roc/crates/compiler/mono/src/debug/checker.rs

932 lines
30 KiB
Rust

//! Type-checking of the generated [ir][crate::ir::Proc].
use bumpalo::Bump;
use roc_collections::{MutMap, VecMap, VecSet};
use roc_module::symbol::Symbol;
use crate::{
ir::{
Call, CallSpecId, CallType, ErasedField, Expr, HigherOrderLowLevel, JoinPointId,
ListLiteralElement, ModifyRc, Param, Proc, ProcLayout, Stmt,
},
layout::{
Builtin, FunctionPointer, InLayout, Layout, LayoutInterner, LayoutRepr, STLayoutInterner,
TagIdIntType, UnionLayout,
},
};
pub enum UseKind {
Ret,
TagExpr,
TagReuse,
TagPayloadArg,
ListElemExpr,
CallArg,
JumpArg,
CrashArg,
SwitchCond,
ExpectCond,
ExpectLookup,
ErasedMake(ErasedField),
Erased,
FunctionPointer,
Alloca,
}
pub enum ProblemKind<'a> {
RedefinedSymbol {
symbol: Symbol,
old_line: usize,
},
NoSymbolInScope {
symbol: Symbol,
},
SymbolUseMismatch {
symbol: Symbol,
def_layout: InLayout<'a>,
def_line: usize,
use_layout: InLayout<'a>,
use_kind: UseKind,
},
SymbolDefMismatch {
symbol: Symbol,
def_layout: InLayout<'a>,
expr_layout: InLayout<'a>,
},
BadSwitchConditionLayout {
found_layout: InLayout<'a>,
},
DuplicateSwitchBranch {},
RedefinedJoinPoint {
id: JoinPointId,
old_line: usize,
},
NoJoinPoint {
id: JoinPointId,
},
JumpArityMismatch {
def_line: usize,
num_needed: usize,
num_given: usize,
},
CallingUndefinedProc {
symbol: Symbol,
proc_layout: ProcLayout<'a>,
similar: Vec<ProcLayout<'a>>,
},
PtrToUndefinedProc {
symbol: Symbol,
},
DuplicateCallSpecId {
old_call_line: usize,
},
StructIndexOOB {
structure: Symbol,
def_line: usize,
index: u64,
size: usize,
},
NotAStruct {
structure: Symbol,
def_line: usize,
},
IndexingTagIdNotInUnion {
structure: Symbol,
def_line: usize,
tag_id: u16,
union_layout: InLayout<'a>,
},
TagUnionStructIndexOOB {
structure: Symbol,
def_line: usize,
tag_id: u16,
index: u64,
size: usize,
},
IndexIntoNullableTag {
structure: Symbol,
def_line: usize,
tag_id: u16,
union_layout: InLayout<'a>,
},
UnboxNotABox {
symbol: Symbol,
def_line: usize,
},
CreatingTagIdNotInUnion {
tag_id: u16,
union_layout: InLayout<'a>,
},
CreateTagPayloadMismatch {
num_needed: usize,
num_given: usize,
},
ErasedMakeValueNotBoxed {
symbol: Symbol,
def_layout: InLayout<'a>,
def_line: usize,
},
ErasedMakeCalleeNotFunctionPointer {
symbol: Symbol,
def_layout: InLayout<'a>,
def_line: usize,
},
ErasedLoadValueNotBoxed {
symbol: Symbol,
target_layout: InLayout<'a>,
},
ErasedLoadCalleeNotFunctionPointer {
symbol: Symbol,
target_layout: InLayout<'a>,
},
}
pub struct Problem<'a> {
pub proc: &'a Proc<'a>,
pub proc_layout: ProcLayout<'a>,
pub line: usize,
pub kind: ProblemKind<'a>,
}
type Procs<'a> = MutMap<(Symbol, ProcLayout<'a>), Proc<'a>>;
pub struct Problems<'a>(pub(crate) Vec<Problem<'a>>);
impl<'a> Problems<'a> {
pub fn is_empty(&self) -> bool {
self.0.is_empty()
}
}
pub fn check_procs<'a>(
arena: &'a Bump,
interner: &mut STLayoutInterner<'a>,
procs: &Procs<'a>,
) -> Problems<'a> {
let mut problems = Default::default();
for ((_, proc_layout), proc) in procs.iter() {
let mut ctx = Ctx {
arena,
interner,
proc,
proc_layout: *proc_layout,
ret_layout: proc.ret_layout,
problems: &mut problems,
call_spec_ids: Default::default(),
procs,
venv: Default::default(),
joinpoints: Default::default(),
line: 0,
};
ctx.check_proc(proc);
}
Problems(problems)
}
type VEnv<'a> = VecMap<Symbol, (usize, InLayout<'a>)>;
type JoinPoints<'a> = VecMap<JoinPointId, (usize, &'a [Param<'a>])>;
type CallSpecIds = VecMap<CallSpecId, usize>;
struct Ctx<'a, 'r> {
arena: &'a Bump,
interner: &'r mut STLayoutInterner<'a>,
problems: &'r mut Vec<Problem<'a>>,
proc: &'r Proc<'a>,
proc_layout: ProcLayout<'a>,
procs: &'r Procs<'a>,
call_spec_ids: CallSpecIds,
ret_layout: InLayout<'a>,
venv: VEnv<'a>,
joinpoints: JoinPoints<'a>,
line: usize,
}
impl<'a, 'r> Ctx<'a, 'r> {
fn problem(&mut self, problem_kind: ProblemKind<'a>) {
self.problems.push(Problem {
proc: self.arena.alloc(self.proc.clone()),
proc_layout: self.proc_layout,
line: self.line,
kind: problem_kind,
})
}
fn in_scope<T>(&mut self, f: impl FnOnce(&mut Self) -> T) -> T {
let old_venv = self.venv.clone();
let r = f(self);
self.venv = old_venv;
r
}
fn resolve(&self, mut layout: InLayout<'a>) -> InLayout<'a> {
// Note that we are more aggressive than the usual `runtime_representation`
// here because we need strict equality, and so cannot unwrap lambda sets
// lazily.
loop {
layout = self.interner.chase_recursive_in(layout);
match self.interner.get_repr(layout) {
LayoutRepr::LambdaSet(ls) => layout = ls.representation,
_ => return layout,
}
}
}
fn not_equiv(&mut self, layout1: InLayout<'a>, layout2: InLayout<'a>) -> bool {
!self
.interner
.equiv(self.resolve(layout1), self.resolve(layout2))
}
fn insert(&mut self, symbol: Symbol, layout: InLayout<'a>) {
if let Some((old_line, _)) = self.venv.insert(symbol, (self.line, layout)) {
self.problem(ProblemKind::RedefinedSymbol { symbol, old_line })
}
}
fn check_sym_exists(&mut self, symbol: Symbol) {
if !self.venv.contains_key(&symbol) {
self.problem(ProblemKind::NoSymbolInScope { symbol })
}
}
fn with_sym_layout<T>(
&mut self,
symbol: Symbol,
f: impl FnOnce(&mut Self, usize, InLayout<'a>) -> Option<T>,
) -> Option<T> {
if let Some(&(def_line, layout)) = self.venv.get(&symbol) {
f(self, def_line, layout)
} else {
self.problem(ProblemKind::NoSymbolInScope { symbol });
None
}
}
fn check_sym_layout(
&mut self,
symbol: Symbol,
expected_layout: InLayout<'a>,
use_kind: UseKind,
) {
if let Some(&(def_line, layout)) = self.venv.get(&symbol) {
if self.not_equiv(layout, expected_layout) {
self.problem(ProblemKind::SymbolUseMismatch {
symbol,
def_layout: layout,
def_line,
use_layout: expected_layout,
use_kind,
});
}
} else {
self.problem(ProblemKind::NoSymbolInScope { symbol })
}
}
fn check_proc(&mut self, proc: &Proc<'a>) {
for (lay, arg) in proc.args.iter() {
self.insert(*arg, *lay);
}
self.check_stmt(&proc.body)
}
fn check_stmt(&mut self, body: &Stmt<'a>) {
self.line += 1;
match body {
Stmt::Let(x, e, x_layout, rest) => {
if let Some(e_layout) = self.check_expr(e, *x_layout) {
if self.not_equiv(e_layout, *x_layout) {
self.problem(ProblemKind::SymbolDefMismatch {
symbol: *x,
def_layout: *x_layout,
expr_layout: e_layout,
})
}
}
self.insert(*x, *x_layout);
self.check_stmt(rest);
}
Stmt::Switch {
cond_symbol,
cond_layout,
branches,
default_branch,
ret_layout: _,
} => {
self.check_sym_layout(*cond_symbol, *cond_layout, UseKind::SwitchCond);
let layout = self.resolve(*cond_layout);
match self.interner.get_repr(layout) {
LayoutRepr::Builtin(Builtin::Int(_)) => {}
LayoutRepr::Builtin(Builtin::Bool) => {}
_ => self.problem(ProblemKind::BadSwitchConditionLayout {
found_layout: *cond_layout,
}),
}
// TODO: need to adjust line numbers as we step through, and depending on whether
// the switch is printed as true/false or a proper switch.
let mut seen_branches = VecSet::with_capacity(branches.len());
for (match_no, _branch_info, branch) in branches.iter() {
if seen_branches.insert(match_no) {
self.problem(ProblemKind::DuplicateSwitchBranch {});
}
self.in_scope(|ctx| ctx.check_stmt(branch));
}
let (_branch_info, default_branch) = default_branch;
self.in_scope(|ctx| ctx.check_stmt(default_branch));
}
&Stmt::Ret(sym) => self.check_sym_layout(sym, self.ret_layout, UseKind::Ret),
&Stmt::Refcounting(rc, rest) => {
self.check_modify_rc(rc);
self.check_stmt(rest);
}
&Stmt::Dbg { remainder, .. } => {
self.check_stmt(remainder);
}
&Stmt::Expect {
condition,
region: _,
lookups,
variables: _,
remainder,
}
| &Stmt::ExpectFx {
condition,
region: _,
lookups,
variables: _,
remainder,
} => {
self.check_sym_layout(condition, Layout::BOOL, UseKind::ExpectCond);
for sym in lookups.iter() {
self.check_sym_exists(*sym);
}
self.check_stmt(remainder);
}
&Stmt::Join {
id,
parameters,
body,
remainder,
} => {
if let Some((old_line, _)) = self.joinpoints.insert(id, (self.line, parameters)) {
self.problem(ProblemKind::RedefinedJoinPoint { id, old_line })
}
self.in_scope(|ctx| {
for Param { symbol, layout } in parameters {
ctx.insert(*symbol, *layout);
}
ctx.check_stmt(body)
});
self.line += 1; // `in` line
self.check_stmt(remainder);
}
&Stmt::Jump(id, symbols) => {
if let Some(&(def_line, parameters)) = self.joinpoints.get(&id) {
if symbols.len() != parameters.len() {
self.problem(ProblemKind::JumpArityMismatch {
def_line,
num_needed: parameters.len(),
num_given: symbols.len(),
});
}
for (arg, param) in symbols.iter().zip(parameters.iter()) {
let Param { symbol: _, layout } = param;
self.check_sym_layout(*arg, *layout, UseKind::JumpArg);
}
} else {
self.problem(ProblemKind::NoJoinPoint { id });
}
}
&Stmt::Crash(sym, _) => self.check_sym_layout(sym, Layout::STR, UseKind::CrashArg),
}
}
fn check_expr(&mut self, e: &Expr<'a>, target_layout: InLayout<'a>) -> Option<InLayout<'a>> {
match e {
Expr::Literal(_) => None,
Expr::NullPointer => None,
Expr::Call(call) => self.check_call(call),
&Expr::Tag {
tag_layout,
tag_id,
arguments,
reuse,
} => {
let interned_layout = self
.interner
.insert_direct_no_semantic(LayoutRepr::Union(tag_layout));
if let Some(reuse_token) = reuse {
self.check_sym_layout(reuse_token.symbol, interned_layout, UseKind::TagReuse);
}
self.check_tag_expr(interned_layout, tag_layout, tag_id, arguments);
Some(interned_layout)
}
Expr::Struct(syms) => {
for sym in syms.iter() {
self.check_sym_exists(*sym);
}
// TODO: pass the field order hash down, so we can check this
None
}
&Expr::StructAtIndex {
index,
// TODO: pass the field order hash down, so we can check this
field_layouts: _,
structure,
} => self.check_struct_at_index(structure, index),
Expr::GetTagId {
structure: _,
union_layout,
} => Some(union_layout.tag_id_layout()),
&Expr::UnionAtIndex {
structure,
tag_id,
union_layout,
index,
} => self.with_sym_layout(structure, |ctx, _def_line, layout| {
ctx.check_union_at_index(structure, layout, union_layout, tag_id, index)
}),
&Expr::GetElementPointer {
structure,
union_layout,
indices,
..
} => self.with_sym_layout(structure, |ctx, _def_line, layout| {
debug_assert!(indices.len() >= 2);
ctx.check_union_field_ptr_at_index(
structure,
layout,
union_layout,
indices[0] as _,
indices[1],
)
}),
Expr::Array { elem_layout, elems } => {
for elem in elems.iter() {
match elem {
ListLiteralElement::Literal(_) => {}
ListLiteralElement::Symbol(sym) => {
self.check_sym_layout(*sym, *elem_layout, UseKind::ListElemExpr)
}
}
}
Some(
self.interner
.insert_direct_no_semantic(LayoutRepr::Builtin(Builtin::List(
*elem_layout,
))),
)
}
Expr::EmptyArray => {
// TODO don't know what the element layout is
None
}
&Expr::ErasedMake { value, callee } => Some(self.check_erased_make(value, callee)),
&Expr::ErasedLoad { symbol, field } => {
Some(self.check_erased_load(symbol, field, target_layout))
}
&Expr::FunctionPointer { lambda_name } => {
let lambda_symbol = lambda_name.name();
let proc = self.procs.iter().find(|((name, proc), _)| {
*name == lambda_symbol && proc.niche == lambda_name.niche()
});
match proc {
None => {
self.problem(ProblemKind::PtrToUndefinedProc {
symbol: lambda_symbol,
});
Some(target_layout)
}
Some(((_, proc_layout), _)) => {
let ProcLayout {
arguments, result, ..
} = proc_layout;
let fn_ptr =
self.interner
.insert_direct_no_semantic(LayoutRepr::FunctionPointer(
FunctionPointer {
args: arguments,
ret: *result,
},
));
Some(fn_ptr)
}
}
}
&Expr::Reset {
symbol,
update_mode: _,
}
| &Expr::ResetRef {
symbol,
update_mode: _,
} => {
self.check_sym_exists(symbol);
None
}
Expr::Alloca {
initializer,
element_layout,
} => {
if let Some(initializer) = initializer {
self.check_sym_exists(*initializer);
self.check_sym_layout(*initializer, *element_layout, UseKind::Alloca);
}
None
}
Expr::RuntimeErrorFunction(_) => None,
}
}
fn check_struct_at_index(&mut self, structure: Symbol, index: u64) -> Option<InLayout<'a>> {
self.with_sym_layout(structure, |ctx, def_line, layout| {
let layout = ctx.resolve(layout);
match ctx.interner.get_repr(layout) {
LayoutRepr::Struct(field_layouts) => {
if index as usize >= field_layouts.len() {
ctx.problem(ProblemKind::StructIndexOOB {
structure,
def_line,
index,
size: field_layouts.len(),
});
None
} else {
Some(field_layouts[index as usize])
}
}
_ => {
ctx.problem(ProblemKind::NotAStruct {
structure,
def_line,
});
None
}
}
})
}
fn check_union_at_index(
&mut self,
structure: Symbol,
interned_union_layout: InLayout<'a>,
union_layout: UnionLayout<'a>,
tag_id: u16,
index: u64,
) -> Option<InLayout<'a>> {
let union = self
.interner
.insert_direct_no_semantic(LayoutRepr::Union(union_layout));
self.with_sym_layout(structure, |ctx, def_line, _layout| {
ctx.check_sym_layout(structure, union, UseKind::TagExpr);
match get_tag_id_payloads(union_layout, tag_id) {
TagPayloads::IdNotInUnion => {
ctx.problem(ProblemKind::IndexingTagIdNotInUnion {
structure,
def_line,
tag_id,
union_layout: interned_union_layout,
});
None
}
TagPayloads::Payloads(payloads) => {
if index as usize >= payloads.len() {
ctx.problem(ProblemKind::TagUnionStructIndexOOB {
structure,
def_line,
tag_id,
index,
size: payloads.len(),
});
return None;
}
let layout = payloads[index as usize];
Some(layout)
}
}
})
}
fn check_union_field_ptr_at_index(
&mut self,
structure: Symbol,
interned_union_layout: InLayout<'a>,
union_layout: UnionLayout<'a>,
tag_id: u16,
index: u64,
) -> Option<InLayout<'a>> {
let union = self
.interner
.insert_direct_no_semantic(LayoutRepr::Union(union_layout));
let field_ptr_layout = match get_tag_id_payloads(union_layout, tag_id) {
TagPayloads::IdNotInUnion => None,
TagPayloads::Payloads(payloads) => payloads.get(index as usize).map(|field_layout| {
self.interner
.insert_direct_no_semantic(LayoutRepr::Ptr(*field_layout))
}),
};
self.with_sym_layout(structure, |ctx, def_line, _layout| {
ctx.check_sym_layout(structure, union, UseKind::TagExpr);
match get_tag_id_payloads(union_layout, tag_id) {
TagPayloads::IdNotInUnion => {
ctx.problem(ProblemKind::IndexingTagIdNotInUnion {
structure,
def_line,
tag_id,
union_layout: interned_union_layout,
});
None
}
TagPayloads::Payloads(payloads) => {
if field_ptr_layout.is_none() {
ctx.problem(ProblemKind::TagUnionStructIndexOOB {
structure,
def_line,
tag_id,
index,
size: payloads.len(),
});
None
} else {
field_ptr_layout
}
}
}
})
}
fn check_call(&mut self, call: &Call<'a>) -> Option<InLayout<'a>> {
let Call {
call_type,
arguments,
} = call;
match call_type {
CallType::ByName {
name,
ret_layout,
arg_layouts,
specialization_id,
} => {
let proc_layout = ProcLayout {
arguments: arg_layouts,
result: *ret_layout,
niche: name.niche(),
};
if !self.procs.contains_key(&(name.name(), proc_layout)) {
let similar = self
.procs
.keys()
.filter(|(sym, _)| *sym == name.name())
.map(|(_, lay)| *lay)
.collect();
self.problem(ProblemKind::CallingUndefinedProc {
symbol: name.name(),
proc_layout,
similar,
});
}
for (arg, wanted_layout) in arguments.iter().zip(arg_layouts.iter()) {
self.check_sym_layout(*arg, *wanted_layout, UseKind::CallArg);
}
if let Some(old_call_line) =
self.call_spec_ids.insert(*specialization_id, self.line)
{
self.problem(ProblemKind::DuplicateCallSpecId { old_call_line });
}
Some(*ret_layout)
}
CallType::ByPointer {
pointer,
ret_layout,
arg_layouts,
} => {
let expected_layout =
self.interner
.insert_direct_no_semantic(LayoutRepr::FunctionPointer(FunctionPointer {
args: arg_layouts,
ret: *ret_layout,
}));
self.check_sym_layout(*pointer, expected_layout, UseKind::FunctionPointer);
for (arg, wanted_layout) in arguments.iter().zip(arg_layouts.iter()) {
self.check_sym_layout(*arg, *wanted_layout, UseKind::CallArg);
}
Some(*ret_layout)
}
CallType::HigherOrder(HigherOrderLowLevel {
op: _,
closure_env_layout: _,
update_mode: _,
passed_function: _,
}) => {
// TODO
None
}
CallType::Foreign {
foreign_symbol: _,
ret_layout,
} => Some(*ret_layout),
CallType::LowLevel {
op: _,
update_mode: _,
} => None,
}
}
fn check_tag_expr(
&mut self,
interned_union_layout: InLayout<'a>,
union_layout: UnionLayout<'a>,
tag_id: u16,
arguments: &[Symbol],
) {
match get_tag_id_payloads(union_layout, tag_id) {
TagPayloads::IdNotInUnion => {
self.problem(ProblemKind::CreatingTagIdNotInUnion {
tag_id,
union_layout: interned_union_layout,
});
}
TagPayloads::Payloads(payloads) => {
if arguments.len() != payloads.len() {
self.problem(ProblemKind::CreateTagPayloadMismatch {
num_needed: payloads.len(),
num_given: arguments.len(),
});
}
for (arg, wanted_layout) in arguments.iter().zip(payloads.iter()) {
self.check_sym_layout(*arg, *wanted_layout, UseKind::TagPayloadArg);
}
}
}
}
fn check_modify_rc(&mut self, rc: ModifyRc) {
use ModifyRc::*;
match rc {
Inc(sym, _) | Dec(sym) | DecRef(sym) | Free(sym) => {
// TODO: also check that sym layout needs refcounting
self.check_sym_exists(sym);
}
}
}
fn check_erased_make(&mut self, value: Option<Symbol>, callee: Symbol) -> InLayout<'a> {
if let Some(value) = value {
self.with_sym_layout(value, |this, def_line, layout| {
let repr = this.interner.get_repr(layout);
if !matches!(
repr,
LayoutRepr::Union(UnionLayout::NullableUnwrapped { .. })
) {
this.problem(ProblemKind::ErasedMakeValueNotBoxed {
symbol: value,
def_layout: layout,
def_line,
});
}
Option::<()>::None
});
}
self.with_sym_layout(callee, |this, def_line, layout| {
let repr = this.interner.get_repr(layout);
if !matches!(repr, LayoutRepr::FunctionPointer(_)) {
this.problem(ProblemKind::ErasedMakeCalleeNotFunctionPointer {
symbol: callee,
def_layout: layout,
def_line,
});
}
Option::<()>::None
});
Layout::ERASED
}
fn check_erased_load(
&mut self,
symbol: Symbol,
field: ErasedField,
target_layout: InLayout<'a>,
) -> InLayout<'a> {
self.check_sym_layout(symbol, Layout::ERASED, UseKind::Erased);
match field {
ErasedField::Value => {
let repr = self.interner.get_repr(target_layout);
if !matches!(
repr,
LayoutRepr::Union(UnionLayout::NullableUnwrapped { .. })
) {
self.problem(ProblemKind::ErasedLoadValueNotBoxed {
symbol,
target_layout,
});
}
}
ErasedField::ValuePtr => {
let repr = self.interner.get_repr(target_layout);
if !matches!(repr, LayoutRepr::Ptr(_)) {
self.problem(ProblemKind::ErasedLoadValueNotBoxed {
symbol,
target_layout,
});
}
}
ErasedField::Callee => {
let repr = self.interner.get_repr(target_layout);
if !matches!(repr, LayoutRepr::FunctionPointer(_)) {
self.problem(ProblemKind::ErasedLoadCalleeNotFunctionPointer {
symbol,
target_layout,
});
}
}
}
target_layout
}
}
enum TagPayloads<'a> {
IdNotInUnion,
Payloads(&'a [InLayout<'a>]),
}
fn get_tag_id_payloads(union_layout: UnionLayout, tag_id: TagIdIntType) -> TagPayloads {
macro_rules! check_tag_id_oob {
($len:expr) => {
if tag_id as usize >= $len {
return TagPayloads::IdNotInUnion;
}
};
}
match union_layout {
UnionLayout::NonRecursive(union) => {
check_tag_id_oob!(union.len());
let payloads = union[tag_id as usize];
TagPayloads::Payloads(payloads)
}
UnionLayout::Recursive(union) => {
check_tag_id_oob!(union.len());
let payloads = union[tag_id as usize];
TagPayloads::Payloads(payloads)
}
UnionLayout::NonNullableUnwrapped(payloads) => {
if tag_id != 0 {
TagPayloads::Payloads(&[])
} else {
TagPayloads::Payloads(payloads)
}
}
UnionLayout::NullableWrapped {
nullable_id,
other_tags,
} => {
if tag_id == nullable_id {
TagPayloads::Payloads(&[])
} else {
let num_tags = other_tags.len() + 1;
check_tag_id_oob!(num_tags);
let tag_id_idx = if tag_id > nullable_id {
tag_id - 1
} else {
tag_id
};
let payloads = other_tags[tag_id_idx as usize];
TagPayloads::Payloads(payloads)
}
}
UnionLayout::NullableUnwrapped {
nullable_id,
other_fields,
} => {
if tag_id == nullable_id as u16 {
TagPayloads::Payloads(&[])
} else {
check_tag_id_oob!(2);
TagPayloads::Payloads(other_fields)
}
}
}
}