vars: bumpalo::collections::Vec<(TagName, VariableSubsSlice)>,
stack: &mut bumpalo::collections::Vec<'_, TypeToVar<'a>>,
) -> UnionTags {
for (tag, tag_argument_types) in tags {
let tag_argument_types: &[Type] = tag_argument_types.as_slice();
let new_slice = VariableSubsSlice::reserve_into_subs(subs, tag_argument_types.len());
for (i, arg) in (new_slice.indices()).zip(tag_argument_types) {
let var = RegisterVariable::with_stack(subs, rank, pools, arena, arg, stack);
subs.variables[i] = var;
}
tag_vars.push((tag.clone(), new_slice));
}
sort_and_deduplicate(&mut tag_vars);
UnionTags::insert_slices_into_subs(subs, tag_vars)
}
fn type_to_union_tags<'a>(
subs: &mut Subs,
rank: Rank,
pools: &mut Pools,
arena: &'_ bumpalo::Bump,
tags: &'a [(TagName, Vec<Type>)],
ext: &'a TypeExtension,
stack: &mut bumpalo::collections::Vec<'_, TypeToVar<'a>>,
) -> (UnionTags, Variable) {
use bumpalo::collections::Vec;
let sorted = tags.len() == 1 || sorted_no_duplicates(tags);
match ext {
TypeExtension::Closed => {
let ext = Variable::EMPTY_TAG_UNION;
let union_tags = if sorted {
insert_tags_fast_path(subs, rank, pools, arena, tags, stack)
} else {
let tag_vars = Vec::with_capacity_in(tags.len(), arena);
insert_tags_slow_path(subs, rank, pools, arena, tags, tag_vars, stack)
};
(union_tags, ext)
}
TypeExtension::Open(ext) => {
let mut tag_vars = Vec::with_capacity_in(tags.len(), arena);
let temp_ext_var = RegisterVariable::with_stack(subs, rank, pools, arena, ext, stack);
let (it, ext) = roc_types::types::gather_tags_unsorted_iter(
subs,
UnionTags::default(),
temp_ext_var,
);
tag_vars.extend(it.map(|(n, v)| (n.clone(), v)));
let union_tags = if tag_vars.is_empty() && sorted {
insert_tags_fast_path(subs, rank, pools, arena, tags, stack)
} else {
insert_tags_slow_path(subs, rank, pools, arena, tags, tag_vars, stack)
};
(union_tags, ext)
}
}
}
fn create_union_lambda<'a>(
subs: &mut Subs,
rank: Rank,
pools: &mut Pools,
arena: &'_ bumpalo::Bump,
closure: Symbol,
capture_types: &'a [Type],
stack: &mut bumpalo::collections::Vec<'_, TypeToVar<'a>>,
) -> UnionLambdas {
let variable_slice = register_tag_arguments(subs, rank, pools, arena, stack, capture_types);
let new_variable_slices = SubsSlice::extend_new(&mut subs.variable_slices, [variable_slice]);
let lambda_name_slice = SubsSlice::extend_new(&mut subs.closure_names, [closure]);
UnionLambdas::from_slices(lambda_name_slice, new_variable_slices)
}
fn check_for_infinite_type(
subs: &mut Subs,
problems: &mut Vec<TypeError>,
symbol: Symbol,
loc_var: Loc<Variable>,
) {
let var = loc_var.value;
while let Err((recursive, _chain)) = subs.occurs(var) {
// try to make a union recursive, see if that helps
match subs.get_content_without_compacting(recursive) {
&Content::Structure(FlatType::TagUnion(tags, ext_var)) => {
subs.mark_tag_union_recursive(recursive, tags, ext_var);
}
&Content::LambdaSet(subs::LambdaSet {
solved,
recursion_var: _,
unspecialized,
}) => {
subs.mark_lambda_set_recursive(recursive, solved, unspecialized);
}
_other => circular_error(subs, problems, symbol, &loc_var),
}
}
}
fn circular_error(
subs: &mut Subs,
problems: &mut Vec<TypeError>,
symbol: Symbol,
loc_var: &Loc<Variable>,
) {
let var = loc_var.value;
let (error_type, _) = subs.var_to_error_type(var);
let problem = TypeError::CircularType(loc_var.region, symbol, error_type);
subs.set_content(var, Content::Error);
problems.push(problem);
}
fn generalize(
subs: &mut Subs,
young_mark: Mark,
visit_mark: Mark,
young_rank: Rank,
pools: &mut Pools,
) {
let young_vars = std::mem::take(pools.get_mut(young_rank));
let rank_table = pool_to_rank_table(subs, young_mark, young_rank, young_vars);
// Get the ranks right for each entry.
// Start at low ranks so we only have to pass over the information once.
for (index, table) in rank_table.iter().enumerate() {
for &var in table.iter() {
adjust_rank(subs, young_mark, visit_mark, Rank::from(index), var);
}
}
let (mut last_pool, all_but_last_pool) = rank_table.split_last();
// For variables that have rank lowerer than young_rank, register them in
// the appropriate old pool if they are not redundant.
for vars in all_but_last_pool {
for var in vars {
if !subs.redundant(var) {
let rank = subs.get_rank(var);
pools.get_mut(rank).push(var);
}
}
}
// For variables with rank young_rank, if rank < young_rank: register in old pool,
// otherwise generalize
for var in last_pool.drain(..) {
if !subs.redundant(var) {
let desc_rank = subs.get_rank(var);
if desc_rank < young_rank {
pools.get_mut(desc_rank).push(var);
} else {
subs.set_rank(var, Rank::NONE);
}
}
}
// re-use the last_vector (which likely has a good capacity for future runs
*pools.get_mut(young_rank) = last_pool;
}
/// Sort the variables into buckets by rank.
#[inline]
fn pool_to_rank_table(
subs: &mut Subs,
young_mark: Mark,
young_rank: Rank,
mut young_vars: Vec<Variable>,
) -> Pools {
let mut pools = Pools::new(young_rank.into_usize() + 1);
// the vast majority of young variables have young_rank
let mut i = 0;
while i < young_vars.len() {
let var = subs.get_root_key(young_vars[i]);
subs.set_mark_unchecked(var, young_mark);
let rank = subs.get_rank_unchecked(var);
if rank != young_rank {
debug_assert!(rank.into_usize() < young_rank.into_usize() + 1);
pools.get_mut(rank).push(var);
// swap an element in; don't increment i
young_vars.swap_remove(i);
} else {
i += 1;
}
}
std::mem::swap(pools.get_mut(young_rank), &mut young_vars);
pools
}
/// Adjust variable ranks such that ranks never increase as you move deeper.
/// This way the outermost rank is representative of the entire structure.
fn adjust_rank(
subs: &mut Subs,
young_mark: Mark,
visit_mark: Mark,
group_rank: Rank,
var: Variable,
) -> Rank {
let var = subs.get_root_key(var);
let desc_rank = subs.get_rank_unchecked(var);
let desc_mark = subs.get_mark_unchecked(var);
if desc_mark == young_mark {
let content = {
let ptr = subs.get_content_unchecked(var) as *const _;
unsafe { &*ptr }
};
// Mark the variable as visited before adjusting content, as it may be cyclic.
subs.set_mark_unchecked(var, visit_mark);
let max_rank = adjust_rank_content(subs, young_mark, visit_mark, group_rank, content);
subs.set_rank_unchecked(var, max_rank);
subs.set_mark_unchecked(var, visit_mark);
max_rank
} else if desc_mark == visit_mark {
// we have already visited this variable
// (probably two variables had the same root)
desc_rank
} else {
let min_rank = group_rank.min(desc_rank);
// TODO from elm-compiler: how can min_rank ever be group_rank?
subs.set_rank_unchecked(var, min_rank);
subs.set_mark_unchecked(var, visit_mark);
min_rank
}
}
fn adjust_rank_content(
subs: &mut Subs,
young_mark: Mark,
visit_mark: Mark,
group_rank: Rank,
content: &Content,
) -> Rank {
use roc_types::subs::Content::*;
use roc_types::subs::FlatType::*;
match content {
FlexVar(_) | RigidVar(_) | FlexAbleVar(_, _) | RigidAbleVar(_, _) | Error => group_rank,
RecursionVar { .. } => group_rank,
Structure(flat_type) => {
match flat_type {
Apply(_, args) => {
let mut rank = Rank::toplevel();
for var_index in args.into_iter() {
let var = subs[var_index];
rank = rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
}
rank
}
Func(arg_vars, closure_var, ret_var) => {
let mut rank = adjust_rank(subs, young_mark, visit_mark, group_rank, *ret_var);
// TODO investigate further.
//
// My theory is that because the closure_var contains variables already
// contained in the signature only, it does not need to be part of the rank
// calculuation
if true {
rank = rank.max(adjust_rank(
subs,
young_mark,
visit_mark,
group_rank,
*closure_var,
));
}
for index in arg_vars.into_iter() {
let var = subs[index];
rank = rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
}
rank
}
EmptyRecord => {
// from elm-compiler: THEORY: an empty record never needs to get generalized
Rank::toplevel()
}
EmptyTagUnion => Rank::toplevel(),
Record(fields, ext_var) => {
let mut rank = adjust_rank(subs, young_mark, visit_mark, group_rank, *ext_var);
for index in fields.iter_variables() {
let var = subs[index];
rank = rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
}
rank
}
TagUnion(tags, ext_var) => {
let mut rank = adjust_rank(subs, young_mark, visit_mark, group_rank, *ext_var);
// For performance reasons, we only keep one representation of empty tag unions
// in subs. That representation exists at rank 0, which we don't always want to
// reflect the whole tag union as, because doing so may over-generalize free
// type variables.
// Normally this is not a problem because of the loop below that maximizes the
// rank from nested types in the union. But suppose we have the simple tag
// union
// [Z]{}
// there are no nested types in the tags, and the empty tag union is at rank 0,
// so we promote the tag union to rank 0. Now if we introduce the presence
// constraint
// [Z]{} += [S a]
// we'll wind up with [Z, S a]{}, but it will be at rank 0, and "a" will get
// over-generalized. Really, the empty tag union should be introduced at
// whatever current group rank we're at, and so that's how we encode it here.
if *ext_var == Variable::EMPTY_TAG_UNION && rank.is_none() {
rank = group_rank;
}
for (_, index) in tags.iter_all() {
let slice = subs[index];
for var_index in slice {
let var = subs[var_index];
rank = rank
.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
}
}
rank
}
FunctionOrTagUnion(_, _, ext_var) => {
adjust_rank(subs, young_mark, visit_mark, group_rank, *ext_var)
}
RecursiveTagUnion(rec_var, tags, ext_var) => {
let mut rank = adjust_rank(subs, young_mark, visit_mark, group_rank, *ext_var);
for (_, index) in tags.iter_all() {
let slice = subs[index];
for var_index in slice {
let var = subs[var_index];
rank = rank
.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
}
}
// The recursion var may have a higher rank than the tag union itself, if it is
// erroneous and escapes into a region where it is let-generalized before it is
// constrained back down to the rank it originated from.
//
// For example, see the `recursion_var_specialization_error` reporting test -
// there, we have
//
// Job a : [Job (List (Job a)) a]
//
// job : Job Str
//
// when job is
// Job lst _ -> lst == ""
//
// In this case, `lst` is generalized and has a higher rank for the type
// `(List (Job a)) as a` - notice that only the recursion var `a` is active
// here, not the entire recursive tag union. In the body of this branch, `lst`
// becomes a type error, but the nested recursion var `a` is left untouched,
// because it is nested under the of `lst`, not the surface type that becomes
// an error.
//
// Had this not become a type error, `lst` would then be constrained against
// `job`, and its rank would get pulled back down. So, this can only happen in
// the presence of type errors.
//
// In all other cases, the recursion var has the same rank as the tag union itself
// all types it uses are also in the tags already, so it cannot influence the
// rank.
if cfg!(debug_assertions)
&& !matches!(
subs.get_content_without_compacting(*rec_var),
Content::Error | Content::FlexVar(..)
)
{
let rec_var_rank =
adjust_rank(subs, young_mark, visit_mark, group_rank, *rec_var);
debug_assert!(
rank >= rec_var_rank,
"rank was {:?} but recursion var <{:?}>{:?} has higher rank {:?}",
rank,
rec_var,
subs.get_content_without_compacting(*rec_var),
rec_var_rank
);
}
rank
}
Erroneous(_) => group_rank,
}
}
Alias(_, args, real_var, _) => {
let mut rank = Rank::toplevel();
for var_index in args.all_variables() {
let var = subs[var_index];
rank = rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
}
// from elm-compiler: THEORY: anything in the real_var would be Rank::toplevel()
// this theory is not true in Roc! aliases of function types capture the closure var
rank = rank.max(adjust_rank(
subs, young_mark, visit_mark, group_rank, *real_var,
));
rank
}
LambdaSet(subs::LambdaSet {
solved,
recursion_var,
unspecialized,
}) => {
let mut rank = group_rank;
for (_, index) in solved.iter_all() {
let slice = subs[index];
for var_index in slice {
let var = subs[var_index];
rank = rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
}
}
for uls_index in *unspecialized {
let Uls(var, _, _) = subs[uls_index];
rank = rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
}
if let (true, Some(rec_var)) = (cfg!(debug_assertions), recursion_var.into_variable()) {
// THEORY: unlike the situation for recursion vars under recursive tag unions,
// recursive vars inside lambda sets can't escape into higher let-generalized regions
// because lambda sets aren't user-facing.
//
// So the recursion var should be fully accounted by everything else in the lambda set
// (since it appears in the lambda set), and if the rank is higher, it's either a
// bug or our theory is wrong and indeed they can escape into higher regions.
let rec_var_rank = adjust_rank(subs, young_mark, visit_mark, group_rank, rec_var);
debug_assert!(
rank >= rec_var_rank,
"rank was {:?} but recursion var <{:?}>{:?} has higher rank {:?}",
rank,
rec_var,
subs.get_content_without_compacting(rec_var),
rec_var_rank
);
}
rank
}
RangedNumber(_) => group_rank,
}
}
/// Introduce some variables to Pools at the given rank.
/// Also, set each of their ranks in Subs to be the given rank.
fn introduce(subs: &mut Subs, rank: Rank, pools: &mut Pools, vars: &[Variable]) {
let pool: &mut Vec<Variable> = pools.get_mut(rank);
for &var in vars.iter() {
subs.set_rank(var, rank);
}
pool.extend(vars);
}
fn deep_copy_var_in(
subs: &mut Subs,
rank: Rank,
pools: &mut Pools,
var: Variable,
arena: &Bump,
) -> Variable {
let mut visited = bumpalo::collections::Vec::with_capacity_in(256, arena);
let pool = pools.get_mut(rank);
let var = subs.get_root_key(var);
match deep_copy_var_decision(subs, rank, var) {
ControlFlow::Break(copy) => copy,
ControlFlow::Continue(copy) => {
deep_copy_var_help(subs, rank, pool, &mut visited, var, copy);
// we have tracked all visited variables, and can now traverse them
// in one go (without looking at the UnificationTable) and clear the copy field
for var in visited {
subs.set_copy_unchecked(var, OptVariable::NONE);
}
copy
}
}
}
#[inline]
fn has_trivial_copy(subs: &Subs, root_var: Variable) -> Option<Variable> {
let existing_copy = subs.get_copy_unchecked(root_var);
if let Some(copy) = existing_copy.into_variable() {
Some(copy)
} else if subs.get_rank_unchecked(root_var) != Rank::NONE {
Some(root_var)
} else {
None
}
}
#[inline]
fn deep_copy_var_decision(
subs: &mut Subs,
max_rank: Rank,
var: Variable,
) -> ControlFlow<Variable, Variable> {
let var = subs.get_root_key(var);
if let Some(copy) = has_trivial_copy(subs, var) {
ControlFlow::Break(copy)
} else {
let copy_descriptor = Descriptor {
content: Content::Structure(FlatType::EmptyTagUnion),
rank: max_rank,
mark: Mark::NONE,
copy: OptVariable::NONE,
};
let copy = subs.fresh(copy_descriptor);
// Link the original variable to the new variable. This lets us
// avoid making multiple copies of the variable we are instantiating.
//
// Need to do this before recursively copying to avoid looping.
subs.set_mark_unchecked(var, Mark::NONE);
subs.set_copy_unchecked(var, copy.into());
ControlFlow::Continue(copy)
}
}
fn deep_copy_var_help(
subs: &mut Subs,
max_rank: Rank,
pool: &mut Vec<Variable>,
visited: &mut bumpalo::collections::Vec<'_, Variable>,
initial_source: Variable,
initial_copy: Variable,
) -> Variable {
use roc_types::subs::Content::*;
use roc_types::subs::FlatType::*;
struct DeepCopyVarWork {
source: Variable,
copy: Variable,
}
let initial = DeepCopyVarWork {
source: initial_source,
copy: initial_copy,
};
let mut stack = vec![initial];
macro_rules! work {
($variable:expr) => {{
let var = subs.get_root_key($variable);
match deep_copy_var_decision(subs, max_rank, var) {
ControlFlow::Break(copy) => copy,
ControlFlow::Continue(copy) => {
stack.push(DeepCopyVarWork { source: var, copy });
copy
}
}
}};
}
macro_rules! copy_sequence {
($length:expr, $variables:expr) => {{
let new_variables = SubsSlice::reserve_into_subs(subs, $length as _);
for (target_index, var_index) in (new_variables.indices()).zip($variables) {
let var = subs[var_index];
let copy_var = work!(var);
subs.variables[target_index] = copy_var;
}
new_variables
}};
}
macro_rules! copy_union {
($tags:expr) => {{
let new_variable_slices = SubsSlice::reserve_variable_slices(subs, $tags.len());
let it = (new_variable_slices.indices()).zip($tags.variables());
for (target_index, index) in it {
let slice = subs[index];
let new_variables = copy_sequence!(slice.len(), slice);
subs.variable_slices[target_index] = new_variables;
}
UnionLabels::from_slices($tags.labels(), new_variable_slices)
}};
}
while let Some(DeepCopyVarWork { source: var, copy }) = stack.pop() {
visited.push(var);
pool.push(copy);
let content = *subs.get_content_unchecked(var);
// Now we recursively copy the content of the variable.
// We have already marked the variable as copied, so we
// will not repeat this work or crawl this variable again.
match content {
Structure(flat_type) => {
let new_flat_type = match flat_type {
Apply(symbol, arguments) => {
let new_arguments = copy_sequence!(arguments.len(), arguments);
Apply(symbol, new_arguments)
}
Func(arguments, closure_var, ret_var) => {
let new_ret_var = work!(ret_var);
let new_closure_var = work!(closure_var);
let new_arguments = copy_sequence!(arguments.len(), arguments);
Func(new_arguments, new_closure_var, new_ret_var)
}
same @ EmptyRecord | same @ EmptyTagUnion | same @ Erroneous(_) => same,
Record(fields, ext_var) => {
let record_fields = {
let new_variables =
copy_sequence!(fields.len(), fields.iter_variables());
RecordFields {
length: fields.length,
field_names_start: fields.field_names_start,
variables_start: new_variables.start,
field_types_start: fields.field_types_start,
}
};
Record(record_fields, work!(ext_var))
}
TagUnion(tags, ext_var) => {
let union_tags = copy_union!(tags);
TagUnion(union_tags, work!(ext_var))
}
FunctionOrTagUnion(tag_name, symbol, ext_var) => {
FunctionOrTagUnion(tag_name, symbol, work!(ext_var))
}
RecursiveTagUnion(rec_var, tags, ext_var) => {
let union_tags = copy_union!(tags);
RecursiveTagUnion(work!(rec_var), union_tags, work!(ext_var))
}
};
subs.set_content_unchecked(copy, Structure(new_flat_type));
}
FlexVar(_) | FlexAbleVar(_, _) | Error => {
subs.set_content_unchecked(copy, content);
}
RecursionVar {
opt_name,
structure,
} => {
let content = RecursionVar {
opt_name,
structure: work!(structure),
};
subs.set_content_unchecked(copy, content);
}
RigidVar(name) => {
subs.set_content_unchecked(copy, FlexVar(Some(name)));
}
RigidAbleVar(name, ability) => {
subs.set_content_unchecked(copy, FlexAbleVar(Some(name), ability));
}
Alias(symbol, arguments, real_type_var, kind) => {
let new_variables =
copy_sequence!(arguments.all_variables_len, arguments.all_variables());
let new_arguments = AliasVariables {
variables_start: new_variables.start,
..arguments
};
let new_real_type_var = work!(real_type_var);
let new_content = Alias(symbol, new_arguments, new_real_type_var, kind);
subs.set_content_unchecked(copy, new_content);
}
LambdaSet(subs::LambdaSet {
solved,
recursion_var,
unspecialized,
}) => {
let lambda_set_var = copy;
let new_solved = copy_union!(solved);
let new_rec_var = recursion_var.map(|v| work!(v));
let new_unspecialized = SubsSlice::reserve_uls_slice(subs, unspecialized.len());
for (new_uls_index, uls_index) in
(new_unspecialized.into_iter()).zip(unspecialized.into_iter())
{
let Uls(var, sym, region) = subs[uls_index];
let new_var = work!(var);
deep_copy_uls_precondition(subs, var, new_var);
subs[new_uls_index] = Uls(new_var, sym, region);
subs.uls_of_var.add(new_var, lambda_set_var);
}
subs.set_content_unchecked(
lambda_set_var,
LambdaSet(subs::LambdaSet {
solved: new_solved,
recursion_var: new_rec_var,
unspecialized: new_unspecialized,
}),
);
}
RangedNumber(range) => {
let new_content = RangedNumber(range);
subs.set_content_unchecked(copy, new_content);
}
}
}
initial_copy
}
#[inline(always)]
fn deep_copy_uls_precondition(subs: &Subs, original_var: Variable, new_var: Variable) {
if cfg!(debug_assertions) {
let content = subs.get_content_without_compacting(original_var);
debug_assert!(
matches!(
content,
Content::FlexAbleVar(..) | Content::RigidAbleVar(..)
),
"var in unspecialized lamba set is not bound to an ability, it is {:?}",
roc_types::subs::SubsFmtContent(content, subs)
);
debug_assert!(
original_var != new_var,
"unspecialized lamba set var was not instantiated"
);
}
}
#[inline(always)]
fn register(subs: &mut Subs, rank: Rank, pools: &mut Pools, content: Content) -> Variable {
let descriptor = Descriptor {
content,
rank,
mark: Mark::NONE,
copy: OptVariable::NONE,
};
let var = subs.fresh(descriptor);
pools.get_mut(rank).push(var);
var
}
fn register_with_known_var(
subs: &mut Subs,
var: Variable,
rank: Rank,
pools: &mut Pools,
content: Content,
) -> Variable {
let descriptor = Descriptor {
content,
rank,
mark: Mark::NONE,
copy: OptVariable::NONE,
};
subs.set(var, descriptor);
pools.get_mut(rank).push(var);
var
}