roc/compiler/builtins/src/std.rs
2021-08-18 11:02:20 -05:00

1240 lines
35 KiB
Rust

use roc_collections::all::{default_hasher, MutMap, MutSet};
use roc_module::ident::TagName;
use roc_module::symbol::Symbol;
use roc_region::all::Region;
use roc_types::builtin_aliases::{
bool_type, dict_type, float_type, i128_type, int_type, list_type, nat_type, num_type,
ordering_type, result_type, set_type, str_type, str_utf8_byte_problem_type, u32_type, u64_type,
u8_type, u16_type
};
use roc_types::solved_types::SolvedType;
use roc_types::subs::VarId;
use roc_types::types::RecordField;
use std::collections::HashMap;
/// Example:
///
/// let_tvars! { a, b, c }
///
/// This is equivalent to:
///
/// let a = VarId::from_u32(1);
/// let b = VarId::from_u32(2);
/// let c = VarId::from_u32(3);
///
/// The idea is that this is less error-prone than assigning hardcoded IDs by hand.
macro_rules! let_tvars {
($($name:ident,)+) => { let_tvars!($($name),+) };
($($name:ident),*) => {
let mut _current_tvar = 0;
$(
_current_tvar += 1;
let $name = VarId::from_u32(_current_tvar);
)*
};
}
#[derive(Debug, Clone)]
pub struct StdLib {
pub types: MutMap<Symbol, (SolvedType, Region)>,
pub applies: MutSet<Symbol>,
}
pub fn standard_stdlib() -> StdLib {
StdLib {
types: types(),
applies: vec![
Symbol::LIST_LIST,
Symbol::SET_SET,
Symbol::DICT_DICT,
Symbol::STR_STR,
]
.into_iter()
.collect(),
}
}
/// Keep this up to date by hand! It's the number of builtin aliases that are imported by default.
const NUM_BUILTIN_IMPORTS: usize = 7;
/// These can be shared between definitions, they will get instantiated when converted to Type
const TVAR1: VarId = VarId::from_u32(1);
const TVAR2: VarId = VarId::from_u32(2);
const TVAR3: VarId = VarId::from_u32(3);
const TVAR4: VarId = VarId::from_u32(4);
const TOP_LEVEL_CLOSURE_VAR: VarId = VarId::from_u32(5);
pub fn types() -> MutMap<Symbol, (SolvedType, Region)> {
let mut types = HashMap::with_capacity_and_hasher(NUM_BUILTIN_IMPORTS, default_hasher());
macro_rules! add_type {
($symbol:expr, $typ:expr $(,)?) => {{
debug_assert!(
!types.contains_key(&$symbol),
"Duplicate type definition for {:?}",
$symbol
);
// TODO instead of using Region::zero for all of these,
// instead use the Region where they were defined in their
// source .roc files! This can give nicer error messages.
types.insert($symbol, ($typ, Region::zero()));
}};
}
macro_rules! add_top_level_function_type {
($symbol:expr, $arguments:expr, $result:expr $(,)?) => {{
debug_assert!(
!types.contains_key(&$symbol),
"Duplicate type definition for {:?}",
$symbol
);
let ext = Box::new(SolvedType::Flex(TOP_LEVEL_CLOSURE_VAR));
let typ = SolvedType::Func(
$arguments,
Box::new(SolvedType::TagUnion(
vec![(TagName::Closure($symbol), vec![])],
ext,
)),
$result,
);
// TODO instead of using Region::zero for all of these,
// instead use the Region where they were defined in their
// source .roc files! This can give nicer error messages.
types.insert($symbol, (typ, Region::zero()));
}};
}
// Num module
// add or (+) : Num a, Num a -> Num a
add_top_level_function_type!(
Symbol::NUM_ADD,
vec![num_type(flex(TVAR1)), num_type(flex(TVAR1))],
Box::new(num_type(flex(TVAR1))),
);
fn overflow() -> SolvedType {
SolvedType::TagUnion(
vec![(TagName::Global("Overflow".into()), vec![])],
Box::new(SolvedType::Wildcard),
)
}
// addChecked : Num a, Num a -> Result (Num a) [ Overflow ]*
add_top_level_function_type!(
Symbol::NUM_ADD_CHECKED,
vec![num_type(flex(TVAR1)), num_type(flex(TVAR1))],
Box::new(result_type(num_type(flex(TVAR1)), overflow())),
);
// addWrap : Int range, Int range -> Int range
add_top_level_function_type!(
Symbol::NUM_ADD_WRAP,
vec![int_type(flex(TVAR1)), int_type(flex(TVAR1))],
Box::new(int_type(flex(TVAR1))),
);
// sub or (-) : Num a, Num a -> Num a
add_top_level_function_type!(
Symbol::NUM_SUB,
vec![num_type(flex(TVAR1)), num_type(flex(TVAR1))],
Box::new(num_type(flex(TVAR1))),
);
// subWrap : Int range, Int range -> Int range
add_top_level_function_type!(
Symbol::NUM_SUB_WRAP,
vec![int_type(flex(TVAR1)), int_type(flex(TVAR1))],
Box::new(int_type(flex(TVAR1))),
);
// subChecked : Num a, Num a -> Result (Num a) [ Overflow ]*
add_top_level_function_type!(
Symbol::NUM_SUB_CHECKED,
vec![num_type(flex(TVAR1)), num_type(flex(TVAR1))],
Box::new(result_type(num_type(flex(TVAR1)), overflow())),
);
// mul or (*) : Num a, Num a -> Num a
add_top_level_function_type!(
Symbol::NUM_MUL,
vec![num_type(flex(TVAR1)), num_type(flex(TVAR1))],
Box::new(num_type(flex(TVAR1))),
);
// mulWrap : Int range, Int range -> Int range
add_top_level_function_type!(
Symbol::NUM_MUL_WRAP,
vec![int_type(flex(TVAR1)), int_type(flex(TVAR1))],
Box::new(int_type(flex(TVAR1))),
);
// mulChecked : Num a, Num a -> Result (Num a) [ Overflow ]*
add_top_level_function_type!(
Symbol::NUM_MUL_CHECKED,
vec![num_type(flex(TVAR1)), num_type(flex(TVAR1))],
Box::new(result_type(num_type(flex(TVAR1)), overflow())),
);
// abs : Num a -> Num a
add_top_level_function_type!(
Symbol::NUM_ABS,
vec![num_type(flex(TVAR1))],
Box::new(num_type(flex(TVAR1)))
);
// neg : Num a -> Num a
add_top_level_function_type!(
Symbol::NUM_NEG,
vec![num_type(flex(TVAR1))],
Box::new(num_type(flex(TVAR1)))
);
// isEq or (==) : a, a -> Bool
add_top_level_function_type!(
Symbol::BOOL_EQ,
vec![flex(TVAR1), flex(TVAR1)],
Box::new(bool_type())
);
// isNeq or (!=) : a, a -> Bool
add_top_level_function_type!(
Symbol::BOOL_NEQ,
vec![flex(TVAR1), flex(TVAR1)],
Box::new(bool_type())
);
// isLt or (<) : Num a, Num a -> Bool
add_top_level_function_type!(
Symbol::NUM_LT,
vec![num_type(flex(TVAR1)), num_type(flex(TVAR1))],
Box::new(bool_type()),
);
// isLte or (<=) : Num a, Num a -> Bool
add_top_level_function_type!(
Symbol::NUM_LTE,
vec![num_type(flex(TVAR1)), num_type(flex(TVAR1))],
Box::new(bool_type()),
);
// isGt or (>) : Num a, Num a -> Bool
add_top_level_function_type!(
Symbol::NUM_GT,
vec![num_type(flex(TVAR1)), num_type(flex(TVAR1))],
Box::new(bool_type()),
);
// isGte or (>=) : Num a, Num a -> Bool
add_top_level_function_type!(
Symbol::NUM_GTE,
vec![num_type(flex(TVAR1)), num_type(flex(TVAR1))],
Box::new(bool_type()),
);
// compare : Num a, Num a -> [ LT, EQ, GT ]
add_top_level_function_type!(
Symbol::NUM_COMPARE,
vec![num_type(flex(TVAR1)), num_type(flex(TVAR1))],
Box::new(ordering_type()),
);
// toFloat : Num * -> Float *
add_top_level_function_type!(
Symbol::NUM_TO_FLOAT,
vec![num_type(flex(TVAR1))],
Box::new(float_type(flex(TVAR2))),
);
// isNegative : Num a -> Bool
add_top_level_function_type!(
Symbol::NUM_IS_NEGATIVE,
vec![num_type(flex(TVAR1))],
Box::new(bool_type())
);
// isPositive : Num a -> Bool
add_top_level_function_type!(
Symbol::NUM_IS_POSITIVE,
vec![num_type(flex(TVAR1))],
Box::new(bool_type())
);
// isZero : Num a -> Bool
add_top_level_function_type!(
Symbol::NUM_IS_ZERO,
vec![num_type(flex(TVAR1))],
Box::new(bool_type())
);
// isEven : Num a -> Bool
add_top_level_function_type!(
Symbol::NUM_IS_EVEN,
vec![num_type(flex(TVAR1))],
Box::new(bool_type())
);
// isOdd : Num a -> Bool
add_top_level_function_type!(
Symbol::NUM_IS_ODD,
vec![num_type(flex(TVAR1))],
Box::new(bool_type())
);
// maxInt : Int range
add_type!(Symbol::NUM_MAX_INT, int_type(flex(TVAR1)));
// minInt : Int range
add_type!(Symbol::NUM_MIN_INT, int_type(flex(TVAR1)));
// divInt : Int a, Int a -> Result (Int a) [ DivByZero ]*
let div_by_zero = SolvedType::TagUnion(
vec![(TagName::Global("DivByZero".into()), vec![])],
Box::new(SolvedType::Wildcard),
);
add_top_level_function_type!(
Symbol::NUM_DIV_INT,
vec![int_type(flex(TVAR1)), int_type(flex(TVAR1))],
Box::new(result_type(int_type(flex(TVAR1)), div_by_zero.clone())),
);
// bitwiseAnd : Int a, Int a -> Int a
add_top_level_function_type!(
Symbol::NUM_BITWISE_AND,
vec![int_type(flex(TVAR1)), int_type(flex(TVAR1))],
Box::new(int_type(flex(TVAR1))),
);
// bitwiseXor : Int a, Int a -> Int a
add_top_level_function_type!(
Symbol::NUM_BITWISE_XOR,
vec![int_type(flex(TVAR1)), int_type(flex(TVAR1))],
Box::new(int_type(flex(TVAR1))),
);
// bitwiseOr : Int a, Int a -> Int a
add_top_level_function_type!(
Symbol::NUM_BITWISE_OR,
vec![int_type(flex(TVAR1)), int_type(flex(TVAR1))],
Box::new(int_type(flex(TVAR1))),
);
// shiftLeftBy : Int a, Int a -> Int a
add_top_level_function_type!(
Symbol::NUM_SHIFT_LEFT,
vec![int_type(flex(TVAR1)), int_type(flex(TVAR1))],
Box::new(int_type(flex(TVAR1))),
);
// shiftRightBy : Int a, Int a -> Int a
add_top_level_function_type!(
Symbol::NUM_SHIFT_RIGHT,
vec![int_type(flex(TVAR1)), int_type(flex(TVAR1))],
Box::new(int_type(flex(TVAR1))),
);
// shiftRightZfBy : Int a, Int a -> Int a
add_top_level_function_type!(
Symbol::NUM_SHIFT_RIGHT_ZERO_FILL,
vec![int_type(flex(TVAR1)), int_type(flex(TVAR1))],
Box::new(int_type(flex(TVAR1))),
);
// intCast : Int a -> Int b
add_top_level_function_type!(
Symbol::NUM_INT_CAST,
vec![int_type(flex(TVAR1))],
Box::new(int_type(flex(TVAR2)))
);
// rem : Int a, Int a -> Result (Int a) [ DivByZero ]*
add_top_level_function_type!(
Symbol::NUM_REM,
vec![int_type(flex(TVAR1)), int_type(flex(TVAR1))],
Box::new(result_type(int_type(flex(TVAR1)), div_by_zero.clone())),
);
// mod : Int a, Int a -> Result (Int a) [ DivByZero ]*
add_top_level_function_type!(
Symbol::NUM_MOD_INT,
vec![int_type(flex(TVAR1)), int_type(flex(TVAR1))],
Box::new(result_type(int_type(flex(TVAR1)), div_by_zero.clone())),
);
// isMultipleOf : Int a, Int a -> Bool
add_top_level_function_type!(
Symbol::NUM_IS_MULTIPLE_OF,
vec![int_type(flex(TVAR1)), int_type(flex(TVAR1))],
Box::new(bool_type()),
);
// maxI128 : I128
add_type!(Symbol::NUM_MAX_I128, i128_type());
// Float module
// div : Float a, Float a -> Float a
add_top_level_function_type!(
Symbol::NUM_DIV_FLOAT,
vec![float_type(flex(TVAR1)), float_type(flex(TVAR1))],
Box::new(result_type(float_type(flex(TVAR1)), div_by_zero.clone())),
);
// mod : Float a, Float a -> Result (Float a) [ DivByZero ]*
add_top_level_function_type!(
Symbol::NUM_MOD_FLOAT,
vec![float_type(flex(TVAR1)), float_type(flex(TVAR1))],
Box::new(result_type(float_type(flex(TVAR1)), div_by_zero)),
);
// sqrt : Float a -> Float a
let sqrt_of_negative = SolvedType::TagUnion(
vec![(TagName::Global("SqrtOfNegative".into()), vec![])],
Box::new(SolvedType::Wildcard),
);
add_top_level_function_type!(
Symbol::NUM_SQRT,
vec![float_type(flex(TVAR1))],
Box::new(result_type(float_type(flex(TVAR1)), sqrt_of_negative)),
);
// log : Float a -> Float a
let log_needs_positive = SolvedType::TagUnion(
vec![(TagName::Global("LogNeedsPositive".into()), vec![])],
Box::new(SolvedType::Wildcard),
);
add_top_level_function_type!(
Symbol::NUM_LOG,
vec![float_type(flex(TVAR1))],
Box::new(result_type(float_type(flex(TVAR1)), log_needs_positive)),
);
// round : Float a -> Int b
add_top_level_function_type!(
Symbol::NUM_ROUND,
vec![float_type(flex(TVAR1))],
Box::new(int_type(flex(TVAR2))),
);
// sin : Float a -> Float a
add_top_level_function_type!(
Symbol::NUM_SIN,
vec![float_type(flex(TVAR1))],
Box::new(float_type(flex(TVAR1))),
);
// cos : Float a -> Float a
add_top_level_function_type!(
Symbol::NUM_COS,
vec![float_type(flex(TVAR1))],
Box::new(float_type(flex(TVAR1))),
);
// tan : Float a -> Float a
add_top_level_function_type!(
Symbol::NUM_TAN,
vec![float_type(flex(TVAR1))],
Box::new(float_type(flex(TVAR1))),
);
// maxFloat : Float a
add_type!(Symbol::NUM_MAX_FLOAT, float_type(flex(TVAR1)));
// minFloat : Float a
add_type!(Symbol::NUM_MIN_FLOAT, float_type(flex(TVAR1)));
// pow : Float a, Float a -> Float a
add_top_level_function_type!(
Symbol::NUM_POW,
vec![float_type(flex(TVAR1)), float_type(flex(TVAR1))],
Box::new(float_type(flex(TVAR1))),
);
// ceiling : Float a -> Int b
add_top_level_function_type!(
Symbol::NUM_CEILING,
vec![float_type(flex(TVAR1))],
Box::new(int_type(flex(TVAR2))),
);
// powInt : Int a, Int a -> Int a
add_top_level_function_type!(
Symbol::NUM_POW_INT,
vec![int_type(flex(TVAR1)), int_type(flex(TVAR1))],
Box::new(int_type(flex(TVAR1))),
);
// floor : Float a -> Int b
add_top_level_function_type!(
Symbol::NUM_FLOOR,
vec![float_type(flex(TVAR1))],
Box::new(int_type(flex(TVAR2))),
);
// atan : Float a -> Float a
add_top_level_function_type!(
Symbol::NUM_ATAN,
vec![float_type(flex(TVAR1))],
Box::new(float_type(flex(TVAR1))),
);
// acos : Float a -> Float a
add_top_level_function_type!(
Symbol::NUM_ACOS,
vec![float_type(flex(TVAR1))],
Box::new(float_type(flex(TVAR1))),
);
// asin : Float a -> Float a
add_top_level_function_type!(
Symbol::NUM_ASIN,
vec![float_type(flex(TVAR1))],
Box::new(float_type(flex(TVAR1))),
);
// castToNat : Num a -> Nat
add_top_level_function_type!(
Symbol::NUM_CAST_TO_NAT,
vec![int_type(flex(TVAR1))],
Box::new(nat_type()),
);
// bytesToU16 : List U8, Nat -> U16
add_top_level_function_type!(
Symbol::NUM_BYTES_TO_U16,
vec![list_type(u8_type()), nat_type()],
Box::new(u16_type()),
);
// bytesToU32 : List U8, Nat -> U32
add_top_level_function_type!(
Symbol::NUM_BYTES_TO_U32,
vec![list_type(u8_type()), nat_type()],
Box::new(u32_type()),
);
// Bool module
// and : Bool, Bool -> Bool
add_top_level_function_type!(
Symbol::BOOL_AND,
vec![bool_type(), bool_type()],
Box::new(bool_type())
);
// or : Bool, Bool -> Bool
add_top_level_function_type!(
Symbol::BOOL_OR,
vec![bool_type(), bool_type()],
Box::new(bool_type())
);
// xor : Bool, Bool -> Bool
add_top_level_function_type!(
Symbol::BOOL_XOR,
vec![bool_type(), bool_type()],
Box::new(bool_type())
);
// not : Bool -> Bool
add_top_level_function_type!(Symbol::BOOL_NOT, vec![bool_type()], Box::new(bool_type()));
// Str module
// Str.split : Str, Str -> List Str
add_top_level_function_type!(
Symbol::STR_SPLIT,
vec![str_type(), str_type()],
Box::new(list_type(str_type())),
);
// Str.concat : Str, Str -> Str
add_top_level_function_type!(
Symbol::STR_CONCAT,
vec![str_type(), str_type()],
Box::new(str_type()),
);
// Str.joinWith : List Str, Str -> Str
add_top_level_function_type!(
Symbol::STR_JOIN_WITH,
vec![list_type(str_type()), str_type()],
Box::new(str_type()),
);
// isEmpty : Str -> Bool
add_top_level_function_type!(
Symbol::STR_IS_EMPTY,
vec![str_type()],
Box::new(bool_type())
);
// startsWith : Str, Str -> Bool
add_top_level_function_type!(
Symbol::STR_STARTS_WITH,
vec![str_type(), str_type()],
Box::new(bool_type())
);
// startsWithCodePt : Str, U32 -> Bool
add_top_level_function_type!(
Symbol::STR_STARTS_WITH_CODE_PT,
vec![str_type(), u32_type()],
Box::new(bool_type())
);
// endsWith : Str, Str -> Bool
add_top_level_function_type!(
Symbol::STR_ENDS_WITH,
vec![str_type(), str_type()],
Box::new(bool_type())
);
// countGraphemes : Str -> Nat
add_top_level_function_type!(
Symbol::STR_COUNT_GRAPHEMES,
vec![str_type()],
Box::new(nat_type())
);
// fromInt : Int a -> Str
add_top_level_function_type!(
Symbol::STR_FROM_INT,
vec![int_type(flex(TVAR1))],
Box::new(str_type())
);
// fromUtf8 : List U8 -> Result Str [ BadUtf8 Utf8Problem ]*
{
let bad_utf8 = SolvedType::TagUnion(
vec![(
TagName::Global("BadUtf8".into()),
vec![str_utf8_byte_problem_type(), nat_type()],
)],
Box::new(SolvedType::Wildcard),
);
add_top_level_function_type!(
Symbol::STR_FROM_UTF8,
vec![list_type(u8_type())],
Box::new(result_type(str_type(), bad_utf8)),
);
}
// fromUtf8Range : List U8 -> Result Str [ BadUtf8 Utf8Problem, OutOfBounds ]*
{
let bad_utf8 = SolvedType::TagUnion(
vec![
(
TagName::Global("BadUtf8".into()),
vec![str_utf8_byte_problem_type(), nat_type()],
),
(TagName::Global("OutOfBounds".into()), vec![]),
],
Box::new(SolvedType::Wildcard),
);
add_top_level_function_type!(
Symbol::STR_FROM_UTF8_RANGE,
vec![
list_type(u8_type()),
SolvedType::Record {
fields: vec![
("start".into(), RecordField::Required(nat_type())),
("count".into(), RecordField::Required(nat_type())),
],
ext: Box::new(SolvedType::EmptyRecord),
}
],
Box::new(result_type(str_type(), bad_utf8)),
);
}
// toUtf8 : Str -> List U8
add_top_level_function_type!(
Symbol::STR_TO_UTF8,
vec![str_type()],
Box::new(list_type(u8_type()))
);
// fromFloat : Float a -> Str
add_top_level_function_type!(
Symbol::STR_FROM_FLOAT,
vec![float_type(flex(TVAR1))],
Box::new(str_type())
);
// List module
// get : List elem, Nat -> Result elem [ OutOfBounds ]*
let index_out_of_bounds = SolvedType::TagUnion(
vec![(TagName::Global("OutOfBounds".into()), vec![])],
Box::new(SolvedType::Wildcard),
);
add_top_level_function_type!(
Symbol::LIST_GET,
vec![list_type(flex(TVAR1)), nat_type()],
Box::new(result_type(flex(TVAR1), index_out_of_bounds)),
);
// first : List elem -> Result elem [ ListWasEmpty ]*
let list_was_empty = SolvedType::TagUnion(
vec![(TagName::Global("ListWasEmpty".into()), vec![])],
Box::new(SolvedType::Wildcard),
);
add_top_level_function_type!(
Symbol::LIST_FIRST,
vec![list_type(flex(TVAR1))],
Box::new(result_type(flex(TVAR1), list_was_empty.clone())),
);
// last : List elem -> Result elem [ ListWasEmpty ]*
add_top_level_function_type!(
Symbol::LIST_LAST,
vec![list_type(flex(TVAR1))],
Box::new(result_type(flex(TVAR1), list_was_empty)),
);
// set : List elem, Nat, elem -> List elem
add_top_level_function_type!(
Symbol::LIST_SET,
vec![list_type(flex(TVAR1)), nat_type(), flex(TVAR1)],
Box::new(list_type(flex(TVAR1))),
);
// concat : List elem, List elem -> List elem
add_top_level_function_type!(
Symbol::LIST_CONCAT,
vec![list_type(flex(TVAR1)), list_type(flex(TVAR1))],
Box::new(list_type(flex(TVAR1))),
);
// contains : List elem, elem -> Bool
add_top_level_function_type!(
Symbol::LIST_CONTAINS,
vec![list_type(flex(TVAR1)), flex(TVAR1)],
Box::new(bool_type()),
);
// sum : List (Num a) -> Num a
add_top_level_function_type!(
Symbol::LIST_SUM,
vec![list_type(num_type(flex(TVAR1)))],
Box::new(num_type(flex(TVAR1))),
);
// product : List (Num a) -> Num a
add_top_level_function_type!(
Symbol::LIST_PRODUCT,
vec![list_type(num_type(flex(TVAR1)))],
Box::new(num_type(flex(TVAR1))),
);
// walk : List elem, (elem -> accum -> accum), accum -> accum
add_top_level_function_type!(
Symbol::LIST_WALK,
vec![
list_type(flex(TVAR1)),
closure(vec![flex(TVAR1), flex(TVAR2)], TVAR3, Box::new(flex(TVAR2))),
flex(TVAR2),
],
Box::new(flex(TVAR2)),
);
// walkBackwards : List elem, (elem -> accum -> accum), accum -> accum
add_top_level_function_type!(
Symbol::LIST_WALK_BACKWARDS,
vec![
list_type(flex(TVAR1)),
closure(vec![flex(TVAR1), flex(TVAR2)], TVAR3, Box::new(flex(TVAR2))),
flex(TVAR2),
],
Box::new(flex(TVAR2)),
);
fn until_type(content: SolvedType) -> SolvedType {
// [ LT, EQ, GT ]
SolvedType::TagUnion(
vec![
(TagName::Global("Continue".into()), vec![content.clone()]),
(TagName::Global("Stop".into()), vec![content]),
],
Box::new(SolvedType::EmptyTagUnion),
)
}
// walkUntil : List elem, (elem -> accum -> [ Continue accum, Stop accum ]), accum -> accum
add_top_level_function_type!(
Symbol::LIST_WALK_UNTIL,
vec![
list_type(flex(TVAR1)),
closure(
vec![flex(TVAR1), flex(TVAR2)],
TVAR3,
Box::new(until_type(flex(TVAR2))),
),
flex(TVAR2),
],
Box::new(flex(TVAR2)),
);
// keepIf : List elem, (elem -> Bool) -> List elem
add_top_level_function_type!(
Symbol::LIST_KEEP_IF,
vec![
list_type(flex(TVAR1)),
closure(vec![flex(TVAR1)], TVAR2, Box::new(bool_type())),
],
Box::new(list_type(flex(TVAR1))),
);
// keepOks : List before, (before -> Result after *) -> List after
{
let_tvars! { star, cvar, before, after};
add_top_level_function_type!(
Symbol::LIST_KEEP_OKS,
vec![
list_type(flex(before)),
closure(
vec![flex(before)],
cvar,
Box::new(result_type(flex(after), flex(star))),
),
],
Box::new(list_type(flex(after))),
)
};
// keepErrs: List before, (before -> Result * after) -> List after
{
let_tvars! { star, cvar, before, after};
add_top_level_function_type!(
Symbol::LIST_KEEP_ERRS,
vec![
list_type(flex(before)),
closure(
vec![flex(before)],
cvar,
Box::new(result_type(flex(star), flex(after))),
),
],
Box::new(list_type(flex(after))),
)
};
// range : Int a, Int a -> List (Int a)
add_top_level_function_type!(
Symbol::LIST_RANGE,
vec![int_type(flex(TVAR1)), int_type(flex(TVAR1))],
Box::new(list_type(int_type(flex(TVAR1)))),
);
// map : List before, (before -> after) -> List after
add_top_level_function_type!(
Symbol::LIST_MAP,
vec![
list_type(flex(TVAR1)),
closure(vec![flex(TVAR1)], TVAR3, Box::new(flex(TVAR2))),
],
Box::new(list_type(flex(TVAR2))),
);
// mapWithIndex : List before, (Nat, before -> after) -> List after
{
let_tvars! { cvar, before, after};
add_top_level_function_type!(
Symbol::LIST_MAP_WITH_INDEX,
vec![
list_type(flex(before)),
closure(vec![nat_type(), flex(before)], cvar, Box::new(flex(after))),
],
Box::new(list_type(flex(after))),
)
};
// map2 : List a, List b, (a, b -> c) -> List c
{
let_tvars! {a, b, c, cvar};
add_top_level_function_type!(
Symbol::LIST_MAP2,
vec![
list_type(flex(a)),
list_type(flex(b)),
closure(vec![flex(a), flex(b)], cvar, Box::new(flex(c))),
],
Box::new(list_type(flex(c))),
)
};
{
let_tvars! {a, b, c, d, cvar};
// map3 : List a, List b, List c, (a, b, c -> d) -> List d
add_top_level_function_type!(
Symbol::LIST_MAP3,
vec![
list_type(flex(a)),
list_type(flex(b)),
list_type(flex(c)),
closure(vec![flex(a), flex(b), flex(c)], cvar, Box::new(flex(d))),
],
Box::new(list_type(flex(d))),
)
};
// append : List elem, elem -> List elem
add_top_level_function_type!(
Symbol::LIST_APPEND,
vec![list_type(flex(TVAR1)), flex(TVAR1)],
Box::new(list_type(flex(TVAR1))),
);
// drop : List elem, Nat -> List elem
add_top_level_function_type!(
Symbol::LIST_DROP,
vec![list_type(flex(TVAR1)), nat_type()],
Box::new(list_type(flex(TVAR1))),
);
// swap : List elem, Nat, Nat -> List elem
add_top_level_function_type!(
Symbol::LIST_SWAP,
vec![list_type(flex(TVAR1)), nat_type(), nat_type()],
Box::new(list_type(flex(TVAR1))),
);
// prepend : List elem, elem -> List elem
add_top_level_function_type!(
Symbol::LIST_PREPEND,
vec![list_type(flex(TVAR1)), flex(TVAR1)],
Box::new(list_type(flex(TVAR1))),
);
// join : List (List elem) -> List elem
add_top_level_function_type!(
Symbol::LIST_JOIN,
vec![list_type(list_type(flex(TVAR1)))],
Box::new(list_type(flex(TVAR1))),
);
// single : a -> List a
add_top_level_function_type!(
Symbol::LIST_SINGLE,
vec![flex(TVAR1)],
Box::new(list_type(flex(TVAR1)))
);
// repeat : Nat, elem -> List elem
add_top_level_function_type!(
Symbol::LIST_REPEAT,
vec![nat_type(), flex(TVAR1)],
Box::new(list_type(flex(TVAR1))),
);
// reverse : List elem -> List elem
add_top_level_function_type!(
Symbol::LIST_REVERSE,
vec![list_type(flex(TVAR1))],
Box::new(list_type(flex(TVAR1))),
);
// len : List * -> Nat
add_top_level_function_type!(
Symbol::LIST_LEN,
vec![list_type(flex(TVAR1))],
Box::new(nat_type())
);
// isEmpty : List * -> Bool
add_top_level_function_type!(
Symbol::LIST_IS_EMPTY,
vec![list_type(flex(TVAR1))],
Box::new(bool_type())
);
// sortWith : List a, (a, a -> Ordering) -> List a
add_top_level_function_type!(
Symbol::LIST_SORT_WITH,
vec![
list_type(flex(TVAR1)),
closure(
vec![flex(TVAR1), flex(TVAR1)],
TVAR2,
Box::new(ordering_type()),
),
],
Box::new(list_type(flex(TVAR1))),
);
// Dict module
// Dict.hashTestOnly : Nat, v -> Nat
add_top_level_function_type!(
Symbol::DICT_TEST_HASH,
vec![u64_type(), flex(TVAR2)],
Box::new(nat_type())
);
// len : Dict * * -> Nat
add_top_level_function_type!(
Symbol::DICT_LEN,
vec![dict_type(flex(TVAR1), flex(TVAR2))],
Box::new(nat_type()),
);
// empty : Dict * *
add_type!(Symbol::DICT_EMPTY, dict_type(flex(TVAR1), flex(TVAR2)));
// single : k, v -> Dict k v
add_top_level_function_type!(
Symbol::DICT_SINGLE,
vec![flex(TVAR1), flex(TVAR2)],
Box::new(dict_type(flex(TVAR1), flex(TVAR2))),
);
// get : Dict k v, k -> Result v [ KeyNotFound ]*
let key_not_found = SolvedType::TagUnion(
vec![(TagName::Global("KeyNotFound".into()), vec![])],
Box::new(SolvedType::Wildcard),
);
add_top_level_function_type!(
Symbol::DICT_GET,
vec![dict_type(flex(TVAR1), flex(TVAR2)), flex(TVAR1)],
Box::new(result_type(flex(TVAR2), key_not_found)),
);
// Dict.insert : Dict k v, k, v -> Dict k v
add_top_level_function_type!(
Symbol::DICT_INSERT,
vec![
dict_type(flex(TVAR1), flex(TVAR2)),
flex(TVAR1),
flex(TVAR2),
],
Box::new(dict_type(flex(TVAR1), flex(TVAR2))),
);
// Dict.remove : Dict k v, k -> Dict k v
add_top_level_function_type!(
Symbol::DICT_REMOVE,
vec![dict_type(flex(TVAR1), flex(TVAR2)), flex(TVAR1)],
Box::new(dict_type(flex(TVAR1), flex(TVAR2))),
);
// Dict.contains : Dict k v, k -> Bool
add_top_level_function_type!(
Symbol::DICT_CONTAINS,
vec![dict_type(flex(TVAR1), flex(TVAR2)), flex(TVAR1)],
Box::new(bool_type()),
);
// Dict.keys : Dict k v -> List k
add_top_level_function_type!(
Symbol::DICT_KEYS,
vec![dict_type(flex(TVAR1), flex(TVAR2))],
Box::new(list_type(flex(TVAR1))),
);
// Dict.values : Dict k v -> List v
add_top_level_function_type!(
Symbol::DICT_VALUES,
vec![dict_type(flex(TVAR1), flex(TVAR2))],
Box::new(list_type(flex(TVAR2))),
);
// Dict.union : Dict k v, Dict k v -> Dict k v
add_top_level_function_type!(
Symbol::DICT_UNION,
vec![
dict_type(flex(TVAR1), flex(TVAR2)),
dict_type(flex(TVAR1), flex(TVAR2)),
],
Box::new(dict_type(flex(TVAR1), flex(TVAR2))),
);
// Dict.intersection : Dict k v, Dict k v -> Dict k v
add_top_level_function_type!(
Symbol::DICT_INTERSECTION,
vec![
dict_type(flex(TVAR1), flex(TVAR2)),
dict_type(flex(TVAR1), flex(TVAR2)),
],
Box::new(dict_type(flex(TVAR1), flex(TVAR2))),
);
// Dict.difference : Dict k v, Dict k v -> Dict k v
add_top_level_function_type!(
Symbol::DICT_DIFFERENCE,
vec![
dict_type(flex(TVAR1), flex(TVAR2)),
dict_type(flex(TVAR1), flex(TVAR2)),
],
Box::new(dict_type(flex(TVAR1), flex(TVAR2))),
);
// Dict.walk : Dict k v, (k, v, accum -> accum), accum -> accum
add_top_level_function_type!(
Symbol::DICT_WALK,
vec![
dict_type(flex(TVAR1), flex(TVAR2)),
closure(
vec![flex(TVAR1), flex(TVAR2), flex(TVAR3)],
TVAR4,
Box::new(flex(TVAR3)),
),
flex(TVAR3),
],
Box::new(flex(TVAR3)),
);
// Set module
// empty : Set a
add_type!(Symbol::SET_EMPTY, set_type(flex(TVAR1)));
// single : a -> Set a
add_top_level_function_type!(
Symbol::SET_SINGLE,
vec![flex(TVAR1)],
Box::new(set_type(flex(TVAR1)))
);
// len : Set * -> Nat
add_top_level_function_type!(
Symbol::SET_LEN,
vec![set_type(flex(TVAR1))],
Box::new(nat_type())
);
// toList : Set a -> List a
add_top_level_function_type!(
Symbol::SET_TO_LIST,
vec![set_type(flex(TVAR1))],
Box::new(list_type(flex(TVAR1))),
);
// fromList : List a -> Set a
add_top_level_function_type!(
Symbol::SET_FROM_LIST,
vec![list_type(flex(TVAR1))],
Box::new(set_type(flex(TVAR1))),
);
// union : Set a, Set a -> Set a
add_top_level_function_type!(
Symbol::SET_UNION,
vec![set_type(flex(TVAR1)), set_type(flex(TVAR1))],
Box::new(set_type(flex(TVAR1))),
);
// difference : Set a, Set a -> Set a
add_top_level_function_type!(
Symbol::SET_DIFFERENCE,
vec![set_type(flex(TVAR1)), set_type(flex(TVAR1))],
Box::new(set_type(flex(TVAR1))),
);
// intersection : Set a, Set a -> Set a
add_top_level_function_type!(
Symbol::SET_INTERSECTION,
vec![set_type(flex(TVAR1)), set_type(flex(TVAR1))],
Box::new(set_type(flex(TVAR1))),
);
// Set.walk : Set a, (a, b -> b), b -> b
add_top_level_function_type!(
Symbol::SET_WALK,
vec![
set_type(flex(TVAR1)),
closure(vec![flex(TVAR1), flex(TVAR2)], TVAR3, Box::new(flex(TVAR2))),
flex(TVAR2),
],
Box::new(flex(TVAR2)),
);
add_top_level_function_type!(
Symbol::SET_INSERT,
vec![set_type(flex(TVAR1)), flex(TVAR1)],
Box::new(set_type(flex(TVAR1))),
);
add_top_level_function_type!(
Symbol::SET_REMOVE,
vec![set_type(flex(TVAR1)), flex(TVAR1)],
Box::new(set_type(flex(TVAR1))),
);
add_top_level_function_type!(
Symbol::SET_CONTAINS,
vec![set_type(flex(TVAR1)), flex(TVAR1)],
Box::new(bool_type()),
);
// Result module
// map : Result a err, (a -> b) -> Result b err
add_top_level_function_type!(
Symbol::RESULT_MAP,
vec![
result_type(flex(TVAR1), flex(TVAR3)),
closure(vec![flex(TVAR1)], TVAR4, Box::new(flex(TVAR2))),
],
Box::new(result_type(flex(TVAR2), flex(TVAR3))),
);
// mapErr : Result a x, (x -> y) -> Result a x
add_top_level_function_type!(
Symbol::RESULT_MAP_ERR,
vec![
result_type(flex(TVAR1), flex(TVAR3)),
closure(vec![flex(TVAR3)], TVAR4, Box::new(flex(TVAR2))),
],
Box::new(result_type(flex(TVAR1), flex(TVAR2))),
);
// after : Result a err, (a -> Result b err) -> Result b err
add_top_level_function_type!(
Symbol::RESULT_AFTER,
vec![
result_type(flex(TVAR1), flex(TVAR3)),
closure(
vec![flex(TVAR1)],
TVAR4,
Box::new(result_type(flex(TVAR2), flex(TVAR3))),
),
],
Box::new(result_type(flex(TVAR2), flex(TVAR3))),
);
// withDefault : Result a x, a -> a
add_top_level_function_type!(
Symbol::RESULT_WITH_DEFAULT,
vec![result_type(flex(TVAR1), flex(TVAR3)), flex(TVAR1)],
Box::new(flex(TVAR1)),
);
types
}
#[inline(always)]
fn flex(tvar: VarId) -> SolvedType {
SolvedType::Flex(tvar)
}
#[inline(always)]
fn closure(arguments: Vec<SolvedType>, closure_var: VarId, ret: Box<SolvedType>) -> SolvedType {
SolvedType::Func(arguments, Box::new(SolvedType::Flex(closure_var)), ret)
}