roc/compiler/mono/src/ir.rs
2021-10-17 16:08:41 +02:00

8515 lines
296 KiB
Rust

#![allow(clippy::manual_map)]
use self::InProgressProc::*;
use crate::exhaustive::{Ctor, Guard, RenderAs, TagId};
use crate::layout::{
Builtin, ClosureRepresentation, LambdaSet, Layout, LayoutCache, LayoutProblem,
RawFunctionLayout, UnionLayout, WrappedVariant,
};
use bumpalo::collections::Vec;
use bumpalo::Bump;
use roc_collections::all::{default_hasher, BumpMap, BumpMapDefault, BumpSet, MutMap, MutSet};
use roc_module::ident::{ForeignSymbol, Lowercase, TagName};
use roc_module::low_level::LowLevel;
use roc_module::symbol::{IdentIds, ModuleId, Symbol};
use roc_problem::can::RuntimeError;
use roc_region::all::{Located, Region};
use roc_std::RocDec;
use roc_types::solved_types::SolvedType;
use roc_types::subs::{Content, FlatType, Subs, Variable, VariableSubsSlice};
use std::collections::HashMap;
use ven_pretty::{BoxAllocator, DocAllocator, DocBuilder};
pub const PRETTY_PRINT_IR_SYMBOLS: bool = false;
macro_rules! return_on_layout_error {
($env:expr, $layout_result:expr) => {
match $layout_result {
Ok(cached) => cached,
Err(error) => return_on_layout_error_help!($env, error),
}
};
}
macro_rules! return_on_layout_error_help {
($env:expr, $error:expr) => {
match $error {
LayoutProblem::UnresolvedTypeVar(_) => {
return Stmt::RuntimeError($env.arena.alloc(format!(
"UnresolvedTypeVar {} line {}",
file!(),
line!()
)));
}
LayoutProblem::Erroneous => {
return Stmt::RuntimeError($env.arena.alloc(format!(
"Erroneous {} line {}",
file!(),
line!()
)));
}
}
};
}
#[derive(Debug, Clone, Copy)]
pub enum OptLevel {
Development,
Normal,
Optimize,
}
#[derive(Clone, Debug, PartialEq)]
pub enum MonoProblem {
PatternProblem(crate::exhaustive::Error),
}
#[derive(Debug, Clone, Copy)]
pub struct EntryPoint<'a> {
pub symbol: Symbol,
pub layout: ProcLayout<'a>,
}
#[derive(Clone, Debug, PartialEq)]
pub struct PartialProc<'a> {
pub annotation: Variable,
pub pattern_symbols: &'a [Symbol],
pub captured_symbols: CapturedSymbols<'a>,
pub body: roc_can::expr::Expr,
pub is_self_recursive: bool,
}
#[derive(Clone, Debug, PartialEq)]
pub enum CapturedSymbols<'a> {
None,
Captured(&'a [(Symbol, Variable)]),
}
impl<'a> CapturedSymbols<'a> {
fn captures(&self) -> bool {
match self {
CapturedSymbols::None => false,
CapturedSymbols::Captured(_) => true,
}
}
}
impl<'a> Default for CapturedSymbols<'a> {
fn default() -> Self {
CapturedSymbols::None
}
}
#[derive(Clone, Debug, PartialEq)]
pub struct PendingSpecialization<'a> {
solved_type: SolvedType,
host_exposed_aliases: BumpMap<Symbol, SolvedType>,
_lifetime: std::marker::PhantomData<&'a u8>,
}
impl<'a> PendingSpecialization<'a> {
pub fn from_var(arena: &'a Bump, subs: &Subs, var: Variable) -> Self {
let solved_type = SolvedType::from_var(subs, var);
PendingSpecialization {
solved_type,
host_exposed_aliases: BumpMap::new_in(arena),
_lifetime: std::marker::PhantomData,
}
}
pub fn from_var_host_exposed(
arena: &'a Bump,
subs: &Subs,
var: Variable,
exposed: &MutMap<Symbol, Variable>,
) -> Self {
let solved_type = SolvedType::from_var(subs, var);
let mut host_exposed_aliases = BumpMap::with_capacity_in(exposed.len(), arena);
host_exposed_aliases.extend(
exposed
.iter()
.map(|(symbol, variable)| (*symbol, SolvedType::from_var(subs, *variable))),
);
PendingSpecialization {
solved_type,
host_exposed_aliases,
_lifetime: std::marker::PhantomData,
}
}
}
#[derive(Clone, Debug, PartialEq)]
pub struct Proc<'a> {
pub name: Symbol,
pub args: &'a [(Layout<'a>, Symbol)],
pub body: Stmt<'a>,
pub closure_data_layout: Option<Layout<'a>>,
pub ret_layout: Layout<'a>,
pub is_self_recursive: SelfRecursive,
pub must_own_arguments: bool,
pub host_exposed_layouts: HostExposedLayouts<'a>,
}
#[derive(Clone, Debug, PartialEq)]
pub enum HostExposedLayouts<'a> {
NotHostExposed,
HostExposed {
rigids: BumpMap<Lowercase, Layout<'a>>,
aliases: BumpMap<Symbol, (Symbol, ProcLayout<'a>, RawFunctionLayout<'a>)>,
},
}
#[derive(Clone, Debug, PartialEq)]
pub enum SelfRecursive {
NotSelfRecursive,
SelfRecursive(JoinPointId),
}
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum Parens {
NotNeeded,
InTypeParam,
InFunction,
}
impl<'a> Proc<'a> {
pub fn to_doc<'b, D, A>(&'b self, alloc: &'b D, _parens: Parens) -> DocBuilder<'b, D, A>
where
D: DocAllocator<'b, A>,
D::Doc: Clone,
A: Clone,
{
let args_doc = self
.args
.iter()
.map(|(_, symbol)| symbol_to_doc(alloc, *symbol));
if PRETTY_PRINT_IR_SYMBOLS {
alloc
.text("procedure : ")
.append(symbol_to_doc(alloc, self.name))
.append(" ")
.append(self.ret_layout.to_doc(alloc, Parens::NotNeeded))
.append(alloc.hardline())
.append(alloc.text("procedure = "))
.append(symbol_to_doc(alloc, self.name))
.append(" (")
.append(alloc.intersperse(args_doc, ", "))
.append("):")
.append(alloc.hardline())
.append(self.body.to_doc(alloc).indent(4))
} else {
alloc
.text("procedure ")
.append(symbol_to_doc(alloc, self.name))
.append(" (")
.append(alloc.intersperse(args_doc, ", "))
.append("):")
.append(alloc.hardline())
.append(self.body.to_doc(alloc).indent(4))
}
}
pub fn to_pretty(&self, width: usize) -> String {
let allocator = BoxAllocator;
let mut w = std::vec::Vec::new();
self.to_doc::<_, ()>(&allocator, Parens::NotNeeded)
.1
.render(width, &mut w)
.unwrap();
w.push(b'\n');
String::from_utf8(w).unwrap()
}
pub fn insert_refcount_operations(
arena: &'a Bump,
procs: &mut MutMap<(Symbol, ProcLayout<'a>), Proc<'a>>,
) {
let borrow_params = arena.alloc(crate::borrow::infer_borrow(arena, procs));
crate::inc_dec::visit_procs(arena, borrow_params, procs);
}
pub fn insert_reset_reuse_operations<'i>(
arena: &'a Bump,
home: ModuleId,
ident_ids: &'i mut IdentIds,
procs: &mut MutMap<(Symbol, ProcLayout<'a>), Proc<'a>>,
) {
for (_, proc) in procs.iter_mut() {
let new_proc =
crate::reset_reuse::insert_reset_reuse(arena, home, ident_ids, proc.clone());
*proc = new_proc;
}
}
pub fn optimize_refcount_operations<'i, T>(
arena: &'a Bump,
home: ModuleId,
ident_ids: &'i mut IdentIds,
procs: &mut MutMap<T, Proc<'a>>,
) {
use crate::expand_rc;
let deferred = expand_rc::Deferred {
inc_dec_map: Default::default(),
assignments: Vec::new_in(arena),
decrefs: Vec::new_in(arena),
};
let mut env = expand_rc::Env {
home,
arena,
ident_ids,
layout_map: Default::default(),
alias_map: Default::default(),
constructor_map: Default::default(),
deferred,
};
for (_, proc) in procs.iter_mut() {
let b = expand_rc::expand_and_cancel_proc(
&mut env,
arena.alloc(proc.body.clone()),
proc.args,
);
proc.body = b.clone();
}
}
fn make_tail_recursive(&mut self, env: &mut Env<'a, '_>) {
let mut args = Vec::with_capacity_in(self.args.len(), env.arena);
let mut proc_args = Vec::with_capacity_in(self.args.len(), env.arena);
for (layout, symbol) in self.args {
let new = env.unique_symbol();
args.push((*layout, *symbol, new));
proc_args.push((*layout, new));
}
use self::SelfRecursive::*;
if let SelfRecursive(id) = self.is_self_recursive {
let transformed = crate::tail_recursion::make_tail_recursive(
env.arena,
id,
self.name,
self.body.clone(),
args.into_bump_slice(),
);
if let Some(with_tco) = transformed {
self.body = with_tco;
self.args = proc_args.into_bump_slice();
}
}
}
}
#[derive(Clone, Debug)]
pub struct ExternalSpecializations<'a> {
pub specs: BumpMap<Symbol, MutSet<SolvedType>>,
_lifetime: std::marker::PhantomData<&'a u8>,
}
impl<'a> ExternalSpecializations<'a> {
pub fn new_in(arena: &'a Bump) -> Self {
Self {
specs: BumpMap::new_in(arena),
_lifetime: std::marker::PhantomData,
}
}
pub fn insert(&mut self, symbol: Symbol, typ: SolvedType) {
use hashbrown::hash_map::Entry::{Occupied, Vacant};
let existing = match self.specs.entry(symbol) {
Vacant(entry) => entry.insert(MutSet::default()),
Occupied(entry) => entry.into_mut(),
};
existing.insert(typ);
}
pub fn extend(&mut self, other: Self) {
use hashbrown::hash_map::Entry::{Occupied, Vacant};
for (symbol, solved_types) in other.specs {
let existing = match self.specs.entry(symbol) {
Vacant(entry) => entry.insert(MutSet::default()),
Occupied(entry) => entry.into_mut(),
};
existing.extend(solved_types);
}
}
}
#[derive(Clone, Debug)]
pub struct Procs<'a> {
pub partial_procs: BumpMap<Symbol, PartialProc<'a>>,
pub imported_module_thunks: BumpSet<Symbol>,
pub module_thunks: BumpSet<Symbol>,
pub pending_specializations:
Option<BumpMap<Symbol, MutMap<ProcLayout<'a>, PendingSpecialization<'a>>>>,
pub specialized: BumpMap<(Symbol, ProcLayout<'a>), InProgressProc<'a>>,
pub runtime_errors: BumpMap<Symbol, &'a str>,
pub call_by_pointer_wrappers: BumpMap<Symbol, Symbol>,
pub externals_we_need: BumpMap<ModuleId, ExternalSpecializations<'a>>,
}
impl<'a> Procs<'a> {
pub fn new_in(arena: &'a Bump) -> Self {
Self {
partial_procs: BumpMap::new_in(arena),
imported_module_thunks: BumpSet::new_in(arena),
module_thunks: BumpSet::new_in(arena),
pending_specializations: Some(BumpMap::new_in(arena)),
specialized: BumpMap::new_in(arena),
runtime_errors: BumpMap::new_in(arena),
call_by_pointer_wrappers: BumpMap::new_in(arena),
externals_we_need: BumpMap::new_in(arena),
}
}
}
#[derive(Clone, Debug, PartialEq)]
pub enum InProgressProc<'a> {
InProgress,
Done(Proc<'a>),
}
impl<'a> Procs<'a> {
pub fn get_specialized_procs_without_rc(
self,
env: &mut Env<'a, '_>,
) -> MutMap<(Symbol, ProcLayout<'a>), Proc<'a>> {
let mut result = MutMap::with_capacity_and_hasher(self.specialized.len(), default_hasher());
let cloned = self.specialized.clone();
for (key, in_prog_proc) in self.specialized.into_iter() {
match in_prog_proc {
InProgress => {
let (symbol, layout) = key;
eprintln!(
"The procedure {:?} should have be done by now:\n\n {:?}",
symbol, layout
);
eprintln!("other pending specializatons for this symbol:");
for ((bsymbol, layout), _) in cloned {
if bsymbol == symbol {
eprintln!("{:?}: {:?}", symbol, layout);
}
}
panic!();
}
Done(mut proc) => {
proc.make_tail_recursive(env);
result.insert(key, proc);
}
}
}
result
}
// TODO trim down these arguments!
#[allow(clippy::too_many_arguments)]
pub fn insert_named(
&mut self,
env: &mut Env<'a, '_>,
layout_cache: &mut LayoutCache<'a>,
name: Symbol,
annotation: Variable,
loc_args: std::vec::Vec<(Variable, Located<roc_can::pattern::Pattern>)>,
loc_body: Located<roc_can::expr::Expr>,
captured_symbols: CapturedSymbols<'a>,
is_self_recursive: bool,
ret_var: Variable,
) {
let number_of_arguments = loc_args.len();
match patterns_to_when(env, layout_cache, loc_args, ret_var, loc_body) {
Ok((_, pattern_symbols, body)) => {
// a named closure. Since these aren't specialized by the surrounding
// context, we can't add pending specializations for them yet.
// (If we did, all named polymorphic functions would immediately error
// on trying to convert a flex var to a Layout.)
let pattern_symbols = pattern_symbols.into_bump_slice();
self.partial_procs.insert(
name,
PartialProc {
annotation,
pattern_symbols,
captured_symbols,
body: body.value,
is_self_recursive,
},
);
}
Err(error) => {
let mut pattern_symbols = Vec::with_capacity_in(number_of_arguments, env.arena);
for _ in 0..number_of_arguments {
pattern_symbols.push(env.unique_symbol());
}
self.partial_procs.insert(
name,
PartialProc {
annotation,
pattern_symbols: pattern_symbols.into_bump_slice(),
captured_symbols: CapturedSymbols::None,
body: roc_can::expr::Expr::RuntimeError(error.value),
is_self_recursive: false,
},
);
}
}
}
// TODO trim these down
#[allow(clippy::too_many_arguments)]
pub fn insert_anonymous(
&mut self,
env: &mut Env<'a, '_>,
symbol: Symbol,
annotation: Variable,
loc_args: std::vec::Vec<(Variable, Located<roc_can::pattern::Pattern>)>,
loc_body: Located<roc_can::expr::Expr>,
captured_symbols: CapturedSymbols<'a>,
ret_var: Variable,
layout_cache: &mut LayoutCache<'a>,
) -> Result<ProcLayout<'a>, RuntimeError> {
// anonymous functions cannot reference themselves, therefore cannot be tail-recursive
let is_self_recursive = false;
let raw_layout = layout_cache
.raw_from_var(env.arena, annotation, env.subs)
.unwrap_or_else(|err| panic!("TODO turn fn_var into a RuntimeError {:?}", err));
let top_level = ProcLayout::from_raw(env.arena, raw_layout);
match patterns_to_when(env, layout_cache, loc_args, ret_var, loc_body) {
Ok((_, pattern_symbols, body)) => {
// an anonymous closure. These will always be specialized already
// by the surrounding context, so we can add pending specializations
// for them immediately.
let tuple = (symbol, top_level);
let already_specialized = self.specialized.contains_key(&tuple);
let (symbol, layout) = tuple;
// if we've already specialized this one, no further work is needed.
//
// NOTE: this #[allow(clippy::map_entry)] here is for correctness!
// Changing it to use .entry() would necessarily make it incorrect.
#[allow(clippy::map_entry)]
if !already_specialized {
let pending = PendingSpecialization::from_var(env.arena, env.subs, annotation);
let partial_proc;
if let Some(existing) = self.partial_procs.get(&symbol) {
// if we're adding the same partial proc twice, they must be the actual same!
//
// NOTE we can't skip extra work! we still need to make the specialization for this
// invocation. The content of the `annotation` can be different, even if the variable
// number is the same
debug_assert_eq!(annotation, existing.annotation);
debug_assert_eq!(captured_symbols, existing.captured_symbols);
debug_assert_eq!(is_self_recursive, existing.is_self_recursive);
partial_proc = existing.clone();
} else {
let pattern_symbols = pattern_symbols.into_bump_slice();
partial_proc = PartialProc {
annotation,
pattern_symbols,
captured_symbols,
body: body.value,
is_self_recursive,
};
}
match &mut self.pending_specializations {
Some(pending_specializations) => {
// register the pending specialization, so this gets code genned later
if self.module_thunks.contains(&symbol) {
debug_assert!(layout.arguments.is_empty());
}
add_pending(pending_specializations, symbol, layout, pending);
self.partial_procs.insert(symbol, partial_proc);
}
None => {
// Mark this proc as in-progress, so if we're dealing with
// mutually recursive functions, we don't loop forever.
// (We had a bug around this before this system existed!)
self.specialized.insert((symbol, layout), InProgress);
let outside_layout = layout;
match specialize(env, self, symbol, layout_cache, pending, partial_proc)
{
Ok((proc, layout)) => {
let top_level = ProcLayout::from_raw(env.arena, layout);
debug_assert_eq!(
outside_layout, top_level,
"different raw layouts for {:?}",
proc.name
);
if self.module_thunks.contains(&proc.name) {
debug_assert!(top_level.arguments.is_empty());
}
self.specialized.insert((symbol, top_level), Done(proc));
}
Err(error) => {
panic!("TODO generate a RuntimeError message for {:?}", error);
}
}
}
}
}
Ok(layout)
}
Err(loc_error) => Err(loc_error.value),
}
}
/// Add a named function that will be publicly exposed to the host
pub fn insert_exposed(
&mut self,
name: Symbol,
layout: ProcLayout<'a>,
arena: &'a Bump,
subs: &Subs,
opt_annotation: Option<roc_can::def::Annotation>,
fn_var: Variable,
) {
let tuple = (name, layout);
// If we've already specialized this one, no further work is needed.
if self.specialized.contains_key(&tuple) {
return;
}
// We're done with that tuple, so move layout back out to avoid cloning it.
let (name, layout) = tuple;
let pending = match opt_annotation {
None => PendingSpecialization::from_var(arena, subs, fn_var),
Some(annotation) => PendingSpecialization::from_var_host_exposed(
arena,
subs,
fn_var,
&annotation.introduced_variables.host_exposed_aliases,
),
};
// This should only be called when pending_specializations is Some.
// Otherwise, it's being called in the wrong pass!
match &mut self.pending_specializations {
Some(pending_specializations) => {
// register the pending specialization, so this gets code genned later
add_pending(pending_specializations, name, layout, pending)
}
None => unreachable!(
r"insert_exposed was called after the pending specializations phase had already completed!"
),
}
}
/// TODO
pub fn insert_passed_by_name(
&mut self,
env: &mut Env<'a, '_>,
fn_var: Variable,
name: Symbol,
layout: ProcLayout<'a>,
layout_cache: &mut LayoutCache<'a>,
) {
// If we've already specialized this one, no further work is needed.
if self.specialized.contains_key(&(name, layout)) {
return;
}
// If this is an imported symbol, let its home module make this specialization
if env.is_imported_symbol(name) {
add_needed_external(self, env, fn_var, name);
return;
}
// This should only be called when pending_specializations is Some.
// Otherwise, it's being called in the wrong pass!
match &mut self.pending_specializations {
Some(pending_specializations) => {
let pending = PendingSpecialization::from_var(env.arena, env.subs, fn_var);
// register the pending specialization, so this gets code genned later
if self.module_thunks.contains(&name) {
debug_assert!(layout.arguments.is_empty());
}
add_pending(pending_specializations, name, layout, pending)
}
None => {
let symbol = name;
// TODO should pending_procs hold a Rc<Proc>?
let partial_proc = match self.partial_procs.get(&symbol) {
Some(p) => p.clone(),
None => panic!("no partial_proc for {:?} in module {:?}", symbol, env.home),
};
// Mark this proc as in-progress, so if we're dealing with
// mutually recursive functions, we don't loop forever.
// (We had a bug around this before this system existed!)
self.specialized.insert((symbol, layout), InProgress);
// See https://github.com/rtfeldman/roc/issues/1600
//
// The annotation variable is the generic/lifted/top-level annotation.
// It is connected to the variables of the function's body
//
// fn_var is the variable representing the type that we actually need for the
// function right here.
//
// For some reason, it matters that we unify with the original variable. Extracting
// that variable into a SolvedType and then introducing it again severs some
// connection that turns out to be important
match specialize_variable(
env,
self,
symbol,
layout_cache,
fn_var,
Default::default(),
partial_proc,
) {
Ok((proc, _ignore_layout)) => {
// the `layout` is a function pointer, while `_ignore_layout` can be a
// closure. We only specialize functions, storing this value with a closure
// layout will give trouble.
let arguments =
Vec::from_iter_in(proc.args.iter().map(|(l, _)| *l), env.arena)
.into_bump_slice();
let proper_layout = ProcLayout {
arguments,
result: proc.ret_layout,
};
// NOTE: some function are specialized to have a closure, but don't actually
// need any closure argument. Here is where we correct this sort of thing,
// by trusting the layout of the Proc, not of what we specialize for
self.specialized.remove(&(symbol, layout));
self.specialized.insert((symbol, proper_layout), Done(proc));
}
Err(error) => {
panic!("TODO generate a RuntimeError message for {:?}", error);
}
}
}
}
}
}
fn add_pending<'a>(
pending_specializations: &mut BumpMap<
Symbol,
MutMap<ProcLayout<'a>, PendingSpecialization<'a>>,
>,
symbol: Symbol,
layout: ProcLayout<'a>,
pending: PendingSpecialization<'a>,
) {
let all_pending = pending_specializations
.entry(symbol)
.or_insert_with(|| HashMap::with_capacity_and_hasher(1, default_hasher()));
all_pending.insert(layout, pending);
}
#[derive(Default)]
pub struct Specializations<'a> {
by_symbol: MutMap<Symbol, MutMap<Layout<'a>, Proc<'a>>>,
}
impl<'a> Specializations<'a> {
pub fn insert(&mut self, symbol: Symbol, layout: Layout<'a>, proc: Proc<'a>) {
let procs_by_layout = self
.by_symbol
.entry(symbol)
.or_insert_with(|| HashMap::with_capacity_and_hasher(1, default_hasher()));
// If we already have an entry for this, it should be no different
// from what we're about to insert.
debug_assert!(
!procs_by_layout.contains_key(&layout) || procs_by_layout.get(&layout) == Some(&proc)
);
procs_by_layout.insert(layout, proc);
}
pub fn len(&self) -> usize {
self.by_symbol.len()
}
pub fn is_empty(&self) -> bool {
self.by_symbol.is_empty()
}
}
pub struct Env<'a, 'i> {
pub arena: &'a Bump,
pub subs: &'i mut Subs,
pub problems: &'i mut std::vec::Vec<MonoProblem>,
pub home: ModuleId,
pub ident_ids: &'i mut IdentIds,
pub ptr_bytes: u32,
pub update_mode_counter: u64,
pub call_specialization_counter: u64,
}
impl<'a, 'i> Env<'a, 'i> {
pub fn unique_symbol(&mut self) -> Symbol {
let ident_id = self.ident_ids.gen_unique();
self.home.register_debug_idents(self.ident_ids);
Symbol::new(self.home, ident_id)
}
pub fn next_update_mode_id(&mut self) -> UpdateModeId {
let id = UpdateModeId {
id: self.update_mode_counter,
};
self.update_mode_counter += 1;
id
}
pub fn next_call_specialization_id(&mut self) -> CallSpecId {
let id = CallSpecId {
id: self.call_specialization_counter,
};
self.call_specialization_counter += 1;
id
}
pub fn is_imported_symbol(&self, symbol: Symbol) -> bool {
symbol.module_id() != self.home && !symbol.is_builtin()
}
}
#[derive(Clone, Debug, PartialEq, Copy, Eq, Hash)]
pub struct JoinPointId(pub Symbol);
#[derive(Clone, Copy, Debug, PartialEq)]
pub struct Param<'a> {
pub symbol: Symbol,
pub borrow: bool,
pub layout: Layout<'a>,
}
impl<'a> Param<'a> {
pub const EMPTY: Self = Param {
symbol: Symbol::EMPTY_PARAM,
borrow: false,
layout: Layout::Struct(&[]),
};
}
pub fn cond<'a>(
env: &mut Env<'a, '_>,
cond_symbol: Symbol,
cond_layout: Layout<'a>,
pass: Stmt<'a>,
fail: Stmt<'a>,
ret_layout: Layout<'a>,
) -> Stmt<'a> {
let branches = env.arena.alloc([(1u64, BranchInfo::None, pass)]);
let default_branch = (BranchInfo::None, &*env.arena.alloc(fail));
Stmt::Switch {
cond_symbol,
cond_layout,
ret_layout,
branches,
default_branch,
}
}
pub type Stores<'a> = &'a [(Symbol, Layout<'a>, Expr<'a>)];
#[derive(Clone, Debug, PartialEq)]
pub enum Stmt<'a> {
Let(Symbol, Expr<'a>, Layout<'a>, &'a Stmt<'a>),
Switch {
/// This *must* stand for an integer, because Switch potentially compiles to a jump table.
cond_symbol: Symbol,
cond_layout: Layout<'a>,
/// The u64 in the tuple will be compared directly to the condition Expr.
/// If they are equal, this branch will be taken.
branches: &'a [(u64, BranchInfo<'a>, Stmt<'a>)],
/// If no other branches pass, this default branch will be taken.
default_branch: (BranchInfo<'a>, &'a Stmt<'a>),
/// Each branch must return a value of this type.
ret_layout: Layout<'a>,
},
Ret(Symbol),
Refcounting(ModifyRc, &'a Stmt<'a>),
/// a join point `join f <params> = <continuation> in remainder`
Join {
id: JoinPointId,
parameters: &'a [Param<'a>],
/// body of the join point
/// what happens after _jumping to_ the join point
body: &'a Stmt<'a>,
/// what happens after _defining_ the join point
remainder: &'a Stmt<'a>,
},
Jump(JoinPointId, &'a [Symbol]),
RuntimeError(&'a str),
}
/// in the block below, symbol `scrutinee` is assumed be be of shape `tag_id`
#[derive(Clone, Debug, PartialEq)]
pub enum BranchInfo<'a> {
None,
Constructor {
scrutinee: Symbol,
layout: Layout<'a>,
tag_id: u8,
},
}
impl<'a> BranchInfo<'a> {
pub fn to_doc<'b, D, A>(&'b self, alloc: &'b D) -> DocBuilder<'b, D, A>
where
D: DocAllocator<'b, A>,
D::Doc: Clone,
A: Clone,
{
use BranchInfo::*;
match self {
Constructor {
tag_id,
scrutinee,
layout: _,
} if PRETTY_PRINT_IR_SYMBOLS => alloc
.hardline()
.append(" BranchInfo: { scrutinee: ")
.append(symbol_to_doc(alloc, *scrutinee))
.append(", tag_id: ")
.append(format!("{}", tag_id))
.append("} "),
_ => {
if PRETTY_PRINT_IR_SYMBOLS {
alloc.text(" <no branch info>")
} else {
alloc.text("")
}
}
}
}
}
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum ModifyRc {
Inc(Symbol, u64),
Dec(Symbol),
DecRef(Symbol),
}
impl ModifyRc {
pub fn to_doc<'a, D, A>(self, alloc: &'a D) -> DocBuilder<'a, D, A>
where
D: DocAllocator<'a, A>,
D::Doc: Clone,
A: Clone,
{
use ModifyRc::*;
match self {
Inc(symbol, 1) => alloc
.text("inc ")
.append(symbol_to_doc(alloc, symbol))
.append(";"),
Inc(symbol, n) => alloc
.text("inc ")
.append(alloc.text(format!("{}", n)))
.append(symbol_to_doc(alloc, symbol))
.append(";"),
Dec(symbol) => alloc
.text("dec ")
.append(symbol_to_doc(alloc, symbol))
.append(";"),
DecRef(symbol) => alloc
.text("decref ")
.append(symbol_to_doc(alloc, symbol))
.append(";"),
}
}
pub fn get_symbol(&self) -> Symbol {
use ModifyRc::*;
match self {
Inc(symbol, _) => *symbol,
Dec(symbol) => *symbol,
DecRef(symbol) => *symbol,
}
}
}
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum Literal<'a> {
// Literals
Int(i128),
Float(f64),
Decimal(RocDec),
Str(&'a str),
/// Closed tag unions containing exactly two (0-arity) tags compile to Expr::Bool,
/// so they can (at least potentially) be emitted as 1-bit machine bools.
///
/// So [ True, False ] compiles to this, and so do [ A, B ] and [ Foo, Bar ].
/// However, a union like [ True, False, Other Int ] would not.
Bool(bool),
/// Closed tag unions containing between 3 and 256 tags (all of 0 arity)
/// compile to bytes, e.g. [ Blue, Black, Red, Green, White ]
Byte(u8),
}
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum ListLiteralElement<'a> {
Literal(Literal<'a>),
Symbol(Symbol),
}
impl<'a> ListLiteralElement<'a> {
pub fn to_symbol(&self) -> Option<Symbol> {
match self {
Self::Symbol(s) => Some(*s),
_ => None,
}
}
}
#[derive(Clone, Debug, PartialEq)]
pub struct Call<'a> {
pub call_type: CallType<'a>,
pub arguments: &'a [Symbol],
}
impl<'a> Call<'a> {
pub fn to_doc<'b, D, A>(&'b self, alloc: &'b D) -> DocBuilder<'b, D, A>
where
D: DocAllocator<'b, A>,
D::Doc: Clone,
A: Clone,
{
use CallType::*;
let arguments = self.arguments;
match self.call_type {
CallType::ByName { name, .. } => {
let it = std::iter::once(name)
.chain(arguments.iter().copied())
.map(|s| symbol_to_doc(alloc, s));
alloc.text("CallByName ").append(alloc.intersperse(it, " "))
}
LowLevel { op: lowlevel, .. } => {
let it = arguments.iter().map(|s| symbol_to_doc(alloc, *s));
alloc
.text(format!("lowlevel {:?} ", lowlevel))
.append(alloc.intersperse(it, " "))
}
HigherOrderLowLevel { op: lowlevel, .. } => {
let it = arguments.iter().map(|s| symbol_to_doc(alloc, *s));
alloc
.text(format!("lowlevel {:?} ", lowlevel))
.append(alloc.intersperse(it, " "))
}
NewHigherOrderLowLevel { op: lowlevel, .. } => {
let it = arguments.iter().map(|s| symbol_to_doc(alloc, *s));
alloc
.text(format!("lowlevel {:?} ", lowlevel))
.append(alloc.intersperse(it, " "))
}
Foreign {
ref foreign_symbol, ..
} => {
let it = arguments.iter().map(|s| symbol_to_doc(alloc, *s));
alloc
.text(format!("foreign {:?} ", foreign_symbol.as_str()))
.append(alloc.intersperse(it, " "))
}
}
}
}
#[derive(Clone, Copy, Debug, PartialEq)]
pub struct CallSpecId {
id: u64,
}
impl CallSpecId {
pub fn to_bytes(self) -> [u8; 8] {
self.id.to_ne_bytes()
}
}
#[derive(Clone, Copy, Debug, PartialEq)]
pub struct UpdateModeId {
id: u64,
}
impl UpdateModeId {
pub fn to_bytes(self) -> [u8; 8] {
self.id.to_ne_bytes()
}
}
#[derive(Clone, Debug, PartialEq)]
pub enum CallType<'a> {
ByName {
name: Symbol,
ret_layout: Layout<'a>,
arg_layouts: &'a [Layout<'a>],
specialization_id: CallSpecId,
},
Foreign {
foreign_symbol: ForeignSymbol,
ret_layout: Layout<'a>,
},
LowLevel {
op: LowLevel,
update_mode: UpdateModeId,
},
HigherOrderLowLevel {
op: LowLevel,
/// the layout of the closure argument, if any
closure_env_layout: Option<Layout<'a>>,
/// specialization id of the function argument
specialization_id: CallSpecId,
/// does the function need to own the closure data
function_owns_closure_data: bool,
/// function layout
arg_layouts: &'a [Layout<'a>],
ret_layout: Layout<'a>,
},
NewHigherOrderLowLevel {
op: crate::low_level::HigherOrder,
/// the layout of the closure argument, if any
closure_env_layout: Option<Layout<'a>>,
/// name of the top-level function that is passed as an argument
/// e.g. in `List.map xs Num.abs` this would be `Num.abs`
function_name: Symbol,
/// Symbol of the environment captured by the function argument
function_env: Symbol,
/// does the function argument need to own the closure data
function_owns_closure_data: bool,
/// specialization id of the function argument, used for name generation
specialization_id: CallSpecId,
/// function layout, used for name generation
arg_layouts: &'a [Layout<'a>],
ret_layout: Layout<'a>,
},
}
#[derive(Clone, Debug, PartialEq)]
pub enum Expr<'a> {
Literal(Literal<'a>),
// Functions
Call(Call<'a>),
Tag {
tag_layout: UnionLayout<'a>,
tag_name: TagName,
tag_id: u8,
arguments: &'a [Symbol],
},
Struct(&'a [Symbol]),
StructAtIndex {
index: u64,
field_layouts: &'a [Layout<'a>],
structure: Symbol,
},
GetTagId {
structure: Symbol,
union_layout: UnionLayout<'a>,
},
UnionAtIndex {
structure: Symbol,
tag_id: u8,
union_layout: UnionLayout<'a>,
index: u64,
},
Array {
elem_layout: Layout<'a>,
elems: &'a [ListLiteralElement<'a>],
},
EmptyArray,
Reuse {
symbol: Symbol,
update_tag_id: bool,
// normal Tag fields
tag_layout: UnionLayout<'a>,
tag_name: TagName,
tag_id: u8,
arguments: &'a [Symbol],
},
Reset(Symbol),
RuntimeErrorFunction(&'a str),
}
impl<'a> Literal<'a> {
pub fn to_doc<'b, D, A>(&'b self, alloc: &'b D) -> DocBuilder<'b, D, A>
where
D: DocAllocator<'b, A>,
D::Doc: Clone,
A: Clone,
{
use Literal::*;
match self {
Int(lit) => alloc.text(format!("{}i64", lit)),
Float(lit) => alloc.text(format!("{}f64", lit)),
// TODO: Add proper Dec.to_str
Decimal(lit) => alloc.text(format!("{}Dec", lit.0)),
Bool(lit) => alloc.text(format!("{}", lit)),
Byte(lit) => alloc.text(format!("{}u8", lit)),
Str(lit) => alloc.text(format!("{:?}", lit)),
}
}
}
fn symbol_to_doc<'b, D, A>(alloc: &'b D, symbol: Symbol) -> DocBuilder<'b, D, A>
where
D: DocAllocator<'b, A>,
D::Doc: Clone,
A: Clone,
{
use roc_module::ident::ModuleName;
if PRETTY_PRINT_IR_SYMBOLS {
alloc.text(format!("{:?}", symbol))
} else {
let text = format!("{}", symbol);
if text.starts_with(ModuleName::APP) {
let name: String = text.trim_start_matches(ModuleName::APP).into();
alloc.text("Test").append(name)
} else {
alloc.text(text)
}
}
}
fn join_point_to_doc<'b, D, A>(alloc: &'b D, symbol: JoinPointId) -> DocBuilder<'b, D, A>
where
D: DocAllocator<'b, A>,
D::Doc: Clone,
A: Clone,
{
symbol_to_doc(alloc, symbol.0)
}
impl<'a> Expr<'a> {
pub fn to_doc<'b, D, A>(&'b self, alloc: &'b D) -> DocBuilder<'b, D, A>
where
D: DocAllocator<'b, A>,
D::Doc: Clone,
A: Clone,
{
use Expr::*;
match self {
Literal(lit) => lit.to_doc(alloc),
Call(call) => call.to_doc(alloc),
Tag {
tag_name,
arguments,
..
} => {
let doc_tag = match tag_name {
TagName::Global(s) => alloc.text(s.as_str()),
TagName::Private(s) => symbol_to_doc(alloc, *s),
TagName::Closure(s) => alloc
.text("ClosureTag(")
.append(symbol_to_doc(alloc, *s))
.append(")"),
};
let it = arguments.iter().map(|s| symbol_to_doc(alloc, *s));
doc_tag
.append(alloc.space())
.append(alloc.intersperse(it, " "))
}
Reuse {
symbol,
tag_name,
arguments,
..
} => {
let doc_tag = match tag_name {
TagName::Global(s) => alloc.text(s.as_str()),
TagName::Private(s) => alloc.text(format!("{}", s)),
TagName::Closure(s) => alloc
.text("ClosureTag(")
.append(symbol_to_doc(alloc, *s))
.append(")"),
};
let it = arguments.iter().map(|s| symbol_to_doc(alloc, *s));
alloc
.text("Reuse ")
.append(symbol_to_doc(alloc, *symbol))
.append(alloc.space())
.append(doc_tag)
.append(alloc.space())
.append(alloc.intersperse(it, " "))
}
Reset(symbol) => alloc.text("Reset ").append(symbol_to_doc(alloc, *symbol)),
Struct(args) => {
let it = args.iter().map(|s| symbol_to_doc(alloc, *s));
alloc
.text("Struct {")
.append(alloc.intersperse(it, ", "))
.append(alloc.text("}"))
}
Array { elems, .. } => {
let it = elems.iter().map(|e| match e {
ListLiteralElement::Literal(l) => l.to_doc(alloc),
ListLiteralElement::Symbol(s) => symbol_to_doc(alloc, *s),
});
alloc
.text("Array [")
.append(alloc.intersperse(it, ", "))
.append(alloc.text("]"))
}
EmptyArray => alloc.text("Array []"),
StructAtIndex {
index, structure, ..
} => alloc
.text(format!("StructAtIndex {} ", index))
.append(symbol_to_doc(alloc, *structure)),
RuntimeErrorFunction(s) => alloc.text(format!("ErrorFunction {}", s)),
GetTagId { structure, .. } => alloc
.text("GetTagId ")
.append(symbol_to_doc(alloc, *structure)),
UnionAtIndex {
tag_id,
structure,
index,
..
} => alloc
.text(format!("UnionAtIndex (Id {}) (Index {}) ", tag_id, index))
.append(symbol_to_doc(alloc, *structure)),
}
}
}
impl<'a> Stmt<'a> {
pub fn new(
env: &mut Env<'a, '_>,
can_expr: roc_can::expr::Expr,
var: Variable,
procs: &mut Procs<'a>,
layout_cache: &mut LayoutCache<'a>,
) -> Self {
from_can(env, var, can_expr, procs, layout_cache)
}
pub fn to_doc<'b, D, A>(&'b self, alloc: &'b D) -> DocBuilder<'b, D, A>
where
D: DocAllocator<'b, A>,
D::Doc: Clone,
A: Clone,
{
use Stmt::*;
match self {
Let(symbol, expr, _layout, cont) => alloc
.text("let ")
.append(symbol_to_doc(alloc, *symbol))
//.append(" : ")
//.append(alloc.text(format!("{:?}", _layout)))
.append(" = ")
.append(expr.to_doc(alloc))
.append(";")
.append(alloc.hardline())
.append(cont.to_doc(alloc)),
Refcounting(modify, cont) => modify
.to_doc(alloc)
.append(alloc.hardline())
.append(cont.to_doc(alloc)),
Ret(symbol) => alloc
.text("ret ")
.append(symbol_to_doc(alloc, *symbol))
.append(";"),
Switch {
cond_symbol,
branches,
default_branch,
..
} => {
match branches {
[(1, info, pass)] => {
let fail = default_branch.1;
alloc
.text("if ")
.append(symbol_to_doc(alloc, *cond_symbol))
.append(" then")
.append(info.to_doc(alloc))
.append(alloc.hardline())
.append(pass.to_doc(alloc).indent(4))
.append(alloc.hardline())
.append(alloc.text("else"))
.append(default_branch.0.to_doc(alloc))
.append(alloc.hardline())
.append(fail.to_doc(alloc).indent(4))
}
_ => {
let default_doc = alloc
.text("default:")
.append(alloc.hardline())
.append(default_branch.1.to_doc(alloc).indent(4))
.indent(4);
let branches_docs = branches
.iter()
.map(|(tag, _info, expr)| {
alloc
.text(format!("case {}:", tag))
.append(alloc.hardline())
.append(expr.to_doc(alloc).indent(4))
.indent(4)
})
.chain(std::iter::once(default_doc));
//
alloc
.text("switch ")
.append(symbol_to_doc(alloc, *cond_symbol))
.append(":")
.append(alloc.hardline())
.append(alloc.intersperse(
branches_docs,
alloc.hardline().append(alloc.hardline()),
))
.append(alloc.hardline())
}
}
}
RuntimeError(s) => alloc.text(format!("Error {}", s)),
Join {
id,
parameters,
body: continuation,
remainder,
} => {
let it = parameters.iter().map(|p| symbol_to_doc(alloc, p.symbol));
alloc.intersperse(
vec![
alloc
.text("joinpoint ")
.append(join_point_to_doc(alloc, *id))
.append(" ".repeat(parameters.len().min(1)))
.append(alloc.intersperse(it, alloc.space()))
.append(":"),
continuation.to_doc(alloc).indent(4),
alloc.text("in"),
remainder.to_doc(alloc),
],
alloc.hardline(),
)
}
Jump(id, arguments) => {
let it = arguments.iter().map(|s| symbol_to_doc(alloc, *s));
alloc
.text("jump ")
.append(join_point_to_doc(alloc, *id))
.append(" ".repeat(arguments.len().min(1)))
.append(alloc.intersperse(it, alloc.space()))
.append(";")
}
}
}
pub fn to_pretty(&self, width: usize) -> String {
let allocator = BoxAllocator;
let mut w = std::vec::Vec::new();
self.to_doc::<_, ()>(&allocator)
.1
.render(width, &mut w)
.unwrap();
w.push(b'\n');
String::from_utf8(w).unwrap()
}
pub fn is_terminal(&self) -> bool {
use Stmt::*;
match self {
Switch { .. } => {
// TODO is this the reason Lean only looks at the outermost `when`?
true
}
Ret(_) => true,
Jump(_, _) => true,
_ => false,
}
}
}
/// turn record/tag patterns into a when expression, e.g.
///
/// foo = \{ x } -> body
///
/// becomes
///
/// foo = \r -> when r is { x } -> body
///
/// conversion of one-pattern when expressions will do the most optimal thing
#[allow(clippy::type_complexity)]
fn patterns_to_when<'a>(
env: &mut Env<'a, '_>,
layout_cache: &mut LayoutCache<'a>,
patterns: std::vec::Vec<(Variable, Located<roc_can::pattern::Pattern>)>,
body_var: Variable,
body: Located<roc_can::expr::Expr>,
) -> Result<
(
Vec<'a, Variable>,
Vec<'a, Symbol>,
Located<roc_can::expr::Expr>,
),
Located<RuntimeError>,
> {
let mut arg_vars = Vec::with_capacity_in(patterns.len(), env.arena);
let mut symbols = Vec::with_capacity_in(patterns.len(), env.arena);
let mut body = Ok(body);
// patterns that are not yet in a when (e.g. in let or function arguments) must be irrefutable
// to pass type checking. So the order in which we add them to the body does not matter: there
// are only stores anyway, no branches.
//
// NOTE this fails if the pattern contains rigid variables,
// see https://github.com/rtfeldman/roc/issues/786
// this must be fixed when moving exhaustiveness checking to the new canonical AST
for (pattern_var, pattern) in patterns.into_iter() {
let context = crate::exhaustive::Context::BadArg;
let mono_pattern = match from_can_pattern(env, layout_cache, &pattern.value) {
Ok((pat, assignments)) => {
for (symbol, variable, expr) in assignments.into_iter().rev() {
if let Ok(old_body) = body {
let def = roc_can::def::Def {
annotation: None,
expr_var: variable,
loc_expr: Located::at(pattern.region, expr),
loc_pattern: Located::at(
pattern.region,
roc_can::pattern::Pattern::Identifier(symbol),
),
pattern_vars: std::iter::once((symbol, variable)).collect(),
};
let new_expr = roc_can::expr::Expr::LetNonRec(
Box::new(def),
Box::new(old_body),
variable,
);
let new_body = Located {
region: pattern.region,
value: new_expr,
};
body = Ok(new_body);
}
}
pat
}
Err(runtime_error) => {
// Even if the body was Ok, replace it with this Err.
// If it was already an Err, leave it at that Err, so the first
// RuntimeError we encountered remains the first.
body = body.and({
Err(Located {
region: pattern.region,
value: runtime_error,
})
});
continue;
}
};
match crate::exhaustive::check(
pattern.region,
&[(
Located::at(pattern.region, mono_pattern.clone()),
crate::exhaustive::Guard::NoGuard,
)],
context,
) {
Ok(_) => {
// Replace the body with a new one, but only if it was Ok.
if let Ok(unwrapped_body) = body {
let (new_symbol, new_body) =
pattern_to_when(env, pattern_var, pattern, body_var, unwrapped_body);
symbols.push(new_symbol);
arg_vars.push(pattern_var);
body = Ok(new_body)
}
}
Err(errors) => {
for error in errors {
env.problems.push(MonoProblem::PatternProblem(error))
}
let value = RuntimeError::UnsupportedPattern(pattern.region);
// Even if the body was Ok, replace it with this Err.
// If it was already an Err, leave it at that Err, so the first
// RuntimeError we encountered remains the first.
body = body.and({
Err(Located {
region: pattern.region,
value,
})
});
}
}
}
match body {
Ok(body) => Ok((arg_vars, symbols, body)),
Err(loc_error) => Err(loc_error),
}
}
/// turn irrefutable patterns into when. For example
///
/// foo = \{ x } -> body
///
/// Assuming the above program typechecks, the pattern match cannot fail
/// (it is irrefutable). It becomes
///
/// foo = \r ->
/// when r is
/// { x } -> body
///
/// conversion of one-pattern when expressions will do the most optimal thing
fn pattern_to_when<'a>(
env: &mut Env<'a, '_>,
pattern_var: Variable,
pattern: Located<roc_can::pattern::Pattern>,
body_var: Variable,
body: Located<roc_can::expr::Expr>,
) -> (Symbol, Located<roc_can::expr::Expr>) {
use roc_can::expr::Expr::*;
use roc_can::expr::WhenBranch;
use roc_can::pattern::Pattern::*;
match &pattern.value {
Identifier(symbol) => (*symbol, body),
Underscore => {
// for underscore we generate a dummy Symbol
(env.unique_symbol(), body)
}
Shadowed(region, loc_ident) => {
let error = roc_problem::can::RuntimeError::Shadowing {
original_region: *region,
shadow: loc_ident.clone(),
};
(env.unique_symbol(), Located::at_zero(RuntimeError(error)))
}
UnsupportedPattern(region) => {
// create the runtime error here, instead of delegating to When.
// UnsupportedPattern should then never occur in When
let error = roc_problem::can::RuntimeError::UnsupportedPattern(*region);
(env.unique_symbol(), Located::at_zero(RuntimeError(error)))
}
MalformedPattern(problem, region) => {
// create the runtime error here, instead of delegating to When.
let error = roc_problem::can::RuntimeError::MalformedPattern(*problem, *region);
(env.unique_symbol(), Located::at_zero(RuntimeError(error)))
}
AppliedTag { .. } | RecordDestructure { .. } => {
let symbol = env.unique_symbol();
let wrapped_body = When {
cond_var: pattern_var,
expr_var: body_var,
region: Region::zero(),
loc_cond: Box::new(Located::at_zero(Var(symbol))),
branches: vec![WhenBranch {
patterns: vec![pattern],
value: body,
guard: None,
}],
};
(symbol, Located::at_zero(wrapped_body))
}
IntLiteral(_, _, _) | NumLiteral(_, _, _) | FloatLiteral(_, _, _) | StrLiteral(_) => {
// These patters are refutable, and thus should never occur outside a `when` expression
// They should have been replaced with `UnsupportedPattern` during canonicalization
unreachable!("refutable pattern {:?} where irrefutable pattern is expected. This should never happen!", pattern.value)
}
}
}
pub fn specialize_all<'a>(
env: &mut Env<'a, '_>,
mut procs: Procs<'a>,
externals_others_need: ExternalSpecializations<'a>,
layout_cache: &mut LayoutCache<'a>,
) -> Procs<'a> {
specialize_all_help(env, &mut procs, externals_others_need, layout_cache);
// When calling from_can, pending_specializations should be unavailable.
// This must be a single pass, and we must not add any more entries to it!
let opt_pending_specializations = std::mem::replace(&mut procs.pending_specializations, None);
for (name, by_layout) in opt_pending_specializations.into_iter().flatten() {
for (outside_layout, pending) in by_layout.into_iter() {
// If we've already seen this (Symbol, Layout) combination before,
// don't try to specialize it again. If we do, we'll loop forever!
//
// NOTE: this #[allow(clippy::map_entry)] here is for correctness!
// Changing it to use .entry() would necessarily make it incorrect.
#[allow(clippy::map_entry)]
if !procs.specialized.contains_key(&(name, outside_layout)) {
// TODO should pending_procs hold a Rc<Proc>?
let partial_proc = match procs.partial_procs.get(&name) {
Some(v) => v.clone(),
None => {
// TODO this assumes the specialization is done by another module
// make sure this does not become a problem down the road!
continue;
}
};
// Mark this proc as in-progress, so if we're dealing with
// mutually recursive functions, we don't loop forever.
// (We had a bug around this before this system existed!)
procs.specialized.insert((name, outside_layout), InProgress);
match specialize(
env,
&mut procs,
name,
layout_cache,
pending.clone(),
partial_proc,
) {
Ok((proc, layout)) => {
// TODO thiscode is duplicated elsewhere
let top_level = ProcLayout::from_raw(env.arena, layout);
if procs.module_thunks.contains(&proc.name) {
debug_assert!(
top_level.arguments.is_empty(),
"{:?} from {:?}",
name,
layout
);
}
debug_assert_eq!(outside_layout, top_level, " in {:?}", name);
procs.specialized.insert((name, top_level), Done(proc));
}
Err(SpecializeFailure {
attempted_layout, ..
}) => {
let proc = generate_runtime_error_function(env, name, attempted_layout);
let top_level = ProcLayout::from_raw(env.arena, attempted_layout);
procs.specialized.insert((name, top_level), Done(proc));
}
}
}
}
}
procs
}
fn specialize_all_help<'a>(
env: &mut Env<'a, '_>,
procs: &mut Procs<'a>,
externals_others_need: ExternalSpecializations<'a>,
layout_cache: &mut LayoutCache<'a>,
) {
let mut symbol_solved_type = Vec::new_in(env.arena);
for (symbol, solved_types) in externals_others_need.specs.iter() {
// for some unclear reason, the MutSet does not deduplicate according to the hash
// instance. So we do it manually here
let mut as_vec: std::vec::Vec<_> = solved_types.iter().collect();
use std::collections::hash_map::DefaultHasher;
use std::hash::{Hash, Hasher};
let hash_the_thing = |x: &SolvedType| {
let mut hasher = DefaultHasher::new();
x.hash(&mut hasher);
hasher.finish()
};
as_vec.sort_by_key(|x| hash_the_thing(x));
as_vec.dedup_by_key(|x| hash_the_thing(x));
for s in as_vec {
symbol_solved_type.push((*symbol, s.clone()));
}
}
for (name, solved_type) in symbol_solved_type.into_iter() {
let partial_proc = match procs.partial_procs.get(&name) {
Some(v) => v.clone(),
None => {
panic!("Cannot find a partial proc for {:?}", name);
}
};
// TODO I believe this sis also duplicated
match specialize_solved_type(
env,
procs,
name,
layout_cache,
solved_type,
BumpMap::new_in(env.arena),
partial_proc,
) {
Ok((proc, layout)) => {
let top_level = ProcLayout::from_raw(env.arena, layout);
if procs.module_thunks.contains(&name) {
debug_assert!(top_level.arguments.is_empty());
}
procs.specialized.insert((name, top_level), Done(proc));
}
Err(SpecializeFailure {
problem: _,
attempted_layout,
}) => {
let proc = generate_runtime_error_function(env, name, attempted_layout);
let top_level = ProcLayout::from_raw(env.arena, attempted_layout);
procs.specialized.insert((name, top_level), Done(proc));
}
}
}
}
fn generate_runtime_error_function<'a>(
env: &mut Env<'a, '_>,
name: Symbol,
layout: RawFunctionLayout<'a>,
) -> Proc<'a> {
let mut msg = bumpalo::collections::string::String::with_capacity_in(80, env.arena);
use std::fmt::Write;
write!(
&mut msg,
"The {:?} function could not be generated, likely due to a type error.",
name
)
.unwrap();
eprintln!("emitted runtime error function {:?}", &msg);
let runtime_error = Stmt::RuntimeError(msg.into_bump_str());
let (args, ret_layout) = match layout {
RawFunctionLayout::Function(arg_layouts, lambda_set, ret_layout) => {
let mut args = Vec::with_capacity_in(arg_layouts.len(), env.arena);
for arg in arg_layouts {
args.push((*arg, env.unique_symbol()));
}
args.push((Layout::LambdaSet(lambda_set), Symbol::ARG_CLOSURE));
(args.into_bump_slice(), *ret_layout)
}
RawFunctionLayout::ZeroArgumentThunk(ret_layout) => (&[] as &[_], ret_layout),
};
Proc {
name,
args,
body: runtime_error,
closure_data_layout: None,
ret_layout,
is_self_recursive: SelfRecursive::NotSelfRecursive,
must_own_arguments: false,
host_exposed_layouts: HostExposedLayouts::NotHostExposed,
}
}
fn specialize_external<'a>(
env: &mut Env<'a, '_>,
procs: &mut Procs<'a>,
proc_name: Symbol,
layout_cache: &mut LayoutCache<'a>,
fn_var: Variable,
host_exposed_variables: &[(Symbol, Variable)],
partial_proc: PartialProc<'a>,
) -> Result<Proc<'a>, LayoutProblem> {
let PartialProc {
annotation,
pattern_symbols,
captured_symbols,
body,
is_self_recursive,
} = partial_proc;
// unify the called function with the specialized signature, then specialize the function body
let snapshot = env.subs.snapshot();
let cache_snapshot = layout_cache.snapshot();
let _unified = roc_unify::unify::unify(env.subs, annotation, fn_var);
// This will not hold for programs with type errors
// let is_valid = matches!(unified, roc_unify::unify::Unified::Success(_));
// debug_assert!(is_valid, "unificaton failure for {:?}", proc_name);
// if this is a closure, add the closure record argument
let pattern_symbols = match captured_symbols {
CapturedSymbols::None => pattern_symbols,
CapturedSymbols::Captured([]) => pattern_symbols,
CapturedSymbols::Captured(_) => {
let mut temp = Vec::from_iter_in(pattern_symbols.iter().copied(), env.arena);
temp.push(Symbol::ARG_CLOSURE);
temp.into_bump_slice()
}
};
let specialized =
build_specialized_proc_from_var(env, layout_cache, proc_name, pattern_symbols, fn_var)?;
// determine the layout of aliases/rigids exposed to the host
let host_exposed_layouts = if host_exposed_variables.is_empty() {
HostExposedLayouts::NotHostExposed
} else {
let mut aliases = BumpMap::new_in(env.arena);
for (symbol, variable) in host_exposed_variables {
let layout = layout_cache
.raw_from_var(env.arena, *variable, env.subs)
.unwrap();
let name = env.unique_symbol();
match layout {
RawFunctionLayout::Function(argument_layouts, lambda_set, return_layout) => {
let assigned = env.unique_symbol();
let mut argument_symbols =
Vec::with_capacity_in(argument_layouts.len(), env.arena);
let mut proc_arguments =
Vec::with_capacity_in(argument_layouts.len() + 1, env.arena);
let mut top_level_arguments =
Vec::with_capacity_in(argument_layouts.len() + 1, env.arena);
for layout in argument_layouts {
let symbol = env.unique_symbol();
proc_arguments.push((*layout, symbol));
argument_symbols.push(symbol);
top_level_arguments.push(*layout);
}
// the proc needs to take an extra closure argument
let lambda_set_layout = Layout::LambdaSet(lambda_set);
proc_arguments.push((lambda_set_layout, Symbol::ARG_CLOSURE));
// this should also be reflected in the TopLevel signature
top_level_arguments.push(lambda_set_layout);
let hole = env.arena.alloc(Stmt::Ret(assigned));
let body = match_on_lambda_set(
env,
lambda_set,
Symbol::ARG_CLOSURE,
argument_symbols.into_bump_slice(),
argument_layouts,
*return_layout,
assigned,
hole,
);
let proc = Proc {
name,
args: proc_arguments.into_bump_slice(),
body,
closure_data_layout: None,
ret_layout: *return_layout,
is_self_recursive: SelfRecursive::NotSelfRecursive,
must_own_arguments: false,
host_exposed_layouts: HostExposedLayouts::NotHostExposed,
};
let top_level = ProcLayout::new(
env.arena,
top_level_arguments.into_bump_slice(),
*return_layout,
);
procs
.specialized
.insert((name, top_level), InProgressProc::Done(proc));
aliases.insert(*symbol, (name, top_level, layout));
}
RawFunctionLayout::ZeroArgumentThunk(_) => {
unreachable!("so far");
}
}
}
HostExposedLayouts::HostExposed {
rigids: BumpMap::new_in(env.arena),
aliases,
}
};
let recursivity = if is_self_recursive {
SelfRecursive::SelfRecursive(JoinPointId(env.unique_symbol()))
} else {
SelfRecursive::NotSelfRecursive
};
let mut specialized_body = from_can(env, fn_var, body, procs, layout_cache);
match specialized {
SpecializedLayout::FunctionPointerBody {
ret_layout,
closure: opt_closure_layout,
} => {
// this is a function body like
//
// foo = Num.add
//
// we need to expand this to
//
// foo = \x,y -> Num.add x y
// reset subs, so we don't get type errors when specializing for a different signature
layout_cache.rollback_to(cache_snapshot);
env.subs.rollback_to(snapshot);
let closure_data_layout = match opt_closure_layout {
Some(lambda_set) => Layout::LambdaSet(lambda_set),
None => Layout::Struct(&[]),
};
// I'm not sure how to handle the closure case, does it ever occur?
debug_assert!(matches!(captured_symbols, CapturedSymbols::None));
let proc = Proc {
name: proc_name,
args: &[],
body: specialized_body,
closure_data_layout: Some(closure_data_layout),
ret_layout,
is_self_recursive: recursivity,
must_own_arguments: false,
host_exposed_layouts,
};
Ok(proc)
}
SpecializedLayout::FunctionBody {
arguments: proc_args,
closure: opt_closure_layout,
ret_layout,
} => {
// unpack the closure symbols, if any
match (opt_closure_layout, captured_symbols) {
(Some(closure_layout), CapturedSymbols::Captured(captured)) => {
// debug_assert!(!captured.is_empty());
match closure_layout.layout_for_member(proc_name) {
ClosureRepresentation::Union {
alphabetic_order_fields: field_layouts,
union_layout,
tag_id,
..
} => {
debug_assert!(matches!(union_layout, UnionLayout::NonRecursive(_)));
debug_assert_eq!(field_layouts.len(), captured.len());
// captured variables are in symbol-alphabetic order, but now we want
// them ordered by their alignment requirements
let mut combined = Vec::from_iter_in(
captured.iter().map(|(x, _)| x).zip(field_layouts.iter()),
env.arena,
);
let ptr_bytes = env.ptr_bytes;
combined.sort_by(|(_, layout1), (_, layout2)| {
let size1 = layout1.alignment_bytes(ptr_bytes);
let size2 = layout2.alignment_bytes(ptr_bytes);
size2.cmp(&size1)
});
for (index, (symbol, layout)) in combined.iter().enumerate() {
let expr = Expr::UnionAtIndex {
tag_id,
structure: Symbol::ARG_CLOSURE,
index: index as u64,
union_layout,
};
specialized_body = Stmt::Let(
**symbol,
expr,
**layout,
env.arena.alloc(specialized_body),
);
}
}
ClosureRepresentation::AlphabeticOrderStruct(field_layouts) => {
// captured variables are in symbol-alphabetic order, but now we want
// them ordered by their alignment requirements
let mut combined = Vec::from_iter_in(
captured.iter().map(|(x, _)| x).zip(field_layouts.iter()),
env.arena,
);
let ptr_bytes = env.ptr_bytes;
combined.sort_by(|(_, layout1), (_, layout2)| {
let size1 = layout1.alignment_bytes(ptr_bytes);
let size2 = layout2.alignment_bytes(ptr_bytes);
size2.cmp(&size1)
});
debug_assert_eq!(
captured.len(),
field_layouts.len(),
"{:?} captures {:?} but has layout {:?}",
proc_name,
&captured,
&field_layouts
);
for (index, (symbol, layout)) in combined.iter().enumerate() {
let expr = Expr::StructAtIndex {
index: index as _,
field_layouts,
structure: Symbol::ARG_CLOSURE,
};
specialized_body = Stmt::Let(
**symbol,
expr,
**layout,
env.arena.alloc(specialized_body),
);
}
// let symbol = captured[0].0;
//
// substitute_in_exprs(
// env.arena,
// &mut specialized_body,
// symbol,
// Symbol::ARG_CLOSURE,
// );
}
ClosureRepresentation::Other(layout) => match layout {
Layout::Builtin(Builtin::Int1) => {
// just ignore this value
// IDEA don't pass this value in the future
}
Layout::Builtin(Builtin::Int8) => {
// just ignore this value
// IDEA don't pass this value in the future
}
other => {
// NOTE other values always should be wrapped in a 1-element record
unreachable!(
"{:?} is not a valid closure data representation",
other
)
}
},
}
}
(None, CapturedSymbols::None) | (None, CapturedSymbols::Captured([])) => {}
_ => unreachable!("to closure or not to closure?"),
}
// reset subs, so we don't get type errors when specializing for a different signature
layout_cache.rollback_to(cache_snapshot);
env.subs.rollback_to(snapshot);
let closure_data_layout = match opt_closure_layout {
Some(lambda_set) => Some(Layout::LambdaSet(lambda_set)),
None => None,
};
let proc = Proc {
name: proc_name,
args: proc_args,
body: specialized_body,
closure_data_layout,
ret_layout,
is_self_recursive: recursivity,
must_own_arguments: false,
host_exposed_layouts,
};
Ok(proc)
}
}
}
enum SpecializedLayout<'a> {
/// A body like `foo = \a,b,c -> ...`
FunctionBody {
arguments: &'a [(Layout<'a>, Symbol)],
closure: Option<LambdaSet<'a>>,
ret_layout: Layout<'a>,
},
/// A body like `foo = Num.add`
FunctionPointerBody {
closure: Option<LambdaSet<'a>>,
ret_layout: Layout<'a>,
},
}
#[allow(clippy::type_complexity)]
fn build_specialized_proc_from_var<'a>(
env: &mut Env<'a, '_>,
layout_cache: &mut LayoutCache<'a>,
proc_name: Symbol,
pattern_symbols: &[Symbol],
fn_var: Variable,
) -> Result<SpecializedLayout<'a>, LayoutProblem> {
match layout_cache.raw_from_var(env.arena, fn_var, env.subs)? {
RawFunctionLayout::Function(pattern_layouts, closure_layout, ret_layout) => {
let mut pattern_layouts_vec = Vec::with_capacity_in(pattern_layouts.len(), env.arena);
pattern_layouts_vec.extend_from_slice(pattern_layouts);
build_specialized_proc(
env.arena,
proc_name,
pattern_symbols,
pattern_layouts_vec,
Some(closure_layout),
*ret_layout,
)
}
RawFunctionLayout::ZeroArgumentThunk(ret_layout) => {
// a top-level constant 0-argument thunk
build_specialized_proc(
env.arena,
proc_name,
pattern_symbols,
Vec::new_in(env.arena),
None,
ret_layout,
)
}
}
}
#[allow(clippy::type_complexity)]
fn build_specialized_proc<'a>(
arena: &'a Bump,
proc_name: Symbol,
pattern_symbols: &[Symbol],
pattern_layouts: Vec<'a, Layout<'a>>,
lambda_set: Option<LambdaSet<'a>>,
ret_layout: Layout<'a>,
) -> Result<SpecializedLayout<'a>, LayoutProblem> {
use SpecializedLayout::*;
let mut proc_args = Vec::with_capacity_in(pattern_layouts.len(), arena);
let pattern_layouts_len = pattern_layouts.len();
for (arg_layout, arg_name) in pattern_layouts.into_iter().zip(pattern_symbols.iter()) {
proc_args.push((arg_layout, *arg_name));
}
// Given
//
// foo =
// x = 42
//
// f = \{} -> x
//
// We desugar that into
//
// f = \{}, x -> x
//
// foo =
// x = 42
//
// f_closure = { ptr: f, closure: x }
//
// then
match lambda_set {
Some(lambda_set) if pattern_symbols.last() == Some(&Symbol::ARG_CLOSURE) => {
// here we define the lifted (now top-level) f function. Its final argument is `Symbol::ARG_CLOSURE`,
// it stores the closure structure (just an integer in this case)
proc_args.push((Layout::LambdaSet(lambda_set), Symbol::ARG_CLOSURE));
debug_assert_eq!(
pattern_layouts_len + 1,
pattern_symbols.len(),
"Tried to zip two vecs with different lengths in {:?}!",
proc_name,
);
let proc_args = proc_args.into_bump_slice();
Ok(FunctionBody {
arguments: proc_args,
closure: Some(lambda_set),
ret_layout,
})
}
Some(lambda_set) => {
// a function that returns a function, but is not itself a closure
// e.g. f = Num.add
// make sure there is not arg_closure argument without a closure layout
debug_assert!(pattern_symbols.last() != Some(&Symbol::ARG_CLOSURE));
use std::cmp::Ordering;
match pattern_layouts_len.cmp(&pattern_symbols.len()) {
Ordering::Equal => {
let proc_args = proc_args.into_bump_slice();
Ok(FunctionBody {
arguments: proc_args,
closure: None,
ret_layout,
})
}
Ordering::Greater => {
if pattern_symbols.is_empty() {
let ret_layout = Layout::LambdaSet(lambda_set);
Ok(FunctionPointerBody {
closure: None,
ret_layout,
})
} else {
// so far, the problem when hitting this branch was always somewhere else
// I think this branch should not be reachable in a bugfree compiler
panic!(
"more arguments (according to the layout) than argument symbols for {:?}",
proc_name
)
}
}
Ordering::Less => panic!(
"more argument symbols than arguments (according to the layout) for {:?}",
proc_name
),
}
}
None => {
// else we're making a normal function, no closure problems to worry about
// we'll just assert some things
// make sure there is not arg_closure argument without a closure layout
debug_assert!(pattern_symbols.last() != Some(&Symbol::ARG_CLOSURE));
use std::cmp::Ordering;
match pattern_layouts_len.cmp(&pattern_symbols.len()) {
Ordering::Equal => {
let proc_args = proc_args.into_bump_slice();
Ok(FunctionBody {
arguments: proc_args,
closure: None,
ret_layout,
})
}
Ordering::Greater => {
if pattern_symbols.is_empty() {
Ok(FunctionPointerBody {
closure: None,
ret_layout,
})
} else {
// so far, the problem when hitting this branch was always somewhere else
// I think this branch should not be reachable in a bugfree compiler
panic!(
"more arguments (according to the layout) than argument symbols for {:?}",
proc_name
)
}
}
Ordering::Less => panic!(
"more argument symbols than arguments (according to the layout) for {:?}",
proc_name
),
}
}
}
}
#[derive(Debug)]
struct SpecializeFailure<'a> {
/// The layout we attempted to create
attempted_layout: RawFunctionLayout<'a>,
/// The problem we ran into while creating it
problem: LayoutProblem,
}
type SpecializeSuccess<'a> = (Proc<'a>, RawFunctionLayout<'a>);
fn specialize<'a>(
env: &mut Env<'a, '_>,
procs: &mut Procs<'a>,
proc_name: Symbol,
layout_cache: &mut LayoutCache<'a>,
pending: PendingSpecialization,
partial_proc: PartialProc<'a>,
) -> Result<SpecializeSuccess<'a>, SpecializeFailure<'a>> {
let PendingSpecialization {
solved_type,
host_exposed_aliases,
..
} = pending;
specialize_solved_type(
env,
procs,
proc_name,
layout_cache,
solved_type,
host_exposed_aliases,
partial_proc,
)
}
fn introduce_solved_type_to_subs<'a>(env: &mut Env<'a, '_>, solved_type: &SolvedType) -> Variable {
use roc_solve::solve::insert_type_into_subs;
use roc_types::solved_types::{to_type, FreeVars};
use roc_types::subs::VarStore;
let mut free_vars = FreeVars::default();
let mut var_store = VarStore::new_from_subs(env.subs);
let before = var_store.peek();
let normal_type = to_type(solved_type, &mut free_vars, &mut var_store);
let after = var_store.peek();
let variables_introduced = after - before;
env.subs.extend_by(variables_introduced as usize);
insert_type_into_subs(env.subs, &normal_type)
}
fn specialize_solved_type<'a>(
env: &mut Env<'a, '_>,
procs: &mut Procs<'a>,
proc_name: Symbol,
layout_cache: &mut LayoutCache<'a>,
solved_type: SolvedType,
host_exposed_aliases: BumpMap<Symbol, SolvedType>,
partial_proc: PartialProc<'a>,
) -> Result<SpecializeSuccess<'a>, SpecializeFailure<'a>> {
specialize_variable_help(
env,
procs,
proc_name,
layout_cache,
|env| introduce_solved_type_to_subs(env, &solved_type),
host_exposed_aliases,
partial_proc,
)
}
fn specialize_variable<'a>(
env: &mut Env<'a, '_>,
procs: &mut Procs<'a>,
proc_name: Symbol,
layout_cache: &mut LayoutCache<'a>,
fn_var: Variable,
host_exposed_aliases: BumpMap<Symbol, SolvedType>,
partial_proc: PartialProc<'a>,
) -> Result<SpecializeSuccess<'a>, SpecializeFailure<'a>> {
specialize_variable_help(
env,
procs,
proc_name,
layout_cache,
|_| fn_var,
host_exposed_aliases,
partial_proc,
)
}
fn specialize_variable_help<'a, F>(
env: &mut Env<'a, '_>,
procs: &mut Procs<'a>,
proc_name: Symbol,
layout_cache: &mut LayoutCache<'a>,
fn_var_thunk: F,
host_exposed_aliases: BumpMap<Symbol, SolvedType>,
partial_proc: PartialProc<'a>,
) -> Result<SpecializeSuccess<'a>, SpecializeFailure<'a>>
where
F: FnOnce(&mut Env<'a, '_>) -> Variable,
{
// add the specializations that other modules require of us
use roc_solve::solve::instantiate_rigids;
let snapshot = env.subs.snapshot();
let cache_snapshot = layout_cache.snapshot();
// important: evaluate after the snapshot has been created!
let fn_var = fn_var_thunk(env);
// for debugging only
let raw = layout_cache
.raw_from_var(env.arena, fn_var, env.subs)
.unwrap_or_else(|err| panic!("TODO handle invalid function {:?}", err));
let raw = if procs.module_thunks.contains(&proc_name) {
match raw {
RawFunctionLayout::Function(_, lambda_set, _) => {
RawFunctionLayout::ZeroArgumentThunk(Layout::LambdaSet(lambda_set))
}
_ => raw,
}
} else {
raw
};
// make sure rigid variables in the annotation are converted to flex variables
instantiate_rigids(env.subs, partial_proc.annotation);
let mut host_exposed_variables = Vec::with_capacity_in(host_exposed_aliases.len(), env.arena);
for (symbol, solved_type) in host_exposed_aliases {
let alias_var = introduce_solved_type_to_subs(env, &solved_type);
host_exposed_variables.push((symbol, alias_var));
}
let specialized = specialize_external(
env,
procs,
proc_name,
layout_cache,
fn_var,
&host_exposed_variables,
partial_proc,
);
match specialized {
Ok(proc) => {
// when successful, the layout after unification should be the layout before unification
// debug_assert_eq!(
// attempted_layout,
// layout_cache
// .from_var(env.arena, fn_var, env.subs)
// .unwrap_or_else(|err| panic!("TODO handle invalid function {:?}", err))
// );
env.subs.rollback_to(snapshot);
layout_cache.rollback_to(cache_snapshot);
Ok((proc, raw))
}
Err(error) => {
env.subs.rollback_to(snapshot);
layout_cache.rollback_to(cache_snapshot);
Err(SpecializeFailure {
problem: error,
attempted_layout: raw,
})
}
}
}
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub struct ProcLayout<'a> {
pub arguments: &'a [Layout<'a>],
pub result: Layout<'a>,
}
impl<'a> ProcLayout<'a> {
pub fn new(arena: &'a Bump, old_arguments: &'a [Layout<'a>], result: Layout<'a>) -> Self {
let mut arguments = Vec::with_capacity_in(old_arguments.len(), arena);
for old in old_arguments {
let other = old;
arguments.push(*other);
}
let other = result;
let new_result = other;
ProcLayout {
arguments: arguments.into_bump_slice(),
result: new_result,
}
}
pub fn from_raw(arena: &'a Bump, raw: RawFunctionLayout<'a>) -> Self {
match raw {
RawFunctionLayout::Function(arguments, lambda_set, result) => {
let arguments = lambda_set.extend_argument_list(arena, arguments);
ProcLayout::new(arena, arguments, *result)
}
RawFunctionLayout::ZeroArgumentThunk(result) => ProcLayout::new(arena, &[], result),
}
}
}
fn specialize_naked_symbol<'a>(
env: &mut Env<'a, '_>,
variable: Variable,
procs: &mut Procs<'a>,
layout_cache: &mut LayoutCache<'a>,
assigned: Symbol,
hole: &'a Stmt<'a>,
symbol: Symbol,
) -> Stmt<'a> {
if procs.module_thunks.contains(&symbol) {
let partial_proc = procs.partial_procs.get(&symbol).unwrap();
let fn_var = partial_proc.annotation;
// This is a top-level declaration, which will code gen to a 0-arity thunk.
let result = call_by_name(
env,
procs,
fn_var,
symbol,
std::vec::Vec::new(),
layout_cache,
assigned,
env.arena.alloc(Stmt::Ret(assigned)),
);
return result;
} else if env.is_imported_symbol(symbol) {
match layout_cache.from_var(env.arena, variable, env.subs) {
Err(e) => panic!("invalid layout {:?}", e),
Ok(_) => {
// this is a 0-arity thunk
let result = call_by_name(
env,
procs,
variable,
symbol,
std::vec::Vec::new(),
layout_cache,
assigned,
env.arena.alloc(Stmt::Ret(assigned)),
);
return result;
}
}
}
let result = match hole {
Stmt::Jump(id, _) => Stmt::Jump(*id, env.arena.alloc([symbol])),
_ => Stmt::Ret(symbol),
};
// if the symbol is a function symbol, ensure it is properly specialized!
let original = symbol;
let opt_fn_var = Some(variable);
// if this is a function symbol, ensure that it's properly specialized!
reuse_function_symbol(
env,
procs,
layout_cache,
opt_fn_var,
symbol,
result,
original,
)
}
macro_rules! match_on_closure_argument {
($env:expr, $procs:expr, $layout_cache:expr, $closure_data_symbol:expr, $closure_data_var:expr, $op:expr, [$($x:expr),* $(,)?], $layout: expr, $assigned:expr, $hole:expr) => {{
let closure_data_layout = return_on_layout_error!(
$env,
$layout_cache.raw_from_var($env.arena, $closure_data_var, $env.subs)
);
let top_level = ProcLayout::from_raw($env.arena, closure_data_layout);
let arena = $env.arena;
let arg_layouts = top_level.arguments;
let ret_layout = top_level.result;
match closure_data_layout {
RawFunctionLayout::Function(_, lambda_set, _) => {
lowlevel_match_on_lambda_set(
$env,
lambda_set,
$op,
$closure_data_symbol,
|top_level_function, closure_data, closure_env_layout, specialization_id| self::Call {
call_type: CallType::HigherOrderLowLevel {
op: $op,
closure_env_layout,
specialization_id,
function_owns_closure_data: false,
arg_layouts,
ret_layout,
},
arguments: arena.alloc([$($x,)* top_level_function, closure_data]),
},
$layout,
$assigned,
$hole,
)
}
RawFunctionLayout::ZeroArgumentThunk(_) => unreachable!("match_on_closure_argument received a zero-argument thunk"),
}
}};
}
fn try_make_literal<'a>(
env: &mut Env<'a, '_>,
can_expr: &roc_can::expr::Expr,
) -> Option<Literal<'a>> {
use roc_can::expr::Expr::*;
match can_expr {
Int(_, precision, _, int) => {
match num_argument_to_int_or_float(env.subs, env.ptr_bytes, *precision, false) {
IntOrFloat::SignedIntType(_) | IntOrFloat::UnsignedIntType(_) => {
Some(Literal::Int(*int))
}
_ => unreachable!("unexpected float precision for integer"),
}
}
Float(_, precision, float_str, float) => {
match num_argument_to_int_or_float(env.subs, env.ptr_bytes, *precision, true) {
IntOrFloat::BinaryFloatType(_) => Some(Literal::Float(*float)),
IntOrFloat::DecimalFloatType => {
let dec = match RocDec::from_str(float_str) {
Some(d) => d,
None => panic!("Invalid decimal for float literal = {}. TODO: Make this a nice, user-friendly error message", float_str),
};
Some(Literal::Decimal(dec))
}
_ => unreachable!("unexpected float precision for integer"),
}
}
// TODO investigate lifetime trouble
// Str(string) => Some(Literal::Str(env.arena.alloc(string))),
Num(var, num_str, num) => {
// first figure out what kind of number this is
match num_argument_to_int_or_float(env.subs, env.ptr_bytes, *var, false) {
IntOrFloat::SignedIntType(_) | IntOrFloat::UnsignedIntType(_) => {
Some(Literal::Int((*num).into()))
}
IntOrFloat::BinaryFloatType(_) => Some(Literal::Float(*num as f64)),
IntOrFloat::DecimalFloatType => {
let dec = match RocDec::from_str(num_str) {
Some(d) => d,
None => panic!(
r"Invalid decimal for float literal = {}. TODO: Make this a nice, user-friendly error message",
num_str
),
};
Some(Literal::Decimal(dec))
}
}
}
_ => None,
}
}
pub fn with_hole<'a>(
env: &mut Env<'a, '_>,
can_expr: roc_can::expr::Expr,
variable: Variable,
procs: &mut Procs<'a>,
layout_cache: &mut LayoutCache<'a>,
assigned: Symbol,
hole: &'a Stmt<'a>,
) -> Stmt<'a> {
use roc_can::expr::Expr::*;
let arena = env.arena;
match can_expr {
Int(_, precision, _, int) => {
match num_argument_to_int_or_float(env.subs, env.ptr_bytes, precision, false) {
IntOrFloat::SignedIntType(precision) => Stmt::Let(
assigned,
Expr::Literal(Literal::Int(int)),
precision.as_layout(),
hole,
),
IntOrFloat::UnsignedIntType(precision) => Stmt::Let(
assigned,
Expr::Literal(Literal::Int(int)),
precision.as_layout(),
hole,
),
_ => unreachable!("unexpected float precision for integer"),
}
}
Float(_, precision, float_str, float) => {
match num_argument_to_int_or_float(env.subs, env.ptr_bytes, precision, true) {
IntOrFloat::BinaryFloatType(precision) => Stmt::Let(
assigned,
Expr::Literal(Literal::Float(float)),
precision.as_layout(),
hole,
),
IntOrFloat::DecimalFloatType => {
let dec = match RocDec::from_str(&float_str) {
Some(d) => d,
None => panic!("Invalid decimal for float literal = {}. TODO: Make this a nice, user-friendly error message", float_str),
};
Stmt::Let(
assigned,
Expr::Literal(Literal::Decimal(dec)),
Layout::Builtin(Builtin::Decimal),
hole,
)
}
_ => unreachable!("unexpected float precision for integer"),
}
}
Str(string) => Stmt::Let(
assigned,
Expr::Literal(Literal::Str(arena.alloc(string))),
Layout::Builtin(Builtin::Str),
hole,
),
Num(var, num_str, num) => {
// first figure out what kind of number this is
match num_argument_to_int_or_float(env.subs, env.ptr_bytes, var, false) {
IntOrFloat::SignedIntType(precision) => Stmt::Let(
assigned,
Expr::Literal(Literal::Int(num.into())),
precision.as_layout(),
hole,
),
IntOrFloat::UnsignedIntType(precision) => Stmt::Let(
assigned,
Expr::Literal(Literal::Int(num.into())),
precision.as_layout(),
hole,
),
IntOrFloat::BinaryFloatType(precision) => Stmt::Let(
assigned,
Expr::Literal(Literal::Float(num as f64)),
precision.as_layout(),
hole,
),
IntOrFloat::DecimalFloatType => {
let dec = match RocDec::from_str(&num_str) {
Some(d) => d,
None => panic!("Invalid decimal for float literal = {}. TODO: Make this a nice, user-friendly error message", num_str),
};
Stmt::Let(
assigned,
Expr::Literal(Literal::Decimal(dec)),
Layout::Builtin(Builtin::Decimal),
hole,
)
}
}
}
LetNonRec(def, cont, _) => {
if let roc_can::pattern::Pattern::Identifier(symbol) = &def.loc_pattern.value {
if let Closure {
function_type,
return_type,
recursive,
arguments,
loc_body: boxed_body,
captured_symbols,
..
} = def.loc_expr.value
{
// Extract Procs, but discard the resulting Expr::Load.
// That Load looks up the pointer, which we won't use here!
let loc_body = *boxed_body;
let is_self_recursive =
!matches!(recursive, roc_can::expr::Recursive::NotRecursive);
// this should be a top-level declaration, and hence have no captured symbols
// if we ever do hit this (and it's not a bug), we should make sure to put the
// captured symbols into a CapturedSymbols and give it to insert_named
debug_assert!(captured_symbols.is_empty());
procs.insert_named(
env,
layout_cache,
*symbol,
function_type,
arguments,
loc_body,
CapturedSymbols::None,
is_self_recursive,
return_type,
);
return with_hole(
env,
cont.value,
variable,
procs,
layout_cache,
assigned,
hole,
);
}
}
if let roc_can::pattern::Pattern::Identifier(symbol) = def.loc_pattern.value {
// special-case the form `let x = E in x`
// not doing so will drop the `hole`
match &cont.value {
roc_can::expr::Expr::Var(original) if *original == symbol => {
return with_hole(
env,
def.loc_expr.value,
def.expr_var,
procs,
layout_cache,
assigned,
hole,
);
}
_ => {}
}
// continue with the default path
let mut stmt = with_hole(
env,
cont.value,
variable,
procs,
layout_cache,
assigned,
hole,
);
// a variable is aliased
if let roc_can::expr::Expr::Var(original) = def.loc_expr.value {
// a variable is aliased, e.g.
//
// foo = bar
//
// or
//
// foo = RBTRee.empty
stmt = handle_variable_aliasing(
env,
procs,
layout_cache,
def.expr_var,
symbol,
original,
stmt,
);
stmt
} else {
with_hole(
env,
def.loc_expr.value,
def.expr_var,
procs,
layout_cache,
symbol,
env.arena.alloc(stmt),
)
}
} else {
// this may be a destructure pattern
let (mono_pattern, assignments) =
match from_can_pattern(env, layout_cache, &def.loc_pattern.value) {
Ok(v) => v,
Err(_runtime_error) => {
// todo
panic!();
}
};
let context = crate::exhaustive::Context::BadDestruct;
match crate::exhaustive::check(
def.loc_pattern.region,
&[(
Located::at(def.loc_pattern.region, mono_pattern.clone()),
crate::exhaustive::Guard::NoGuard,
)],
context,
) {
Ok(_) => {}
Err(errors) => {
for error in errors {
env.problems.push(MonoProblem::PatternProblem(error))
}
} // TODO make all variables bound in the pattern evaluate to a runtime error
// return Stmt::RuntimeError("TODO non-exhaustive pattern");
}
let mut hole = hole;
for (symbol, variable, expr) in assignments {
let stmt = with_hole(env, expr, variable, procs, layout_cache, symbol, hole);
hole = env.arena.alloc(stmt);
}
// convert the continuation
let mut stmt = with_hole(
env,
cont.value,
variable,
procs,
layout_cache,
assigned,
hole,
);
let outer_symbol = env.unique_symbol();
stmt = store_pattern(env, procs, layout_cache, &mono_pattern, outer_symbol, stmt);
// convert the def body, store in outer_symbol
with_hole(
env,
def.loc_expr.value,
def.expr_var,
procs,
layout_cache,
outer_symbol,
env.arena.alloc(stmt),
)
}
}
LetRec(defs, cont, _) => {
// because Roc is strict, only functions can be recursive!
for def in defs.into_iter() {
if let roc_can::pattern::Pattern::Identifier(symbol) = &def.loc_pattern.value {
if let Closure {
function_type,
return_type,
recursive,
arguments,
loc_body: boxed_body,
..
} = def.loc_expr.value
{
// Extract Procs, but discard the resulting Expr::Load.
// That Load looks up the pointer, which we won't use here!
let loc_body = *boxed_body;
let is_self_recursive =
!matches!(recursive, roc_can::expr::Recursive::NotRecursive);
procs.insert_named(
env,
layout_cache,
*symbol,
function_type,
arguments,
loc_body,
CapturedSymbols::None,
is_self_recursive,
return_type,
);
continue;
}
}
unreachable!("recursive value does not have Identifier pattern")
}
with_hole(
env,
cont.value,
variable,
procs,
layout_cache,
assigned,
hole,
)
}
Var(symbol) => {
specialize_naked_symbol(env, variable, procs, layout_cache, assigned, hole, symbol)
}
Tag {
variant_var,
name: tag_name,
arguments: args,
..
} => {
let arena = env.arena;
debug_assert!(!matches!(
env.subs.get_content_without_compacting(variant_var),
Content::Structure(FlatType::Func(_, _, _))
));
convert_tag_union(
env,
variant_var,
assigned,
hole,
tag_name,
procs,
layout_cache,
args,
arena,
)
}
ZeroArgumentTag {
variant_var,
name: tag_name,
arguments: args,
ext_var,
closure_name,
} => {
let arena = env.arena;
let content = env.subs.get_content_without_compacting(variant_var);
if let Content::Structure(FlatType::Func(arg_vars, _, ret_var)) = content {
let ret_var = *ret_var;
let arg_vars = *arg_vars;
tag_union_to_function(
env,
arg_vars,
ret_var,
tag_name,
closure_name,
ext_var,
procs,
variant_var,
layout_cache,
assigned,
hole,
)
} else {
convert_tag_union(
env,
variant_var,
assigned,
hole,
tag_name,
procs,
layout_cache,
args,
arena,
)
}
}
Record {
record_var,
mut fields,
..
} => {
let sorted_fields =
crate::layout::sort_record_fields(env.arena, record_var, env.subs, env.ptr_bytes);
let mut field_symbols = Vec::with_capacity_in(fields.len(), env.arena);
let mut can_fields = Vec::with_capacity_in(fields.len(), env.arena);
enum Field {
Function(Symbol, Variable),
ValueSymbol,
Field(roc_can::expr::Field),
}
for (label, variable, _) in sorted_fields.into_iter() {
// TODO how should function pointers be handled here?
use ReuseSymbol::*;
match fields.remove(&label) {
Some(field) => match can_reuse_symbol(env, procs, &field.loc_expr.value) {
Imported(symbol) | LocalFunction(symbol) => {
field_symbols.push(symbol);
can_fields.push(Field::Function(symbol, variable));
}
Value(reusable) => {
field_symbols.push(reusable);
can_fields.push(Field::ValueSymbol);
}
NotASymbol => {
field_symbols.push(env.unique_symbol());
can_fields.push(Field::Field(field));
}
},
None => {
// this field was optional, but not given
continue;
}
}
}
// creating a record from the var will unpack it if it's just a single field.
let layout = layout_cache
.from_var(env.arena, record_var, env.subs)
.unwrap_or_else(|err| panic!("TODO turn fn_var into a RuntimeError {:?}", err));
let field_symbols = field_symbols.into_bump_slice();
let mut stmt = if let [only_field] = field_symbols {
let mut hole = hole.clone();
substitute_in_exprs(env.arena, &mut hole, assigned, *only_field);
hole
} else {
Stmt::Let(assigned, Expr::Struct(field_symbols), layout, hole)
};
for (opt_field, symbol) in can_fields.into_iter().rev().zip(field_symbols.iter().rev())
{
match opt_field {
Field::ValueSymbol => {
// this symbol is already defined; nothing to do
}
Field::Function(symbol, variable) => {
stmt = reuse_function_symbol(
env,
procs,
layout_cache,
Some(variable),
symbol,
stmt,
symbol,
);
}
Field::Field(field) => {
stmt = with_hole(
env,
field.loc_expr.value,
field.var,
procs,
layout_cache,
*symbol,
env.arena.alloc(stmt),
);
}
}
}
stmt
}
EmptyRecord => let_empty_struct(assigned, hole),
Expect(_, _) => unreachable!("I think this is unreachable"),
If {
cond_var,
branch_var,
branches,
final_else,
} => {
match (
layout_cache.from_var(env.arena, branch_var, env.subs),
layout_cache.from_var(env.arena, cond_var, env.subs),
) {
(Ok(ret_layout), Ok(cond_layout)) => {
// if the hole is a return, then we don't need to merge the two
// branches together again, we can just immediately return
let is_terminated = matches!(hole, Stmt::Ret(_));
if is_terminated {
let terminator = hole;
let mut stmt = with_hole(
env,
final_else.value,
branch_var,
procs,
layout_cache,
assigned,
terminator,
);
for (loc_cond, loc_then) in branches.into_iter().rev() {
let branching_symbol = env.unique_symbol();
let then = with_hole(
env,
loc_then.value,
branch_var,
procs,
layout_cache,
assigned,
terminator,
);
stmt = cond(env, branching_symbol, cond_layout, then, stmt, ret_layout);
// add condition
stmt = with_hole(
env,
loc_cond.value,
cond_var,
procs,
layout_cache,
branching_symbol,
env.arena.alloc(stmt),
);
}
stmt
} else {
let assigned_in_jump = env.unique_symbol();
let id = JoinPointId(env.unique_symbol());
let terminator = env
.arena
.alloc(Stmt::Jump(id, env.arena.alloc([assigned_in_jump])));
let mut stmt = with_hole(
env,
final_else.value,
branch_var,
procs,
layout_cache,
assigned_in_jump,
terminator,
);
for (loc_cond, loc_then) in branches.into_iter().rev() {
let branching_symbol =
possible_reuse_symbol(env, procs, &loc_cond.value);
let then = with_hole(
env,
loc_then.value,
branch_var,
procs,
layout_cache,
assigned_in_jump,
terminator,
);
stmt = cond(env, branching_symbol, cond_layout, then, stmt, ret_layout);
// add condition
stmt = assign_to_symbol(
env,
procs,
layout_cache,
cond_var,
loc_cond,
branching_symbol,
stmt,
);
}
let layout = layout_cache
.from_var(env.arena, branch_var, env.subs)
.unwrap_or_else(|err| {
panic!("TODO turn fn_var into a RuntimeError {:?}", err)
});
let param = Param {
symbol: assigned,
layout,
borrow: false,
};
Stmt::Join {
id,
parameters: env.arena.alloc([param]),
remainder: env.arena.alloc(stmt),
body: hole,
}
}
}
(Err(_), _) => Stmt::RuntimeError("invalid ret_layout"),
(_, Err(_)) => Stmt::RuntimeError("invalid cond_layout"),
}
}
When {
cond_var,
expr_var,
region,
loc_cond,
branches,
} => {
let cond_symbol = possible_reuse_symbol(env, procs, &loc_cond.value);
let id = JoinPointId(env.unique_symbol());
let mut stmt = from_can_when(
env,
cond_var,
expr_var,
region,
cond_symbol,
branches,
layout_cache,
procs,
Some(id),
);
// define the `when` condition
stmt = assign_to_symbol(
env,
procs,
layout_cache,
cond_var,
*loc_cond,
cond_symbol,
stmt,
);
let layout = layout_cache
.from_var(env.arena, expr_var, env.subs)
.unwrap_or_else(|err| panic!("TODO turn fn_var into a RuntimeError {:?}", err));
let param = Param {
symbol: assigned,
layout,
borrow: false,
};
Stmt::Join {
id,
parameters: env.arena.alloc([param]),
remainder: env.arena.alloc(stmt),
body: env.arena.alloc(hole),
}
}
List {
loc_elems,
elem_var,
..
} if loc_elems.is_empty() => {
// because an empty list has an unknown element type, it is handled differently
let opt_elem_layout = layout_cache.from_var(env.arena, elem_var, env.subs);
match opt_elem_layout {
Ok(elem_layout) => {
let expr = Expr::EmptyArray;
Stmt::Let(
assigned,
expr,
Layout::Builtin(Builtin::List(env.arena.alloc(elem_layout))),
hole,
)
}
Err(LayoutProblem::UnresolvedTypeVar(_)) => {
let expr = Expr::EmptyArray;
Stmt::Let(assigned, expr, Layout::Builtin(Builtin::EmptyList), hole)
}
Err(LayoutProblem::Erroneous) => panic!("list element is error type"),
}
}
List {
elem_var,
loc_elems,
} => {
let mut arg_symbols = Vec::with_capacity_in(loc_elems.len(), env.arena);
let mut elements = Vec::with_capacity_in(loc_elems.len(), env.arena);
let mut symbol_exprs = Vec::with_capacity_in(loc_elems.len(), env.arena);
for arg_expr in loc_elems.into_iter() {
if let Some(literal) = try_make_literal(env, &arg_expr.value) {
elements.push(ListLiteralElement::Literal(literal));
} else {
let symbol = possible_reuse_symbol(env, procs, &arg_expr.value);
elements.push(ListLiteralElement::Symbol(symbol));
arg_symbols.push(symbol);
symbol_exprs.push(arg_expr);
}
}
let arg_symbols = arg_symbols.into_bump_slice();
let elem_layout = layout_cache
.from_var(env.arena, elem_var, env.subs)
.unwrap_or_else(|err| panic!("TODO turn fn_var into a RuntimeError {:?}", err));
let expr = Expr::Array {
elem_layout,
elems: elements.into_bump_slice(),
};
let stmt = Stmt::Let(
assigned,
expr,
Layout::Builtin(Builtin::List(env.arena.alloc(elem_layout))),
hole,
);
let iter = symbol_exprs
.into_iter()
.rev()
.map(|e| (elem_var, e))
.zip(arg_symbols.iter().rev());
assign_to_symbols(env, procs, layout_cache, iter, stmt)
}
Access {
record_var,
field_var,
field,
loc_expr,
..
} => {
let sorted_fields =
crate::layout::sort_record_fields(env.arena, record_var, env.subs, env.ptr_bytes);
let mut index = None;
let mut field_layouts = Vec::with_capacity_in(sorted_fields.len(), env.arena);
let mut current = 0;
for (label, _, opt_field_layout) in sorted_fields.into_iter() {
match opt_field_layout {
Err(_) => {
// this was an optional field, and now does not exist!
// do not increment `current`!
}
Ok(field_layout) => {
field_layouts.push(field_layout);
if label == field {
index = Some(current);
}
current += 1;
}
}
}
let record_symbol = possible_reuse_symbol(env, procs, &loc_expr.value);
let mut stmt = match field_layouts.as_slice() {
[_] => {
let mut hole = hole.clone();
substitute_in_exprs(env.arena, &mut hole, assigned, record_symbol);
hole
}
_ => {
let expr = Expr::StructAtIndex {
index: index.expect("field not in its own type") as u64,
field_layouts: field_layouts.into_bump_slice(),
structure: record_symbol,
};
let layout = layout_cache
.from_var(env.arena, field_var, env.subs)
.unwrap_or_else(|err| {
panic!("TODO turn fn_var into a RuntimeError {:?}", err)
});
Stmt::Let(assigned, expr, layout, hole)
}
};
stmt = assign_to_symbol(
env,
procs,
layout_cache,
record_var,
*loc_expr,
record_symbol,
stmt,
);
stmt
}
Accessor {
name,
function_var,
record_var,
closure_ext_var: _,
ext_var,
field_var,
field,
} => {
// IDEA: convert accessor fromt
//
// .foo
//
// into
//
// (\r -> r.foo)
let record_symbol = env.unique_symbol();
let body = roc_can::expr::Expr::Access {
record_var,
ext_var,
field_var,
loc_expr: Box::new(Located::at_zero(roc_can::expr::Expr::Var(record_symbol))),
field,
};
let loc_body = Located::at_zero(body);
let arguments = vec![(
record_var,
Located::at_zero(roc_can::pattern::Pattern::Identifier(record_symbol)),
)];
match procs.insert_anonymous(
env,
name,
function_var,
arguments,
loc_body,
CapturedSymbols::None,
field_var,
layout_cache,
) {
Ok(_) => {
let raw_layout = return_on_layout_error!(
env,
layout_cache.raw_from_var(env.arena, function_var, env.subs)
);
match raw_layout {
RawFunctionLayout::Function(_, lambda_set, _) => {
construct_closure_data(env, lambda_set, name, &[], assigned, hole)
}
RawFunctionLayout::ZeroArgumentThunk(_) => unreachable!(),
}
}
Err(_error) => Stmt::RuntimeError(
"TODO convert anonymous function error to a RuntimeError string",
),
}
}
Update {
record_var,
symbol: structure,
updates,
..
} => {
use FieldType::*;
enum FieldType<'a> {
CopyExisting(u64),
UpdateExisting(&'a roc_can::expr::Field),
}
// Strategy: turn a record update into the creation of a new record.
// This has the benefit that we don't need to do anything special for reference
// counting
let sorted_fields =
crate::layout::sort_record_fields(env.arena, record_var, env.subs, env.ptr_bytes);
let mut field_layouts = Vec::with_capacity_in(sorted_fields.len(), env.arena);
let mut symbols = Vec::with_capacity_in(sorted_fields.len(), env.arena);
let mut fields = Vec::with_capacity_in(sorted_fields.len(), env.arena);
let mut current = 0;
for (label, _, opt_field_layout) in sorted_fields.into_iter() {
match opt_field_layout {
Err(_) => {
debug_assert!(!updates.contains_key(&label));
// this was an optional field, and now does not exist!
// do not increment `current`!
}
Ok(field_layout) => {
field_layouts.push(field_layout);
if let Some(field) = updates.get(&label) {
// TODO
let field_symbol =
possible_reuse_symbol(env, procs, &field.loc_expr.value);
fields.push(UpdateExisting(field));
symbols.push(field_symbol);
} else {
fields.push(CopyExisting(current));
symbols.push(env.unique_symbol());
}
current += 1;
}
}
}
let symbols = symbols.into_bump_slice();
let record_layout = layout_cache
.from_var(env.arena, record_var, env.subs)
.unwrap_or_else(|err| panic!("TODO turn fn_var into a RuntimeError {:?}", err));
let field_layouts = match &record_layout {
Layout::Struct(layouts) => *layouts,
other => arena.alloc([*other]),
};
debug_assert_eq!(field_layouts.len(), symbols.len());
debug_assert_eq!(fields.len(), symbols.len());
if symbols.len() == 1 {
// TODO we can probably special-case this more, skippiing the generation of
// UpdateExisting
let mut stmt = hole.clone();
let what_to_do = &fields[0];
match what_to_do {
UpdateExisting(field) => {
substitute_in_exprs(env.arena, &mut stmt, assigned, symbols[0]);
stmt = assign_to_symbol(
env,
procs,
layout_cache,
field.var,
*field.loc_expr.clone(),
symbols[0],
stmt,
);
}
CopyExisting(_) => {
unreachable!(
r"when a record has just one field and is updated, it must update that one field"
);
}
}
stmt
} else {
let expr = Expr::Struct(symbols);
let mut stmt = Stmt::Let(assigned, expr, record_layout, hole);
let it = field_layouts.iter().zip(symbols.iter()).zip(fields);
for ((field_layout, symbol), what_to_do) in it {
match what_to_do {
UpdateExisting(field) => {
stmt = assign_to_symbol(
env,
procs,
layout_cache,
field.var,
*field.loc_expr.clone(),
*symbol,
stmt,
);
}
CopyExisting(index) => {
let access_expr = Expr::StructAtIndex {
structure,
index,
field_layouts,
};
stmt =
Stmt::Let(*symbol, access_expr, *field_layout, arena.alloc(stmt));
}
}
}
stmt
}
}
Closure {
function_type,
return_type,
name,
arguments,
captured_symbols,
loc_body: boxed_body,
..
} => {
let loc_body = *boxed_body;
let raw = layout_cache.raw_from_var(env.arena, function_type, env.subs);
match return_on_layout_error!(env, raw) {
RawFunctionLayout::ZeroArgumentThunk(_) => {
unreachable!("a closure syntactically always must have at least one argument")
}
RawFunctionLayout::Function(_argument_layouts, lambda_set, _ret_layout) => {
let mut captured_symbols = Vec::from_iter_in(captured_symbols, env.arena);
captured_symbols.sort();
let captured_symbols = captured_symbols.into_bump_slice();
let inserted = procs.insert_anonymous(
env,
name,
function_type,
arguments,
loc_body,
CapturedSymbols::Captured(captured_symbols),
return_type,
layout_cache,
);
if let Err(runtime_error) = inserted {
return Stmt::RuntimeError(env.arena.alloc(format!(
"RuntimeError {} line {} {:?}",
file!(),
line!(),
runtime_error,
)));
} else {
drop(inserted);
}
// define the closure data
let symbols =
Vec::from_iter_in(captured_symbols.iter().map(|x| x.0), env.arena)
.into_bump_slice();
construct_closure_data(env, lambda_set, name, symbols, assigned, hole)
}
}
}
Call(boxed, loc_args, _) => {
let (fn_var, loc_expr, _lambda_set_var, _ret_var) = *boxed;
// even if a call looks like it's by name, it may in fact be by-pointer.
// E.g. in `(\f, x -> f x)` the call is in fact by pointer.
// So we check the function name against the list of partial procedures,
// the procedures that we have lifted to the top-level and can call by name
// if it's in there, it's a call by name, otherwise it's a call by pointer
let is_known = |key| {
// a proc in this module, or an imported symbol
procs.partial_procs.contains_key(key) || env.is_imported_symbol(*key)
};
match loc_expr.value {
roc_can::expr::Expr::Var(proc_name) if is_known(&proc_name) => {
// a call by a known name
call_by_name(
env,
procs,
fn_var,
proc_name,
loc_args,
layout_cache,
assigned,
hole,
)
}
_ => {
// Call by pointer - the closure was anonymous, e.g.
//
// ((\a -> a) 5)
//
// It might even be the anonymous result of a conditional:
//
// ((if x > 0 then \a -> a else \_ -> 0) 5)
//
// It could be named too:
//
// ((if x > 0 then foo else bar) 5)
//
// also this occurs for functions passed in as arguments, e.g.
//
// (\f, x -> f x)
let arg_symbols = Vec::from_iter_in(
loc_args.iter().map(|(_, arg_expr)| {
possible_reuse_symbol(env, procs, &arg_expr.value)
}),
arena,
)
.into_bump_slice();
let full_layout = return_on_layout_error!(
env,
layout_cache.raw_from_var(env.arena, fn_var, env.subs)
);
// if the function expression (loc_expr) is already a symbol,
// re-use that symbol, and don't define its value again
let mut result;
use ReuseSymbol::*;
match can_reuse_symbol(env, procs, &loc_expr.value) {
LocalFunction(_) => {
unreachable!("if this was known to be a function, we would not be here")
}
Imported(_) => {
unreachable!("an imported value is never an anonymous function")
}
Value(function_symbol) => match full_layout {
RawFunctionLayout::Function(arg_layouts, lambda_set, ret_layout) => {
let closure_data_symbol = function_symbol;
result = match_on_lambda_set(
env,
lambda_set,
closure_data_symbol,
arg_symbols,
arg_layouts,
*ret_layout,
assigned,
hole,
);
}
RawFunctionLayout::ZeroArgumentThunk(_) => {
unreachable!("calling a non-closure layout")
}
},
NotASymbol => {
// the expression is not a symbol. That means it's an expression
// evaluating to a function value.
match full_layout {
RawFunctionLayout::Function(
arg_layouts,
lambda_set,
ret_layout,
) => {
let closure_data_symbol = env.unique_symbol();
result = match_on_lambda_set(
env,
lambda_set,
closure_data_symbol,
arg_symbols,
arg_layouts,
*ret_layout,
assigned,
hole,
);
result = with_hole(
env,
loc_expr.value,
fn_var,
procs,
layout_cache,
closure_data_symbol,
env.arena.alloc(result),
);
}
RawFunctionLayout::ZeroArgumentThunk(_) => {
unreachable!(
"{:?} cannot be called in the source language",
full_layout
)
}
}
}
}
let iter = loc_args.into_iter().rev().zip(arg_symbols.iter().rev());
assign_to_symbols(env, procs, layout_cache, iter, result)
}
}
}
ForeignCall {
foreign_symbol,
args,
ret_var,
} => {
let mut arg_symbols = Vec::with_capacity_in(args.len(), env.arena);
for (_, arg_expr) in args.iter() {
arg_symbols.push(possible_reuse_symbol(env, procs, arg_expr));
}
let arg_symbols = arg_symbols.into_bump_slice();
// layout of the return type
let layout =
return_on_layout_error!(env, layout_cache.from_var(env.arena, ret_var, env.subs));
let call = self::Call {
call_type: CallType::Foreign {
foreign_symbol,
ret_layout: layout,
},
arguments: arg_symbols,
};
let result = build_call(env, call, assigned, layout, hole);
let iter = args
.into_iter()
.rev()
.map(|(a, b)| (a, Located::at_zero(b)))
.zip(arg_symbols.iter().rev());
assign_to_symbols(env, procs, layout_cache, iter, result)
}
RunLowLevel { op, args, ret_var } => {
let mut arg_symbols = Vec::with_capacity_in(args.len(), env.arena);
for (_, arg_expr) in args.iter() {
arg_symbols.push(possible_reuse_symbol(env, procs, arg_expr));
}
let arg_symbols = arg_symbols.into_bump_slice();
// layout of the return type
let layout =
return_on_layout_error!(env, layout_cache.from_var(env.arena, ret_var, env.subs));
use LowLevel::*;
match op {
ListMap | ListMapWithIndex | ListKeepIf | ListKeepOks | ListKeepErrs
| ListSortWith => {
debug_assert_eq!(arg_symbols.len(), 2);
let closure_index = 1;
let closure_data_symbol = arg_symbols[closure_index];
let closure_data_var = args[closure_index].0;
match_on_closure_argument!(
env,
procs,
layout_cache,
closure_data_symbol,
closure_data_var,
op,
[arg_symbols[0]],
layout,
assigned,
hole
)
}
ListWalk | ListWalkUntil | ListWalkBackwards | DictWalk => {
debug_assert_eq!(arg_symbols.len(), 3);
const LIST_INDEX: usize = 0;
const DEFAULT_INDEX: usize = 1;
const CLOSURE_INDEX: usize = 2;
let closure_data_symbol = arg_symbols[CLOSURE_INDEX];
let closure_data_var = args[CLOSURE_INDEX].0;
let stmt = match_on_closure_argument!(
env,
procs,
layout_cache,
closure_data_symbol,
closure_data_var,
op,
[arg_symbols[LIST_INDEX], arg_symbols[DEFAULT_INDEX]],
layout,
assigned,
hole
);
// because of a hack to implement List.product and List.sum, we need to also
// assign to symbols here. Normally the arguments to a lowlevel function are
// all symbols anyway, but because of this hack the closure symbol can be an
// actual closure, and the default is either the number 1 or 0
// this can be removed when we define builtin modules as proper modules
let stmt = assign_to_symbol(
env,
procs,
layout_cache,
args[LIST_INDEX].0,
Located::at_zero(args[LIST_INDEX].1.clone()),
arg_symbols[LIST_INDEX],
stmt,
);
let stmt = assign_to_symbol(
env,
procs,
layout_cache,
args[DEFAULT_INDEX].0,
Located::at_zero(args[DEFAULT_INDEX].1.clone()),
arg_symbols[DEFAULT_INDEX],
stmt,
);
assign_to_symbol(
env,
procs,
layout_cache,
args[CLOSURE_INDEX].0,
Located::at_zero(args[CLOSURE_INDEX].1.clone()),
arg_symbols[CLOSURE_INDEX],
stmt,
)
}
ListMap2 => {
debug_assert_eq!(arg_symbols.len(), 3);
let closure_index = 2;
let closure_data_symbol = arg_symbols[closure_index];
let closure_data_var = args[closure_index].0;
match_on_closure_argument!(
env,
procs,
layout_cache,
closure_data_symbol,
closure_data_var,
op,
[arg_symbols[0], arg_symbols[1]],
layout,
assigned,
hole
)
}
ListMap3 => {
debug_assert_eq!(arg_symbols.len(), 4);
let closure_index = 3;
let closure_data_symbol = arg_symbols[closure_index];
let closure_data_var = args[closure_index].0;
match_on_closure_argument!(
env,
procs,
layout_cache,
closure_data_symbol,
closure_data_var,
op,
[arg_symbols[0], arg_symbols[1], arg_symbols[2]],
layout,
assigned,
hole
)
}
_ => {
let call = self::Call {
call_type: CallType::LowLevel {
op,
update_mode: env.next_update_mode_id(),
},
arguments: arg_symbols,
};
let result = build_call(env, call, assigned, layout, hole);
let iter = args
.into_iter()
.rev()
.map(|(a, b)| (a, Located::at_zero(b)))
.zip(arg_symbols.iter().rev());
assign_to_symbols(env, procs, layout_cache, iter, result)
}
}
}
RuntimeError(e) => {
eprintln!("emitted runtime error {:?}", &e);
Stmt::RuntimeError(env.arena.alloc(format!("{:?}", e)))
}
}
}
fn construct_closure_data<'a>(
env: &mut Env<'a, '_>,
lambda_set: LambdaSet<'a>,
name: Symbol,
symbols: &'a [Symbol],
assigned: Symbol,
hole: &'a Stmt<'a>,
) -> Stmt<'a> {
let lambda_set_layout = Layout::LambdaSet(lambda_set);
match lambda_set.layout_for_member(name) {
ClosureRepresentation::Union {
tag_id,
alphabetic_order_fields: field_layouts,
tag_name,
union_layout,
} => {
// captured variables are in symbol-alphabetic order, but now we want
// them ordered by their alignment requirements
let mut combined =
Vec::from_iter_in(symbols.iter().zip(field_layouts.iter()), env.arena);
let ptr_bytes = env.ptr_bytes;
combined.sort_by(|(_, layout1), (_, layout2)| {
let size1 = layout1.alignment_bytes(ptr_bytes);
let size2 = layout2.alignment_bytes(ptr_bytes);
size2.cmp(&size1)
});
let symbols =
Vec::from_iter_in(combined.iter().map(|(a, _)| **a), env.arena).into_bump_slice();
let expr = Expr::Tag {
tag_id,
tag_layout: union_layout,
tag_name,
arguments: symbols,
};
Stmt::Let(assigned, expr, lambda_set_layout, env.arena.alloc(hole))
}
ClosureRepresentation::AlphabeticOrderStruct(field_layouts) => {
debug_assert_eq!(field_layouts.len(), symbols.len());
// captured variables are in symbol-alphabetic order, but now we want
// them ordered by their alignment requirements
let mut combined =
Vec::from_iter_in(symbols.iter().zip(field_layouts.iter()), env.arena);
let ptr_bytes = env.ptr_bytes;
combined.sort_by(|(_, layout1), (_, layout2)| {
let size1 = layout1.alignment_bytes(ptr_bytes);
let size2 = layout2.alignment_bytes(ptr_bytes);
size2.cmp(&size1)
});
let symbols =
Vec::from_iter_in(combined.iter().map(|(a, _)| **a), env.arena).into_bump_slice();
let field_layouts =
Vec::from_iter_in(combined.iter().map(|(_, b)| **b), env.arena).into_bump_slice();
debug_assert_eq!(
Layout::Struct(field_layouts),
lambda_set.runtime_representation()
);
let expr = Expr::Struct(symbols);
Stmt::Let(assigned, expr, lambda_set_layout, hole)
}
ClosureRepresentation::Other(Layout::Builtin(Builtin::Int1)) => {
debug_assert_eq!(symbols.len(), 0);
debug_assert_eq!(lambda_set.set.len(), 2);
let tag_id = name != lambda_set.set[0].0;
let expr = Expr::Literal(Literal::Bool(tag_id));
Stmt::Let(assigned, expr, lambda_set_layout, hole)
}
ClosureRepresentation::Other(Layout::Builtin(Builtin::Int8)) => {
debug_assert_eq!(symbols.len(), 0);
debug_assert!(lambda_set.set.len() > 2);
let tag_id = lambda_set.set.iter().position(|(s, _)| *s == name).unwrap() as u8;
let expr = Expr::Literal(Literal::Byte(tag_id));
Stmt::Let(assigned, expr, lambda_set_layout, hole)
}
_ => unreachable!(),
}
}
#[allow(clippy::too_many_arguments)]
fn convert_tag_union<'a>(
env: &mut Env<'a, '_>,
variant_var: Variable,
assigned: Symbol,
hole: &'a Stmt<'a>,
tag_name: TagName,
procs: &mut Procs<'a>,
layout_cache: &mut LayoutCache<'a>,
args: std::vec::Vec<(Variable, Located<roc_can::expr::Expr>)>,
arena: &'a Bump,
) -> Stmt<'a> {
use crate::layout::UnionVariant::*;
let res_variant =
crate::layout::union_sorted_tags(env.arena, variant_var, env.subs, env.ptr_bytes);
let variant = match res_variant {
Ok(cached) => cached,
Err(LayoutProblem::UnresolvedTypeVar(_)) => {
return Stmt::RuntimeError(env.arena.alloc(format!(
"UnresolvedTypeVar {} line {}",
file!(),
line!()
)))
}
Err(LayoutProblem::Erroneous) => {
return Stmt::RuntimeError(env.arena.alloc(format!(
"Erroneous {} line {}",
file!(),
line!()
)));
}
};
match variant {
Never => unreachable!(
"The `[]` type has no constructors, source var {:?}",
variant_var
),
Unit | UnitWithArguments => {
Stmt::Let(assigned, Expr::Struct(&[]), Layout::Struct(&[]), hole)
}
BoolUnion { ttrue, .. } => Stmt::Let(
assigned,
Expr::Literal(Literal::Bool(tag_name == ttrue)),
Layout::Builtin(Builtin::Int1),
hole,
),
ByteUnion(tag_names) => {
let opt_tag_id = tag_names.iter().position(|key| key == &tag_name);
match opt_tag_id {
Some(tag_id) => Stmt::Let(
assigned,
Expr::Literal(Literal::Byte(tag_id as u8)),
Layout::Builtin(Builtin::Int8),
hole,
),
None => Stmt::RuntimeError("tag must be in its own type"),
}
}
Newtype {
arguments: field_layouts,
..
} => {
let field_symbols_temp = sorted_field_symbols(env, procs, layout_cache, args);
let mut field_symbols = Vec::with_capacity_in(field_layouts.len(), env.arena);
field_symbols.extend(field_symbols_temp.iter().map(|r| r.1));
let field_symbols = field_symbols.into_bump_slice();
// Layout will unpack this unwrapped tack if it only has one (non-zero-sized) field
let layout = layout_cache
.from_var(env.arena, variant_var, env.subs)
.unwrap_or_else(|err| panic!("TODO turn fn_var into a RuntimeError {:?}", err));
// even though this was originally a Tag, we treat it as a Struct from now on
let stmt = if let [only_field] = field_symbols {
let mut hole = hole.clone();
substitute_in_exprs(env.arena, &mut hole, assigned, *only_field);
hole
} else {
Stmt::Let(assigned, Expr::Struct(field_symbols), layout, hole)
};
let iter = field_symbols_temp.into_iter().map(|(_, _, data)| data);
assign_to_symbols(env, procs, layout_cache, iter, stmt)
}
Wrapped(variant) => {
let (tag_id, _) = variant.tag_name_to_id(&tag_name);
let field_symbols_temp = sorted_field_symbols(env, procs, layout_cache, args);
let field_symbols;
// we must derive the union layout from the whole_var, building it up
// from `layouts` would unroll recursive tag unions, and that leads to
// problems down the line because we hash layouts and an unrolled
// version is not the same as the minimal version.
let union_layout = match return_on_layout_error!(
env,
layout_cache.from_var(env.arena, variant_var, env.subs)
) {
Layout::Union(ul) => ul,
_ => unreachable!(),
};
use WrappedVariant::*;
let (tag, union_layout) = match variant {
Recursive { sorted_tag_layouts } => {
debug_assert!(sorted_tag_layouts.len() > 1);
field_symbols = {
let mut temp = Vec::with_capacity_in(field_symbols_temp.len() + 1, arena);
temp.extend(field_symbols_temp.iter().map(|r| r.1));
temp.into_bump_slice()
};
let mut layouts: Vec<&'a [Layout<'a>]> =
Vec::with_capacity_in(sorted_tag_layouts.len(), env.arena);
for (_, arg_layouts) in sorted_tag_layouts.into_iter() {
layouts.push(arg_layouts);
}
let tag = Expr::Tag {
tag_layout: union_layout,
tag_name,
tag_id: tag_id as u8,
arguments: field_symbols,
};
(tag, union_layout)
}
NonNullableUnwrapped {
tag_name: wrapped_tag_name,
..
} => {
debug_assert_eq!(tag_name, wrapped_tag_name);
field_symbols = {
let mut temp = Vec::with_capacity_in(field_symbols_temp.len(), arena);
temp.extend(field_symbols_temp.iter().map(|r| r.1));
temp.into_bump_slice()
};
let tag = Expr::Tag {
tag_layout: union_layout,
tag_name,
tag_id: tag_id as u8,
arguments: field_symbols,
};
(tag, union_layout)
}
NonRecursive { sorted_tag_layouts } => {
field_symbols = {
let mut temp = Vec::with_capacity_in(field_symbols_temp.len(), arena);
temp.extend(field_symbols_temp.iter().map(|r| r.1));
temp.into_bump_slice()
};
let mut layouts: Vec<&'a [Layout<'a>]> =
Vec::with_capacity_in(sorted_tag_layouts.len(), env.arena);
for (_, arg_layouts) in sorted_tag_layouts.into_iter() {
layouts.push(arg_layouts);
}
let tag = Expr::Tag {
tag_layout: union_layout,
tag_name,
tag_id: tag_id as u8,
arguments: field_symbols,
};
(tag, union_layout)
}
NullableWrapped {
sorted_tag_layouts, ..
} => {
field_symbols = {
let mut temp = Vec::with_capacity_in(field_symbols_temp.len() + 1, arena);
temp.extend(field_symbols_temp.iter().map(|r| r.1));
temp.into_bump_slice()
};
let mut layouts: Vec<&'a [Layout<'a>]> =
Vec::with_capacity_in(sorted_tag_layouts.len(), env.arena);
for (_, arg_layouts) in sorted_tag_layouts.into_iter() {
layouts.push(arg_layouts);
}
let tag = Expr::Tag {
tag_layout: union_layout,
tag_name,
tag_id: tag_id as u8,
arguments: field_symbols,
};
(tag, union_layout)
}
NullableUnwrapped { .. } => {
field_symbols = {
let mut temp = Vec::with_capacity_in(field_symbols_temp.len() + 1, arena);
temp.extend(field_symbols_temp.iter().map(|r| r.1));
temp.into_bump_slice()
};
let tag = Expr::Tag {
tag_layout: union_layout,
tag_name,
tag_id: tag_id as u8,
arguments: field_symbols,
};
(tag, union_layout)
}
};
let stmt = Stmt::Let(assigned, tag, Layout::Union(union_layout), hole);
let iter = field_symbols_temp
.into_iter()
.map(|x| x.2 .0)
.rev()
.zip(field_symbols.iter().rev());
assign_to_symbols(env, procs, layout_cache, iter, stmt)
}
}
}
#[allow(clippy::too_many_arguments)]
fn tag_union_to_function<'a>(
env: &mut Env<'a, '_>,
argument_variables: VariableSubsSlice,
return_variable: Variable,
tag_name: TagName,
proc_symbol: Symbol,
ext_var: Variable,
procs: &mut Procs<'a>,
whole_var: Variable,
layout_cache: &mut LayoutCache<'a>,
assigned: Symbol,
hole: &'a Stmt<'a>,
) -> Stmt<'a> {
let mut loc_pattern_args = vec![];
let mut loc_expr_args = vec![];
for index in argument_variables {
let arg_var = env.subs[index];
let arg_symbol = env.unique_symbol();
let loc_pattern = Located::at_zero(roc_can::pattern::Pattern::Identifier(arg_symbol));
let loc_expr = Located::at_zero(roc_can::expr::Expr::Var(arg_symbol));
loc_pattern_args.push((arg_var, loc_pattern));
loc_expr_args.push((arg_var, loc_expr));
}
let loc_body = Located::at_zero(roc_can::expr::Expr::Tag {
variant_var: return_variable,
name: tag_name,
arguments: loc_expr_args,
ext_var,
});
let inserted = procs.insert_anonymous(
env,
proc_symbol,
whole_var,
loc_pattern_args,
loc_body,
CapturedSymbols::None,
return_variable,
layout_cache,
);
match inserted {
Ok(_layout) => {
// only need to construct closure data
let raw_layout = return_on_layout_error!(
env,
layout_cache.raw_from_var(env.arena, whole_var, env.subs)
);
match raw_layout {
RawFunctionLayout::Function(_, lambda_set, _) => {
construct_closure_data(env, lambda_set, proc_symbol, &[], assigned, hole)
}
RawFunctionLayout::ZeroArgumentThunk(_) => unreachable!(),
}
}
Err(runtime_error) => Stmt::RuntimeError(env.arena.alloc(format!(
"RuntimeError {} line {} {:?}",
file!(),
line!(),
runtime_error,
))),
}
}
#[allow(clippy::type_complexity)]
fn sorted_field_symbols<'a>(
env: &mut Env<'a, '_>,
procs: &mut Procs<'a>,
layout_cache: &mut LayoutCache<'a>,
mut args: std::vec::Vec<(Variable, Located<roc_can::expr::Expr>)>,
) -> Vec<
'a,
(
u32,
Symbol,
((Variable, Located<roc_can::expr::Expr>), &'a Symbol),
),
> {
let mut field_symbols_temp = Vec::with_capacity_in(args.len(), env.arena);
for (var, mut arg) in args.drain(..) {
// Layout will unpack this unwrapped tag if it only has one (non-zero-sized) field
let layout = match layout_cache.from_var(env.arena, var, env.subs) {
Ok(cached) => cached,
Err(LayoutProblem::UnresolvedTypeVar(_)) => {
// this argument has type `forall a. a`, which is isomorphic to
// the empty type (Void, Never, the empty tag union `[]`)
// Note it does not catch the use of `[]` currently.
use roc_can::expr::Expr;
arg.value = Expr::RuntimeError(RuntimeError::VoidValue);
Layout::Struct(&[])
}
Err(LayoutProblem::Erroneous) => {
// something went very wrong
panic!("TODO turn fn_var into a RuntimeError")
}
};
let alignment = layout.alignment_bytes(env.ptr_bytes);
let symbol = possible_reuse_symbol(env, procs, &arg.value);
field_symbols_temp.push((alignment, symbol, ((var, arg), &*env.arena.alloc(symbol))));
}
field_symbols_temp.sort_by(|a, b| b.0.cmp(&a.0));
field_symbols_temp
}
pub fn from_can<'a>(
env: &mut Env<'a, '_>,
variable: Variable,
can_expr: roc_can::expr::Expr,
procs: &mut Procs<'a>,
layout_cache: &mut LayoutCache<'a>,
) -> Stmt<'a> {
use roc_can::expr::Expr::*;
match can_expr {
When {
cond_var,
expr_var,
region,
loc_cond,
branches,
} => {
let cond_symbol = possible_reuse_symbol(env, procs, &loc_cond.value);
let stmt = from_can_when(
env,
cond_var,
expr_var,
region,
cond_symbol,
branches,
layout_cache,
procs,
None,
);
// define the `when` condition
assign_to_symbol(
env,
procs,
layout_cache,
cond_var,
*loc_cond,
cond_symbol,
stmt,
)
}
If {
cond_var,
branch_var,
branches,
final_else,
} => {
let ret_layout = layout_cache
.from_var(env.arena, branch_var, env.subs)
.expect("invalid ret_layout");
let cond_layout = layout_cache
.from_var(env.arena, cond_var, env.subs)
.expect("invalid cond_layout");
let mut stmt = from_can(env, branch_var, final_else.value, procs, layout_cache);
for (loc_cond, loc_then) in branches.into_iter().rev() {
let branching_symbol = possible_reuse_symbol(env, procs, &loc_cond.value);
let then = from_can(env, branch_var, loc_then.value, procs, layout_cache);
stmt = cond(env, branching_symbol, cond_layout, then, stmt, ret_layout);
stmt = assign_to_symbol(
env,
procs,
layout_cache,
cond_var,
loc_cond,
branching_symbol,
stmt,
);
}
stmt
}
Expect(condition, rest) => {
let rest = from_can(env, variable, rest.value, procs, layout_cache);
let bool_layout = Layout::Builtin(Builtin::Int1);
let cond_symbol = env.unique_symbol();
let op = LowLevel::ExpectTrue;
let call_type = CallType::LowLevel {
op,
update_mode: env.next_update_mode_id(),
};
let arguments = env.arena.alloc([cond_symbol]);
let call = self::Call {
call_type,
arguments,
};
let rest = Stmt::Let(
env.unique_symbol(),
Expr::Call(call),
bool_layout,
env.arena.alloc(rest),
);
with_hole(
env,
condition.value,
variable,
procs,
layout_cache,
cond_symbol,
env.arena.alloc(rest),
)
}
LetRec(defs, cont, _) => {
// because Roc is strict, only functions can be recursive!
for def in defs.into_iter() {
if let roc_can::pattern::Pattern::Identifier(symbol) = &def.loc_pattern.value {
// Now that we know for sure it's a closure, get an owned
// version of these variant args so we can use them properly.
match def.loc_expr.value {
Closure {
function_type,
return_type,
recursive,
arguments,
loc_body: boxed_body,
..
} => {
// Extract Procs, but discard the resulting Expr::Load.
// That Load looks up the pointer, which we won't use here!
let loc_body = *boxed_body;
let is_self_recursive =
!matches!(recursive, roc_can::expr::Recursive::NotRecursive);
procs.insert_named(
env,
layout_cache,
*symbol,
function_type,
arguments,
loc_body,
CapturedSymbols::None,
is_self_recursive,
return_type,
);
continue;
}
_ => unreachable!("recursive value is not a function"),
}
}
unreachable!("recursive value does not have Identifier pattern")
}
from_can(env, variable, cont.value, procs, layout_cache)
}
LetNonRec(def, cont, outer_annotation) => {
if let roc_can::pattern::Pattern::Identifier(symbol) = &def.loc_pattern.value {
if let Closure { .. } = &def.loc_expr.value {
// Now that we know for sure it's a closure, get an owned
// version of these variant args so we can use them properly.
match def.loc_expr.value {
Closure {
function_type,
return_type,
closure_type,
closure_ext_var,
recursive,
arguments,
loc_body: boxed_body,
captured_symbols,
..
} => {
// Extract Procs, but discard the resulting Expr::Load.
// That Load looks up the pointer, which we won't use here!
let loc_body = *boxed_body;
let is_self_recursive =
!matches!(recursive, roc_can::expr::Recursive::NotRecursive);
// does this function capture any local values?
let function_layout =
layout_cache.raw_from_var(env.arena, function_type, env.subs);
let captured_symbols = match function_layout {
Ok(RawFunctionLayout::Function(_, lambda_set, _)) => {
if let Layout::Struct(&[]) = lambda_set.runtime_representation()
{
CapturedSymbols::None
} else {
let mut temp =
Vec::from_iter_in(captured_symbols, env.arena);
temp.sort();
CapturedSymbols::Captured(temp.into_bump_slice())
}
}
Ok(RawFunctionLayout::ZeroArgumentThunk(_)) => {
// top-level thunks cannot capture any variables
debug_assert!(
captured_symbols.is_empty(),
"{:?} with layout {:?} {:?} {:?}",
&captured_symbols,
function_layout,
env.subs,
(function_type, closure_type, closure_ext_var),
);
CapturedSymbols::None
}
Err(_) => {
// just allow this. see https://github.com/rtfeldman/roc/issues/1585
if captured_symbols.is_empty() {
CapturedSymbols::None
} else {
let mut temp =
Vec::from_iter_in(captured_symbols, env.arena);
temp.sort();
CapturedSymbols::Captured(temp.into_bump_slice())
}
}
};
procs.insert_named(
env,
layout_cache,
*symbol,
function_type,
arguments,
loc_body,
captured_symbols,
is_self_recursive,
return_type,
);
return from_can(env, variable, cont.value, procs, layout_cache);
}
_ => unreachable!(),
}
}
match def.loc_expr.value {
roc_can::expr::Expr::Var(original) => {
// a variable is aliased, e.g.
//
// foo = bar
//
// or
//
// foo = RBTRee.empty
let mut rest = from_can(env, def.expr_var, cont.value, procs, layout_cache);
rest = handle_variable_aliasing(
env,
procs,
layout_cache,
def.expr_var,
*symbol,
original,
rest,
);
return rest;
}
roc_can::expr::Expr::LetNonRec(nested_def, nested_cont, nested_annotation) => {
use roc_can::expr::Expr::*;
// We must transform
//
// let answer = 1337
// in
// let unused =
// let nested = 17
// in
// nested
// in
// answer
//
// into
//
// let answer = 1337
// in
// let nested = 17
// in
// let unused = nested
// in
// answer
let new_def = roc_can::def::Def {
loc_pattern: def.loc_pattern,
loc_expr: *nested_cont,
pattern_vars: def.pattern_vars,
annotation: def.annotation,
expr_var: def.expr_var,
};
let new_inner = LetNonRec(Box::new(new_def), cont, outer_annotation);
let new_outer = LetNonRec(
nested_def,
Box::new(Located::at_zero(new_inner)),
nested_annotation,
);
return from_can(env, variable, new_outer, procs, layout_cache);
}
roc_can::expr::Expr::LetRec(nested_defs, nested_cont, nested_annotation) => {
use roc_can::expr::Expr::*;
// We must transform
//
// let answer = 1337
// in
// let unused =
// let nested = \{} -> nested {}
// in
// nested
// in
// answer
//
// into
//
// let answer = 1337
// in
// let nested = \{} -> nested {}
// in
// let unused = nested
// in
// answer
let new_def = roc_can::def::Def {
loc_pattern: def.loc_pattern,
loc_expr: *nested_cont,
pattern_vars: def.pattern_vars,
annotation: def.annotation,
expr_var: def.expr_var,
};
let new_inner = LetNonRec(Box::new(new_def), cont, outer_annotation);
let new_outer = LetRec(
nested_defs,
Box::new(Located::at_zero(new_inner)),
nested_annotation,
);
return from_can(env, variable, new_outer, procs, layout_cache);
}
_ => {
let rest = from_can(env, variable, cont.value, procs, layout_cache);
return with_hole(
env,
def.loc_expr.value,
def.expr_var,
procs,
layout_cache,
*symbol,
env.arena.alloc(rest),
);
}
}
}
// this may be a destructure pattern
let (mono_pattern, assignments) =
match from_can_pattern(env, layout_cache, &def.loc_pattern.value) {
Ok(v) => v,
Err(_) => todo!(),
};
if let Pattern::Identifier(symbol) = mono_pattern {
let mut hole =
env.arena
.alloc(from_can(env, variable, cont.value, procs, layout_cache));
for (symbol, variable, expr) in assignments {
let stmt = with_hole(env, expr, variable, procs, layout_cache, symbol, hole);
hole = env.arena.alloc(stmt);
}
with_hole(
env,
def.loc_expr.value,
def.expr_var,
procs,
layout_cache,
symbol,
hole,
)
} else {
let context = crate::exhaustive::Context::BadDestruct;
match crate::exhaustive::check(
def.loc_pattern.region,
&[(
Located::at(def.loc_pattern.region, mono_pattern.clone()),
crate::exhaustive::Guard::NoGuard,
)],
context,
) {
Ok(_) => {}
Err(errors) => {
for error in errors {
env.problems.push(MonoProblem::PatternProblem(error))
}
return Stmt::RuntimeError("TODO non-exhaustive pattern");
}
}
// convert the continuation
let mut stmt = from_can(env, variable, cont.value, procs, layout_cache);
// layer on any default record fields
for (symbol, variable, expr) in assignments {
let hole = env.arena.alloc(stmt);
stmt = with_hole(env, expr, variable, procs, layout_cache, symbol, hole);
}
if let roc_can::expr::Expr::Var(outer_symbol) = def.loc_expr.value {
store_pattern(env, procs, layout_cache, &mono_pattern, outer_symbol, stmt)
} else {
let outer_symbol = env.unique_symbol();
stmt =
store_pattern(env, procs, layout_cache, &mono_pattern, outer_symbol, stmt);
// convert the def body, store in outer_symbol
with_hole(
env,
def.loc_expr.value,
def.expr_var,
procs,
layout_cache,
outer_symbol,
env.arena.alloc(stmt),
)
}
}
}
_ => {
let symbol = env.unique_symbol();
let hole = env.arena.alloc(Stmt::Ret(symbol));
with_hole(env, can_expr, variable, procs, layout_cache, symbol, hole)
}
}
}
fn to_opt_branches<'a>(
env: &mut Env<'a, '_>,
region: Region,
branches: std::vec::Vec<roc_can::expr::WhenBranch>,
layout_cache: &mut LayoutCache<'a>,
) -> std::vec::Vec<(
Pattern<'a>,
Option<Located<roc_can::expr::Expr>>,
roc_can::expr::Expr,
)> {
debug_assert!(!branches.is_empty());
let mut loc_branches = std::vec::Vec::new();
let mut opt_branches = std::vec::Vec::new();
for when_branch in branches {
let exhaustive_guard = if when_branch.guard.is_some() {
Guard::HasGuard
} else {
Guard::NoGuard
};
for loc_pattern in when_branch.patterns {
match from_can_pattern(env, layout_cache, &loc_pattern.value) {
Ok((mono_pattern, assignments)) => {
loc_branches.push((
Located::at(loc_pattern.region, mono_pattern.clone()),
exhaustive_guard.clone(),
));
let mut loc_expr = when_branch.value.clone();
let region = loc_pattern.region;
for (symbol, variable, expr) in assignments.into_iter().rev() {
let def = roc_can::def::Def {
annotation: None,
expr_var: variable,
loc_expr: Located::at(region, expr),
loc_pattern: Located::at(
region,
roc_can::pattern::Pattern::Identifier(symbol),
),
pattern_vars: std::iter::once((symbol, variable)).collect(),
};
let new_expr = roc_can::expr::Expr::LetNonRec(
Box::new(def),
Box::new(loc_expr),
variable,
);
loc_expr = Located::at(region, new_expr);
}
// TODO remove clone?
opt_branches.push((mono_pattern, when_branch.guard.clone(), loc_expr.value));
}
Err(runtime_error) => {
loc_branches.push((
Located::at(loc_pattern.region, Pattern::Underscore),
exhaustive_guard.clone(),
));
// TODO remove clone?
opt_branches.push((
Pattern::Underscore,
when_branch.guard.clone(),
roc_can::expr::Expr::RuntimeError(runtime_error),
));
}
}
}
}
// NOTE exhaustiveness is checked after the construction of all the branches
// In contrast to elm (currently), we still do codegen even if a pattern is non-exhaustive.
// So we not only report exhaustiveness errors, but also correct them
let context = crate::exhaustive::Context::BadCase;
match crate::exhaustive::check(region, &loc_branches, context) {
Ok(_) => {}
Err(errors) => {
use crate::exhaustive::Error::*;
let mut is_not_exhaustive = false;
let mut overlapping_branches = std::vec::Vec::new();
for error in errors {
match &error {
Incomplete(_, _, _) => {
is_not_exhaustive = true;
}
Redundant { index, .. } => {
overlapping_branches.push(index.to_zero_based());
}
}
env.problems.push(MonoProblem::PatternProblem(error))
}
overlapping_branches.sort_unstable();
for i in overlapping_branches.into_iter().rev() {
opt_branches.remove(i);
}
if is_not_exhaustive {
opt_branches.push((
Pattern::Underscore,
None,
roc_can::expr::Expr::RuntimeError(
roc_problem::can::RuntimeError::NonExhaustivePattern,
),
));
}
}
}
opt_branches
}
#[allow(clippy::too_many_arguments)]
fn from_can_when<'a>(
env: &mut Env<'a, '_>,
cond_var: Variable,
expr_var: Variable,
region: Region,
cond_symbol: Symbol,
branches: std::vec::Vec<roc_can::expr::WhenBranch>,
layout_cache: &mut LayoutCache<'a>,
procs: &mut Procs<'a>,
join_point: Option<JoinPointId>,
) -> Stmt<'a> {
if branches.is_empty() {
// A when-expression with no branches is a runtime error.
// We can't know what to return!
return Stmt::RuntimeError("Hit a 0-branch when expression");
}
let opt_branches = to_opt_branches(env, region, branches, layout_cache);
let cond_layout =
return_on_layout_error!(env, layout_cache.from_var(env.arena, cond_var, env.subs));
let ret_layout =
return_on_layout_error!(env, layout_cache.from_var(env.arena, expr_var, env.subs));
let arena = env.arena;
let it = opt_branches
.into_iter()
.map(|(pattern, opt_guard, can_expr)| {
let branch_stmt = match join_point {
None => from_can(env, expr_var, can_expr, procs, layout_cache),
Some(id) => {
let symbol = env.unique_symbol();
let arguments = bumpalo::vec![in env.arena; symbol].into_bump_slice();
let jump = env.arena.alloc(Stmt::Jump(id, arguments));
with_hole(env, can_expr, expr_var, procs, layout_cache, symbol, jump)
}
};
use crate::decision_tree::Guard;
if let Some(loc_expr) = opt_guard {
let id = JoinPointId(env.unique_symbol());
let symbol = env.unique_symbol();
let jump = env.arena.alloc(Stmt::Jump(id, env.arena.alloc([symbol])));
let guard_stmt = with_hole(
env,
loc_expr.value,
cond_var,
procs,
layout_cache,
symbol,
jump,
);
(
pattern.clone(),
Guard::Guard {
id,
pattern,
stmt: guard_stmt,
},
branch_stmt,
)
} else {
(pattern, Guard::NoGuard, branch_stmt)
}
});
let mono_branches = Vec::from_iter_in(it, arena);
crate::decision_tree::optimize_when(
env,
procs,
layout_cache,
cond_symbol,
cond_layout,
ret_layout,
mono_branches,
)
}
fn substitute(substitutions: &BumpMap<Symbol, Symbol>, s: Symbol) -> Option<Symbol> {
match substitutions.get(&s) {
Some(new) => {
debug_assert!(!substitutions.contains_key(new));
Some(*new)
}
None => None,
}
}
fn substitute_in_exprs<'a>(arena: &'a Bump, stmt: &mut Stmt<'a>, from: Symbol, to: Symbol) {
let mut subs = BumpMap::with_capacity_in(1, arena);
subs.insert(from, to);
// TODO clean this up
let ref_stmt = arena.alloc(stmt.clone());
if let Some(new) = substitute_in_stmt_help(arena, ref_stmt, &subs) {
*stmt = new.clone();
}
}
fn substitute_in_stmt_help<'a>(
arena: &'a Bump,
stmt: &'a Stmt<'a>,
subs: &BumpMap<Symbol, Symbol>,
) -> Option<&'a Stmt<'a>> {
use Stmt::*;
match stmt {
Let(symbol, expr, layout, cont) => {
let opt_cont = substitute_in_stmt_help(arena, cont, subs);
let opt_expr = substitute_in_expr(arena, expr, subs);
if opt_expr.is_some() || opt_cont.is_some() {
let cont = opt_cont.unwrap_or(cont);
let expr = opt_expr.unwrap_or_else(|| expr.clone());
Some(arena.alloc(Let(*symbol, expr, *layout, cont)))
} else {
None
}
}
Join {
id,
parameters,
remainder,
body: continuation,
} => {
let opt_remainder = substitute_in_stmt_help(arena, remainder, subs);
let opt_continuation = substitute_in_stmt_help(arena, continuation, subs);
if opt_remainder.is_some() || opt_continuation.is_some() {
let remainder = opt_remainder.unwrap_or(remainder);
let continuation = opt_continuation.unwrap_or_else(|| *continuation);
Some(arena.alloc(Join {
id: *id,
parameters,
remainder,
body: continuation,
}))
} else {
None
}
}
Switch {
cond_symbol,
cond_layout,
branches,
default_branch,
ret_layout,
} => {
let opt_default = substitute_in_stmt_help(arena, default_branch.1, subs);
let mut did_change = false;
let opt_branches = Vec::from_iter_in(
branches.iter().map(|(label, info, branch)| {
match substitute_in_stmt_help(arena, branch, subs) {
None => None,
Some(branch) => {
did_change = true;
Some((*label, info.clone(), branch.clone()))
}
}
}),
arena,
);
if opt_default.is_some() || did_change {
let default_branch = (
default_branch.0.clone(),
opt_default.unwrap_or(default_branch.1),
);
let branches = if did_change {
let new = Vec::from_iter_in(
opt_branches.into_iter().zip(branches.iter()).map(
|(opt_branch, branch)| match opt_branch {
None => branch.clone(),
Some(new_branch) => new_branch,
},
),
arena,
);
new.into_bump_slice()
} else {
branches
};
Some(arena.alloc(Switch {
cond_symbol: *cond_symbol,
cond_layout: *cond_layout,
default_branch,
branches,
ret_layout: *ret_layout,
}))
} else {
None
}
}
Ret(s) => match substitute(subs, *s) {
Some(s) => Some(arena.alloc(Ret(s))),
None => None,
},
Refcounting(modify, cont) => {
// TODO should we substitute in the ModifyRc?
match substitute_in_stmt_help(arena, cont, subs) {
Some(cont) => Some(arena.alloc(Refcounting(*modify, cont))),
None => None,
}
}
Jump(id, args) => {
let mut did_change = false;
let new_args = Vec::from_iter_in(
args.iter().map(|s| match substitute(subs, *s) {
None => *s,
Some(s) => {
did_change = true;
s
}
}),
arena,
);
if did_change {
let args = new_args.into_bump_slice();
Some(arena.alloc(Jump(*id, args)))
} else {
None
}
}
RuntimeError(_) => None,
}
}
fn substitute_in_call<'a>(
arena: &'a Bump,
call: &'a Call<'a>,
subs: &BumpMap<Symbol, Symbol>,
) -> Option<Call<'a>> {
let Call {
call_type,
arguments,
} = call;
let opt_call_type = match call_type {
CallType::ByName {
name,
arg_layouts,
ret_layout,
specialization_id,
} => substitute(subs, *name).map(|new| CallType::ByName {
name: new,
arg_layouts,
ret_layout: *ret_layout,
specialization_id: *specialization_id,
}),
CallType::Foreign { .. } => None,
CallType::LowLevel { .. } => None,
CallType::HigherOrderLowLevel { .. } => None,
CallType::NewHigherOrderLowLevel { .. } => None,
};
let mut did_change = false;
let new_args = Vec::from_iter_in(
arguments.iter().map(|s| match substitute(subs, *s) {
None => *s,
Some(s) => {
did_change = true;
s
}
}),
arena,
);
if did_change || opt_call_type.is_some() {
let call_type = opt_call_type.unwrap_or_else(|| call_type.clone());
let arguments = new_args.into_bump_slice();
Some(self::Call {
call_type,
arguments,
})
} else {
None
}
}
fn substitute_in_expr<'a>(
arena: &'a Bump,
expr: &'a Expr<'a>,
subs: &BumpMap<Symbol, Symbol>,
) -> Option<Expr<'a>> {
use Expr::*;
match expr {
Literal(_) | EmptyArray | RuntimeErrorFunction(_) => None,
Call(call) => substitute_in_call(arena, call, subs).map(Expr::Call),
Tag {
tag_layout,
tag_name,
tag_id,
arguments: args,
} => {
let mut did_change = false;
let new_args = Vec::from_iter_in(
args.iter().map(|s| match substitute(subs, *s) {
None => *s,
Some(s) => {
did_change = true;
s
}
}),
arena,
);
if did_change {
let arguments = new_args.into_bump_slice();
Some(Tag {
tag_layout: *tag_layout,
tag_name: tag_name.clone(),
tag_id: *tag_id,
arguments,
})
} else {
None
}
}
Reuse { .. } | Reset(_) => unreachable!("reset/reuse have not been introduced yet"),
Struct(args) => {
let mut did_change = false;
let new_args = Vec::from_iter_in(
args.iter().map(|s| match substitute(subs, *s) {
None => *s,
Some(s) => {
did_change = true;
s
}
}),
arena,
);
if did_change {
let args = new_args.into_bump_slice();
Some(Struct(args))
} else {
None
}
}
Array {
elems: args,
elem_layout,
} => {
let mut did_change = false;
let new_args = Vec::from_iter_in(
args.iter().map(|e| {
if let ListLiteralElement::Symbol(s) = e {
match substitute(subs, *s) {
None => ListLiteralElement::Symbol(*s),
Some(s) => {
did_change = true;
ListLiteralElement::Symbol(s)
}
}
} else {
*e
}
}),
arena,
);
if did_change {
let args = new_args.into_bump_slice();
Some(Array {
elem_layout: *elem_layout,
elems: args,
})
} else {
None
}
}
StructAtIndex {
index,
structure,
field_layouts,
} => match substitute(subs, *structure) {
Some(structure) => Some(StructAtIndex {
index: *index,
field_layouts: *field_layouts,
structure,
}),
None => None,
},
GetTagId {
structure,
union_layout,
} => match substitute(subs, *structure) {
Some(structure) => Some(GetTagId {
structure,
union_layout: *union_layout,
}),
None => None,
},
UnionAtIndex {
structure,
tag_id,
index,
union_layout,
} => match substitute(subs, *structure) {
Some(structure) => Some(UnionAtIndex {
structure,
tag_id: *tag_id,
index: *index,
union_layout: *union_layout,
}),
None => None,
},
}
}
#[allow(clippy::too_many_arguments)]
pub fn store_pattern<'a>(
env: &mut Env<'a, '_>,
procs: &mut Procs<'a>,
layout_cache: &mut LayoutCache<'a>,
can_pat: &Pattern<'a>,
outer_symbol: Symbol,
stmt: Stmt<'a>,
) -> Stmt<'a> {
match store_pattern_help(env, procs, layout_cache, can_pat, outer_symbol, stmt) {
StorePattern::Productive(new) => new,
StorePattern::NotProductive(new) => new,
}
}
enum StorePattern<'a> {
/// we bound new symbols
Productive(Stmt<'a>),
/// no new symbols were bound in this pattern
NotProductive(Stmt<'a>),
}
/// It is crucial for correct RC insertion that we don't create dead variables!
#[allow(clippy::too_many_arguments)]
fn store_pattern_help<'a>(
env: &mut Env<'a, '_>,
procs: &mut Procs<'a>,
layout_cache: &mut LayoutCache<'a>,
can_pat: &Pattern<'a>,
outer_symbol: Symbol,
mut stmt: Stmt<'a>,
) -> StorePattern<'a> {
use Pattern::*;
match can_pat {
Identifier(symbol) => {
substitute_in_exprs(env.arena, &mut stmt, *symbol, outer_symbol);
}
Underscore => {
// do nothing
return StorePattern::NotProductive(stmt);
}
IntLiteral(_, _)
| FloatLiteral(_, _)
| DecimalLiteral(_)
| EnumLiteral { .. }
| BitLiteral { .. }
| StrLiteral(_) => {
return StorePattern::NotProductive(stmt);
}
NewtypeDestructure { arguments, .. } => match arguments.as_slice() {
[single] => {
return store_pattern_help(env, procs, layout_cache, &single.0, outer_symbol, stmt);
}
_ => {
let mut fields = Vec::with_capacity_in(arguments.len(), env.arena);
fields.extend(arguments.iter().map(|x| x.1));
let layout = Layout::Struct(fields.into_bump_slice());
return store_newtype_pattern(
env,
procs,
layout_cache,
outer_symbol,
&layout,
arguments,
stmt,
);
}
},
AppliedTag {
arguments,
layout,
tag_id,
..
} => {
return store_tag_pattern(
env,
procs,
layout_cache,
outer_symbol,
*layout,
arguments,
*tag_id,
stmt,
);
}
RecordDestructure(destructs, [_single_field]) => {
for destruct in destructs {
match &destruct.typ {
DestructType::Required(symbol) => {
substitute_in_exprs(env.arena, &mut stmt, *symbol, outer_symbol);
}
DestructType::Guard(guard_pattern) => {
return store_pattern_help(
env,
procs,
layout_cache,
guard_pattern,
outer_symbol,
stmt,
);
}
}
}
}
RecordDestructure(destructs, sorted_fields) => {
let mut is_productive = false;
for (index, destruct) in destructs.iter().enumerate().rev() {
match store_record_destruct(
env,
procs,
layout_cache,
destruct,
index as u64,
outer_symbol,
sorted_fields,
stmt,
) {
StorePattern::Productive(new) => {
is_productive = true;
stmt = new;
}
StorePattern::NotProductive(new) => {
stmt = new;
}
}
}
if !is_productive {
return StorePattern::NotProductive(stmt);
}
}
}
StorePattern::Productive(stmt)
}
#[allow(clippy::too_many_arguments)]
fn store_tag_pattern<'a>(
env: &mut Env<'a, '_>,
procs: &mut Procs<'a>,
layout_cache: &mut LayoutCache<'a>,
structure: Symbol,
union_layout: UnionLayout<'a>,
arguments: &[(Pattern<'a>, Layout<'a>)],
tag_id: u8,
mut stmt: Stmt<'a>,
) -> StorePattern<'a> {
use Pattern::*;
let mut is_productive = false;
for (index, (argument, arg_layout)) in arguments.iter().enumerate().rev() {
let mut arg_layout = *arg_layout;
if let Layout::RecursivePointer = arg_layout {
arg_layout = Layout::Union(union_layout);
}
let load = Expr::UnionAtIndex {
index: index as u64,
structure,
tag_id,
union_layout,
};
match argument {
Identifier(symbol) => {
// store immediately in the given symbol
stmt = Stmt::Let(*symbol, load, arg_layout, env.arena.alloc(stmt));
is_productive = true;
}
Underscore => {
// ignore
}
IntLiteral(_, _)
| FloatLiteral(_, _)
| DecimalLiteral(_)
| EnumLiteral { .. }
| BitLiteral { .. }
| StrLiteral(_) => {}
_ => {
// store the field in a symbol, and continue matching on it
let symbol = env.unique_symbol();
// first recurse, continuing to unpack symbol
match store_pattern_help(env, procs, layout_cache, argument, symbol, stmt) {
StorePattern::Productive(new) => {
is_productive = true;
stmt = new;
// only if we bind one of its (sub)fields to a used name should we
// extract the field
stmt = Stmt::Let(symbol, load, arg_layout, env.arena.alloc(stmt));
}
StorePattern::NotProductive(new) => {
// do nothing
stmt = new;
}
}
}
}
}
if is_productive {
StorePattern::Productive(stmt)
} else {
StorePattern::NotProductive(stmt)
}
}
#[allow(clippy::too_many_arguments)]
fn store_newtype_pattern<'a>(
env: &mut Env<'a, '_>,
procs: &mut Procs<'a>,
layout_cache: &mut LayoutCache<'a>,
structure: Symbol,
layout: &Layout<'a>,
arguments: &[(Pattern<'a>, Layout<'a>)],
mut stmt: Stmt<'a>,
) -> StorePattern<'a> {
use Pattern::*;
let mut arg_layouts = Vec::with_capacity_in(arguments.len(), env.arena);
let mut is_productive = false;
for (_, layout) in arguments {
arg_layouts.push(*layout);
}
for (index, (argument, arg_layout)) in arguments.iter().enumerate().rev() {
let mut arg_layout = *arg_layout;
if let Layout::RecursivePointer = arg_layout {
arg_layout = *layout;
}
let load = Expr::StructAtIndex {
index: index as u64,
field_layouts: arg_layouts.clone().into_bump_slice(),
structure,
};
match argument {
Identifier(symbol) => {
// store immediately in the given symbol
stmt = Stmt::Let(*symbol, load, arg_layout, env.arena.alloc(stmt));
is_productive = true;
}
Underscore => {
// ignore
}
IntLiteral(_, _)
| FloatLiteral(_, _)
| DecimalLiteral(_)
| EnumLiteral { .. }
| BitLiteral { .. }
| StrLiteral(_) => {}
_ => {
// store the field in a symbol, and continue matching on it
let symbol = env.unique_symbol();
// first recurse, continuing to unpack symbol
match store_pattern_help(env, procs, layout_cache, argument, symbol, stmt) {
StorePattern::Productive(new) => {
is_productive = true;
stmt = new;
// only if we bind one of its (sub)fields to a used name should we
// extract the field
stmt = Stmt::Let(symbol, load, arg_layout, env.arena.alloc(stmt));
}
StorePattern::NotProductive(new) => {
// do nothing
stmt = new;
}
}
}
}
}
if is_productive {
StorePattern::Productive(stmt)
} else {
StorePattern::NotProductive(stmt)
}
}
#[allow(clippy::too_many_arguments)]
fn store_record_destruct<'a>(
env: &mut Env<'a, '_>,
procs: &mut Procs<'a>,
layout_cache: &mut LayoutCache<'a>,
destruct: &RecordDestruct<'a>,
index: u64,
outer_symbol: Symbol,
sorted_fields: &'a [Layout<'a>],
mut stmt: Stmt<'a>,
) -> StorePattern<'a> {
use Pattern::*;
let load = Expr::StructAtIndex {
index,
field_layouts: sorted_fields,
structure: outer_symbol,
};
match &destruct.typ {
DestructType::Required(symbol) => {
stmt = Stmt::Let(*symbol, load, destruct.layout, env.arena.alloc(stmt));
}
DestructType::Guard(guard_pattern) => match &guard_pattern {
Identifier(symbol) => {
stmt = Stmt::Let(*symbol, load, destruct.layout, env.arena.alloc(stmt));
}
Underscore => {
// important that this is special-cased to do nothing: mono record patterns will extract all the
// fields, but those not bound in the source code are guarded with the underscore
// pattern. So given some record `{ x : a, y : b }`, a match
//
// { x } -> ...
//
// is actually
//
// { x, y: _ } -> ...
//
// internally. But `y` is never used, so we must make sure it't not stored/loaded.
return StorePattern::NotProductive(stmt);
}
IntLiteral(_, _)
| FloatLiteral(_, _)
| DecimalLiteral(_)
| EnumLiteral { .. }
| BitLiteral { .. }
| StrLiteral(_) => {
return StorePattern::NotProductive(stmt);
}
_ => {
let symbol = env.unique_symbol();
match store_pattern_help(env, procs, layout_cache, guard_pattern, symbol, stmt) {
StorePattern::Productive(new) => {
stmt = new;
stmt = Stmt::Let(symbol, load, destruct.layout, env.arena.alloc(stmt));
}
StorePattern::NotProductive(stmt) => return StorePattern::NotProductive(stmt),
}
}
},
}
StorePattern::Productive(stmt)
}
/// We want to re-use symbols that are not function symbols
/// for any other expression, we create a new symbol, and will
/// later make sure it gets assigned the correct value.
enum ReuseSymbol {
Imported(Symbol),
LocalFunction(Symbol),
Value(Symbol),
NotASymbol,
}
fn can_reuse_symbol<'a>(
env: &mut Env<'a, '_>,
procs: &Procs<'a>,
expr: &roc_can::expr::Expr,
) -> ReuseSymbol {
use ReuseSymbol::*;
if let roc_can::expr::Expr::Var(symbol) = expr {
let symbol = *symbol;
if env.is_imported_symbol(symbol) {
Imported(symbol)
} else if procs.partial_procs.contains_key(&symbol) {
LocalFunction(symbol)
} else {
Value(symbol)
}
} else {
NotASymbol
}
}
fn possible_reuse_symbol<'a>(
env: &mut Env<'a, '_>,
procs: &Procs<'a>,
expr: &roc_can::expr::Expr,
) -> Symbol {
match can_reuse_symbol(env, procs, expr) {
ReuseSymbol::Value(s) => s,
_ => env.unique_symbol(),
}
}
fn handle_variable_aliasing<'a>(
env: &mut Env<'a, '_>,
procs: &mut Procs<'a>,
layout_cache: &mut LayoutCache<'a>,
variable: Variable,
left: Symbol,
right: Symbol,
mut result: Stmt<'a>,
) -> Stmt<'a> {
if env.is_imported_symbol(right) {
// if this is an imported symbol, then we must make sure it is
// specialized, and wrap the original in a function pointer.
add_needed_external(procs, env, variable, right);
// then we must construct its closure; since imported symbols have no closure, we use the
// empty struct
let_empty_struct(left, env.arena.alloc(result))
} else {
substitute_in_exprs(env.arena, &mut result, left, right);
// if the substituted variable is a function, make sure we specialize it
reuse_function_symbol(
env,
procs,
layout_cache,
Some(variable),
right,
result,
right,
)
}
}
fn force_thunk<'a>(
env: &mut Env<'a, '_>,
thunk_name: Symbol,
layout: Layout<'a>,
assigned: Symbol,
hole: &'a Stmt<'a>,
) -> Stmt<'a> {
let call = self::Call {
call_type: CallType::ByName {
name: thunk_name,
ret_layout: layout,
arg_layouts: &[],
specialization_id: env.next_call_specialization_id(),
},
arguments: &[],
};
build_call(env, call, assigned, layout, env.arena.alloc(hole))
}
fn let_empty_struct<'a>(assigned: Symbol, hole: &'a Stmt<'a>) -> Stmt<'a> {
Stmt::Let(assigned, Expr::Struct(&[]), Layout::Struct(&[]), hole)
}
/// If the symbol is a function, make sure it is properly specialized
fn reuse_function_symbol<'a>(
env: &mut Env<'a, '_>,
procs: &mut Procs<'a>,
layout_cache: &mut LayoutCache<'a>,
arg_var: Option<Variable>,
symbol: Symbol,
result: Stmt<'a>,
original: Symbol,
) -> Stmt<'a> {
match procs.partial_procs.get(&original) {
None => {
match arg_var {
Some(arg_var) if env.is_imported_symbol(original) => {
let raw = layout_cache
.raw_from_var(env.arena, arg_var, env.subs)
.expect("creating layout does not fail");
if procs.imported_module_thunks.contains(&original) {
let layout = match raw {
RawFunctionLayout::ZeroArgumentThunk(layout) => layout,
RawFunctionLayout::Function(_, lambda_set, _) => {
Layout::LambdaSet(lambda_set)
}
};
let raw = RawFunctionLayout::ZeroArgumentThunk(layout);
let top_level = ProcLayout::from_raw(env.arena, raw);
procs.insert_passed_by_name(
env,
arg_var,
original,
top_level,
layout_cache,
);
force_thunk(env, original, layout, symbol, env.arena.alloc(result))
} else {
let top_level = ProcLayout::from_raw(env.arena, raw);
procs.insert_passed_by_name(
env,
arg_var,
original,
top_level,
layout_cache,
);
let_empty_struct(symbol, env.arena.alloc(result))
}
}
_ => {
// danger: a foreign symbol may not be specialized!
debug_assert!(
!env.is_imported_symbol(original),
"symbol {:?} while processing module {:?}",
original,
(env.home, &arg_var),
);
result
}
}
}
Some(partial_proc) => {
let arg_var = arg_var.unwrap_or(partial_proc.annotation);
// this symbol is a function, that is used by-name (e.g. as an argument to another
// function). Register it with the current variable, then create a function pointer
// to it in the IR.
let res_layout = return_on_layout_error!(
env,
layout_cache.raw_from_var(env.arena, arg_var, env.subs)
);
// we have three kinds of functions really. Plain functions, closures by capture,
// and closures by unification. Here we record whether this function captures
// anything.
let captures = partial_proc.captured_symbols.captures();
let captured = partial_proc.captured_symbols.clone();
match res_layout {
RawFunctionLayout::Function(_, lambda_set, _) => {
// define the function pointer
let function_ptr_layout = ProcLayout::from_raw(env.arena, res_layout);
if captures {
// this is a closure by capture, meaning it itself captures local variables.
procs.insert_passed_by_name(
env,
arg_var,
original,
function_ptr_layout,
layout_cache,
);
let closure_data = symbol;
let symbols = match captured {
CapturedSymbols::Captured(captured_symbols) => {
Vec::from_iter_in(captured_symbols.iter().map(|x| x.0), env.arena)
.into_bump_slice()
}
CapturedSymbols::None => unreachable!(),
};
construct_closure_data(
env,
lambda_set,
original,
symbols,
closure_data,
env.arena.alloc(result),
)
} else if procs.module_thunks.contains(&original) {
// this is a 0-argument thunk
// TODO suspicious
// let layout = Layout::Closure(argument_layouts, lambda_set, ret_layout);
// panic!("suspicious");
let layout = Layout::LambdaSet(lambda_set);
let top_level = ProcLayout::new(env.arena, &[], layout);
procs.insert_passed_by_name(
env,
arg_var,
original,
top_level,
layout_cache,
);
force_thunk(env, original, layout, symbol, env.arena.alloc(result))
} else {
procs.insert_passed_by_name(
env,
arg_var,
original,
function_ptr_layout,
layout_cache,
);
// even though this function may not itself capture,
// unification may still cause it to have an extra argument
construct_closure_data(
env,
lambda_set,
original,
&[],
symbol,
env.arena.alloc(result),
)
}
}
RawFunctionLayout::ZeroArgumentThunk(ret_layout) => {
// this is a 0-argument thunk
let top_level = ProcLayout::new(env.arena, &[], ret_layout);
procs.insert_passed_by_name(env, arg_var, original, top_level, layout_cache);
force_thunk(env, original, ret_layout, symbol, env.arena.alloc(result))
}
}
}
}
}
fn assign_to_symbol<'a>(
env: &mut Env<'a, '_>,
procs: &mut Procs<'a>,
layout_cache: &mut LayoutCache<'a>,
arg_var: Variable,
loc_arg: Located<roc_can::expr::Expr>,
symbol: Symbol,
result: Stmt<'a>,
) -> Stmt<'a> {
use ReuseSymbol::*;
match can_reuse_symbol(env, procs, &loc_arg.value) {
Imported(original) | LocalFunction(original) => {
// for functions we must make sure they are specialized correctly
reuse_function_symbol(
env,
procs,
layout_cache,
Some(arg_var),
symbol,
result,
original,
)
}
Value(_) => {
// symbol is already defined; nothing else to do here
result
}
NotASymbol => with_hole(
env,
loc_arg.value,
arg_var,
procs,
layout_cache,
symbol,
env.arena.alloc(result),
),
}
}
fn assign_to_symbols<'a, I>(
env: &mut Env<'a, '_>,
procs: &mut Procs<'a>,
layout_cache: &mut LayoutCache<'a>,
iter: I,
mut result: Stmt<'a>,
) -> Stmt<'a>
where
I: Iterator<Item = ((Variable, Located<roc_can::expr::Expr>), &'a Symbol)>,
{
for ((arg_var, loc_arg), symbol) in iter {
result = assign_to_symbol(env, procs, layout_cache, arg_var, loc_arg, *symbol, result);
}
result
}
fn add_needed_external<'a>(
procs: &mut Procs<'a>,
env: &mut Env<'a, '_>,
fn_var: Variable,
name: Symbol,
) {
// call of a function that is not in this module
use hashbrown::hash_map::Entry::{Occupied, Vacant};
let existing = match procs.externals_we_need.entry(name.module_id()) {
Vacant(entry) => entry.insert(ExternalSpecializations::new_in(env.arena)),
Occupied(entry) => entry.into_mut(),
};
let solved_type = SolvedType::from_var(env.subs, fn_var);
existing.insert(name, solved_type);
}
fn build_call<'a>(
_env: &mut Env<'a, '_>,
call: Call<'a>,
assigned: Symbol,
return_layout: Layout<'a>,
hole: &'a Stmt<'a>,
) -> Stmt<'a> {
Stmt::Let(assigned, Expr::Call(call), return_layout, hole)
}
/// See https://github.com/rtfeldman/roc/issues/1549
///
/// What happened is that a function has a type error, but the arguments are not processed.
/// That means specializations were missing. Normally that is not a problem, but because
/// of our closure strategy, internal functions can "leak". That's what happened here.
///
/// The solution is to evaluate the arguments as normal, and only when calling the function give an error
fn evaluate_arguments_then_runtime_error<'a>(
env: &mut Env<'a, '_>,
procs: &mut Procs<'a>,
layout_cache: &mut LayoutCache<'a>,
msg: String,
loc_args: std::vec::Vec<(Variable, Located<roc_can::expr::Expr>)>,
) -> Stmt<'a> {
let arena = env.arena;
// eventually we will throw this runtime error
let result = Stmt::RuntimeError(env.arena.alloc(msg));
// but, we also still evaluate and specialize the arguments to give better error messages
let arg_symbols = Vec::from_iter_in(
loc_args
.iter()
.map(|(_, arg_expr)| possible_reuse_symbol(env, procs, &arg_expr.value)),
arena,
)
.into_bump_slice();
let iter = loc_args.into_iter().rev().zip(arg_symbols.iter().rev());
assign_to_symbols(env, procs, layout_cache, iter, result)
}
#[allow(clippy::too_many_arguments)]
fn call_by_name<'a>(
env: &mut Env<'a, '_>,
procs: &mut Procs<'a>,
fn_var: Variable,
proc_name: Symbol,
loc_args: std::vec::Vec<(Variable, Located<roc_can::expr::Expr>)>,
layout_cache: &mut LayoutCache<'a>,
assigned: Symbol,
hole: &'a Stmt<'a>,
) -> Stmt<'a> {
// Register a pending_specialization for this function
match layout_cache.raw_from_var(env.arena, fn_var, env.subs) {
Err(LayoutProblem::UnresolvedTypeVar(var)) => {
let msg = format!(
"Hit an unresolved type variable {:?} when creating a layout for {:?} (var {:?})",
var, proc_name, fn_var
);
evaluate_arguments_then_runtime_error(env, procs, layout_cache, msg, loc_args)
}
Err(LayoutProblem::Erroneous) => {
let msg = format!(
"Hit an erroneous type when creating a layout for {:?}",
proc_name
);
evaluate_arguments_then_runtime_error(env, procs, layout_cache, msg, loc_args)
}
Ok(RawFunctionLayout::Function(arg_layouts, lambda_set, ret_layout)) => {
if procs.module_thunks.contains(&proc_name) {
if loc_args.is_empty() {
call_by_name_module_thunk(
env,
procs,
fn_var,
proc_name,
env.arena.alloc(Layout::LambdaSet(lambda_set)),
layout_cache,
assigned,
hole,
)
} else {
// here we turn a call to a module thunk into forcing of that thunk
// the thunk represents the closure environment for the body, so we then match
// on the closure environment to perform the call that the body represents.
//
// Example:
//
// > main = parseA "foo" "bar"
// > parseA = Str.concat
let closure_data_symbol = env.unique_symbol();
let arena = env.arena;
let arg_symbols = Vec::from_iter_in(
loc_args.iter().map(|(_, arg_expr)| {
possible_reuse_symbol(env, procs, &arg_expr.value)
}),
arena,
)
.into_bump_slice();
debug_assert_eq!(arg_symbols.len(), arg_layouts.len());
let result = match_on_lambda_set(
env,
lambda_set,
closure_data_symbol,
arg_symbols,
arg_layouts,
*ret_layout,
assigned,
hole,
);
let result = call_by_name_module_thunk(
env,
procs,
fn_var,
proc_name,
env.arena.alloc(Layout::LambdaSet(lambda_set)),
layout_cache,
closure_data_symbol,
env.arena.alloc(result),
);
let iter = loc_args.into_iter().rev().zip(arg_symbols.iter().rev());
assign_to_symbols(env, procs, layout_cache, iter, result)
}
} else {
call_by_name_help(
env,
procs,
fn_var,
proc_name,
loc_args,
lambda_set,
arg_layouts,
ret_layout,
layout_cache,
assigned,
hole,
)
}
}
Ok(RawFunctionLayout::ZeroArgumentThunk(ret_layout)) => {
if procs.module_thunks.contains(&proc_name) {
// here we turn a call to a module thunk into forcing of that thunk
call_by_name_module_thunk(
env,
procs,
fn_var,
proc_name,
env.arena.alloc(ret_layout),
layout_cache,
assigned,
hole,
)
} else if env.is_imported_symbol(proc_name) {
add_needed_external(procs, env, fn_var, proc_name);
force_thunk(env, proc_name, ret_layout, assigned, hole)
} else {
panic!("most likely we're trying to call something that is not a function");
}
}
}
}
#[allow(clippy::too_many_arguments)]
fn call_by_name_help<'a>(
env: &mut Env<'a, '_>,
procs: &mut Procs<'a>,
fn_var: Variable,
proc_name: Symbol,
loc_args: std::vec::Vec<(Variable, Located<roc_can::expr::Expr>)>,
lambda_set: LambdaSet<'a>,
argument_layouts: &'a [Layout<'a>],
ret_layout: &'a Layout<'a>,
layout_cache: &mut LayoutCache<'a>,
assigned: Symbol,
hole: &'a Stmt<'a>,
) -> Stmt<'a> {
let original_fn_var = fn_var;
let arena = env.arena;
// the arguments given to the function, stored in symbols
let mut field_symbols = Vec::with_capacity_in(loc_args.len(), arena);
field_symbols.extend(
loc_args
.iter()
.map(|(_, arg_expr)| possible_reuse_symbol(env, procs, &arg_expr.value)),
);
// If required, add an extra argument to the layout that is the captured environment
// afterwards, we MUST make sure the number of arguments in the layout matches the
// number of arguments actually passed.
let top_level_layout = {
let argument_layouts = lambda_set.extend_argument_list(env.arena, argument_layouts);
ProcLayout::new(env.arena, argument_layouts, *ret_layout)
};
// the variables of the given arguments
let mut pattern_vars = Vec::with_capacity_in(loc_args.len(), arena);
for (var, _) in &loc_args {
match layout_cache.from_var(env.arena, *var, env.subs) {
Ok(_) => {
pattern_vars.push(*var);
}
Err(_) => {
// One of this function's arguments code gens to a runtime error,
// so attempting to call it will immediately crash.
return Stmt::RuntimeError("TODO runtime error for invalid layout");
}
}
}
// If we've already specialized this one, no further work is needed.
if procs
.specialized
.contains_key(&(proc_name, top_level_layout))
{
debug_assert_eq!(
argument_layouts.len(),
field_symbols.len(),
"see call_by_name for background (scroll down a bit), function is {:?}",
proc_name,
);
let field_symbols = field_symbols.into_bump_slice();
let call = self::Call {
call_type: CallType::ByName {
name: proc_name,
ret_layout: *ret_layout,
arg_layouts: argument_layouts,
specialization_id: env.next_call_specialization_id(),
},
arguments: field_symbols,
};
let result = build_call(env, call, assigned, *ret_layout, hole);
let iter = loc_args.into_iter().rev().zip(field_symbols.iter().rev());
assign_to_symbols(env, procs, layout_cache, iter, result)
} else if env.is_imported_symbol(proc_name) {
add_needed_external(procs, env, original_fn_var, proc_name);
debug_assert_ne!(proc_name.module_id(), ModuleId::ATTR);
if procs.imported_module_thunks.contains(&proc_name) {
force_thunk(
env,
proc_name,
Layout::LambdaSet(lambda_set),
assigned,
hole,
)
} else {
debug_assert!(
!field_symbols.is_empty(),
"should be in the list of imported_module_thunks"
);
debug_assert_eq!(
argument_layouts.len(),
field_symbols.len(),
"see call_by_name for background (scroll down a bit), function is {:?}",
proc_name,
);
let field_symbols = field_symbols.into_bump_slice();
let call = self::Call {
call_type: CallType::ByName {
name: proc_name,
ret_layout: *ret_layout,
arg_layouts: argument_layouts,
specialization_id: env.next_call_specialization_id(),
},
arguments: field_symbols,
};
let result = build_call(env, call, assigned, *ret_layout, hole);
let iter = loc_args.into_iter().rev().zip(field_symbols.iter().rev());
assign_to_symbols(env, procs, layout_cache, iter, result)
}
} else {
let pending = PendingSpecialization::from_var(env.arena, env.subs, fn_var);
// When requested (that is, when procs.pending_specializations is `Some`),
// store a pending specialization rather than specializing immediately.
//
// We do this so that we can do specialization in two passes: first,
// build the mono_expr with all the specialized calls in place (but
// no specializations performed yet), and then second, *after*
// de-duplicating requested specializations (since multiple modules
// which could be getting monomorphized in parallel might request
// the same specialization independently), we work through the
// queue of pending specializations to complete each specialization
// exactly once.
match &mut procs.pending_specializations {
Some(pending_specializations) => {
debug_assert!(!env.is_imported_symbol(proc_name));
if procs.module_thunks.contains(&proc_name) {
debug_assert!(top_level_layout.arguments.is_empty());
}
// register the pending specialization, so this gets code genned later
add_pending(
pending_specializations,
proc_name,
top_level_layout,
pending,
);
debug_assert_eq!(
argument_layouts.len(),
field_symbols.len(),
"see call_by_name for background (scroll down a bit), function is {:?}",
proc_name,
);
let field_symbols = field_symbols.into_bump_slice();
let call = self::Call {
call_type: CallType::ByName {
name: proc_name,
ret_layout: *ret_layout,
arg_layouts: argument_layouts,
specialization_id: env.next_call_specialization_id(),
},
arguments: field_symbols,
};
let result = build_call(env, call, assigned, *ret_layout, hole);
let iter = loc_args.into_iter().rev().zip(field_symbols.iter().rev());
assign_to_symbols(env, procs, layout_cache, iter, result)
}
None => {
let opt_partial_proc = procs.partial_procs.get(&proc_name);
/*
debug_assert_eq!(
argument_layouts.len(),
field_symbols.len(),
"Function {:?} is called with {} arguments, but the layout expects {}",
proc_name,
field_symbols.len(),
argument_layouts.len(),
);
*/
let field_symbols = field_symbols.into_bump_slice();
match opt_partial_proc {
Some(partial_proc) => {
// TODO should pending_procs hold a Rc<Proc> to avoid this .clone()?
let partial_proc = partial_proc.clone();
// Mark this proc as in-progress, so if we're dealing with
// mutually recursive functions, we don't loop forever.
// (We had a bug around this before this system existed!)
procs
.specialized
.insert((proc_name, top_level_layout), InProgress);
match specialize(env, procs, proc_name, layout_cache, pending, partial_proc)
{
Ok((proc, layout)) => {
// now we just call our freshly-specialized function
call_specialized_proc(
env,
procs,
proc_name,
proc,
lambda_set,
layout,
field_symbols,
loc_args,
layout_cache,
assigned,
hole,
)
}
Err(SpecializeFailure {
attempted_layout,
problem: _,
}) => {
let proc = generate_runtime_error_function(
env,
proc_name,
attempted_layout,
);
call_specialized_proc(
env,
procs,
proc_name,
proc,
lambda_set,
attempted_layout,
field_symbols,
loc_args,
layout_cache,
assigned,
hole,
)
}
}
}
None => {
unreachable!("Proc name {:?} is invalid", proc_name)
}
}
}
}
}
}
#[allow(clippy::too_many_arguments)]
fn call_by_name_module_thunk<'a>(
env: &mut Env<'a, '_>,
procs: &mut Procs<'a>,
fn_var: Variable,
proc_name: Symbol,
ret_layout: &'a Layout<'a>,
layout_cache: &mut LayoutCache<'a>,
assigned: Symbol,
hole: &'a Stmt<'a>,
) -> Stmt<'a> {
debug_assert!(!env.is_imported_symbol(proc_name));
// debug_assert!(!procs.module_thunks.contains(&proc_name), "{:?}", proc_name);
let top_level_layout = ProcLayout::new(env.arena, &[], *ret_layout);
let inner_layout = *ret_layout;
// If we've already specialized this one, no further work is needed.
if procs
.specialized
.contains_key(&(proc_name, top_level_layout))
{
force_thunk(env, proc_name, inner_layout, assigned, hole)
} else {
let pending = PendingSpecialization::from_var(env.arena, env.subs, fn_var);
// When requested (that is, when procs.pending_specializations is `Some`),
// store a pending specialization rather than specializing immediately.
//
// We do this so that we can do specialization in two passes: first,
// build the mono_expr with all the specialized calls in place (but
// no specializations performed yet), and then second, *after*
// de-duplicating requested specializations (since multiple modules
// which could be getting monomorphized in parallel might request
// the same specialization independently), we work through the
// queue of pending specializations to complete each specialization
// exactly once.
match &mut procs.pending_specializations {
Some(pending_specializations) => {
debug_assert!(!env.is_imported_symbol(proc_name));
if procs.module_thunks.contains(&proc_name) {
debug_assert!(top_level_layout.arguments.is_empty());
}
// register the pending specialization, so this gets code genned later
add_pending(
pending_specializations,
proc_name,
top_level_layout,
pending,
);
force_thunk(env, proc_name, inner_layout, assigned, hole)
}
None => {
let opt_partial_proc = procs.partial_procs.get(&proc_name);
match opt_partial_proc {
Some(partial_proc) => {
// TODO should pending_procs hold a Rc<Proc> to avoid this .clone()?
let partial_proc = partial_proc.clone();
// Mark this proc as in-progress, so if we're dealing with
// mutually recursive functions, we don't loop forever.
// (We had a bug around this before this system existed!)
procs
.specialized
.insert((proc_name, top_level_layout), InProgress);
match specialize(env, procs, proc_name, layout_cache, pending, partial_proc)
{
Ok((proc, raw_layout)) => {
debug_assert!(
raw_layout.is_zero_argument_thunk(),
"but actually {:?}",
raw_layout
);
let was_present =
procs.specialized.remove(&(proc_name, top_level_layout));
debug_assert!(was_present.is_some());
procs
.specialized
.insert((proc_name, top_level_layout), Done(proc));
force_thunk(env, proc_name, inner_layout, assigned, hole)
}
Err(SpecializeFailure {
attempted_layout,
problem: _,
}) => {
let proc = generate_runtime_error_function(
env,
proc_name,
attempted_layout,
);
let was_present =
procs.specialized.remove(&(proc_name, top_level_layout));
debug_assert!(was_present.is_some());
procs
.specialized
.insert((proc_name, top_level_layout), Done(proc));
force_thunk(env, proc_name, inner_layout, assigned, hole)
}
}
}
None => {
unreachable!("Proc name {:?} is invalid", proc_name)
}
}
}
}
}
}
#[allow(clippy::too_many_arguments)]
fn call_specialized_proc<'a>(
env: &mut Env<'a, '_>,
procs: &mut Procs<'a>,
proc_name: Symbol,
proc: Proc<'a>,
lambda_set: LambdaSet<'a>,
layout: RawFunctionLayout<'a>,
field_symbols: &'a [Symbol],
loc_args: std::vec::Vec<(Variable, Located<roc_can::expr::Expr>)>,
layout_cache: &mut LayoutCache<'a>,
assigned: Symbol,
hole: &'a Stmt<'a>,
) -> Stmt<'a> {
let function_layout = ProcLayout::from_raw(env.arena, layout);
procs.specialized.remove(&(proc_name, function_layout));
procs
.specialized
.insert((proc_name, function_layout), Done(proc));
if field_symbols.is_empty() {
debug_assert!(loc_args.is_empty());
// This happens when we return a function, e.g.
//
// foo = Num.add
//
// Even though the layout (and type) are functions,
// there are no arguments. This confuses our IR,
// and we have to fix it here.
match layout {
RawFunctionLayout::Function(_, lambda_set, _) => {
// when the body is a closure, the function will return the closure environment
let call = self::Call {
call_type: CallType::ByName {
name: proc_name,
ret_layout: function_layout.result,
arg_layouts: function_layout.arguments,
specialization_id: env.next_call_specialization_id(),
},
arguments: field_symbols,
};
// the closure argument is already added here (to get the right specialization)
// but now we need to remove it because the `match_on_lambda_set` will add it again
build_call(env, call, assigned, Layout::LambdaSet(lambda_set), hole)
}
RawFunctionLayout::ZeroArgumentThunk(_) => {
unreachable!()
}
}
} else {
let iter = loc_args.into_iter().rev().zip(field_symbols.iter().rev());
match procs
.partial_procs
.get(&proc_name)
.map(|pp| &pp.captured_symbols)
{
Some(&CapturedSymbols::Captured(captured_symbols)) => {
let symbols = Vec::from_iter_in(captured_symbols.iter().map(|x| x.0), env.arena)
.into_bump_slice();
let closure_data_symbol = env.unique_symbol();
// the closure argument is already added here (to get the right specialization)
// but now we need to remove it because the `match_on_lambda_set` will add it again
let mut argument_layouts =
Vec::from_iter_in(function_layout.arguments.iter().copied(), env.arena);
argument_layouts.pop().unwrap();
debug_assert_eq!(argument_layouts.len(), field_symbols.len(),);
let new_hole = match_on_lambda_set(
env,
lambda_set,
closure_data_symbol,
field_symbols,
argument_layouts.into_bump_slice(),
function_layout.result,
assigned,
hole,
);
let result = construct_closure_data(
env,
lambda_set,
proc_name,
symbols,
closure_data_symbol,
env.arena.alloc(new_hole),
);
assign_to_symbols(env, procs, layout_cache, iter, result)
}
_ => {
debug_assert_eq!(
function_layout.arguments.len(),
field_symbols.len(),
"function {:?} with layout {:#?} expects {:?} arguments, but is applied to {:?}",
proc_name,
function_layout,
function_layout.arguments.len(),
field_symbols.len(),
);
let call = self::Call {
call_type: CallType::ByName {
name: proc_name,
ret_layout: function_layout.result,
arg_layouts: function_layout.arguments,
specialization_id: env.next_call_specialization_id(),
},
arguments: field_symbols,
};
let result = build_call(env, call, assigned, function_layout.result, hole);
assign_to_symbols(env, procs, layout_cache, iter, result)
}
}
}
}
/// A pattern, including possible problems (e.g. shadowing) so that
/// codegen can generate a runtime error if this pattern is reached.
#[derive(Clone, Debug, PartialEq)]
pub enum Pattern<'a> {
Identifier(Symbol),
Underscore,
IntLiteral(i128, IntPrecision),
FloatLiteral(u64, FloatPrecision),
DecimalLiteral(RocDec),
BitLiteral {
value: bool,
tag_name: TagName,
union: crate::exhaustive::Union,
},
EnumLiteral {
tag_id: u8,
tag_name: TagName,
union: crate::exhaustive::Union,
},
StrLiteral(Box<str>),
RecordDestructure(Vec<'a, RecordDestruct<'a>>, &'a [Layout<'a>]),
NewtypeDestructure {
tag_name: TagName,
arguments: Vec<'a, (Pattern<'a>, Layout<'a>)>,
},
AppliedTag {
tag_name: TagName,
tag_id: u8,
arguments: Vec<'a, (Pattern<'a>, Layout<'a>)>,
layout: UnionLayout<'a>,
union: crate::exhaustive::Union,
},
}
#[derive(Clone, Debug, PartialEq)]
pub struct RecordDestruct<'a> {
pub label: Lowercase,
pub variable: Variable,
pub layout: Layout<'a>,
pub typ: DestructType<'a>,
}
#[derive(Clone, Debug, PartialEq)]
pub enum DestructType<'a> {
Required(Symbol),
Guard(Pattern<'a>),
}
#[derive(Clone, Debug, PartialEq)]
pub struct WhenBranch<'a> {
pub patterns: Vec<'a, Pattern<'a>>,
pub value: Expr<'a>,
pub guard: Option<Stmt<'a>>,
}
#[allow(clippy::type_complexity)]
fn from_can_pattern<'a>(
env: &mut Env<'a, '_>,
layout_cache: &mut LayoutCache<'a>,
can_pattern: &roc_can::pattern::Pattern,
) -> Result<
(
Pattern<'a>,
Vec<'a, (Symbol, Variable, roc_can::expr::Expr)>,
),
RuntimeError,
> {
let mut assignments = Vec::new_in(env.arena);
let pattern = from_can_pattern_help(env, layout_cache, can_pattern, &mut assignments)?;
Ok((pattern, assignments))
}
fn from_can_pattern_help<'a>(
env: &mut Env<'a, '_>,
layout_cache: &mut LayoutCache<'a>,
can_pattern: &roc_can::pattern::Pattern,
assignments: &mut Vec<'a, (Symbol, Variable, roc_can::expr::Expr)>,
) -> Result<Pattern<'a>, RuntimeError> {
use roc_can::pattern::Pattern::*;
match can_pattern {
Underscore => Ok(Pattern::Underscore),
Identifier(symbol) => Ok(Pattern::Identifier(*symbol)),
IntLiteral(var, _, int) => {
match num_argument_to_int_or_float(env.subs, env.ptr_bytes, *var, false) {
IntOrFloat::SignedIntType(precision) | IntOrFloat::UnsignedIntType(precision) => {
Ok(Pattern::IntLiteral(*int as i128, precision))
}
other => {
panic!(
"Invalid precision for int pattern: {:?} has {:?}",
can_pattern, other
)
}
}
}
FloatLiteral(var, float_str, float) => {
// TODO: Can I reuse num_argument_to_int_or_float here if I pass in true?
match num_argument_to_int_or_float(env.subs, env.ptr_bytes, *var, true) {
IntOrFloat::SignedIntType(_) | IntOrFloat::UnsignedIntType(_) => {
panic!("Invalid precision for float pattern {:?}", var)
}
IntOrFloat::BinaryFloatType(precision) => {
Ok(Pattern::FloatLiteral(f64::to_bits(*float), precision))
}
IntOrFloat::DecimalFloatType => {
let dec = match RocDec::from_str(float_str) {
Some(d) => d,
None => panic!(
r"Invalid decimal for float literal = {}. TODO: Make this a nice, user-friendly error message",
float_str
),
};
Ok(Pattern::DecimalLiteral(dec))
}
}
}
StrLiteral(v) => Ok(Pattern::StrLiteral(v.clone())),
Shadowed(region, ident) => Err(RuntimeError::Shadowing {
original_region: *region,
shadow: ident.clone(),
}),
UnsupportedPattern(region) => Err(RuntimeError::UnsupportedPattern(*region)),
MalformedPattern(_problem, region) => {
// TODO preserve malformed problem information here?
Err(RuntimeError::UnsupportedPattern(*region))
}
NumLiteral(var, num_str, num) => {
match num_argument_to_int_or_float(env.subs, env.ptr_bytes, *var, false) {
IntOrFloat::SignedIntType(precision) => {
Ok(Pattern::IntLiteral(*num as i128, precision))
}
IntOrFloat::UnsignedIntType(precision) => {
Ok(Pattern::IntLiteral(*num as i128, precision))
}
IntOrFloat::BinaryFloatType(precision) => {
Ok(Pattern::FloatLiteral(*num as u64, precision))
}
IntOrFloat::DecimalFloatType => {
let dec = match RocDec::from_str(num_str) {
Some(d) => d,
None => panic!("Invalid decimal for float literal = {}. TODO: Make this a nice, user-friendly error message", num_str),
};
Ok(Pattern::DecimalLiteral(dec))
}
}
}
AppliedTag {
whole_var,
tag_name,
arguments,
..
} => {
use crate::exhaustive::Union;
use crate::layout::UnionVariant::*;
let res_variant =
crate::layout::union_sorted_tags(env.arena, *whole_var, env.subs, env.ptr_bytes);
let variant = match res_variant {
Ok(cached) => cached,
Err(LayoutProblem::UnresolvedTypeVar(_)) => {
return Err(RuntimeError::UnresolvedTypeVar)
}
Err(LayoutProblem::Erroneous) => return Err(RuntimeError::ErroneousType),
};
let result = match variant {
Never => unreachable!(
"there is no pattern of type `[]`, union var {:?}",
*whole_var
),
Unit | UnitWithArguments => Pattern::EnumLiteral {
tag_id: 0,
tag_name: tag_name.clone(),
union: Union {
render_as: RenderAs::Tag,
alternatives: vec![Ctor {
tag_id: TagId(0),
name: tag_name.clone(),
arity: 0,
}],
},
},
BoolUnion { ttrue, ffalse } => Pattern::BitLiteral {
value: tag_name == &ttrue,
tag_name: tag_name.clone(),
union: Union {
render_as: RenderAs::Tag,
alternatives: vec![
Ctor {
tag_id: TagId(0),
name: ffalse,
arity: 0,
},
Ctor {
tag_id: TagId(1),
name: ttrue,
arity: 0,
},
],
},
},
ByteUnion(tag_names) => {
let tag_id = tag_names
.iter()
.position(|key| key == tag_name)
.expect("tag must be in its own type");
let mut ctors = std::vec::Vec::with_capacity(tag_names.len());
for (i, tag_name) in tag_names.into_iter().enumerate() {
ctors.push(Ctor {
tag_id: TagId(i as u8),
name: tag_name,
arity: 0,
})
}
let union = crate::exhaustive::Union {
render_as: RenderAs::Tag,
alternatives: ctors,
};
Pattern::EnumLiteral {
tag_id: tag_id as u8,
tag_name: tag_name.clone(),
union,
}
}
Newtype {
arguments: field_layouts,
..
} => {
let mut arguments = arguments.clone();
arguments.sort_by(|arg1, arg2| {
let size1 = layout_cache
.from_var(env.arena, arg1.0, env.subs)
.map(|x| x.alignment_bytes(env.ptr_bytes))
.unwrap_or(0);
let size2 = layout_cache
.from_var(env.arena, arg2.0, env.subs)
.map(|x| x.alignment_bytes(env.ptr_bytes))
.unwrap_or(0);
size2.cmp(&size1)
});
let mut mono_args = Vec::with_capacity_in(arguments.len(), env.arena);
for ((_, loc_pat), layout) in arguments.iter().zip(field_layouts.iter()) {
mono_args.push((
from_can_pattern_help(env, layout_cache, &loc_pat.value, assignments)?,
*layout,
));
}
Pattern::NewtypeDestructure {
tag_name: tag_name.clone(),
arguments: mono_args,
}
}
Wrapped(variant) => {
let (tag_id, argument_layouts) = variant.tag_name_to_id(tag_name);
let number_of_tags = variant.number_of_tags();
let mut ctors = std::vec::Vec::with_capacity(number_of_tags);
let arguments = {
let mut temp = arguments.clone();
temp.sort_by(|arg1, arg2| {
let layout1 =
layout_cache.from_var(env.arena, arg1.0, env.subs).unwrap();
let layout2 =
layout_cache.from_var(env.arena, arg2.0, env.subs).unwrap();
let size1 = layout1.alignment_bytes(env.ptr_bytes);
let size2 = layout2.alignment_bytes(env.ptr_bytes);
size2.cmp(&size1)
});
temp
};
// we must derive the union layout from the whole_var, building it up
// from `layouts` would unroll recursive tag unions, and that leads to
// problems down the line because we hash layouts and an unrolled
// version is not the same as the minimal version.
let layout = match layout_cache.from_var(env.arena, *whole_var, env.subs) {
Ok(Layout::Union(ul)) => ul,
_ => unreachable!(),
};
use WrappedVariant::*;
match variant {
NonRecursive {
sorted_tag_layouts: ref tags,
} => {
debug_assert!(tags.len() > 1);
for (i, (tag_name, args)) in tags.iter().enumerate() {
ctors.push(Ctor {
tag_id: TagId(i as u8),
name: tag_name.clone(),
arity: args.len(),
})
}
let union = crate::exhaustive::Union {
render_as: RenderAs::Tag,
alternatives: ctors,
};
let mut mono_args = Vec::with_capacity_in(arguments.len(), env.arena);
debug_assert_eq!(
arguments.len(),
argument_layouts.len(),
"The {:?} tag got {} arguments, but its layout expects {}!",
tag_name,
arguments.len(),
argument_layouts.len(),
);
let it = argument_layouts.iter();
for ((_, loc_pat), layout) in arguments.iter().zip(it) {
mono_args.push((
from_can_pattern_help(
env,
layout_cache,
&loc_pat.value,
assignments,
)?,
*layout,
));
}
Pattern::AppliedTag {
tag_name: tag_name.clone(),
tag_id: tag_id as u8,
arguments: mono_args,
union,
layout,
}
}
Recursive {
sorted_tag_layouts: ref tags,
} => {
debug_assert!(tags.len() > 1);
for (i, (tag_name, args)) in tags.iter().enumerate() {
ctors.push(Ctor {
tag_id: TagId(i as u8),
name: tag_name.clone(),
// don't include tag discriminant in arity
arity: args.len() - 1,
})
}
let union = crate::exhaustive::Union {
render_as: RenderAs::Tag,
alternatives: ctors,
};
let mut mono_args = Vec::with_capacity_in(arguments.len(), env.arena);
debug_assert_eq!(arguments.len(), argument_layouts.len());
let it = argument_layouts.iter();
for ((_, loc_pat), layout) in arguments.iter().zip(it) {
mono_args.push((
from_can_pattern_help(
env,
layout_cache,
&loc_pat.value,
assignments,
)?,
*layout,
));
}
Pattern::AppliedTag {
tag_name: tag_name.clone(),
tag_id: tag_id as u8,
arguments: mono_args,
union,
layout,
}
}
NonNullableUnwrapped {
tag_name: w_tag_name,
fields,
} => {
debug_assert_eq!(&w_tag_name, tag_name);
ctors.push(Ctor {
tag_id: TagId(0_u8),
name: tag_name.clone(),
arity: fields.len(),
});
let union = crate::exhaustive::Union {
render_as: RenderAs::Tag,
alternatives: ctors,
};
let mut mono_args = Vec::with_capacity_in(arguments.len(), env.arena);
debug_assert_eq!(arguments.len(), argument_layouts.len());
let it = argument_layouts.iter();
for ((_, loc_pat), layout) in arguments.iter().zip(it) {
mono_args.push((
from_can_pattern_help(
env,
layout_cache,
&loc_pat.value,
assignments,
)?,
*layout,
));
}
Pattern::AppliedTag {
tag_name: tag_name.clone(),
tag_id: tag_id as u8,
arguments: mono_args,
union,
layout,
}
}
NullableWrapped {
sorted_tag_layouts: ref tags,
nullable_id,
nullable_name,
} => {
debug_assert!(!tags.is_empty());
let mut i = 0;
for (tag_name, args) in tags.iter() {
if i == nullable_id as usize {
ctors.push(Ctor {
tag_id: TagId(i as u8),
name: nullable_name.clone(),
// don't include tag discriminant in arity
arity: 0,
});
i += 1;
}
ctors.push(Ctor {
tag_id: TagId(i as u8),
name: tag_name.clone(),
// don't include tag discriminant in arity
arity: args.len() - 1,
});
i += 1;
}
if i == nullable_id as usize {
ctors.push(Ctor {
tag_id: TagId(i as u8),
name: nullable_name.clone(),
// don't include tag discriminant in arity
arity: 0,
});
}
let union = crate::exhaustive::Union {
render_as: RenderAs::Tag,
alternatives: ctors,
};
let mut mono_args = Vec::with_capacity_in(arguments.len(), env.arena);
let it = if tag_name == &nullable_name {
[].iter()
} else {
argument_layouts.iter()
};
for ((_, loc_pat), layout) in arguments.iter().zip(it) {
mono_args.push((
from_can_pattern_help(
env,
layout_cache,
&loc_pat.value,
assignments,
)?,
*layout,
));
}
Pattern::AppliedTag {
tag_name: tag_name.clone(),
tag_id: tag_id as u8,
arguments: mono_args,
union,
layout,
}
}
NullableUnwrapped {
other_fields,
nullable_id,
nullable_name,
other_name: _,
} => {
debug_assert!(!other_fields.is_empty());
ctors.push(Ctor {
tag_id: TagId(nullable_id as u8),
name: nullable_name.clone(),
arity: 0,
});
ctors.push(Ctor {
tag_id: TagId(!nullable_id as u8),
name: nullable_name.clone(),
// FIXME drop tag
arity: other_fields.len() - 1,
});
let union = crate::exhaustive::Union {
render_as: RenderAs::Tag,
alternatives: ctors,
};
let mut mono_args = Vec::with_capacity_in(arguments.len(), env.arena);
let it = if tag_name == &nullable_name {
[].iter()
} else {
// FIXME drop tag
argument_layouts.iter()
};
for ((_, loc_pat), layout) in arguments.iter().zip(it) {
mono_args.push((
from_can_pattern_help(
env,
layout_cache,
&loc_pat.value,
assignments,
)?,
*layout,
));
}
Pattern::AppliedTag {
tag_name: tag_name.clone(),
tag_id: tag_id as u8,
arguments: mono_args,
union,
layout,
}
}
}
}
};
Ok(result)
}
RecordDestructure {
whole_var,
destructs,
..
} => {
// sorted fields based on the type
let sorted_fields =
crate::layout::sort_record_fields(env.arena, *whole_var, env.subs, env.ptr_bytes);
// sorted fields based on the destruct
let mut mono_destructs = Vec::with_capacity_in(destructs.len(), env.arena);
let mut destructs_by_label = BumpMap::with_capacity_in(destructs.len(), env.arena);
destructs_by_label.extend(destructs.iter().map(|x| (&x.value.label, x)));
let mut field_layouts = Vec::with_capacity_in(sorted_fields.len(), env.arena);
// next we step through both sequences of fields. The outer loop is the sequence based
// on the type, since not all fields need to actually be destructured in the source
// language.
//
// However in mono patterns, we do destruct all patterns (but use Underscore) when
// in the source the field is not matche in the source language.
//
// Optional fields somewhat complicate the matter here
for (label, variable, res_layout) in sorted_fields.into_iter() {
match res_layout {
Ok(field_layout) => {
// the field is non-optional according to the type
match destructs_by_label.remove(&label) {
Some(destruct) => {
// this field is destructured by the pattern
mono_destructs.push(from_can_record_destruct(
env,
layout_cache,
&destruct.value,
field_layout,
assignments,
)?);
}
None => {
// this field is not destructured by the pattern
// put in an underscore
mono_destructs.push(RecordDestruct {
label: label.clone(),
variable,
layout: field_layout,
typ: DestructType::Guard(Pattern::Underscore),
});
}
}
// the layout of this field is part of the layout of the record
field_layouts.push(field_layout);
}
Err(field_layout) => {
// the field is optional according to the type
match destructs_by_label.remove(&label) {
Some(destruct) => {
// this field is destructured by the pattern
match &destruct.value.typ {
roc_can::pattern::DestructType::Optional(_, loc_expr) => {
// if we reach this stage, the optional field is not present
// so we push the default assignment into the branch
assignments.push((
destruct.value.symbol,
variable,
loc_expr.value.clone(),
));
}
_ => unreachable!(
"only optional destructs can be optional fields"
),
};
}
None => {
// this field is not destructured by the pattern
// put in an underscore
mono_destructs.push(RecordDestruct {
label: label.clone(),
variable,
layout: field_layout,
typ: DestructType::Guard(Pattern::Underscore),
});
}
}
}
}
}
for (_, destruct) in destructs_by_label.drain() {
// this destruct is not in the type, but is in the pattern
// it must be an optional field, and we will use the default
match &destruct.value.typ {
roc_can::pattern::DestructType::Optional(field_var, loc_expr) => {
// TODO these don't match up in the uniqueness inference; when we remove
// that, reinstate this assert!
//
// dbg!(&env.subs.get_content_without_compacting(*field_var));
// dbg!(&env.subs.get_content_without_compacting(destruct.var).content);
// debug_assert_eq!(
// env.subs.get_root_key_without_compacting(*field_var),
// env.subs.get_root_key_without_compacting(destruct.value.var)
// );
assignments.push((
destruct.value.symbol,
// destruct.value.var,
*field_var,
loc_expr.value.clone(),
));
}
_ => unreachable!("only optional destructs can be optional fields"),
}
}
Ok(Pattern::RecordDestructure(
mono_destructs,
field_layouts.into_bump_slice(),
))
}
}
}
fn from_can_record_destruct<'a>(
env: &mut Env<'a, '_>,
layout_cache: &mut LayoutCache<'a>,
can_rd: &roc_can::pattern::RecordDestruct,
field_layout: Layout<'a>,
assignments: &mut Vec<'a, (Symbol, Variable, roc_can::expr::Expr)>,
) -> Result<RecordDestruct<'a>, RuntimeError> {
Ok(RecordDestruct {
label: can_rd.label.clone(),
variable: can_rd.var,
layout: field_layout,
typ: match &can_rd.typ {
roc_can::pattern::DestructType::Required => DestructType::Required(can_rd.symbol),
roc_can::pattern::DestructType::Optional(_, _) => {
// if we reach this stage, the optional field is present
DestructType::Required(can_rd.symbol)
}
roc_can::pattern::DestructType::Guard(_, loc_pattern) => DestructType::Guard(
from_can_pattern_help(env, layout_cache, &loc_pattern.value, assignments)?,
),
},
})
}
#[derive(Debug, Clone, Copy, PartialEq, Hash)]
pub enum IntPrecision {
Usize,
I128,
I64,
I32,
I16,
I8,
}
impl IntPrecision {
pub fn as_layout(&self) -> Layout<'static> {
Layout::Builtin(self.as_builtin())
}
pub fn as_builtin(&self) -> Builtin<'static> {
use IntPrecision::*;
match self {
I128 => Builtin::Int128,
I64 => Builtin::Int64,
I32 => Builtin::Int32,
I16 => Builtin::Int16,
I8 => Builtin::Int8,
Usize => Builtin::Usize,
}
}
}
#[derive(Debug, Clone, Copy, PartialEq, Hash)]
pub enum FloatPrecision {
F64,
F32,
}
impl FloatPrecision {
pub fn as_layout(&self) -> Layout<'static> {
Layout::Builtin(self.as_builtin())
}
pub fn as_builtin(&self) -> Builtin<'static> {
use FloatPrecision::*;
match self {
F64 => Builtin::Float64,
F32 => Builtin::Float32,
}
}
}
#[derive(Debug)]
pub enum IntOrFloat {
SignedIntType(IntPrecision),
UnsignedIntType(IntPrecision),
BinaryFloatType(FloatPrecision),
DecimalFloatType,
}
/// Given the `a` in `Num a`, determines whether it's an int or a float
pub fn num_argument_to_int_or_float(
subs: &Subs,
ptr_bytes: u32,
var: Variable,
known_to_be_float: bool,
) -> IntOrFloat {
match subs.get_content_without_compacting(var){
Content::FlexVar(_) | Content::RigidVar(_) if known_to_be_float => IntOrFloat::BinaryFloatType(FloatPrecision::F64),
Content::FlexVar(_) | Content::RigidVar(_) => IntOrFloat::SignedIntType(IntPrecision::I64), // We default (Num *) to I64
Content::Alias(Symbol::NUM_INTEGER, args, _) => {
debug_assert!(args.len() == 1);
// Recurse on the second argument
let var = subs[args.variables().into_iter().next().unwrap()];
num_argument_to_int_or_float(subs, ptr_bytes, var, false)
}
Content::Alias(Symbol::NUM_I128, _, _)
| Content::Alias(Symbol::NUM_SIGNED128, _, _)
| Content::Alias(Symbol::NUM_AT_SIGNED128, _, _) => {
IntOrFloat::SignedIntType(IntPrecision::I128)
}
Content::Alias(Symbol::NUM_INT, _, _)// We default Integer to I64
| Content::Alias(Symbol::NUM_I64, _, _)
| Content::Alias(Symbol::NUM_SIGNED64, _, _)
| Content::Alias(Symbol::NUM_AT_SIGNED64, _, _) => {
IntOrFloat::SignedIntType(IntPrecision::I64)
}
Content::Alias(Symbol::NUM_I32, _, _)
| Content::Alias(Symbol::NUM_SIGNED32, _, _)
| Content::Alias(Symbol::NUM_AT_SIGNED32, _, _) => {
IntOrFloat::SignedIntType(IntPrecision::I32)
}
Content::Alias(Symbol::NUM_I16, _, _)
| Content::Alias(Symbol::NUM_SIGNED16, _, _)
| Content::Alias(Symbol::NUM_AT_SIGNED16, _, _) => {
IntOrFloat::SignedIntType(IntPrecision::I16)
}
Content::Alias(Symbol::NUM_I8, _, _)
| Content::Alias(Symbol::NUM_SIGNED8, _, _)
| Content::Alias(Symbol::NUM_AT_SIGNED8, _, _) => {
IntOrFloat::SignedIntType(IntPrecision::I8)
}
Content::Alias(Symbol::NUM_U128, _, _)
| Content::Alias(Symbol::NUM_UNSIGNED128, _, _)
| Content::Alias(Symbol::NUM_AT_UNSIGNED128, _, _) => {
IntOrFloat::UnsignedIntType(IntPrecision::I128)
}
Content::Alias(Symbol::NUM_U64, _, _)
| Content::Alias(Symbol::NUM_UNSIGNED64, _, _)
| Content::Alias(Symbol::NUM_AT_UNSIGNED64, _, _) => {
IntOrFloat::UnsignedIntType(IntPrecision::I64)
}
Content::Alias(Symbol::NUM_U32, _, _)
| Content::Alias(Symbol::NUM_UNSIGNED32, _, _)
| Content::Alias(Symbol::NUM_AT_UNSIGNED32, _, _) => {
IntOrFloat::UnsignedIntType(IntPrecision::I32)
}
Content::Alias(Symbol::NUM_U16, _, _)
| Content::Alias(Symbol::NUM_UNSIGNED16, _, _)
| Content::Alias(Symbol::NUM_AT_UNSIGNED16, _, _) => {
IntOrFloat::UnsignedIntType(IntPrecision::I16)
}
Content::Alias(Symbol::NUM_U8, _, _)
| Content::Alias(Symbol::NUM_UNSIGNED8, _, _)
| Content::Alias(Symbol::NUM_AT_UNSIGNED8, _, _) => {
IntOrFloat::UnsignedIntType(IntPrecision::I8)
}
Content::Alias(Symbol::NUM_FLOATINGPOINT, args, _) => {
debug_assert!(args.len() == 1);
// Recurse on the second argument
let var = subs[args.variables().into_iter().next().unwrap()];
num_argument_to_int_or_float(subs, ptr_bytes, var, true)
}
Content::Alias(Symbol::NUM_FLOAT, _, _) // We default FloatingPoint to F64
| Content::Alias(Symbol::NUM_F64, _, _)
| Content::Alias(Symbol::NUM_BINARY64, _, _)
| Content::Alias(Symbol::NUM_AT_BINARY64, _, _) => {
IntOrFloat::BinaryFloatType(FloatPrecision::F64)
}
Content::Alias(Symbol::NUM_DECIMAL, _, _)
| Content::Alias(Symbol::NUM_AT_DECIMAL, _, _) => {
IntOrFloat::DecimalFloatType
}
Content::Alias(Symbol::NUM_F32, _, _)
| Content::Alias(Symbol::NUM_BINARY32, _, _)
| Content::Alias(Symbol::NUM_AT_BINARY32, _, _) => {
IntOrFloat::BinaryFloatType(FloatPrecision::F32)
}
Content::Alias(Symbol::NUM_NAT, _, _)
| Content::Alias(Symbol::NUM_NATURAL, _, _)
| Content::Alias(Symbol::NUM_AT_NATURAL, _, _) => {
IntOrFloat::UnsignedIntType(IntPrecision::Usize)
}
other => {
panic!(
"Unrecognized Num type argument for var {:?} with Content: {:?}",
var, other
);
}
}
}
/// Use the lambda set to figure out how to make a lowlevel call
#[allow(clippy::too_many_arguments)]
fn lowlevel_match_on_lambda_set<'a, ToLowLevelCall>(
env: &mut Env<'a, '_>,
lambda_set: LambdaSet<'a>,
op: LowLevel,
closure_data_symbol: Symbol,
to_lowlevel_call: ToLowLevelCall,
return_layout: Layout<'a>,
assigned: Symbol,
hole: &'a Stmt<'a>,
) -> Stmt<'a>
where
ToLowLevelCall: Fn(Symbol, Symbol, Option<Layout<'a>>, CallSpecId) -> Call<'a> + Copy,
{
match lambda_set.runtime_representation() {
Layout::Union(union_layout) => {
let closure_tag_id_symbol = env.unique_symbol();
let result = lowlevel_union_lambda_set_to_switch(
env,
lambda_set.set,
closure_tag_id_symbol,
union_layout.tag_id_layout(),
closure_data_symbol,
lambda_set.is_represented(),
to_lowlevel_call,
return_layout,
assigned,
hole,
);
// extract & assign the closure_tag_id_symbol
let expr = Expr::GetTagId {
structure: closure_data_symbol,
union_layout,
};
Stmt::Let(
closure_tag_id_symbol,
expr,
union_layout.tag_id_layout(),
env.arena.alloc(result),
)
}
Layout::Struct(_) => match lambda_set.set.get(0) {
Some((function_symbol, _)) => {
let call_spec_id = env.next_call_specialization_id();
let call = to_lowlevel_call(
*function_symbol,
closure_data_symbol,
lambda_set.is_represented(),
call_spec_id,
);
build_call(env, call, assigned, return_layout, env.arena.alloc(hole))
}
None => {
eprintln!(
"a function passed to `{:?}` LowLevel call has an empty lambda set!
The most likely reason is that some symbol you use is not in scope.
",
op
);
hole.clone()
}
},
Layout::Builtin(Builtin::Int1) => {
let closure_tag_id_symbol = closure_data_symbol;
lowlevel_enum_lambda_set_to_switch(
env,
lambda_set.set,
closure_tag_id_symbol,
Layout::Builtin(Builtin::Int1),
closure_data_symbol,
lambda_set.is_represented(),
to_lowlevel_call,
return_layout,
assigned,
hole,
)
}
Layout::Builtin(Builtin::Int8) => {
let closure_tag_id_symbol = closure_data_symbol;
lowlevel_enum_lambda_set_to_switch(
env,
lambda_set.set,
closure_tag_id_symbol,
Layout::Builtin(Builtin::Int8),
closure_data_symbol,
lambda_set.is_represented(),
to_lowlevel_call,
return_layout,
assigned,
hole,
)
}
other => todo!("{:?}", other),
}
}
#[allow(clippy::too_many_arguments)]
fn lowlevel_union_lambda_set_to_switch<'a, ToLowLevelCall>(
env: &mut Env<'a, '_>,
lambda_set: &'a [(Symbol, &'a [Layout<'a>])],
closure_tag_id_symbol: Symbol,
closure_tag_id_layout: Layout<'a>,
closure_data_symbol: Symbol,
closure_env_layout: Option<Layout<'a>>,
to_lowlevel_call: ToLowLevelCall,
return_layout: Layout<'a>,
assigned: Symbol,
hole: &'a Stmt<'a>,
) -> Stmt<'a>
where
ToLowLevelCall: Fn(Symbol, Symbol, Option<Layout<'a>>, CallSpecId) -> Call<'a> + Copy,
{
debug_assert!(!lambda_set.is_empty());
let join_point_id = JoinPointId(env.unique_symbol());
let mut branches = Vec::with_capacity_in(lambda_set.len(), env.arena);
for (i, (function_symbol, _)) in lambda_set.iter().enumerate() {
let assigned = env.unique_symbol();
let hole = Stmt::Jump(join_point_id, env.arena.alloc([assigned]));
let call_spec_id = env.next_call_specialization_id();
let call = to_lowlevel_call(
*function_symbol,
closure_data_symbol,
closure_env_layout,
call_spec_id,
);
let stmt = build_call(env, call, assigned, return_layout, env.arena.alloc(hole));
branches.push((i as u64, BranchInfo::None, stmt));
}
let default_branch = {
let (_, info, stmt) = branches.pop().unwrap();
(info, &*env.arena.alloc(stmt))
};
let switch = Stmt::Switch {
cond_symbol: closure_tag_id_symbol,
cond_layout: closure_tag_id_layout,
branches: branches.into_bump_slice(),
default_branch,
ret_layout: return_layout,
};
let param = Param {
symbol: assigned,
layout: return_layout,
borrow: false,
};
Stmt::Join {
id: join_point_id,
parameters: &*env.arena.alloc([param]),
body: hole,
remainder: env.arena.alloc(switch),
}
}
/// Use the lambda set to figure out how to make a call-by-name
#[allow(clippy::too_many_arguments)]
fn match_on_lambda_set<'a>(
env: &mut Env<'a, '_>,
lambda_set: LambdaSet<'a>,
closure_data_symbol: Symbol,
argument_symbols: &'a [Symbol],
argument_layouts: &'a [Layout<'a>],
return_layout: Layout<'a>,
assigned: Symbol,
hole: &'a Stmt<'a>,
) -> Stmt<'a> {
match lambda_set.runtime_representation() {
Layout::Union(union_layout) => {
let closure_tag_id_symbol = env.unique_symbol();
let result = union_lambda_set_to_switch(
env,
lambda_set,
Layout::Union(union_layout),
closure_tag_id_symbol,
union_layout.tag_id_layout(),
closure_data_symbol,
argument_symbols,
argument_layouts,
return_layout,
assigned,
hole,
);
// extract & assign the closure_tag_id_symbol
let expr = Expr::GetTagId {
structure: closure_data_symbol,
union_layout,
};
Stmt::Let(
closure_tag_id_symbol,
expr,
union_layout.tag_id_layout(),
env.arena.alloc(result),
)
}
Layout::Struct(fields) => {
let function_symbol = lambda_set.set[0].0;
union_lambda_set_branch_help(
env,
function_symbol,
lambda_set,
closure_data_symbol,
Layout::Struct(fields),
argument_symbols,
argument_layouts,
return_layout,
assigned,
hole,
)
}
Layout::Builtin(Builtin::Int1) => {
let closure_tag_id_symbol = closure_data_symbol;
enum_lambda_set_to_switch(
env,
lambda_set.set,
closure_tag_id_symbol,
Layout::Builtin(Builtin::Int1),
closure_data_symbol,
argument_symbols,
argument_layouts,
return_layout,
assigned,
hole,
)
}
Layout::Builtin(Builtin::Int8) => {
let closure_tag_id_symbol = closure_data_symbol;
enum_lambda_set_to_switch(
env,
lambda_set.set,
closure_tag_id_symbol,
Layout::Builtin(Builtin::Int8),
closure_data_symbol,
argument_symbols,
argument_layouts,
return_layout,
assigned,
hole,
)
}
other => todo!("{:?}", other),
}
}
#[allow(clippy::too_many_arguments)]
fn union_lambda_set_to_switch<'a>(
env: &mut Env<'a, '_>,
lambda_set: LambdaSet<'a>,
closure_layout: Layout<'a>,
closure_tag_id_symbol: Symbol,
closure_tag_id_layout: Layout<'a>,
closure_data_symbol: Symbol,
argument_symbols: &'a [Symbol],
argument_layouts: &'a [Layout<'a>],
return_layout: Layout<'a>,
assigned: Symbol,
hole: &'a Stmt<'a>,
) -> Stmt<'a> {
if lambda_set.set.is_empty() {
// NOTE this can happen if there is a type error somewhere. Since the lambda set is empty,
// there is really nothing we can do here. We generate a runtime error here which allows
// code gen to proceed. We then assume that we hit another (more descriptive) error before
// hitting this one
let msg = "a Lambda Set isempty. Most likely there is a type error in your program.";
return Stmt::RuntimeError(msg);
}
let join_point_id = JoinPointId(env.unique_symbol());
let mut branches = Vec::with_capacity_in(lambda_set.set.len(), env.arena);
for (i, (function_symbol, _)) in lambda_set.set.iter().enumerate() {
let stmt = union_lambda_set_branch(
env,
lambda_set,
join_point_id,
*function_symbol,
closure_data_symbol,
closure_layout,
argument_symbols,
argument_layouts,
return_layout,
);
branches.push((i as u64, BranchInfo::None, stmt));
}
let default_branch = {
let (_, info, stmt) = branches.pop().unwrap();
(info, &*env.arena.alloc(stmt))
};
let switch = Stmt::Switch {
cond_symbol: closure_tag_id_symbol,
cond_layout: closure_tag_id_layout,
branches: branches.into_bump_slice(),
default_branch,
ret_layout: return_layout,
};
let param = Param {
symbol: assigned,
layout: return_layout,
borrow: false,
};
Stmt::Join {
id: join_point_id,
parameters: &*env.arena.alloc([param]),
body: hole,
remainder: env.arena.alloc(switch),
}
}
#[allow(clippy::too_many_arguments)]
fn union_lambda_set_branch<'a>(
env: &mut Env<'a, '_>,
lambda_set: LambdaSet<'a>,
join_point_id: JoinPointId,
function_symbol: Symbol,
closure_data_symbol: Symbol,
closure_data_layout: Layout<'a>,
argument_symbols_slice: &'a [Symbol],
argument_layouts_slice: &'a [Layout<'a>],
return_layout: Layout<'a>,
) -> Stmt<'a> {
let result_symbol = env.unique_symbol();
let hole = Stmt::Jump(join_point_id, env.arena.alloc([result_symbol]));
union_lambda_set_branch_help(
env,
function_symbol,
lambda_set,
closure_data_symbol,
closure_data_layout,
argument_symbols_slice,
argument_layouts_slice,
return_layout,
result_symbol,
env.arena.alloc(hole),
)
}
#[allow(clippy::too_many_arguments)]
fn union_lambda_set_branch_help<'a>(
env: &mut Env<'a, '_>,
function_symbol: Symbol,
lambda_set: LambdaSet<'a>,
closure_data_symbol: Symbol,
closure_data_layout: Layout<'a>,
argument_symbols_slice: &'a [Symbol],
argument_layouts_slice: &'a [Layout<'a>],
return_layout: Layout<'a>,
assigned: Symbol,
hole: &'a Stmt<'a>,
) -> Stmt<'a> {
let (argument_layouts, argument_symbols) = match closure_data_layout {
Layout::Struct(&[]) | Layout::Builtin(Builtin::Int1) | Layout::Builtin(Builtin::Int8) => {
(argument_layouts_slice, argument_symbols_slice)
}
_ if lambda_set.member_does_not_need_closure_argument(function_symbol) => {
// sometimes unification causes a function that does not itself capture anything
// to still get a lambda set that does store information. We must not pass a closure
// argument in this case
(argument_layouts_slice, argument_symbols_slice)
}
_ => {
// extend layouts with the layout of the closure environment
let mut argument_layouts =
Vec::with_capacity_in(argument_layouts_slice.len() + 1, env.arena);
argument_layouts.extend(argument_layouts_slice);
argument_layouts.push(Layout::LambdaSet(lambda_set));
// extend symbols with the symbol of the closure environment
let mut argument_symbols =
Vec::with_capacity_in(argument_symbols_slice.len() + 1, env.arena);
argument_symbols.extend(argument_symbols_slice);
argument_symbols.push(closure_data_symbol);
(
argument_layouts.into_bump_slice(),
argument_symbols.into_bump_slice(),
)
}
};
// build the call
let call = self::Call {
call_type: CallType::ByName {
name: function_symbol,
ret_layout: return_layout,
arg_layouts: argument_layouts,
specialization_id: env.next_call_specialization_id(),
},
arguments: argument_symbols,
};
build_call(env, call, assigned, return_layout, hole)
}
#[allow(clippy::too_many_arguments)]
fn enum_lambda_set_to_switch<'a>(
env: &mut Env<'a, '_>,
lambda_set: &'a [(Symbol, &'a [Layout<'a>])],
closure_tag_id_symbol: Symbol,
closure_tag_id_layout: Layout<'a>,
closure_data_symbol: Symbol,
argument_symbols: &'a [Symbol],
argument_layouts: &'a [Layout<'a>],
return_layout: Layout<'a>,
assigned: Symbol,
hole: &'a Stmt<'a>,
) -> Stmt<'a> {
debug_assert!(!lambda_set.is_empty());
let join_point_id = JoinPointId(env.unique_symbol());
let mut branches = Vec::with_capacity_in(lambda_set.len(), env.arena);
let closure_layout = closure_tag_id_layout;
for (i, (function_symbol, _)) in lambda_set.iter().enumerate() {
let stmt = enum_lambda_set_branch(
env,
join_point_id,
*function_symbol,
closure_data_symbol,
closure_layout,
argument_symbols,
argument_layouts,
return_layout,
);
branches.push((i as u64, BranchInfo::None, stmt));
}
let default_branch = {
let (_, info, stmt) = branches.pop().unwrap();
(info, &*env.arena.alloc(stmt))
};
let switch = Stmt::Switch {
cond_symbol: closure_tag_id_symbol,
cond_layout: closure_tag_id_layout,
branches: branches.into_bump_slice(),
default_branch,
ret_layout: return_layout,
};
let param = Param {
symbol: assigned,
layout: return_layout,
borrow: false,
};
Stmt::Join {
id: join_point_id,
parameters: &*env.arena.alloc([param]),
body: hole,
remainder: env.arena.alloc(switch),
}
}
#[allow(clippy::too_many_arguments)]
fn enum_lambda_set_branch<'a>(
env: &mut Env<'a, '_>,
join_point_id: JoinPointId,
function_symbol: Symbol,
closure_data_symbol: Symbol,
closure_data_layout: Layout<'a>,
argument_symbols_slice: &'a [Symbol],
argument_layouts_slice: &'a [Layout<'a>],
return_layout: Layout<'a>,
) -> Stmt<'a> {
let result_symbol = env.unique_symbol();
let hole = Stmt::Jump(join_point_id, env.arena.alloc([result_symbol]));
let assigned = result_symbol;
let (argument_layouts, argument_symbols) = match closure_data_layout {
Layout::Struct(&[]) | Layout::Builtin(Builtin::Int1) | Layout::Builtin(Builtin::Int8) => {
(argument_layouts_slice, argument_symbols_slice)
}
_ => {
// extend layouts with the layout of the closure environment
let mut argument_layouts =
Vec::with_capacity_in(argument_layouts_slice.len() + 1, env.arena);
argument_layouts.extend(argument_layouts_slice);
argument_layouts.push(closure_data_layout);
// extend symbols with the symbol of the closure environment
let mut argument_symbols =
Vec::with_capacity_in(argument_symbols_slice.len() + 1, env.arena);
argument_symbols.extend(argument_symbols_slice);
argument_symbols.push(closure_data_symbol);
(
argument_layouts.into_bump_slice(),
argument_symbols.into_bump_slice(),
)
}
};
let call = self::Call {
call_type: CallType::ByName {
name: function_symbol,
ret_layout: return_layout,
arg_layouts: argument_layouts,
specialization_id: env.next_call_specialization_id(),
},
arguments: argument_symbols,
};
build_call(env, call, assigned, return_layout, env.arena.alloc(hole))
}
#[allow(clippy::too_many_arguments)]
fn lowlevel_enum_lambda_set_to_switch<'a, ToLowLevelCall>(
env: &mut Env<'a, '_>,
lambda_set: &'a [(Symbol, &'a [Layout<'a>])],
closure_tag_id_symbol: Symbol,
closure_tag_id_layout: Layout<'a>,
closure_data_symbol: Symbol,
closure_env_layout: Option<Layout<'a>>,
to_lowlevel_call: ToLowLevelCall,
return_layout: Layout<'a>,
assigned: Symbol,
hole: &'a Stmt<'a>,
) -> Stmt<'a>
where
ToLowLevelCall: Fn(Symbol, Symbol, Option<Layout<'a>>, CallSpecId) -> Call<'a> + Copy,
{
debug_assert!(!lambda_set.is_empty());
let join_point_id = JoinPointId(env.unique_symbol());
let mut branches = Vec::with_capacity_in(lambda_set.len(), env.arena);
for (i, (function_symbol, _)) in lambda_set.iter().enumerate() {
let result_symbol = env.unique_symbol();
let hole = Stmt::Jump(join_point_id, env.arena.alloc([result_symbol]));
let call_spec_id = env.next_call_specialization_id();
let call = to_lowlevel_call(
*function_symbol,
closure_data_symbol,
closure_env_layout,
call_spec_id,
);
let stmt = build_call(
env,
call,
result_symbol,
return_layout,
env.arena.alloc(hole),
);
branches.push((i as u64, BranchInfo::None, stmt));
}
let default_branch = {
let (_, info, stmt) = branches.pop().unwrap();
(info, &*env.arena.alloc(stmt))
};
let switch = Stmt::Switch {
cond_symbol: closure_tag_id_symbol,
cond_layout: closure_tag_id_layout,
branches: branches.into_bump_slice(),
default_branch,
ret_layout: return_layout,
};
let param = Param {
symbol: assigned,
layout: return_layout,
borrow: false,
};
Stmt::Join {
id: join_point_id,
parameters: &*env.arena.alloc([param]),
body: hole,
remainder: env.arena.alloc(switch),
}
}