mirror of
https://github.com/roc-lang/roc.git
synced 2025-09-01 01:27:21 +00:00
4168 lines
155 KiB
Rust
4168 lines
155 KiB
Rust
use crate::ability::{
|
|
resolve_ability_specialization, type_implementing_specialization, AbilityImplError,
|
|
DeferredObligations, PendingDerivesTable, RequestedDeriveKey, Resolved, Unfulfilled,
|
|
};
|
|
use crate::module::Solved;
|
|
use bumpalo::Bump;
|
|
use roc_can::abilities::{AbilitiesStore, MemberSpecialization};
|
|
use roc_can::constraint::Constraint::{self, *};
|
|
use roc_can::constraint::{Constraints, Cycle, LetConstraint, OpportunisticResolve};
|
|
use roc_can::expected::{Expected, PExpected};
|
|
use roc_can::expr::PendingDerives;
|
|
use roc_can::module::ExposedByModule;
|
|
use roc_collections::all::MutMap;
|
|
use roc_debug_flags::dbg_do;
|
|
#[cfg(debug_assertions)]
|
|
use roc_debug_flags::{ROC_TRACE_COMPACTION, ROC_VERIFY_RIGID_LET_GENERALIZED};
|
|
use roc_derive::SharedDerivedModule;
|
|
use roc_derive_key::{DeriveError, DeriveKey};
|
|
use roc_error_macros::internal_error;
|
|
use roc_module::ident::TagName;
|
|
use roc_module::symbol::{ModuleId, Symbol};
|
|
use roc_problem::can::CycleEntry;
|
|
use roc_region::all::{Loc, Region};
|
|
use roc_types::subs::{
|
|
self, get_member_lambda_sets_at_region, AliasVariables, Content, Descriptor, FlatType,
|
|
GetSubsSlice, LambdaSet, Mark, OptVariable, Rank, RecordFields, Subs, SubsIndex, SubsSlice,
|
|
UlsOfVar, UnionLabels, UnionLambdas, UnionTags, Variable, VariableSubsSlice,
|
|
};
|
|
use roc_types::types::Type::{self, *};
|
|
use roc_types::types::{
|
|
gather_fields_unsorted_iter, AliasCommon, AliasKind, Category, ErrorType, OptAbleType,
|
|
OptAbleVar, PatternCategory, Reason, TypeExtension, Uls,
|
|
};
|
|
use roc_unify::unify::{
|
|
unify, unify_introduced_ability_specialization, Mode, MustImplementConstraints, Obligated,
|
|
SpecializationLsetCollector, Unified::*,
|
|
};
|
|
|
|
// Type checking system adapted from Elm by Evan Czaplicki, BSD-3-Clause Licensed
|
|
// https://github.com/elm/compiler
|
|
// Thank you, Evan!
|
|
|
|
// A lot of energy was put into making type inference fast. That means it's pretty intimidating.
|
|
//
|
|
// Fundamentally, type inference assigns very general types based on syntax, and then tries to
|
|
// make all the pieces fit together. For instance when writing
|
|
//
|
|
// > f x
|
|
//
|
|
// We know that `f` is a function, and thus must have some type `a -> b`.
|
|
// `x` is just a variable, that gets the type `c`
|
|
//
|
|
// Next comes constraint generation. For `f x` to be well-typed,
|
|
// it must be the case that `c = a`, So a constraint `Eq(c, a)` is generated.
|
|
// But `Eq` is a bit special: `c` does not need to equal `a` exactly, but they need to be equivalent.
|
|
// This allows for instance the use of aliases. `c` could be an alias, and so looks different from
|
|
// `a`, but they still represent the same type.
|
|
//
|
|
// Then we get to solving, which happens in this file.
|
|
//
|
|
// When we hit an `Eq` constraint, then we check whether the two involved types are in fact
|
|
// equivalent using unification, and when they are, we can substitute one for the other.
|
|
//
|
|
// When all constraints are processed, and no unification errors have occurred, then the program
|
|
// is type-correct. Otherwise the errors are reported.
|
|
//
|
|
// Now, coming back to efficiency, this type checker uses *ranks* to optimize
|
|
// The rank tracks the number of let-bindings a variable is "under". Top-level definitions
|
|
// have rank 1. A let in a top-level definition gets rank 2, and so on.
|
|
//
|
|
// This has to do with generalization of type variables. This is described here
|
|
//
|
|
// http://okmij.org/ftp/ML/generalization.html#levels
|
|
//
|
|
// The problem is that when doing inference naively, this program would fail to typecheck
|
|
//
|
|
// f =
|
|
// id = \x -> x
|
|
//
|
|
// { a: id 1, b: id "foo" }
|
|
//
|
|
// Because `id` is applied to an integer, the type `Int -> Int` is inferred, which then gives a
|
|
// type error for `id "foo"`.
|
|
//
|
|
// Thus instead the inferred type for `id` is generalized (see the `generalize` function) to `a -> a`.
|
|
// Ranks are used to limit the number of type variables considered for generalization. Only those inside
|
|
// of the let (so those used in inferring the type of `\x -> x`) are considered.
|
|
|
|
#[derive(Debug, Clone)]
|
|
pub enum TypeError {
|
|
BadExpr(Region, Category, ErrorType, Expected<ErrorType>),
|
|
BadPattern(Region, PatternCategory, ErrorType, PExpected<ErrorType>),
|
|
CircularType(Region, Symbol, ErrorType),
|
|
CircularDef(Vec<CycleEntry>),
|
|
BadType(roc_types::types::Problem),
|
|
UnexposedLookup(Symbol),
|
|
UnfulfilledAbility(Unfulfilled),
|
|
BadExprMissingAbility(Region, Category, ErrorType, Vec<Unfulfilled>),
|
|
BadPatternMissingAbility(Region, PatternCategory, ErrorType, Vec<Unfulfilled>),
|
|
Exhaustive(roc_exhaustive::Error),
|
|
StructuralSpecialization {
|
|
region: Region,
|
|
typ: ErrorType,
|
|
ability: Symbol,
|
|
member: Symbol,
|
|
},
|
|
DominatedDerive {
|
|
opaque: Symbol,
|
|
ability: Symbol,
|
|
derive_region: Region,
|
|
impl_region: Region,
|
|
},
|
|
}
|
|
|
|
use roc_types::types::Alias;
|
|
|
|
#[derive(Debug, Clone, Copy)]
|
|
struct DelayedAliasVariables {
|
|
start: u32,
|
|
type_variables_len: u8,
|
|
lambda_set_variables_len: u8,
|
|
recursion_variables_len: u8,
|
|
}
|
|
|
|
impl DelayedAliasVariables {
|
|
fn recursion_variables(self, variables: &mut [OptAbleVar]) -> &mut [OptAbleVar] {
|
|
let start = self.start as usize
|
|
+ (self.type_variables_len + self.lambda_set_variables_len) as usize;
|
|
let length = self.recursion_variables_len as usize;
|
|
|
|
&mut variables[start..][..length]
|
|
}
|
|
|
|
fn lambda_set_variables(self, variables: &mut [OptAbleVar]) -> &mut [OptAbleVar] {
|
|
let start = self.start as usize + self.type_variables_len as usize;
|
|
let length = self.lambda_set_variables_len as usize;
|
|
|
|
&mut variables[start..][..length]
|
|
}
|
|
|
|
fn type_variables(self, variables: &mut [OptAbleVar]) -> &mut [OptAbleVar] {
|
|
let start = self.start as usize;
|
|
let length = self.type_variables_len as usize;
|
|
|
|
&mut variables[start..][..length]
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Default)]
|
|
pub struct Aliases {
|
|
aliases: Vec<(Symbol, Type, DelayedAliasVariables, AliasKind)>,
|
|
variables: Vec<OptAbleVar>,
|
|
}
|
|
|
|
impl Aliases {
|
|
pub fn insert(&mut self, symbol: Symbol, alias: Alias) {
|
|
let alias_variables =
|
|
{
|
|
let start = self.variables.len() as _;
|
|
|
|
self.variables.extend(
|
|
alias
|
|
.type_variables
|
|
.iter()
|
|
.map(|x| OptAbleVar::from(&x.value)),
|
|
);
|
|
|
|
self.variables.extend(alias.lambda_set_variables.iter().map(
|
|
|x| match x.as_inner() {
|
|
Type::Variable(v) => OptAbleVar::unbound(*v),
|
|
_ => unreachable!("lambda set type is not a variable"),
|
|
},
|
|
));
|
|
|
|
let recursion_variables_len = alias.recursion_variables.len() as _;
|
|
self.variables.extend(
|
|
alias
|
|
.recursion_variables
|
|
.iter()
|
|
.copied()
|
|
.map(OptAbleVar::unbound),
|
|
);
|
|
|
|
DelayedAliasVariables {
|
|
start,
|
|
type_variables_len: alias.type_variables.len() as _,
|
|
lambda_set_variables_len: alias.lambda_set_variables.len() as _,
|
|
recursion_variables_len,
|
|
}
|
|
};
|
|
|
|
self.aliases
|
|
.push((symbol, alias.typ, alias_variables, alias.kind));
|
|
}
|
|
|
|
fn instantiate_result_result(
|
|
subs: &mut Subs,
|
|
rank: Rank,
|
|
pools: &mut Pools,
|
|
alias_variables: AliasVariables,
|
|
) -> Variable {
|
|
let tag_names_slice = Subs::RESULT_TAG_NAMES;
|
|
|
|
let err_slice = SubsSlice::new(alias_variables.variables_start + 1, 1);
|
|
let ok_slice = SubsSlice::new(alias_variables.variables_start, 1);
|
|
|
|
let variable_slices =
|
|
SubsSlice::extend_new(&mut subs.variable_slices, [err_slice, ok_slice]);
|
|
|
|
let union_tags = UnionTags::from_slices(tag_names_slice, variable_slices);
|
|
let ext_var = Variable::EMPTY_TAG_UNION;
|
|
let flat_type = FlatType::TagUnion(union_tags, ext_var);
|
|
let content = Content::Structure(flat_type);
|
|
|
|
register(subs, rank, pools, content)
|
|
}
|
|
|
|
/// Build an alias of the form `Num range := range`
|
|
fn build_num_opaque(
|
|
subs: &mut Subs,
|
|
rank: Rank,
|
|
pools: &mut Pools,
|
|
symbol: Symbol,
|
|
range_var: Variable,
|
|
) -> Variable {
|
|
let content = Content::Alias(
|
|
symbol,
|
|
AliasVariables::insert_into_subs(subs, [range_var], []),
|
|
range_var,
|
|
AliasKind::Opaque,
|
|
);
|
|
|
|
register(subs, rank, pools, content)
|
|
}
|
|
|
|
fn instantiate_builtin_aliases_real_var(
|
|
&mut self,
|
|
subs: &mut Subs,
|
|
rank: Rank,
|
|
pools: &mut Pools,
|
|
symbol: Symbol,
|
|
alias_variables: AliasVariables,
|
|
) -> Option<(Variable, AliasKind)> {
|
|
match symbol {
|
|
Symbol::RESULT_RESULT => {
|
|
let var = Self::instantiate_result_result(subs, rank, pools, alias_variables);
|
|
|
|
Some((var, AliasKind::Structural))
|
|
}
|
|
Symbol::NUM_NUM | Symbol::NUM_INTEGER | Symbol::NUM_FLOATINGPOINT => {
|
|
// Num range := range | Integer range := range | FloatingPoint range := range
|
|
let range_var = subs.variables[alias_variables.variables_start as usize];
|
|
Some((range_var, AliasKind::Opaque))
|
|
}
|
|
Symbol::NUM_INT => {
|
|
// Int range : Num (Integer range)
|
|
//
|
|
// build `Integer range := range`
|
|
let integer_content_var = Self::build_num_opaque(
|
|
subs,
|
|
rank,
|
|
pools,
|
|
Symbol::NUM_INTEGER,
|
|
subs.variables[alias_variables.variables_start as usize],
|
|
);
|
|
|
|
// build `Num (Integer range) := Integer range`
|
|
let num_content_var =
|
|
Self::build_num_opaque(subs, rank, pools, Symbol::NUM_NUM, integer_content_var);
|
|
|
|
Some((num_content_var, AliasKind::Structural))
|
|
}
|
|
Symbol::NUM_FRAC => {
|
|
// Frac range : Num (FloatingPoint range)
|
|
//
|
|
// build `FloatingPoint range := range`
|
|
let fpoint_content_var = Self::build_num_opaque(
|
|
subs,
|
|
rank,
|
|
pools,
|
|
Symbol::NUM_FLOATINGPOINT,
|
|
subs.variables[alias_variables.variables_start as usize],
|
|
);
|
|
|
|
// build `Num (FloatingPoint range) := FloatingPoint range`
|
|
let num_content_var =
|
|
Self::build_num_opaque(subs, rank, pools, Symbol::NUM_NUM, fpoint_content_var);
|
|
|
|
Some((num_content_var, AliasKind::Structural))
|
|
}
|
|
_ => None,
|
|
}
|
|
}
|
|
|
|
fn instantiate_real_var(
|
|
&mut self,
|
|
subs: &mut Subs,
|
|
rank: Rank,
|
|
pools: &mut Pools,
|
|
arena: &bumpalo::Bump,
|
|
symbol: Symbol,
|
|
alias_variables: AliasVariables,
|
|
) -> (Variable, AliasKind) {
|
|
// hardcoded instantiations for builtin aliases
|
|
if let Some((var, kind)) = Self::instantiate_builtin_aliases_real_var(
|
|
self,
|
|
subs,
|
|
rank,
|
|
pools,
|
|
symbol,
|
|
alias_variables,
|
|
) {
|
|
return (var, kind);
|
|
}
|
|
|
|
let (typ, delayed_variables, &mut kind) =
|
|
match self.aliases.iter_mut().find(|(s, _, _, _)| *s == symbol) {
|
|
None => internal_error!(
|
|
"Alias {:?} not registered in delayed aliases! {:?}",
|
|
symbol,
|
|
&self.aliases
|
|
),
|
|
Some((_, typ, delayed_variables, kind)) => (typ, delayed_variables, kind),
|
|
};
|
|
|
|
let mut substitutions: MutMap<_, _> = Default::default();
|
|
|
|
let old_type_variables = delayed_variables.type_variables(&mut self.variables);
|
|
let new_type_variables = &subs.variables[alias_variables.type_variables().indices()];
|
|
|
|
let some_new_vars_are_equivalent = {
|
|
// In practice the number of type variables is tiny, so just do a quadratic check
|
|
// without allocating.
|
|
let mut some_equivalent = false;
|
|
for (i, var) in new_type_variables.iter().enumerate() {
|
|
for other_var in new_type_variables.iter().skip(i + 1) {
|
|
some_equivalent = some_equivalent || var == other_var;
|
|
}
|
|
}
|
|
some_equivalent
|
|
};
|
|
|
|
// If some type variables are equivalent, we have to work over a cloned type variable,
|
|
// otherwise we will leave in place an alias without preserving the property of unique
|
|
// type variables.
|
|
//
|
|
// For example, if a delayed alias `Foo a b` is instantiated with args `t1 t1` without cloning,
|
|
// then the delayed alias would be updated to `Foo t1 t1`, and now the distinction between the
|
|
// two type variables is lost.
|
|
let can_reuse_old_definition = !some_new_vars_are_equivalent;
|
|
|
|
for (old, new) in old_type_variables.iter_mut().zip(new_type_variables) {
|
|
// if constraint gen duplicated a type these variables could be the same
|
|
// (happens very often in practice)
|
|
if old.var != *new {
|
|
substitutions.insert(old.var, *new);
|
|
|
|
if can_reuse_old_definition {
|
|
old.var = *new;
|
|
}
|
|
}
|
|
}
|
|
|
|
for OptAbleVar {
|
|
var: rec_var,
|
|
opt_ability,
|
|
} in delayed_variables
|
|
.recursion_variables(&mut self.variables)
|
|
.iter_mut()
|
|
{
|
|
debug_assert!(opt_ability.is_none());
|
|
let new_var = subs.fresh_unnamed_flex_var();
|
|
substitutions.insert(*rec_var, new_var);
|
|
|
|
if can_reuse_old_definition {
|
|
*rec_var = new_var;
|
|
}
|
|
}
|
|
|
|
let old_lambda_set_variables = delayed_variables.lambda_set_variables(&mut self.variables);
|
|
let new_lambda_set_variables =
|
|
&subs.variables[alias_variables.lambda_set_variables().indices()];
|
|
|
|
for (old, new) in old_lambda_set_variables
|
|
.iter_mut()
|
|
.zip(new_lambda_set_variables)
|
|
{
|
|
debug_assert!(old.opt_ability.is_none());
|
|
if old.var != *new {
|
|
substitutions.insert(old.var, *new);
|
|
|
|
if can_reuse_old_definition {
|
|
old.var = *new;
|
|
}
|
|
}
|
|
}
|
|
|
|
if !can_reuse_old_definition {
|
|
let mut typ = typ.clone();
|
|
typ.substitute_variables(&substitutions);
|
|
let alias_variable = type_to_variable(subs, rank, pools, arena, self, &typ, false);
|
|
(alias_variable, kind)
|
|
} else {
|
|
if !substitutions.is_empty() {
|
|
typ.substitute_variables(&substitutions);
|
|
}
|
|
|
|
let mut t = Type::EmptyRec;
|
|
|
|
std::mem::swap(typ, &mut t);
|
|
|
|
// assumption: an alias does not (transitively) syntactically contain itself
|
|
// (if it did it would have to be a recursive tag union, which we should have fixed up
|
|
// during canonicalization)
|
|
let alias_variable = type_to_variable(subs, rank, pools, arena, self, &t, false);
|
|
|
|
{
|
|
match self.aliases.iter_mut().find(|(s, _, _, _)| *s == symbol) {
|
|
None => unreachable!(),
|
|
Some((_, typ, _, _)) => {
|
|
// swap typ back
|
|
std::mem::swap(typ, &mut t);
|
|
}
|
|
}
|
|
}
|
|
|
|
(alias_variable, kind)
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Debug, Default)]
|
|
pub struct Env {
|
|
symbols: Vec<Symbol>,
|
|
variables: Vec<Variable>,
|
|
}
|
|
|
|
impl Env {
|
|
pub fn vars_by_symbol(&self) -> impl Iterator<Item = (Symbol, Variable)> + '_ {
|
|
let it1 = self.symbols.iter().copied();
|
|
let it2 = self.variables.iter().copied();
|
|
|
|
it1.zip(it2)
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn get_var_by_symbol(&self, symbol: &Symbol) -> Option<Variable> {
|
|
self.symbols
|
|
.iter()
|
|
.position(|s| s == symbol)
|
|
.map(|index| self.variables[index])
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn insert_symbol_var_if_vacant(&mut self, symbol: Symbol, var: Variable) {
|
|
match self.symbols.iter().position(|s| *s == symbol) {
|
|
None => {
|
|
// symbol is not in vars_by_symbol yet; insert it
|
|
self.symbols.push(symbol);
|
|
self.variables.push(var);
|
|
}
|
|
Some(_) => {
|
|
// do nothing
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
const DEFAULT_POOLS: usize = 8;
|
|
|
|
#[derive(Clone, Debug)]
|
|
pub struct Pools(Vec<Vec<Variable>>);
|
|
|
|
impl Default for Pools {
|
|
fn default() -> Self {
|
|
Pools::new(DEFAULT_POOLS)
|
|
}
|
|
}
|
|
|
|
impl Pools {
|
|
pub fn new(num_pools: usize) -> Self {
|
|
Pools(vec![Vec::new(); num_pools])
|
|
}
|
|
|
|
pub fn len(&self) -> usize {
|
|
self.0.len()
|
|
}
|
|
|
|
pub fn is_empty(&self) -> bool {
|
|
self.0.is_empty()
|
|
}
|
|
|
|
pub fn get_mut(&mut self, rank: Rank) -> &mut Vec<Variable> {
|
|
match self.0.get_mut(rank.into_usize()) {
|
|
Some(reference) => reference,
|
|
None => panic!("Compiler bug: could not find pool at rank {}", rank),
|
|
}
|
|
}
|
|
|
|
pub fn get(&self, rank: Rank) -> &Vec<Variable> {
|
|
match self.0.get(rank.into_usize()) {
|
|
Some(reference) => reference,
|
|
None => panic!("Compiler bug: could not find pool at rank {}", rank),
|
|
}
|
|
}
|
|
|
|
pub fn iter(&self) -> std::slice::Iter<'_, Vec<Variable>> {
|
|
self.0.iter()
|
|
}
|
|
|
|
pub fn split_last(mut self) -> (Vec<Variable>, Vec<Vec<Variable>>) {
|
|
let last = self
|
|
.0
|
|
.pop()
|
|
.unwrap_or_else(|| panic!("Attempted to split_last() on non-empty Pools"));
|
|
|
|
(last, self.0)
|
|
}
|
|
|
|
pub fn extend_to(&mut self, n: usize) {
|
|
for _ in self.len()..n {
|
|
self.0.push(Vec::new());
|
|
}
|
|
}
|
|
}
|
|
|
|
/// What phase in the compiler is reaching out to solve types.
|
|
/// This is important to distinguish subtle differences in the behavior of the solving algorithm.
|
|
//
|
|
// TODO the APIs of this trait suck, this needs a nice cleanup.
|
|
pub trait Phase {
|
|
/// The regular type-solving phase, or during some later phase of compilation.
|
|
/// During the solving phase we must anticipate that some information is still unknown and react to
|
|
/// that; during late phases, we expect that all information is resolved.
|
|
const IS_LATE: bool;
|
|
|
|
fn with_module_abilities_store<T, F>(&self, module: ModuleId, f: F) -> T
|
|
where
|
|
F: FnMut(&AbilitiesStore) -> T;
|
|
|
|
/// Given a known lambda set's ambient function in an external module, copy that ambient
|
|
/// function into the given subs.
|
|
fn copy_lambda_set_ambient_function_to_home_subs(
|
|
&self,
|
|
external_lambda_set_var: Variable,
|
|
external_module_id: ModuleId,
|
|
home_subs: &mut Subs,
|
|
) -> Variable;
|
|
|
|
/// Find the ambient function var at a given region for an ability member definition (not a
|
|
/// specialization!), and copy that into the given subs.
|
|
fn get_and_copy_ability_member_ambient_function(
|
|
&self,
|
|
ability_member: Symbol,
|
|
region: u8,
|
|
home_subs: &mut Subs,
|
|
) -> Variable;
|
|
}
|
|
|
|
struct SolvePhase<'a> {
|
|
abilities_store: &'a AbilitiesStore,
|
|
}
|
|
impl Phase for SolvePhase<'_> {
|
|
const IS_LATE: bool = false;
|
|
|
|
fn with_module_abilities_store<T, F>(&self, _module: ModuleId, mut f: F) -> T
|
|
where
|
|
F: FnMut(&AbilitiesStore) -> T,
|
|
{
|
|
// During solving we're only aware of our module's abilities store.
|
|
f(self.abilities_store)
|
|
}
|
|
|
|
fn copy_lambda_set_ambient_function_to_home_subs(
|
|
&self,
|
|
external_lambda_set_var: Variable,
|
|
_external_module_id: ModuleId,
|
|
home_subs: &mut Subs,
|
|
) -> Variable {
|
|
// During solving we're only aware of our module's abilities store, the var must
|
|
// be in our module store. Even if the specialization lambda set comes from another
|
|
// module, we should have taken care to import it before starting solving in this module.
|
|
let LambdaSet {
|
|
ambient_function, ..
|
|
} = home_subs.get_lambda_set(external_lambda_set_var);
|
|
ambient_function
|
|
}
|
|
|
|
fn get_and_copy_ability_member_ambient_function(
|
|
&self,
|
|
ability_member: Symbol,
|
|
region: u8,
|
|
home_subs: &mut Subs,
|
|
) -> Variable {
|
|
// During solving we're only aware of our module's abilities store, the var must
|
|
// be in our module store. Even if the specialization lambda set comes from another
|
|
// module, we should have taken care to import it before starting solving in this module.
|
|
let member_def = self
|
|
.abilities_store
|
|
.member_def(ability_member)
|
|
.unwrap_or_else(|| {
|
|
internal_error!(
|
|
"{:?} is not resolved, or not an ability member!",
|
|
ability_member
|
|
)
|
|
});
|
|
let member_var = member_def.signature_var();
|
|
|
|
let region_lset = get_member_lambda_sets_at_region(home_subs, member_var, region);
|
|
|
|
let LambdaSet {
|
|
ambient_function, ..
|
|
} = home_subs.get_lambda_set(region_lset);
|
|
|
|
ambient_function
|
|
}
|
|
}
|
|
|
|
#[derive(Clone)]
|
|
struct State {
|
|
env: Env,
|
|
mark: Mark,
|
|
}
|
|
|
|
#[allow(clippy::too_many_arguments)] // TODO: put params in a context/env var
|
|
pub fn run(
|
|
home: ModuleId,
|
|
constraints: &Constraints,
|
|
problems: &mut Vec<TypeError>,
|
|
mut subs: Subs,
|
|
aliases: &mut Aliases,
|
|
constraint: &Constraint,
|
|
pending_derives: PendingDerives,
|
|
abilities_store: &mut AbilitiesStore,
|
|
exposed_by_module: &ExposedByModule,
|
|
derived_module: SharedDerivedModule,
|
|
) -> (Solved<Subs>, Env) {
|
|
let env = run_in_place(
|
|
home,
|
|
constraints,
|
|
problems,
|
|
&mut subs,
|
|
aliases,
|
|
constraint,
|
|
pending_derives,
|
|
abilities_store,
|
|
exposed_by_module,
|
|
derived_module,
|
|
);
|
|
|
|
(Solved(subs), env)
|
|
}
|
|
|
|
/// Modify an existing subs in-place instead
|
|
#[allow(clippy::too_many_arguments)] // TODO: put params in a context/env var
|
|
fn run_in_place(
|
|
_home: ModuleId, // TODO: remove me?
|
|
constraints: &Constraints,
|
|
problems: &mut Vec<TypeError>,
|
|
subs: &mut Subs,
|
|
aliases: &mut Aliases,
|
|
constraint: &Constraint,
|
|
pending_derives: PendingDerives,
|
|
abilities_store: &mut AbilitiesStore,
|
|
exposed_by_module: &ExposedByModule,
|
|
derived_module: SharedDerivedModule,
|
|
) -> Env {
|
|
let mut pools = Pools::default();
|
|
|
|
let state = State {
|
|
env: Env::default(),
|
|
mark: Mark::NONE.next(),
|
|
};
|
|
let rank = Rank::toplevel();
|
|
let arena = Bump::new();
|
|
|
|
let pending_derives = PendingDerivesTable::new(subs, aliases, pending_derives);
|
|
let mut deferred_obligations = DeferredObligations::new(pending_derives);
|
|
|
|
// Because we don't know what ability specializations are available until the entire module is
|
|
// solved, we must wait to solve unspecialized lambda sets then.
|
|
let mut deferred_uls_to_resolve = UlsOfVar::default();
|
|
|
|
let state = solve(
|
|
&arena,
|
|
constraints,
|
|
state,
|
|
rank,
|
|
&mut pools,
|
|
problems,
|
|
aliases,
|
|
subs,
|
|
constraint,
|
|
abilities_store,
|
|
&mut deferred_obligations,
|
|
&mut deferred_uls_to_resolve,
|
|
);
|
|
|
|
// Now that the module has been solved, we can run through and check all
|
|
// types claimed to implement abilities. This will also tell us what derives
|
|
// are legal, which we need to register.
|
|
let new_must_implement = compact_lambda_sets_of_vars(
|
|
subs,
|
|
&derived_module,
|
|
&arena,
|
|
&mut pools,
|
|
deferred_uls_to_resolve,
|
|
&SolvePhase { abilities_store },
|
|
exposed_by_module,
|
|
);
|
|
|
|
deferred_obligations.add(new_must_implement, AbilityImplError::IncompleteAbility);
|
|
|
|
let (obligation_problems, _derived) = deferred_obligations.check_all(subs, abilities_store);
|
|
problems.extend(obligation_problems);
|
|
|
|
state.env
|
|
}
|
|
|
|
enum Work<'a> {
|
|
Constraint {
|
|
env: &'a Env,
|
|
rank: Rank,
|
|
constraint: &'a Constraint,
|
|
},
|
|
CheckForInfiniteTypes(LocalDefVarsVec<(Symbol, Loc<Variable>)>),
|
|
/// The ret_con part of a let constraint that does NOT introduces rigid and/or flex variables
|
|
LetConNoVariables {
|
|
env: &'a Env,
|
|
rank: Rank,
|
|
let_con: &'a LetConstraint,
|
|
|
|
/// The variables used to store imported types in the Subs.
|
|
/// The `Contents` are copied from the source module, but to
|
|
/// mimic `type_to_var`, we must add these variables to `Pools`
|
|
/// at the correct rank
|
|
pool_variables: &'a [Variable],
|
|
},
|
|
/// The ret_con part of a let constraint that introduces rigid and/or flex variables
|
|
///
|
|
/// These introduced variables must be generalized, hence this variant
|
|
/// is more complex than `LetConNoVariables`.
|
|
LetConIntroducesVariables {
|
|
env: &'a Env,
|
|
rank: Rank,
|
|
let_con: &'a LetConstraint,
|
|
|
|
/// The variables used to store imported types in the Subs.
|
|
/// The `Contents` are copied from the source module, but to
|
|
/// mimic `type_to_var`, we must add these variables to `Pools`
|
|
/// at the correct rank
|
|
pool_variables: &'a [Variable],
|
|
},
|
|
}
|
|
|
|
#[allow(clippy::too_many_arguments)]
|
|
fn solve(
|
|
arena: &Bump,
|
|
constraints: &Constraints,
|
|
mut state: State,
|
|
rank: Rank,
|
|
pools: &mut Pools,
|
|
problems: &mut Vec<TypeError>,
|
|
aliases: &mut Aliases,
|
|
subs: &mut Subs,
|
|
constraint: &Constraint,
|
|
abilities_store: &mut AbilitiesStore,
|
|
deferred_obligations: &mut DeferredObligations,
|
|
deferred_uls_to_resolve: &mut UlsOfVar,
|
|
) -> State {
|
|
let initial = Work::Constraint {
|
|
env: &Env::default(),
|
|
rank,
|
|
constraint,
|
|
};
|
|
|
|
let mut stack = vec![initial];
|
|
|
|
while let Some(work_item) = stack.pop() {
|
|
let (env, rank, constraint) = match work_item {
|
|
Work::Constraint {
|
|
env,
|
|
rank,
|
|
constraint,
|
|
} => {
|
|
// the default case; actually solve this constraint
|
|
(env, rank, constraint)
|
|
}
|
|
Work::CheckForInfiniteTypes(def_vars) => {
|
|
// after a LetCon, we must check if any of the variables that we introduced
|
|
// loop back to themselves after solving the ret_constraint
|
|
for (symbol, loc_var) in def_vars.iter() {
|
|
check_for_infinite_type(subs, problems, *symbol, *loc_var);
|
|
}
|
|
|
|
continue;
|
|
}
|
|
Work::LetConNoVariables {
|
|
env,
|
|
rank,
|
|
let_con,
|
|
pool_variables,
|
|
} => {
|
|
// NOTE be extremely careful with shadowing here
|
|
let offset = let_con.defs_and_ret_constraint.index();
|
|
let ret_constraint = &constraints.constraints[offset + 1];
|
|
|
|
// Add a variable for each def to new_vars_by_env.
|
|
let local_def_vars = LocalDefVarsVec::from_def_types(
|
|
constraints,
|
|
rank,
|
|
pools,
|
|
aliases,
|
|
subs,
|
|
let_con.def_types,
|
|
);
|
|
|
|
pools.get_mut(rank).extend(pool_variables);
|
|
|
|
let mut new_env = env.clone();
|
|
for (symbol, loc_var) in local_def_vars.iter() {
|
|
check_ability_specialization(
|
|
arena,
|
|
subs,
|
|
pools,
|
|
rank,
|
|
abilities_store,
|
|
problems,
|
|
deferred_obligations,
|
|
deferred_uls_to_resolve,
|
|
*symbol,
|
|
*loc_var,
|
|
);
|
|
|
|
new_env.insert_symbol_var_if_vacant(*symbol, loc_var.value);
|
|
}
|
|
|
|
stack.push(Work::CheckForInfiniteTypes(local_def_vars));
|
|
stack.push(Work::Constraint {
|
|
env: arena.alloc(new_env),
|
|
rank,
|
|
constraint: ret_constraint,
|
|
});
|
|
|
|
continue;
|
|
}
|
|
Work::LetConIntroducesVariables {
|
|
env,
|
|
rank,
|
|
let_con,
|
|
pool_variables,
|
|
} => {
|
|
// NOTE be extremely careful with shadowing here
|
|
let offset = let_con.defs_and_ret_constraint.index();
|
|
let ret_constraint = &constraints.constraints[offset + 1];
|
|
|
|
let next_rank = rank.next();
|
|
|
|
let mark = state.mark;
|
|
let saved_env = state.env;
|
|
|
|
let young_mark = mark;
|
|
let visit_mark = young_mark.next();
|
|
let final_mark = visit_mark.next();
|
|
|
|
// Add a variable for each def to local_def_vars.
|
|
let local_def_vars = LocalDefVarsVec::from_def_types(
|
|
constraints,
|
|
next_rank,
|
|
pools,
|
|
aliases,
|
|
subs,
|
|
let_con.def_types,
|
|
);
|
|
|
|
pools.get_mut(next_rank).extend(pool_variables);
|
|
|
|
debug_assert_eq!(
|
|
// Check that no variable ended up in a higher rank than the next rank.. that
|
|
// would mean we generalized one level more than we need to!
|
|
{
|
|
let offenders = pools
|
|
.get(next_rank)
|
|
.iter()
|
|
.filter(|var| {
|
|
subs.get_rank(**var).into_usize() > next_rank.into_usize()
|
|
})
|
|
.collect::<Vec<_>>();
|
|
|
|
let result = offenders.len();
|
|
|
|
if result > 0 {
|
|
eprintln!("subs = {:?}", &subs);
|
|
eprintln!("offenders = {:?}", &offenders);
|
|
eprintln!("let_con.def_types = {:?}", &let_con.def_types);
|
|
}
|
|
|
|
result
|
|
},
|
|
0
|
|
);
|
|
|
|
// pop pool
|
|
generalize(subs, young_mark, visit_mark, next_rank, pools);
|
|
debug_assert!(pools.get(next_rank).is_empty());
|
|
|
|
// check that things went well
|
|
dbg_do!(ROC_VERIFY_RIGID_LET_GENERALIZED, {
|
|
let rigid_vars = &constraints.variables[let_con.rigid_vars.indices()];
|
|
|
|
// NOTE the `subs.redundant` check does not come from elm.
|
|
// It's unclear whether this is a bug with our implementation
|
|
// (something is redundant that shouldn't be)
|
|
// or that it just never came up in elm.
|
|
let mut it = rigid_vars
|
|
.iter()
|
|
.filter(|&var| !subs.redundant(*var) && subs.get_rank(*var) != Rank::NONE)
|
|
.peekable();
|
|
|
|
if it.peek().is_some() {
|
|
let failing: Vec<_> = it.collect();
|
|
println!("Rigids {:?}", &rigid_vars);
|
|
println!("Failing {:?}", failing);
|
|
debug_assert!(false);
|
|
}
|
|
});
|
|
|
|
let mut new_env = env.clone();
|
|
for (symbol, loc_var) in local_def_vars.iter() {
|
|
check_ability_specialization(
|
|
arena,
|
|
subs,
|
|
pools,
|
|
rank,
|
|
abilities_store,
|
|
problems,
|
|
deferred_obligations,
|
|
deferred_uls_to_resolve,
|
|
*symbol,
|
|
*loc_var,
|
|
);
|
|
|
|
new_env.insert_symbol_var_if_vacant(*symbol, loc_var.value);
|
|
}
|
|
|
|
// Note that this vars_by_symbol is the one returned by the
|
|
// previous call to solve()
|
|
let state_for_ret_con = State {
|
|
env: saved_env,
|
|
mark: final_mark,
|
|
};
|
|
|
|
// Now solve the body, using the new vars_by_symbol which includes
|
|
// the assignments' name-to-variable mappings.
|
|
stack.push(Work::CheckForInfiniteTypes(local_def_vars));
|
|
stack.push(Work::Constraint {
|
|
env: arena.alloc(new_env),
|
|
rank,
|
|
constraint: ret_constraint,
|
|
});
|
|
|
|
state = state_for_ret_con;
|
|
|
|
continue;
|
|
}
|
|
};
|
|
|
|
state = match constraint {
|
|
True => state,
|
|
SaveTheEnvironment => {
|
|
let mut copy = state;
|
|
|
|
copy.env = env.clone();
|
|
|
|
copy
|
|
}
|
|
Eq(roc_can::constraint::Eq(type_index, expectation_index, category_index, region)) => {
|
|
let category = &constraints.categories[category_index.index()];
|
|
|
|
let actual =
|
|
either_type_index_to_var(constraints, subs, rank, pools, aliases, *type_index);
|
|
|
|
let expectation = &constraints.expectations[expectation_index.index()];
|
|
let expected = type_to_var(subs, rank, pools, aliases, expectation.get_type_ref());
|
|
|
|
match unify(subs, actual, expected, Mode::EQ) {
|
|
Success {
|
|
vars,
|
|
must_implement_ability,
|
|
lambda_sets_to_specialize,
|
|
extra_metadata: _,
|
|
} => {
|
|
introduce(subs, rank, pools, &vars);
|
|
if !must_implement_ability.is_empty() {
|
|
deferred_obligations.add(
|
|
must_implement_ability,
|
|
AbilityImplError::BadExpr(*region, category.clone(), actual),
|
|
);
|
|
}
|
|
deferred_uls_to_resolve.union(lambda_sets_to_specialize);
|
|
|
|
state
|
|
}
|
|
Failure(vars, actual_type, expected_type, _bad_impls) => {
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
let problem = TypeError::BadExpr(
|
|
*region,
|
|
category.clone(),
|
|
actual_type,
|
|
expectation.clone().replace(expected_type),
|
|
);
|
|
|
|
problems.push(problem);
|
|
|
|
state
|
|
}
|
|
BadType(vars, problem) => {
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
problems.push(TypeError::BadType(problem));
|
|
|
|
state
|
|
}
|
|
}
|
|
}
|
|
Store(source_index, target, _filename, _linenr) => {
|
|
// a special version of Eq that is used to store types in the AST.
|
|
// IT DOES NOT REPORT ERRORS!
|
|
let actual = either_type_index_to_var(
|
|
constraints,
|
|
subs,
|
|
rank,
|
|
pools,
|
|
aliases,
|
|
*source_index,
|
|
);
|
|
let target = *target;
|
|
|
|
match unify(subs, actual, target, Mode::EQ) {
|
|
Success {
|
|
vars,
|
|
// ERROR NOT REPORTED
|
|
must_implement_ability: _,
|
|
lambda_sets_to_specialize,
|
|
extra_metadata: _,
|
|
} => {
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
deferred_uls_to_resolve.union(lambda_sets_to_specialize);
|
|
|
|
state
|
|
}
|
|
Failure(vars, _actual_type, _expected_type, _bad_impls) => {
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
// ERROR NOT REPORTED
|
|
|
|
state
|
|
}
|
|
BadType(vars, _) => {
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
// ERROR NOT REPORTED
|
|
|
|
state
|
|
}
|
|
}
|
|
}
|
|
Lookup(symbol, expectation_index, region) => {
|
|
match env.get_var_by_symbol(symbol) {
|
|
Some(var) => {
|
|
// Deep copy the vars associated with this symbol before unifying them.
|
|
// Otherwise, suppose we have this:
|
|
//
|
|
// identity = \a -> a
|
|
//
|
|
// x = identity 5
|
|
//
|
|
// When we call (identity 5), it's important that we not unify
|
|
// on identity's original vars. If we do, the type of `identity` will be
|
|
// mutated to be `Int -> Int` instead of `a -> `, which would be incorrect;
|
|
// the type of `identity` is more general than that!
|
|
//
|
|
// Instead, we want to unify on a *copy* of its vars. If the copy unifies
|
|
// successfully (in this case, to `Int -> Int`), we can use that to
|
|
// infer the type of this lookup (in this case, `Int`) without ever
|
|
// having mutated the original.
|
|
//
|
|
// If this Lookup is targeting a value in another module,
|
|
// then we copy from that module's Subs into our own. If the value
|
|
// is being looked up in this module, then we use our Subs as both
|
|
// the source and destination.
|
|
let actual = deep_copy_var_in(subs, rank, pools, var, arena);
|
|
let expectation = &constraints.expectations[expectation_index.index()];
|
|
|
|
let expected =
|
|
type_to_var(subs, rank, pools, aliases, expectation.get_type_ref());
|
|
|
|
match unify(subs, actual, expected, Mode::EQ) {
|
|
Success {
|
|
vars,
|
|
must_implement_ability,
|
|
lambda_sets_to_specialize,
|
|
extra_metadata: _,
|
|
} => {
|
|
introduce(subs, rank, pools, &vars);
|
|
if !must_implement_ability.is_empty() {
|
|
deferred_obligations.add(
|
|
must_implement_ability,
|
|
AbilityImplError::BadExpr(
|
|
*region,
|
|
Category::Lookup(*symbol),
|
|
actual,
|
|
),
|
|
);
|
|
}
|
|
deferred_uls_to_resolve.union(lambda_sets_to_specialize);
|
|
|
|
state
|
|
}
|
|
|
|
Failure(vars, actual_type, expected_type, _bad_impls) => {
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
let problem = TypeError::BadExpr(
|
|
*region,
|
|
Category::Lookup(*symbol),
|
|
actual_type,
|
|
expectation.clone().replace(expected_type),
|
|
);
|
|
|
|
problems.push(problem);
|
|
|
|
state
|
|
}
|
|
BadType(vars, problem) => {
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
problems.push(TypeError::BadType(problem));
|
|
|
|
state
|
|
}
|
|
}
|
|
}
|
|
None => {
|
|
problems.push(TypeError::UnexposedLookup(*symbol));
|
|
|
|
state
|
|
}
|
|
}
|
|
}
|
|
And(slice) => {
|
|
let it = constraints.constraints[slice.indices()].iter().rev();
|
|
for sub_constraint in it {
|
|
stack.push(Work::Constraint {
|
|
env,
|
|
rank,
|
|
constraint: sub_constraint,
|
|
})
|
|
}
|
|
|
|
state
|
|
}
|
|
Pattern(type_index, expectation_index, category_index, region)
|
|
| PatternPresence(type_index, expectation_index, category_index, region) => {
|
|
let category = &constraints.pattern_categories[category_index.index()];
|
|
|
|
let actual =
|
|
either_type_index_to_var(constraints, subs, rank, pools, aliases, *type_index);
|
|
|
|
let expectation = &constraints.pattern_expectations[expectation_index.index()];
|
|
let expected = type_to_var(subs, rank, pools, aliases, expectation.get_type_ref());
|
|
|
|
let mode = match constraint {
|
|
PatternPresence(..) => Mode::PRESENT,
|
|
_ => Mode::EQ,
|
|
};
|
|
|
|
match unify(subs, actual, expected, mode) {
|
|
Success {
|
|
vars,
|
|
must_implement_ability,
|
|
lambda_sets_to_specialize,
|
|
extra_metadata: _,
|
|
} => {
|
|
introduce(subs, rank, pools, &vars);
|
|
if !must_implement_ability.is_empty() {
|
|
deferred_obligations.add(
|
|
must_implement_ability,
|
|
AbilityImplError::BadPattern(*region, category.clone(), actual),
|
|
);
|
|
}
|
|
deferred_uls_to_resolve.union(lambda_sets_to_specialize);
|
|
|
|
state
|
|
}
|
|
Failure(vars, actual_type, expected_type, _bad_impls) => {
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
let problem = TypeError::BadPattern(
|
|
*region,
|
|
category.clone(),
|
|
actual_type,
|
|
expectation.clone().replace(expected_type),
|
|
);
|
|
|
|
problems.push(problem);
|
|
|
|
state
|
|
}
|
|
BadType(vars, problem) => {
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
problems.push(TypeError::BadType(problem));
|
|
|
|
state
|
|
}
|
|
}
|
|
}
|
|
Let(index, pool_slice) => {
|
|
let let_con = &constraints.let_constraints[index.index()];
|
|
|
|
let offset = let_con.defs_and_ret_constraint.index();
|
|
let defs_constraint = &constraints.constraints[offset];
|
|
let ret_constraint = &constraints.constraints[offset + 1];
|
|
|
|
let flex_vars = &constraints.variables[let_con.flex_vars.indices()];
|
|
let rigid_vars = &constraints.variables[let_con.rigid_vars.indices()];
|
|
|
|
let pool_variables = &constraints.variables[pool_slice.indices()];
|
|
|
|
if matches!(&ret_constraint, True) && let_con.rigid_vars.is_empty() {
|
|
debug_assert!(pool_variables.is_empty());
|
|
|
|
introduce(subs, rank, pools, flex_vars);
|
|
|
|
// If the return expression is guaranteed to solve,
|
|
// solve the assignments themselves and move on.
|
|
stack.push(Work::Constraint {
|
|
env,
|
|
rank,
|
|
constraint: defs_constraint,
|
|
});
|
|
|
|
state
|
|
} else if let_con.rigid_vars.is_empty() && let_con.flex_vars.is_empty() {
|
|
// items are popped from the stack in reverse order. That means that we'll
|
|
// first solve then defs_constraint, and then (eventually) the ret_constraint.
|
|
//
|
|
// Note that the LetConSimple gets the current env and rank,
|
|
// and not the env/rank from after solving the defs_constraint
|
|
stack.push(Work::LetConNoVariables {
|
|
env,
|
|
rank,
|
|
let_con,
|
|
pool_variables,
|
|
});
|
|
stack.push(Work::Constraint {
|
|
env,
|
|
rank,
|
|
constraint: defs_constraint,
|
|
});
|
|
|
|
state
|
|
} else {
|
|
// work in the next pool to localize header
|
|
let next_rank = rank.next();
|
|
|
|
// introduce variables
|
|
for &var in rigid_vars.iter().chain(flex_vars.iter()) {
|
|
subs.set_rank(var, next_rank);
|
|
}
|
|
|
|
// determine the next pool
|
|
if next_rank.into_usize() < pools.len() {
|
|
// Nothing to do, we already accounted for the next rank, no need to
|
|
// adjust the pools
|
|
} else {
|
|
// we should be off by one at this point
|
|
debug_assert_eq!(next_rank.into_usize(), 1 + pools.len());
|
|
pools.extend_to(next_rank.into_usize());
|
|
}
|
|
|
|
let pool: &mut Vec<Variable> = pools.get_mut(next_rank);
|
|
|
|
// Replace the contents of this pool with rigid_vars and flex_vars
|
|
pool.clear();
|
|
pool.reserve(rigid_vars.len() + flex_vars.len());
|
|
pool.extend(rigid_vars.iter());
|
|
pool.extend(flex_vars.iter());
|
|
|
|
// run solver in next pool
|
|
|
|
// items are popped from the stack in reverse order. That means that we'll
|
|
// first solve then defs_constraint, and then (eventually) the ret_constraint.
|
|
//
|
|
// Note that the LetConSimple gets the current env and rank,
|
|
// and not the env/rank from after solving the defs_constraint
|
|
stack.push(Work::LetConIntroducesVariables {
|
|
env,
|
|
rank,
|
|
let_con,
|
|
pool_variables,
|
|
});
|
|
stack.push(Work::Constraint {
|
|
env,
|
|
rank: next_rank,
|
|
constraint: defs_constraint,
|
|
});
|
|
|
|
state
|
|
}
|
|
}
|
|
IsOpenType(type_index) => {
|
|
let actual =
|
|
either_type_index_to_var(constraints, subs, rank, pools, aliases, *type_index);
|
|
|
|
open_tag_union(subs, actual);
|
|
|
|
state
|
|
}
|
|
IncludesTag(index) => {
|
|
let includes_tag = &constraints.includes_tags[index.index()];
|
|
|
|
let roc_can::constraint::IncludesTag {
|
|
type_index,
|
|
tag_name,
|
|
types,
|
|
pattern_category,
|
|
region,
|
|
} = includes_tag;
|
|
|
|
let typ = &constraints.types[type_index.index()];
|
|
let tys = &constraints.types[types.indices()];
|
|
let pattern_category = &constraints.pattern_categories[pattern_category.index()];
|
|
|
|
let actual = type_to_var(subs, rank, pools, aliases, typ);
|
|
let tag_ty = Type::TagUnion(
|
|
vec![(tag_name.clone(), tys.to_vec())],
|
|
TypeExtension::Closed,
|
|
);
|
|
let includes = type_to_var(subs, rank, pools, aliases, &tag_ty);
|
|
|
|
match unify(subs, actual, includes, Mode::PRESENT) {
|
|
Success {
|
|
vars,
|
|
must_implement_ability,
|
|
lambda_sets_to_specialize,
|
|
extra_metadata: _,
|
|
} => {
|
|
introduce(subs, rank, pools, &vars);
|
|
if !must_implement_ability.is_empty() {
|
|
deferred_obligations.add(
|
|
must_implement_ability,
|
|
AbilityImplError::BadPattern(
|
|
*region,
|
|
pattern_category.clone(),
|
|
actual,
|
|
),
|
|
);
|
|
}
|
|
deferred_uls_to_resolve.union(lambda_sets_to_specialize);
|
|
|
|
state
|
|
}
|
|
Failure(vars, actual_type, expected_to_include_type, _bad_impls) => {
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
let problem = TypeError::BadPattern(
|
|
*region,
|
|
pattern_category.clone(),
|
|
expected_to_include_type,
|
|
PExpected::NoExpectation(actual_type),
|
|
);
|
|
problems.push(problem);
|
|
|
|
state
|
|
}
|
|
BadType(vars, problem) => {
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
problems.push(TypeError::BadType(problem));
|
|
|
|
state
|
|
}
|
|
}
|
|
}
|
|
&Exhaustive(eq, sketched_rows, context, exhaustive_mark) => {
|
|
// A few cases:
|
|
// 1. Either condition or branch types already have a type error. In this case just
|
|
// propagate it.
|
|
// 2. Types are correct, but there are redundancies. In this case we want
|
|
// exhaustiveness checking to pull those out.
|
|
// 3. Condition and branch types are "almost equal", that is one or the other is
|
|
// only missing a few more tags. In this case we want to run
|
|
// exhaustiveness checking both ways, to see which one is missing tags.
|
|
// 4. Condition and branch types aren't "almost equal", this is just a normal type
|
|
// error.
|
|
|
|
let (real_var, real_region, expected_type, category_and_expected) = match eq {
|
|
Ok(eq) => {
|
|
let roc_can::constraint::Eq(real_var, expected, category, real_region) =
|
|
constraints.eq[eq.index()];
|
|
let expected = &constraints.expectations[expected.index()];
|
|
(
|
|
real_var,
|
|
real_region,
|
|
expected.get_type_ref(),
|
|
Ok((category, expected)),
|
|
)
|
|
}
|
|
Err(peq) => {
|
|
let roc_can::constraint::PatternEq(
|
|
real_var,
|
|
expected,
|
|
category,
|
|
real_region,
|
|
) = constraints.pattern_eq[peq.index()];
|
|
let expected = &constraints.pattern_expectations[expected.index()];
|
|
(
|
|
real_var,
|
|
real_region,
|
|
expected.get_type_ref(),
|
|
Err((category, expected)),
|
|
)
|
|
}
|
|
};
|
|
|
|
let real_var =
|
|
either_type_index_to_var(constraints, subs, rank, pools, aliases, real_var);
|
|
|
|
let branches_var = type_to_var(subs, rank, pools, aliases, expected_type);
|
|
|
|
let real_content = subs.get_content_without_compacting(real_var);
|
|
let branches_content = subs.get_content_without_compacting(branches_var);
|
|
let already_have_error = matches!(
|
|
(real_content, branches_content),
|
|
(
|
|
Content::Error | Content::Structure(FlatType::Erroneous(_)),
|
|
_
|
|
) | (
|
|
_,
|
|
Content::Error | Content::Structure(FlatType::Erroneous(_))
|
|
)
|
|
);
|
|
|
|
let snapshot = subs.snapshot();
|
|
let outcome = unify(subs, real_var, branches_var, Mode::EQ);
|
|
|
|
let should_check_exhaustiveness;
|
|
match outcome {
|
|
Success {
|
|
vars,
|
|
must_implement_ability,
|
|
lambda_sets_to_specialize,
|
|
extra_metadata: _,
|
|
} => {
|
|
subs.commit_snapshot(snapshot);
|
|
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
deferred_obligations
|
|
.add(must_implement_ability, AbilityImplError::IncompleteAbility);
|
|
deferred_uls_to_resolve.union(lambda_sets_to_specialize);
|
|
|
|
// Case 1: unify error types, but don't check exhaustiveness.
|
|
// Case 2: run exhaustiveness to check for redundant branches.
|
|
should_check_exhaustiveness = !already_have_error;
|
|
}
|
|
Failure(..) => {
|
|
// Rollback and check for almost-equality.
|
|
subs.rollback_to(snapshot);
|
|
|
|
let almost_eq_snapshot = subs.snapshot();
|
|
// TODO: turn this on for bidirectional exhaustiveness checking
|
|
// open_tag_union(subs, real_var);
|
|
open_tag_union(subs, branches_var);
|
|
let almost_eq = matches!(
|
|
unify(subs, real_var, branches_var, Mode::EQ),
|
|
Success { .. }
|
|
);
|
|
|
|
subs.rollback_to(almost_eq_snapshot);
|
|
|
|
if almost_eq {
|
|
// Case 3: almost equal, check exhaustiveness.
|
|
should_check_exhaustiveness = true;
|
|
} else {
|
|
// Case 4: incompatible types, report type error.
|
|
// Re-run first failed unification to get the type diff.
|
|
match unify(subs, real_var, branches_var, Mode::EQ) {
|
|
Failure(vars, actual_type, expected_type, _bad_impls) => {
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
// Figure out the problem - it might be pattern or value
|
|
// related.
|
|
let problem = match category_and_expected {
|
|
Ok((category, expected)) => {
|
|
let real_category =
|
|
constraints.categories[category.index()].clone();
|
|
TypeError::BadExpr(
|
|
real_region,
|
|
real_category,
|
|
actual_type,
|
|
expected.replace_ref(expected_type),
|
|
)
|
|
}
|
|
|
|
Err((category, expected)) => {
|
|
let real_category = constraints.pattern_categories
|
|
[category.index()]
|
|
.clone();
|
|
TypeError::BadPattern(
|
|
real_region,
|
|
real_category,
|
|
expected_type,
|
|
expected.replace_ref(actual_type),
|
|
)
|
|
}
|
|
};
|
|
|
|
problems.push(problem);
|
|
should_check_exhaustiveness = false;
|
|
}
|
|
_ => internal_error!("Must be failure"),
|
|
}
|
|
}
|
|
}
|
|
BadType(vars, problem) => {
|
|
subs.commit_snapshot(snapshot);
|
|
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
problems.push(TypeError::BadType(problem));
|
|
|
|
should_check_exhaustiveness = false;
|
|
}
|
|
}
|
|
|
|
let sketched_rows = constraints.sketched_rows[sketched_rows.index()].clone();
|
|
|
|
if should_check_exhaustiveness {
|
|
use roc_can::exhaustive::{check, ExhaustiveSummary};
|
|
|
|
let ExhaustiveSummary {
|
|
errors,
|
|
exhaustive,
|
|
redundancies,
|
|
} = check(subs, sketched_rows, context);
|
|
|
|
// Store information about whether the "when" is exhaustive, and
|
|
// which (if any) of its branches are redundant. Codegen may use
|
|
// this for branch-fixing and redundant elimination.
|
|
if !exhaustive {
|
|
exhaustive_mark.set_non_exhaustive(subs);
|
|
}
|
|
for redundant_mark in redundancies {
|
|
redundant_mark.set_redundant(subs);
|
|
}
|
|
|
|
// Store the errors.
|
|
problems.extend(errors.into_iter().map(TypeError::Exhaustive));
|
|
}
|
|
|
|
state
|
|
}
|
|
// TODO: turning off opportunistic specialization for now because it doesn't mesh well with
|
|
// the polymorphic lambda resolution algorithm. After
|
|
// https://github.com/rtfeldman/roc/issues/3207 is resolved, this may be redundant
|
|
// anyway.
|
|
&Resolve(OpportunisticResolve {
|
|
specialization_variable,
|
|
specialization_expectation,
|
|
member,
|
|
specialization_id,
|
|
}) => {
|
|
if let Some(Resolved::Specialization(specialization)) =
|
|
resolve_ability_specialization(
|
|
subs,
|
|
abilities_store,
|
|
member,
|
|
specialization_variable,
|
|
)
|
|
{
|
|
abilities_store.insert_resolved(specialization_id, specialization);
|
|
|
|
// We must now refine the current type state to account for this specialization.
|
|
let lookup_constr = arena.alloc(Constraint::Lookup(
|
|
specialization,
|
|
specialization_expectation,
|
|
Region::zero(),
|
|
));
|
|
stack.push(Work::Constraint {
|
|
env,
|
|
rank,
|
|
constraint: lookup_constr,
|
|
});
|
|
}
|
|
|
|
state
|
|
}
|
|
CheckCycle(cycle, cycle_mark) => {
|
|
let Cycle {
|
|
def_names,
|
|
expr_regions,
|
|
} = &constraints.cycles[cycle.index()];
|
|
let symbols = &constraints.loc_symbols[def_names.indices()];
|
|
|
|
// If the type of a symbol is not a function, that's an error.
|
|
// Roc is strict, so only functions can be mutually recursive.
|
|
let any_is_bad = {
|
|
use Content::*;
|
|
|
|
symbols.iter().any(|(s, _)| {
|
|
let var = env.get_var_by_symbol(s).expect("Symbol not solved!");
|
|
let content = subs.get_content_without_compacting(var);
|
|
!matches!(content, Error | Structure(FlatType::Func(..)))
|
|
})
|
|
};
|
|
|
|
if any_is_bad {
|
|
// expr regions are stored in loc_symbols (that turned out to be convenient).
|
|
// The symbol is just a dummy, and should not be used
|
|
let expr_regions = &constraints.loc_symbols[expr_regions.indices()];
|
|
|
|
let cycle = symbols
|
|
.iter()
|
|
.zip(expr_regions.iter())
|
|
.map(|(&(symbol, symbol_region), &(_, expr_region))| CycleEntry {
|
|
symbol,
|
|
symbol_region,
|
|
expr_region,
|
|
})
|
|
.collect();
|
|
|
|
problems.push(TypeError::CircularDef(cycle));
|
|
|
|
cycle_mark.set_illegal(subs);
|
|
}
|
|
|
|
state
|
|
}
|
|
};
|
|
}
|
|
|
|
state
|
|
}
|
|
|
|
fn open_tag_union(subs: &mut Subs, var: Variable) {
|
|
let mut stack = vec![var];
|
|
while let Some(var) = stack.pop() {
|
|
use {Content::*, FlatType::*};
|
|
|
|
let desc = subs.get(var);
|
|
if let Structure(TagUnion(tags, ext)) = desc.content {
|
|
if let Structure(EmptyTagUnion) = subs.get_content_without_compacting(ext) {
|
|
let new_ext = subs.fresh_unnamed_flex_var();
|
|
subs.set_rank(new_ext, desc.rank);
|
|
let new_union = Structure(TagUnion(tags, new_ext));
|
|
subs.set_content(var, new_union);
|
|
}
|
|
|
|
// Also open up all nested tag unions.
|
|
let all_vars = tags.variables().into_iter();
|
|
stack.extend(all_vars.flat_map(|slice| subs[slice]).map(|var| subs[var]));
|
|
}
|
|
|
|
// Today, an "open" constraint doesn't affect any types
|
|
// other than tag unions. Recursive tag unions are constructed
|
|
// at a later time (during occurs checks after tag unions are
|
|
// resolved), so that's not handled here either.
|
|
// NB: Handle record types here if we add presence constraints
|
|
// to their type inference as well.
|
|
}
|
|
}
|
|
|
|
/// If a symbol claims to specialize an ability member, check that its solved type in fact
|
|
/// does specialize the ability, and record the specialization.
|
|
#[allow(clippy::too_many_arguments)]
|
|
// Aggressive but necessary - there aren't many usages.
|
|
#[inline(always)]
|
|
fn check_ability_specialization(
|
|
arena: &Bump,
|
|
subs: &mut Subs,
|
|
pools: &mut Pools,
|
|
rank: Rank,
|
|
abilities_store: &mut AbilitiesStore,
|
|
problems: &mut Vec<TypeError>,
|
|
deferred_obligations: &mut DeferredObligations,
|
|
deferred_uls_to_resolve: &mut UlsOfVar,
|
|
symbol: Symbol,
|
|
symbol_loc_var: Loc<Variable>,
|
|
) {
|
|
// If the symbol specializes an ability member, we need to make sure that the
|
|
// inferred type for the specialization actually aligns with the expected
|
|
// implementation.
|
|
if let Some((ability_member, root_data)) = abilities_store.root_name_and_def(symbol) {
|
|
let root_signature_var = root_data.signature_var();
|
|
let parent_ability = root_data.parent_ability;
|
|
|
|
// Check if they unify - if they don't, then the claimed specialization isn't really one,
|
|
// and that's a type error!
|
|
// This also fixes any latent type variables that need to be specialized to exactly what
|
|
// the ability signature expects.
|
|
|
|
// We need to freshly instantiate the root signature so that all unifications are reflected
|
|
// in the specialization type, but not the original signature type.
|
|
let root_signature_var =
|
|
deep_copy_var_in(subs, Rank::toplevel(), pools, root_signature_var, arena);
|
|
let snapshot = subs.snapshot();
|
|
let unified = unify_introduced_ability_specialization(
|
|
subs,
|
|
root_signature_var,
|
|
symbol_loc_var.value,
|
|
Mode::EQ,
|
|
);
|
|
|
|
match unified {
|
|
Success {
|
|
vars,
|
|
must_implement_ability,
|
|
lambda_sets_to_specialize: other_lambda_sets_to_specialize,
|
|
extra_metadata: SpecializationLsetCollector(specialization_lambda_sets),
|
|
} => {
|
|
let specialization_type =
|
|
type_implementing_specialization(&must_implement_ability, parent_ability);
|
|
|
|
match specialization_type {
|
|
Some(Obligated::Opaque(opaque)) => {
|
|
// This is a specialization for an opaque - that's allowed.
|
|
|
|
subs.commit_snapshot(snapshot);
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
let specialization_lambda_sets = specialization_lambda_sets
|
|
.into_iter()
|
|
.map(|((symbol, region), var)| {
|
|
debug_assert_eq!(symbol, ability_member);
|
|
(region, var)
|
|
})
|
|
.collect();
|
|
|
|
deferred_uls_to_resolve.union(other_lambda_sets_to_specialize);
|
|
|
|
let specialization_region = symbol_loc_var.region;
|
|
let specialization =
|
|
MemberSpecialization::new(symbol, specialization_lambda_sets);
|
|
abilities_store.register_specialization_for_type(
|
|
ability_member,
|
|
opaque,
|
|
specialization,
|
|
);
|
|
|
|
// Make sure we check that the opaque has specialized all members of the
|
|
// ability, after we finish solving the module.
|
|
deferred_obligations
|
|
.add(must_implement_ability, AbilityImplError::IncompleteAbility);
|
|
// This specialization dominates any derives that might be present.
|
|
deferred_obligations.dominate(
|
|
RequestedDeriveKey {
|
|
opaque,
|
|
ability: parent_ability,
|
|
},
|
|
specialization_region,
|
|
);
|
|
}
|
|
Some(Obligated::Adhoc(var)) => {
|
|
// This is a specialization of a structural type - never allowed.
|
|
|
|
// Commit so that `var` persists in subs.
|
|
subs.commit_snapshot(snapshot);
|
|
|
|
let (typ, _problems) = subs.var_to_error_type(var);
|
|
|
|
let problem = TypeError::StructuralSpecialization {
|
|
region: symbol_loc_var.region,
|
|
typ,
|
|
ability: parent_ability,
|
|
member: ability_member,
|
|
};
|
|
|
|
problems.push(problem);
|
|
}
|
|
None => {
|
|
// This can happen when every ability constriant on a type variable went
|
|
// through only another type variable. That means this def is not specialized
|
|
// for one concrete type - we won't admit this.
|
|
|
|
// Rollback the snapshot so we unlink the root signature with the specialization,
|
|
// so we can have two separate error types.
|
|
subs.rollback_to(snapshot);
|
|
|
|
let (expected_type, _problems) = subs.var_to_error_type(root_signature_var);
|
|
let (actual_type, _problems) = subs.var_to_error_type(symbol_loc_var.value);
|
|
|
|
let reason = Reason::GeneralizedAbilityMemberSpecialization {
|
|
member_name: ability_member,
|
|
def_region: root_data.region,
|
|
};
|
|
|
|
let problem = TypeError::BadExpr(
|
|
symbol_loc_var.region,
|
|
Category::AbilityMemberSpecialization(ability_member),
|
|
actual_type,
|
|
Expected::ForReason(reason, expected_type, symbol_loc_var.region),
|
|
);
|
|
|
|
problems.push(problem);
|
|
}
|
|
}
|
|
}
|
|
|
|
Failure(vars, expected_type, actual_type, unimplemented_abilities) => {
|
|
subs.commit_snapshot(snapshot);
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
let reason = Reason::InvalidAbilityMemberSpecialization {
|
|
member_name: ability_member,
|
|
def_region: root_data.region,
|
|
unimplemented_abilities,
|
|
};
|
|
|
|
let problem = TypeError::BadExpr(
|
|
symbol_loc_var.region,
|
|
Category::AbilityMemberSpecialization(ability_member),
|
|
actual_type,
|
|
Expected::ForReason(reason, expected_type, symbol_loc_var.region),
|
|
);
|
|
|
|
problems.push(problem);
|
|
}
|
|
BadType(vars, problem) => {
|
|
subs.commit_snapshot(snapshot);
|
|
introduce(subs, rank, pools, &vars);
|
|
|
|
problems.push(TypeError::BadType(problem));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#[cfg(debug_assertions)]
|
|
fn trace_compaction_step_1(subs: &Subs, c_a: Variable, uls_a: &[Variable]) {
|
|
let c_a = roc_types::subs::SubsFmtContent(subs.get_content_without_compacting(c_a), subs);
|
|
let uls_a = uls_a
|
|
.iter()
|
|
.map(|v| {
|
|
format!(
|
|
"{:?}",
|
|
roc_types::subs::SubsFmtContent(subs.get_content_without_compacting(*v), subs)
|
|
)
|
|
})
|
|
.collect::<Vec<_>>()
|
|
.join(",");
|
|
eprintln!("===lambda set compaction===");
|
|
eprintln!(" concrete type: {:?}", c_a);
|
|
eprintln!(" step 1:");
|
|
eprintln!(" uls_a = {{ {} }}", uls_a);
|
|
}
|
|
|
|
#[cfg(debug_assertions)]
|
|
fn trace_compaction_step_2(subs: &Subs, uls_a: &[Variable]) {
|
|
let uls_a = uls_a
|
|
.iter()
|
|
.map(|v| {
|
|
format!(
|
|
"{:?}",
|
|
roc_types::subs::SubsFmtContent(subs.get_content_without_compacting(*v), subs)
|
|
)
|
|
})
|
|
.collect::<Vec<_>>()
|
|
.join(",");
|
|
eprintln!(" step 2:");
|
|
eprintln!(" uls_a' = {{ {} }}", uls_a);
|
|
}
|
|
|
|
#[cfg(debug_assertions)]
|
|
fn trace_compaction_step_3start() {
|
|
eprintln!(" step 3:");
|
|
}
|
|
|
|
#[cfg(debug_assertions)]
|
|
fn trace_compaction_step_3iter_start(
|
|
subs: &Subs,
|
|
iteration_lambda_set: Variable,
|
|
t_f1: Variable,
|
|
t_f2: Variable,
|
|
) {
|
|
let iteration_lambda_set = roc_types::subs::SubsFmtContent(
|
|
subs.get_content_without_compacting(iteration_lambda_set),
|
|
subs,
|
|
);
|
|
let t_f1 = roc_types::subs::SubsFmtContent(subs.get_content_without_compacting(t_f1), subs);
|
|
let t_f2 = roc_types::subs::SubsFmtContent(subs.get_content_without_compacting(t_f2), subs);
|
|
eprintln!(" - iteration: {:?}", iteration_lambda_set);
|
|
eprintln!(" {:?}", t_f1);
|
|
eprintln!(" ~ {:?}", t_f2);
|
|
}
|
|
|
|
#[cfg(debug_assertions)]
|
|
#[rustfmt::skip]
|
|
fn trace_compaction_step_3iter_end(subs: &Subs, t_f_result: Variable, skipped: bool) {
|
|
let t_f_result =
|
|
roc_types::subs::SubsFmtContent(subs.get_content_without_compacting(t_f_result), subs);
|
|
if skipped {
|
|
eprintln!(" SKIP");
|
|
}
|
|
eprintln!(" = {:?}\n", t_f_result);
|
|
}
|
|
|
|
macro_rules! trace_compact {
|
|
(1. $subs:expr, $c_a:expr, $uls_a:expr) => {{
|
|
dbg_do!(ROC_TRACE_COMPACTION, {
|
|
trace_compaction_step_1($subs, $c_a, $uls_a)
|
|
})
|
|
}};
|
|
(2. $subs:expr, $uls_a:expr) => {{
|
|
dbg_do!(ROC_TRACE_COMPACTION, {
|
|
trace_compaction_step_2($subs, $uls_a)
|
|
})
|
|
}};
|
|
(3start.) => {{
|
|
dbg_do!(ROC_TRACE_COMPACTION, { trace_compaction_step_3start() })
|
|
}};
|
|
(3iter_start. $subs:expr, $iteration_lset:expr, $t_f1:expr, $t_f2:expr) => {{
|
|
dbg_do!(ROC_TRACE_COMPACTION, {
|
|
trace_compaction_step_3iter_start($subs, $iteration_lset, $t_f1, $t_f2)
|
|
})
|
|
}};
|
|
(3iter_end. $subs:expr, $t_f_result:expr) => {{
|
|
dbg_do!(ROC_TRACE_COMPACTION, {
|
|
trace_compaction_step_3iter_end($subs, $t_f_result, false)
|
|
})
|
|
}};
|
|
(3iter_end_skipped. $subs:expr, $t_f_result:expr) => {{
|
|
dbg_do!(ROC_TRACE_COMPACTION, {
|
|
trace_compaction_step_3iter_end($subs, $t_f_result, true)
|
|
})
|
|
}};
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn iter_concrete_of_unspecialized<'a>(
|
|
subs: &'a Subs,
|
|
c_a: Variable,
|
|
uls: &'a [Uls],
|
|
) -> impl Iterator<Item = &'a Uls> {
|
|
uls.iter()
|
|
.filter(move |Uls(var, _, _)| subs.equivalent_without_compacting(*var, c_a))
|
|
}
|
|
|
|
/// Gets the unique unspecialized lambda resolving to concrete type `c_a` in a list of
|
|
/// unspecialized lambda sets.
|
|
#[inline(always)]
|
|
fn unique_unspecialized_lambda(subs: &Subs, c_a: Variable, uls: &[Uls]) -> Option<Uls> {
|
|
let mut iter_concrete = iter_concrete_of_unspecialized(subs, c_a, uls);
|
|
let uls = iter_concrete.next()?;
|
|
debug_assert!(iter_concrete.next().is_none(), "multiple concrete");
|
|
Some(*uls)
|
|
}
|
|
|
|
#[must_use]
|
|
pub fn compact_lambda_sets_of_vars<P: Phase>(
|
|
subs: &mut Subs,
|
|
derived_module: &SharedDerivedModule,
|
|
arena: &Bump,
|
|
pools: &mut Pools,
|
|
uls_of_var: UlsOfVar,
|
|
phase: &P,
|
|
exposed_by_module: &ExposedByModule,
|
|
) -> MustImplementConstraints {
|
|
// let mut seen = VecSet::default();
|
|
let mut must_implement = MustImplementConstraints::default();
|
|
|
|
let mut uls_of_var_queue = VecDeque::with_capacity(uls_of_var.len());
|
|
uls_of_var_queue.extend(uls_of_var.drain());
|
|
|
|
// Suppose a type variable `a` with `uls_of_var` mapping `uls_a = {l1, ... ln}` has been instantiated to a concrete type `C_a`.
|
|
while let Some((c_a, uls_a)) = uls_of_var_queue.pop_front() {
|
|
let c_a = subs.get_root_key_without_compacting(c_a);
|
|
// 1. Let each `l` in `uls_a` be of form `[solved_lambdas + ... + C:f:r + ...]`.
|
|
// NB: There may be multiple unspecialized lambdas of form `C:f:r, C:f1:r1, ..., C:fn:rn` in `l`.
|
|
// In this case, let `t1, ... tm` be the other unspecialized lambdas not of form `C:_:_`,
|
|
// that is, none of which are now specialized to the type `C`. Then, deconstruct
|
|
// `l` such that `l' = [solved_lambdas + t1 + ... + tm + C:f:r]` and `l1 = [[] + C:f1:r1], ..., ln = [[] + C:fn:rn]`.
|
|
// Replace `l` with `l', l1, ..., ln` in `uls_a`, flattened.
|
|
// TODO: the flattening step described above
|
|
let uls_a = uls_a.into_vec();
|
|
trace_compact!(1. subs, c_a, &uls_a);
|
|
|
|
// The flattening step - remove lambda sets that don't reference the concrete var, and for
|
|
// flatten lambda sets that reference it more than once.
|
|
let mut uls_a: Vec<_> = uls_a
|
|
.into_iter()
|
|
.flat_map(|lambda_set| {
|
|
let LambdaSet {
|
|
solved,
|
|
recursion_var,
|
|
unspecialized,
|
|
ambient_function,
|
|
} = subs.get_lambda_set(lambda_set);
|
|
let lambda_set_rank = subs.get_rank(lambda_set);
|
|
let unspecialized = subs.get_subs_slice(unspecialized);
|
|
// TODO: is it faster to traverse once, see if we only have one concrete lambda, and
|
|
// bail in that happy-path, rather than always splitting?
|
|
let (concrete, mut not_concrete): (Vec<_>, Vec<_>) = unspecialized
|
|
.iter()
|
|
.copied()
|
|
.partition(|Uls(var, _, _)| subs.equivalent_without_compacting(*var, c_a));
|
|
if concrete.len() == 1 {
|
|
// No flattening needs to be done, just return the lambda set as-is
|
|
return vec![lambda_set];
|
|
}
|
|
// Must flatten
|
|
concrete
|
|
.into_iter()
|
|
.enumerate()
|
|
.map(|(i, concrete_lambda)| {
|
|
let (var, unspecialized) = if i == 0 {
|
|
// The first lambda set contains one concrete lambda, plus all solved
|
|
// lambdas, plus all other unspecialized lambdas.
|
|
// l' = [solved_lambdas + t1 + ... + tm + C:f:r]
|
|
let unspecialized = SubsSlice::extend_new(
|
|
&mut subs.unspecialized_lambda_sets,
|
|
not_concrete
|
|
.drain(..)
|
|
.chain(std::iter::once(concrete_lambda)),
|
|
);
|
|
(lambda_set, unspecialized)
|
|
} else {
|
|
// All the other lambda sets consists only of their respective concrete
|
|
// lambdas.
|
|
// ln = [[] + C:fn:rn]
|
|
let unspecialized = SubsSlice::extend_new(
|
|
&mut subs.unspecialized_lambda_sets,
|
|
[concrete_lambda],
|
|
);
|
|
let var = subs.fresh(Descriptor {
|
|
content: Content::Error,
|
|
rank: lambda_set_rank,
|
|
mark: Mark::NONE,
|
|
copy: OptVariable::NONE,
|
|
});
|
|
(var, unspecialized)
|
|
};
|
|
|
|
subs.set_content(
|
|
var,
|
|
Content::LambdaSet(LambdaSet {
|
|
solved,
|
|
recursion_var,
|
|
unspecialized,
|
|
ambient_function,
|
|
}),
|
|
);
|
|
var
|
|
})
|
|
.collect()
|
|
})
|
|
.collect();
|
|
|
|
// 2. Now, each `l` in `uls_a` has a unique unspecialized lambda of form `C:f:r`.
|
|
// Sort `uls_a` primarily by `f` (arbitrary order), and secondarily by `r` in descending order.
|
|
uls_a.sort_by(|v1, v2| {
|
|
let unspec_1 = subs.get_subs_slice(subs.get_lambda_set(*v1).unspecialized);
|
|
let unspec_2 = subs.get_subs_slice(subs.get_lambda_set(*v2).unspecialized);
|
|
|
|
let Uls(_, f1, r1) = unique_unspecialized_lambda(subs, c_a, unspec_1).unwrap();
|
|
let Uls(_, f2, r2) = unique_unspecialized_lambda(subs, c_a, unspec_2).unwrap();
|
|
|
|
match f1.cmp(&f2) {
|
|
std::cmp::Ordering::Equal => {
|
|
// Order by descending order of region.
|
|
r2.cmp(&r1)
|
|
}
|
|
ord => ord,
|
|
}
|
|
});
|
|
|
|
trace_compact!(2. subs, &uls_a);
|
|
|
|
// 3. For each `l` in `uls_a` with unique unspecialized lambda `C:f:r`:
|
|
// 1. Let `t_f1` be the directly ambient function of the lambda set containing `C:f:r`. Remove `C:f:r` from `t_f1`'s lambda set.
|
|
// - For example, `(b' -[[] + Fo:f:2]-> {})` if `C:f:r=Fo:f:2`. Removing `Fo:f:2`, we get `(b' -[[]]-> {})`.
|
|
// 2. Let `t_f2` be the directly ambient function of the specialization lambda set resolved by `C:f:r`.
|
|
// - For example, `(b -[[] + b:g:1]-> {})` if `C:f:r=Fo:f:2`, running on example from above.
|
|
// 3. Unify `t_f1 ~ t_f2`.
|
|
trace_compact!(3start.);
|
|
for l in uls_a {
|
|
// let root_lset = subs.get_root_key_without_compacting(l);
|
|
// if seen.contains(&root_lset) {
|
|
// continue;
|
|
// }
|
|
|
|
let (new_must_implement, new_uls_of_var) = compact_lambda_set(
|
|
subs,
|
|
derived_module,
|
|
arena,
|
|
pools,
|
|
c_a,
|
|
l,
|
|
phase,
|
|
exposed_by_module,
|
|
);
|
|
|
|
must_implement.extend(new_must_implement);
|
|
uls_of_var_queue.extend(new_uls_of_var.drain());
|
|
|
|
// seen.insert(root_lset);
|
|
}
|
|
}
|
|
|
|
must_implement
|
|
}
|
|
|
|
#[must_use]
|
|
#[allow(clippy::too_many_arguments)]
|
|
fn compact_lambda_set<P: Phase>(
|
|
subs: &mut Subs,
|
|
derived_module: &SharedDerivedModule,
|
|
arena: &Bump,
|
|
pools: &mut Pools,
|
|
resolved_concrete: Variable,
|
|
this_lambda_set: Variable,
|
|
phase: &P,
|
|
exposed_by_module: &ExposedByModule,
|
|
) -> (MustImplementConstraints, UlsOfVar) {
|
|
// 3. For each `l` in `uls_a` with unique unspecialized lambda `C:f:r`:
|
|
// 1. Let `t_f1` be the directly ambient function of the lambda set containing `C:f:r`. Remove `C:f:r` from `t_f1`'s lambda set.
|
|
// - For example, `(b' -[[] + Fo:f:2]-> {})` if `C:f:r=Fo:f:2`. Removing `Fo:f:2`, we get `(b' -[[]]-> {})`.
|
|
// 2. Let `t_f2` be the directly ambient function of the specialization lambda set resolved by `C:f:r`.
|
|
// - For example, `(b -[[] + b:g:1]-> {})` if `C:f:r=Fo:f:2`, from the algorithm's running example.
|
|
// 3. Unify `t_f1 ~ t_f2`.
|
|
let LambdaSet {
|
|
solved,
|
|
recursion_var,
|
|
unspecialized,
|
|
ambient_function: t_f1,
|
|
} = subs.get_lambda_set(this_lambda_set);
|
|
let target_rank = subs.get_rank(this_lambda_set);
|
|
|
|
debug_assert!(!unspecialized.is_empty());
|
|
|
|
let unspecialized = subs.get_subs_slice(unspecialized);
|
|
|
|
// 1. Let `t_f1` be the directly ambient function of the lambda set containing `C:f:r`.
|
|
let Uls(c, f, r) = unique_unspecialized_lambda(subs, resolved_concrete, unspecialized).unwrap();
|
|
|
|
debug_assert!(subs.equivalent_without_compacting(c, resolved_concrete));
|
|
|
|
// 1b. Remove `C:f:r` from `t_f1`'s lambda set.
|
|
let new_unspecialized: Vec<_> = unspecialized
|
|
.iter()
|
|
.filter(|Uls(v, _, _)| !subs.equivalent_without_compacting(*v, resolved_concrete))
|
|
.copied()
|
|
.collect();
|
|
debug_assert_eq!(new_unspecialized.len(), unspecialized.len() - 1);
|
|
let t_f1_lambda_set_without_concrete = LambdaSet {
|
|
solved,
|
|
recursion_var,
|
|
unspecialized: SubsSlice::extend_new(
|
|
&mut subs.unspecialized_lambda_sets,
|
|
new_unspecialized,
|
|
),
|
|
ambient_function: t_f1,
|
|
};
|
|
subs.set_content(
|
|
this_lambda_set,
|
|
Content::LambdaSet(t_f1_lambda_set_without_concrete),
|
|
);
|
|
|
|
let specialization_decision = make_specialization_decision(subs, c);
|
|
|
|
let specialization_key = match specialization_decision {
|
|
SpecializeDecision::Specialize(key) => key,
|
|
SpecializeDecision::Drop => {
|
|
// Do nothing other than to remove the concrete lambda to drop from the lambda set,
|
|
// which we already did in 1b above.
|
|
trace_compact!(3iter_end_skipped. subs, t_f1);
|
|
return (Default::default(), Default::default());
|
|
}
|
|
};
|
|
|
|
let specialization_ambient_function_var = get_specialization_lambda_set_ambient_function(
|
|
subs,
|
|
derived_module,
|
|
phase,
|
|
f,
|
|
r,
|
|
specialization_key,
|
|
exposed_by_module,
|
|
target_rank,
|
|
);
|
|
|
|
let t_f2 = match specialization_ambient_function_var {
|
|
Ok(lset) => lset,
|
|
Err(()) => {
|
|
// Do nothing other than to remove the concrete lambda to drop from the lambda set,
|
|
// which we already did in 1b above.
|
|
trace_compact!(3iter_end_skipped. subs, t_f1);
|
|
return (Default::default(), Default::default());
|
|
}
|
|
};
|
|
|
|
// Ensure the specialized ambient function we'll unify with is not a generalized one, but one
|
|
// at the rank of the lambda set being compacted.
|
|
let t_f2 = deep_copy_var_in(subs, target_rank, pools, t_f2, arena);
|
|
|
|
// 3. Unify `t_f1 ~ t_f2`.
|
|
trace_compact!(3iter_start. subs, this_lambda_set, t_f1, t_f2);
|
|
let (vars, new_must_implement_ability, new_lambda_sets_to_specialize, _meta) =
|
|
unify(subs, t_f1, t_f2, Mode::EQ).expect_success("ambient functions don't unify");
|
|
trace_compact!(3iter_end. subs, t_f1);
|
|
|
|
introduce(subs, target_rank, pools, &vars);
|
|
|
|
(new_must_implement_ability, new_lambda_sets_to_specialize)
|
|
}
|
|
|
|
enum SpecializationTypeKey {
|
|
Opaque(Symbol),
|
|
Derived(DeriveKey),
|
|
Immediate(Symbol),
|
|
}
|
|
|
|
enum SpecializeDecision {
|
|
Specialize(SpecializationTypeKey),
|
|
Drop,
|
|
}
|
|
|
|
fn make_specialization_decision(subs: &Subs, var: Variable) -> SpecializeDecision {
|
|
use Content::*;
|
|
use SpecializationTypeKey::*;
|
|
match subs.get_content_without_compacting(var) {
|
|
Alias(opaque, _, _, AliasKind::Opaque) if opaque.module_id() != ModuleId::NUM => {
|
|
SpecializeDecision::Specialize(Opaque(*opaque))
|
|
}
|
|
Structure(_) | Alias(_, _, _, _) => {
|
|
// This is a structural type, find the name of the derived ability function it
|
|
// should use.
|
|
match roc_derive_key::Derived::encoding(subs, var) {
|
|
Ok(derived) => match derived {
|
|
roc_derive_key::Derived::Immediate(imm) => {
|
|
SpecializeDecision::Specialize(Immediate(imm))
|
|
// todo!("deal with lambda set extraction from immediates")
|
|
}
|
|
roc_derive_key::Derived::Key(derive_key) => {
|
|
SpecializeDecision::Specialize(Derived(derive_key))
|
|
}
|
|
},
|
|
Err(DeriveError::UnboundVar) => {
|
|
// not specialized yet, but that also means that it can't possibly be derivable
|
|
// at this point?
|
|
// TODO: is this right? Revisit if it causes us problems in the future.
|
|
SpecializeDecision::Drop
|
|
}
|
|
Err(DeriveError::Underivable) => {
|
|
// we should have reported an error for this; drop the lambda set.
|
|
SpecializeDecision::Drop
|
|
}
|
|
}
|
|
}
|
|
Error => SpecializeDecision::Drop,
|
|
FlexAbleVar(_, _)
|
|
| RigidAbleVar(..)
|
|
| FlexVar(..)
|
|
| RigidVar(..)
|
|
| RecursionVar { .. }
|
|
| LambdaSet(..)
|
|
| RangedNumber(..) => {
|
|
internal_error!("unexpected")
|
|
}
|
|
}
|
|
}
|
|
|
|
#[allow(clippy::too_many_arguments)]
|
|
fn get_specialization_lambda_set_ambient_function<P: Phase>(
|
|
subs: &mut Subs,
|
|
derived_module: &SharedDerivedModule,
|
|
phase: &P,
|
|
ability_member: Symbol,
|
|
lset_region: u8,
|
|
specialization_key: SpecializationTypeKey,
|
|
exposed_by_module: &ExposedByModule,
|
|
target_rank: Rank,
|
|
) -> Result<Variable, ()> {
|
|
match specialization_key {
|
|
SpecializationTypeKey::Opaque(opaque) => {
|
|
let opaque_home = opaque.module_id();
|
|
let external_specialized_lset =
|
|
phase.with_module_abilities_store(opaque_home, |abilities_store| {
|
|
let opt_specialization =
|
|
abilities_store.get_specialization(ability_member, opaque);
|
|
match (P::IS_LATE, opt_specialization) {
|
|
(false, None) => {
|
|
// doesn't specialize, we'll have reported an error for this
|
|
Err(())
|
|
}
|
|
(true, None) => {
|
|
internal_error!(
|
|
"expected to know a specialization for {:?}#{:?}, but it wasn't found",
|
|
opaque,
|
|
ability_member,
|
|
);
|
|
}
|
|
(_, Some(specialization)) => {
|
|
let specialized_lambda_set = *specialization
|
|
.specialization_lambda_sets
|
|
.get(&lset_region)
|
|
.expect("lambda set region not resolved");
|
|
Ok(specialized_lambda_set)
|
|
}
|
|
}
|
|
})?;
|
|
|
|
let specialized_ambient = phase.copy_lambda_set_ambient_function_to_home_subs(
|
|
external_specialized_lset,
|
|
opaque_home,
|
|
subs,
|
|
);
|
|
|
|
Ok(specialized_ambient)
|
|
}
|
|
|
|
SpecializationTypeKey::Derived(derive_key) => {
|
|
let mut derived_module = derived_module.lock().unwrap();
|
|
|
|
let (_, _, specialization_lambda_sets) =
|
|
derived_module.get_or_insert(exposed_by_module, derive_key);
|
|
|
|
let specialized_lambda_set = *specialization_lambda_sets
|
|
.get(&lset_region)
|
|
.expect("lambda set region not resolved");
|
|
|
|
let specialized_ambient = derived_module.copy_lambda_set_ambient_function_to_subs(
|
|
specialized_lambda_set,
|
|
subs,
|
|
target_rank,
|
|
);
|
|
|
|
Ok(specialized_ambient)
|
|
}
|
|
|
|
SpecializationTypeKey::Immediate(imm) => {
|
|
// Immediates are like opaques in that we can simply look up their type definition in
|
|
// the ability store, there is nothing new to synthesize.
|
|
//
|
|
// THEORY: if something can become an immediate, it will always be available in the
|
|
// local ability store, because the transformation is local (?)
|
|
let immediate_lambda_set_at_region =
|
|
phase.get_and_copy_ability_member_ambient_function(imm, lset_region, subs);
|
|
|
|
Ok(immediate_lambda_set_at_region)
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
enum LocalDefVarsVec<T> {
|
|
Stack(arrayvec::ArrayVec<T, 32>),
|
|
Heap(Vec<T>),
|
|
}
|
|
|
|
impl<T> LocalDefVarsVec<T> {
|
|
#[inline(always)]
|
|
fn with_length(length: usize) -> Self {
|
|
if length <= 32 {
|
|
Self::Stack(Default::default())
|
|
} else {
|
|
Self::Heap(Default::default())
|
|
}
|
|
}
|
|
|
|
fn push(&mut self, element: T) {
|
|
match self {
|
|
LocalDefVarsVec::Stack(vec) => vec.push(element),
|
|
LocalDefVarsVec::Heap(vec) => vec.push(element),
|
|
}
|
|
}
|
|
|
|
fn iter(&self) -> impl Iterator<Item = &T> {
|
|
match self {
|
|
LocalDefVarsVec::Stack(vec) => vec.iter(),
|
|
LocalDefVarsVec::Heap(vec) => vec.iter(),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl LocalDefVarsVec<(Symbol, Loc<Variable>)> {
|
|
fn from_def_types(
|
|
constraints: &Constraints,
|
|
rank: Rank,
|
|
pools: &mut Pools,
|
|
aliases: &mut Aliases,
|
|
subs: &mut Subs,
|
|
def_types_slice: roc_can::constraint::DefTypes,
|
|
) -> Self {
|
|
let types_slice = &constraints.types[def_types_slice.types.indices()];
|
|
let loc_symbols_slice = &constraints.loc_symbols[def_types_slice.loc_symbols.indices()];
|
|
|
|
let mut local_def_vars = Self::with_length(types_slice.len());
|
|
|
|
for (&(symbol, region), typ) in (loc_symbols_slice.iter()).zip(types_slice) {
|
|
let var = type_to_var(subs, rank, pools, aliases, typ);
|
|
|
|
local_def_vars.push((symbol, Loc { value: var, region }));
|
|
}
|
|
|
|
local_def_vars
|
|
}
|
|
}
|
|
|
|
use std::cell::RefCell;
|
|
use std::collections::VecDeque;
|
|
use std::ops::ControlFlow;
|
|
std::thread_local! {
|
|
/// Scratchpad arena so we don't need to allocate a new one all the time
|
|
static SCRATCHPAD: RefCell<Option<bumpalo::Bump>> = RefCell::new(Some(bumpalo::Bump::with_capacity(4 * 1024)));
|
|
}
|
|
|
|
fn take_scratchpad() -> bumpalo::Bump {
|
|
SCRATCHPAD.with(|f| f.take().unwrap())
|
|
}
|
|
|
|
fn put_scratchpad(scratchpad: bumpalo::Bump) {
|
|
SCRATCHPAD.with(|f| {
|
|
f.replace(Some(scratchpad));
|
|
});
|
|
}
|
|
|
|
fn either_type_index_to_var(
|
|
constraints: &Constraints,
|
|
subs: &mut Subs,
|
|
rank: Rank,
|
|
pools: &mut Pools,
|
|
aliases: &mut Aliases,
|
|
either_type_index: roc_collections::soa::EitherIndex<Type, Variable>,
|
|
) -> Variable {
|
|
match either_type_index.split() {
|
|
Ok(type_index) => {
|
|
let typ = &constraints.types[type_index.index()];
|
|
|
|
type_to_var(subs, rank, pools, aliases, typ)
|
|
}
|
|
Err(var_index) => {
|
|
// we cheat, and store the variable directly in the index
|
|
unsafe { Variable::from_index(var_index.index() as _) }
|
|
}
|
|
}
|
|
}
|
|
|
|
pub(crate) fn type_to_var(
|
|
subs: &mut Subs,
|
|
rank: Rank,
|
|
pools: &mut Pools,
|
|
aliases: &mut Aliases,
|
|
typ: &Type,
|
|
) -> Variable {
|
|
if let Type::Variable(var) = typ {
|
|
*var
|
|
} else {
|
|
let mut arena = take_scratchpad();
|
|
|
|
let var = type_to_variable(subs, rank, pools, &arena, aliases, typ, false);
|
|
|
|
arena.reset();
|
|
put_scratchpad(arena);
|
|
|
|
var
|
|
}
|
|
}
|
|
|
|
enum RegisterVariable {
|
|
/// Based on the Type, we already know what variable this will be
|
|
Direct(Variable),
|
|
/// This Type needs more complicated Content. We reserve a Variable
|
|
/// for it, but put a placeholder Content in subs
|
|
Deferred,
|
|
}
|
|
|
|
impl RegisterVariable {
|
|
fn from_type(
|
|
subs: &mut Subs,
|
|
rank: Rank,
|
|
pools: &mut Pools,
|
|
arena: &'_ bumpalo::Bump,
|
|
typ: &Type,
|
|
) -> Self {
|
|
use RegisterVariable::*;
|
|
|
|
match typ {
|
|
Type::Variable(var) => Direct(*var),
|
|
EmptyRec => Direct(Variable::EMPTY_RECORD),
|
|
EmptyTagUnion => Direct(Variable::EMPTY_TAG_UNION),
|
|
Type::DelayedAlias(AliasCommon { symbol, .. }) => {
|
|
if let Some(reserved) = Variable::get_reserved(*symbol) {
|
|
if rank.is_none() {
|
|
// reserved variables are stored with rank NONE
|
|
return Direct(reserved);
|
|
} else {
|
|
// for any other rank, we need to copy; it takes care of adjusting the rank
|
|
let copied = deep_copy_var_in(subs, rank, pools, reserved, arena);
|
|
return Direct(copied);
|
|
}
|
|
}
|
|
|
|
Deferred
|
|
}
|
|
Type::Alias { symbol, .. } => {
|
|
if let Some(reserved) = Variable::get_reserved(*symbol) {
|
|
if rank.is_none() {
|
|
// reserved variables are stored with rank NONE
|
|
return Direct(reserved);
|
|
} else {
|
|
// for any other rank, we need to copy; it takes care of adjusting the rank
|
|
let copied = deep_copy_var_in(subs, rank, pools, reserved, arena);
|
|
return Direct(copied);
|
|
}
|
|
}
|
|
|
|
Deferred
|
|
}
|
|
_ => Deferred,
|
|
}
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn with_stack<'a>(
|
|
subs: &mut Subs,
|
|
rank: Rank,
|
|
pools: &mut Pools,
|
|
arena: &'_ bumpalo::Bump,
|
|
typ: &'a Type,
|
|
stack: &mut bumpalo::collections::Vec<'_, TypeToVar<'a>>,
|
|
) -> Variable {
|
|
match Self::from_type(subs, rank, pools, arena, typ) {
|
|
Self::Direct(var) => var,
|
|
Self::Deferred => {
|
|
let var = subs.fresh_unnamed_flex_var();
|
|
stack.push(TypeToVar::Defer {
|
|
typ,
|
|
destination: var,
|
|
ambient_function: AmbientFunctionPolicy::NoFunction,
|
|
});
|
|
var
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Instantiation of ambient functions in unspecialized lambda sets is somewhat tricky due to other
|
|
/// optimizations we have in place. This struct tells us how they should be instantiated.
|
|
#[derive(Debug)]
|
|
enum AmbientFunctionPolicy {
|
|
/// We're not in a function. This variant may never hold for unspecialized lambda sets.
|
|
NoFunction,
|
|
/// We're in a known function.
|
|
Function(Variable),
|
|
}
|
|
|
|
impl AmbientFunctionPolicy {
|
|
fn link_to_alias_lambda_set_var(&self, subs: &mut Subs, var: Variable) {
|
|
let ambient_function = match self {
|
|
AmbientFunctionPolicy::Function(var) => *var,
|
|
_ => {
|
|
// Might be linked at a deeper point in time, ignore for now
|
|
return;
|
|
}
|
|
};
|
|
let content = subs.get_content_without_compacting(var);
|
|
let new_content = match content {
|
|
Content::LambdaSet(LambdaSet {
|
|
solved,
|
|
recursion_var,
|
|
unspecialized,
|
|
ambient_function: _,
|
|
}) => Content::LambdaSet(LambdaSet {
|
|
solved: *solved,
|
|
recursion_var: *recursion_var,
|
|
unspecialized: *unspecialized,
|
|
ambient_function,
|
|
}),
|
|
Content::FlexVar(_) => {
|
|
// Something like
|
|
// Encoder fmt <a> : List U8, fmt -a-> List U8 | fmt has EncoderFormatting
|
|
// THEORY: Replace these with empty lambda sets. They will unify the same as a flex
|
|
// var does, but allows us to record the ambient function properly.
|
|
Content::LambdaSet(LambdaSet {
|
|
solved: UnionLabels::default(),
|
|
recursion_var: OptVariable::NONE,
|
|
unspecialized: SubsSlice::default(),
|
|
ambient_function,
|
|
})
|
|
}
|
|
content => internal_error!("{:?}({:?}) not a lambda set", content, var),
|
|
};
|
|
subs.set_content_unchecked(var, new_content);
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
enum TypeToVar<'a> {
|
|
Defer {
|
|
typ: &'a Type,
|
|
destination: Variable,
|
|
ambient_function: AmbientFunctionPolicy,
|
|
},
|
|
}
|
|
|
|
#[allow(clippy::too_many_arguments)]
|
|
fn type_to_variable<'a>(
|
|
subs: &mut Subs,
|
|
rank: Rank,
|
|
pools: &mut Pools,
|
|
arena: &'a bumpalo::Bump,
|
|
aliases: &mut Aliases,
|
|
typ: &Type,
|
|
// Helpers for instantiating ambient functions of lambda set variables from type aliases.
|
|
is_alias_lambda_set_arg: bool,
|
|
) -> Variable {
|
|
use bumpalo::collections::Vec;
|
|
|
|
let mut stack = Vec::with_capacity_in(8, arena);
|
|
|
|
macro_rules! helper {
|
|
($typ:expr, $ambient_function_policy:expr) => {{
|
|
match RegisterVariable::from_type(subs, rank, pools, arena, $typ) {
|
|
RegisterVariable::Direct(var) => {
|
|
// If the variable is just a type variable but we know we're in a lambda set
|
|
// context, try to link to the ambient function.
|
|
$ambient_function_policy.link_to_alias_lambda_set_var(subs, var);
|
|
|
|
var
|
|
}
|
|
RegisterVariable::Deferred => {
|
|
let var = subs.fresh_unnamed_flex_var();
|
|
stack.push(TypeToVar::Defer {
|
|
typ: $typ,
|
|
destination: var,
|
|
ambient_function: $ambient_function_policy,
|
|
});
|
|
var
|
|
}
|
|
}
|
|
}};
|
|
($typ:expr) => {{
|
|
helper!($typ, AmbientFunctionPolicy::NoFunction)
|
|
}};
|
|
}
|
|
|
|
let result = helper!(typ);
|
|
|
|
while let Some(TypeToVar::Defer {
|
|
typ,
|
|
destination,
|
|
ambient_function,
|
|
}) = stack.pop()
|
|
{
|
|
match typ {
|
|
Variable(_) | EmptyRec | EmptyTagUnion => {
|
|
unreachable!("This variant should never be deferred!")
|
|
}
|
|
RangedNumber(range) => {
|
|
let content = Content::RangedNumber(*range);
|
|
|
|
register_with_known_var(subs, destination, rank, pools, content)
|
|
}
|
|
Apply(symbol, arguments, _) => {
|
|
let new_arguments = VariableSubsSlice::reserve_into_subs(subs, arguments.len());
|
|
for (target_index, var_index) in (new_arguments.indices()).zip(arguments) {
|
|
let var = helper!(var_index);
|
|
subs.variables[target_index] = var;
|
|
}
|
|
|
|
let flat_type = FlatType::Apply(*symbol, new_arguments);
|
|
let content = Content::Structure(flat_type);
|
|
|
|
register_with_known_var(subs, destination, rank, pools, content)
|
|
}
|
|
|
|
ClosureTag {
|
|
name,
|
|
captures,
|
|
ambient_function,
|
|
} => {
|
|
let union_lambdas =
|
|
create_union_lambda(subs, rank, pools, arena, *name, captures, &mut stack);
|
|
|
|
let content = Content::LambdaSet(subs::LambdaSet {
|
|
solved: union_lambdas,
|
|
// We may figure out the lambda set is recursive during solving, but it never
|
|
// is to begin with.
|
|
recursion_var: OptVariable::NONE,
|
|
unspecialized: SubsSlice::default(),
|
|
ambient_function: *ambient_function,
|
|
});
|
|
|
|
register_with_known_var(subs, destination, rank, pools, content)
|
|
}
|
|
UnspecializedLambdaSet { unspecialized } => {
|
|
let unspecialized_slice = SubsSlice::extend_new(
|
|
&mut subs.unspecialized_lambda_sets,
|
|
std::iter::once(*unspecialized),
|
|
);
|
|
|
|
// `ClosureTag` ambient functions are resolved during constraint generation.
|
|
// But `UnspecializedLambdaSet`s can only ever live in a type signature, and don't
|
|
// correspond to a expression, so they are never constrained.
|
|
// Instead, we resolve their ambient functions during type translation, observing
|
|
// the invariant that a lambda set can only ever appear under a function type.
|
|
let ambient_function = match ambient_function {
|
|
AmbientFunctionPolicy::NoFunction => {
|
|
debug_assert!(is_alias_lambda_set_arg);
|
|
// To be filled in during delayed type alias instantiation
|
|
Variable::NULL
|
|
}
|
|
AmbientFunctionPolicy::Function(var) => var,
|
|
};
|
|
|
|
let content = Content::LambdaSet(subs::LambdaSet {
|
|
unspecialized: unspecialized_slice,
|
|
solved: UnionLabels::default(),
|
|
recursion_var: OptVariable::NONE,
|
|
ambient_function,
|
|
});
|
|
|
|
register_with_known_var(subs, destination, rank, pools, content)
|
|
}
|
|
// This case is important for the rank of boolean variables
|
|
Function(arguments, closure_type, ret_type) => {
|
|
let new_arguments = VariableSubsSlice::reserve_into_subs(subs, arguments.len());
|
|
for (target_index, var_index) in (new_arguments.indices()).zip(arguments) {
|
|
let var = helper!(var_index);
|
|
subs.variables[target_index] = var;
|
|
}
|
|
|
|
let ret_var = helper!(ret_type);
|
|
let closure_var =
|
|
helper!(closure_type, AmbientFunctionPolicy::Function(destination));
|
|
let content =
|
|
Content::Structure(FlatType::Func(new_arguments, closure_var, ret_var));
|
|
|
|
register_with_known_var(subs, destination, rank, pools, content)
|
|
}
|
|
Record(fields, ext) => {
|
|
// An empty fields is inefficient (but would be correct)
|
|
// If hit, try to turn the value into an EmptyRecord in canonicalization
|
|
debug_assert!(!fields.is_empty() || !ext.is_closed());
|
|
|
|
let mut field_vars = Vec::with_capacity_in(fields.len(), arena);
|
|
|
|
for (field, field_type) in fields {
|
|
let field_var = {
|
|
use roc_types::types::RecordField::*;
|
|
match &field_type {
|
|
Optional(t) => Optional(helper!(t)),
|
|
Required(t) => Required(helper!(t)),
|
|
Demanded(t) => Demanded(helper!(t)),
|
|
}
|
|
};
|
|
|
|
field_vars.push((field.clone(), field_var));
|
|
}
|
|
|
|
let temp_ext_var = match ext {
|
|
TypeExtension::Open(ext) => helper!(ext),
|
|
TypeExtension::Closed => Variable::EMPTY_RECORD,
|
|
};
|
|
|
|
let (it, new_ext_var) =
|
|
gather_fields_unsorted_iter(subs, RecordFields::empty(), temp_ext_var)
|
|
.expect("Something ended up weird in this record type");
|
|
|
|
let it = it
|
|
.into_iter()
|
|
.map(|(field, field_type)| (field.clone(), field_type));
|
|
|
|
field_vars.extend(it);
|
|
insertion_sort_by(&mut field_vars, RecordFields::compare);
|
|
|
|
let record_fields = RecordFields::insert_into_subs(subs, field_vars);
|
|
|
|
let content = Content::Structure(FlatType::Record(record_fields, new_ext_var));
|
|
|
|
register_with_known_var(subs, destination, rank, pools, content)
|
|
}
|
|
|
|
TagUnion(tags, ext) => {
|
|
// An empty tags is inefficient (but would be correct)
|
|
// If hit, try to turn the value into an EmptyTagUnion in canonicalization
|
|
debug_assert!(!tags.is_empty() || !ext.is_closed());
|
|
|
|
let (union_tags, ext) =
|
|
type_to_union_tags(subs, rank, pools, arena, tags, ext, &mut stack);
|
|
let content = Content::Structure(FlatType::TagUnion(union_tags, ext));
|
|
|
|
register_with_known_var(subs, destination, rank, pools, content)
|
|
}
|
|
FunctionOrTagUnion(tag_name, symbol, ext) => {
|
|
let temp_ext_var = match ext {
|
|
TypeExtension::Open(ext) => helper!(ext),
|
|
TypeExtension::Closed => Variable::EMPTY_TAG_UNION,
|
|
};
|
|
|
|
let (it, ext) = roc_types::types::gather_tags_unsorted_iter(
|
|
subs,
|
|
UnionTags::default(),
|
|
temp_ext_var,
|
|
);
|
|
|
|
for _ in it {
|
|
unreachable!("we assert that the ext var is empty; otherwise we'd already know it was a tag union!");
|
|
}
|
|
|
|
let slice = SubsIndex::new(subs.tag_names.len() as u32);
|
|
subs.tag_names.push(tag_name.clone());
|
|
|
|
let content = Content::Structure(FlatType::FunctionOrTagUnion(slice, *symbol, ext));
|
|
|
|
register_with_known_var(subs, destination, rank, pools, content)
|
|
}
|
|
RecursiveTagUnion(rec_var, tags, ext) => {
|
|
// An empty tags is inefficient (but would be correct)
|
|
// If hit, try to turn the value into an EmptyTagUnion in canonicalization
|
|
debug_assert!(!tags.is_empty() || !ext.is_closed());
|
|
|
|
let (union_tags, ext) =
|
|
type_to_union_tags(subs, rank, pools, arena, tags, ext, &mut stack);
|
|
let content =
|
|
Content::Structure(FlatType::RecursiveTagUnion(*rec_var, union_tags, ext));
|
|
|
|
let tag_union_var = destination;
|
|
register_with_known_var(subs, tag_union_var, rank, pools, content);
|
|
|
|
register_with_known_var(
|
|
subs,
|
|
*rec_var,
|
|
rank,
|
|
pools,
|
|
Content::RecursionVar {
|
|
opt_name: None,
|
|
structure: tag_union_var,
|
|
},
|
|
);
|
|
|
|
tag_union_var
|
|
}
|
|
|
|
Type::DelayedAlias(AliasCommon {
|
|
symbol,
|
|
type_arguments,
|
|
lambda_set_variables,
|
|
}) => {
|
|
let alias_variables = {
|
|
let length = type_arguments.len() + lambda_set_variables.len();
|
|
let new_variables = VariableSubsSlice::reserve_into_subs(subs, length);
|
|
|
|
for (target_index, arg_type) in (new_variables.indices()).zip(type_arguments) {
|
|
let copy_var = helper!(arg_type);
|
|
subs.variables[target_index] = copy_var;
|
|
}
|
|
|
|
let it = (new_variables.indices().skip(type_arguments.len()))
|
|
.zip(lambda_set_variables);
|
|
for (target_index, ls) in it {
|
|
// We MUST do this now, otherwise when linking the ambient function during
|
|
// instantiation of the real var, there will be nothing to link against.
|
|
let copy_var =
|
|
type_to_variable(subs, rank, pools, arena, aliases, &ls.0, true);
|
|
subs.variables[target_index] = copy_var;
|
|
}
|
|
|
|
AliasVariables {
|
|
variables_start: new_variables.start,
|
|
type_variables_len: type_arguments.len() as _,
|
|
all_variables_len: length as _,
|
|
}
|
|
};
|
|
|
|
let (alias_variable, kind) = aliases.instantiate_real_var(
|
|
subs,
|
|
rank,
|
|
pools,
|
|
arena,
|
|
*symbol,
|
|
alias_variables,
|
|
);
|
|
|
|
let content = Content::Alias(*symbol, alias_variables, alias_variable, kind);
|
|
|
|
register_with_known_var(subs, destination, rank, pools, content)
|
|
}
|
|
|
|
Type::Alias {
|
|
symbol,
|
|
type_arguments,
|
|
actual,
|
|
lambda_set_variables,
|
|
kind,
|
|
} => {
|
|
debug_assert!(Variable::get_reserved(*symbol).is_none());
|
|
|
|
let alias_variables = {
|
|
let length = type_arguments.len() + lambda_set_variables.len();
|
|
let new_variables = VariableSubsSlice::reserve_into_subs(subs, length);
|
|
|
|
for (target_index, OptAbleType { typ, opt_ability }) in
|
|
(new_variables.indices()).zip(type_arguments)
|
|
{
|
|
let copy_var = match opt_ability {
|
|
None => helper!(typ),
|
|
Some(ability) => {
|
|
// If this type argument is marked as being bound to an ability, we must
|
|
// now correctly instantiate it as so.
|
|
match RegisterVariable::from_type(subs, rank, pools, arena, typ) {
|
|
RegisterVariable::Direct(var) => {
|
|
use Content::*;
|
|
match *subs.get_content_without_compacting(var) {
|
|
FlexVar(opt_name) => subs
|
|
.set_content(var, FlexAbleVar(opt_name, *ability)),
|
|
RigidVar(..) => internal_error!("Rigid var in type arg for {:?} - this is a bug in the solver, or our understanding", actual),
|
|
RigidAbleVar(..) | FlexAbleVar(..) => internal_error!("Able var in type arg for {:?} - this is a bug in the solver, or our understanding", actual),
|
|
_ => {
|
|
// TODO associate the type to the bound ability, and check
|
|
// that it correctly implements the ability.
|
|
}
|
|
}
|
|
var
|
|
}
|
|
RegisterVariable::Deferred => {
|
|
// TODO associate the type to the bound ability, and check
|
|
// that it correctly implements the ability.
|
|
let var = subs.fresh_unnamed_flex_var();
|
|
stack.push(TypeToVar::Defer {
|
|
typ,
|
|
destination: var,
|
|
ambient_function: AmbientFunctionPolicy::NoFunction,
|
|
});
|
|
var
|
|
}
|
|
}
|
|
}
|
|
};
|
|
subs.variables[target_index] = copy_var;
|
|
}
|
|
|
|
let it = (new_variables.indices().skip(type_arguments.len()))
|
|
.zip(lambda_set_variables);
|
|
for (target_index, ls) in it {
|
|
let copy_var = helper!(&ls.0);
|
|
subs.variables[target_index] = copy_var;
|
|
}
|
|
|
|
AliasVariables {
|
|
variables_start: new_variables.start,
|
|
type_variables_len: type_arguments.len() as _,
|
|
all_variables_len: length as _,
|
|
}
|
|
};
|
|
|
|
let alias_variable = if let Symbol::RESULT_RESULT = *symbol {
|
|
roc_result_to_var(subs, rank, pools, arena, actual, &mut stack)
|
|
} else {
|
|
helper!(actual)
|
|
};
|
|
let content = Content::Alias(*symbol, alias_variables, alias_variable, *kind);
|
|
|
|
register_with_known_var(subs, destination, rank, pools, content)
|
|
}
|
|
HostExposedAlias {
|
|
name: symbol,
|
|
type_arguments,
|
|
actual: alias_type,
|
|
actual_var,
|
|
lambda_set_variables,
|
|
..
|
|
} => {
|
|
let alias_variables = {
|
|
let length = type_arguments.len() + lambda_set_variables.len();
|
|
let new_variables = VariableSubsSlice::reserve_into_subs(subs, length);
|
|
|
|
for (target_index, arg_type) in (new_variables.indices()).zip(type_arguments) {
|
|
let copy_var = helper!(arg_type);
|
|
subs.variables[target_index] = copy_var;
|
|
}
|
|
let it = (new_variables.indices().skip(type_arguments.len()))
|
|
.zip(lambda_set_variables);
|
|
for (target_index, ls) in it {
|
|
// We MUST do this now, otherwise when linking the ambient function during
|
|
// instantiation of the real var, there will be nothing to link against.
|
|
let copy_var =
|
|
type_to_variable(subs, rank, pools, arena, aliases, &ls.0, true);
|
|
subs.variables[target_index] = copy_var;
|
|
}
|
|
|
|
AliasVariables {
|
|
variables_start: new_variables.start,
|
|
type_variables_len: type_arguments.len() as _,
|
|
all_variables_len: length as _,
|
|
}
|
|
};
|
|
|
|
// cannot use helper! here because this variable may be involved in unification below
|
|
let alias_variable =
|
|
type_to_variable(subs, rank, pools, arena, aliases, alias_type, false);
|
|
// TODO(opaques): I think host-exposed aliases should always be structural
|
|
// (when does it make sense to give a host an opaque type?)
|
|
let content = Content::Alias(
|
|
*symbol,
|
|
alias_variables,
|
|
alias_variable,
|
|
AliasKind::Structural,
|
|
);
|
|
// let result = register(subs, rank, pools, content);
|
|
let result = register_with_known_var(subs, destination, rank, pools, content);
|
|
|
|
// We only want to unify the actual_var with the alias once
|
|
// if it's already redirected (and therefore, redundant)
|
|
// don't do it again
|
|
if !subs.redundant(*actual_var) {
|
|
let descriptor = subs.get(result);
|
|
subs.union(result, *actual_var, descriptor);
|
|
}
|
|
|
|
result
|
|
}
|
|
Erroneous(problem) => {
|
|
let problem_index = SubsIndex::push_new(&mut subs.problems, problem.clone());
|
|
let content = Content::Structure(FlatType::Erroneous(problem_index));
|
|
|
|
register_with_known_var(subs, destination, rank, pools, content)
|
|
}
|
|
};
|
|
}
|
|
|
|
result
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn roc_result_to_var<'a>(
|
|
subs: &mut Subs,
|
|
rank: Rank,
|
|
pools: &mut Pools,
|
|
arena: &'_ bumpalo::Bump,
|
|
result_type: &'a Type,
|
|
stack: &mut bumpalo::collections::Vec<'_, TypeToVar<'a>>,
|
|
) -> Variable {
|
|
match result_type {
|
|
Type::TagUnion(tags, ext) => {
|
|
debug_assert!(ext.is_closed());
|
|
debug_assert!(tags.len() == 2);
|
|
|
|
if let [(err, err_args), (ok, ok_args)] = &tags[..] {
|
|
debug_assert_eq!(err, &subs.tag_names[0]);
|
|
debug_assert_eq!(ok, &subs.tag_names[1]);
|
|
|
|
if let ([err_type], [ok_type]) = (err_args.as_slice(), ok_args.as_slice()) {
|
|
let err_var =
|
|
RegisterVariable::with_stack(subs, rank, pools, arena, err_type, stack);
|
|
let ok_var =
|
|
RegisterVariable::with_stack(subs, rank, pools, arena, ok_type, stack);
|
|
|
|
let start = subs.variables.len() as u32;
|
|
let err_slice = SubsSlice::new(start, 1);
|
|
let ok_slice = SubsSlice::new(start + 1, 1);
|
|
|
|
subs.variables.push(err_var);
|
|
subs.variables.push(ok_var);
|
|
|
|
let variables = SubsSlice::new(subs.variable_slices.len() as _, 2);
|
|
subs.variable_slices.push(err_slice);
|
|
subs.variable_slices.push(ok_slice);
|
|
|
|
let union_tags = UnionTags::from_slices(Subs::RESULT_TAG_NAMES, variables);
|
|
let ext = Variable::EMPTY_TAG_UNION;
|
|
|
|
let content = Content::Structure(FlatType::TagUnion(union_tags, ext));
|
|
|
|
return register(subs, rank, pools, content);
|
|
}
|
|
}
|
|
|
|
unreachable!("invalid arguments to Result.Result; canonicalization should catch this!")
|
|
}
|
|
_ => unreachable!("not a valid type inside a Result.Result alias"),
|
|
}
|
|
}
|
|
|
|
fn insertion_sort_by<T, F>(arr: &mut [T], mut compare: F)
|
|
where
|
|
F: FnMut(&T, &T) -> std::cmp::Ordering,
|
|
{
|
|
for i in 1..arr.len() {
|
|
let val = &arr[i];
|
|
let mut j = i;
|
|
let pos = arr[..i]
|
|
.binary_search_by(|x| compare(x, val))
|
|
.unwrap_or_else(|pos| pos);
|
|
// Swap all elements until specific position.
|
|
while j > pos {
|
|
arr.swap(j - 1, j);
|
|
j -= 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
fn sorted_no_duplicates<T>(slice: &[(TagName, T)]) -> bool {
|
|
match slice.split_first() {
|
|
None => true,
|
|
Some(((first, _), rest)) => {
|
|
let mut current = first;
|
|
|
|
for (next, _) in rest {
|
|
if current >= next {
|
|
return false;
|
|
} else {
|
|
current = next;
|
|
}
|
|
}
|
|
|
|
true
|
|
}
|
|
}
|
|
}
|
|
|
|
fn sort_and_deduplicate<T>(tag_vars: &mut bumpalo::collections::Vec<(TagName, T)>) {
|
|
insertion_sort_by(tag_vars, |(a, _), (b, _)| a.cmp(b));
|
|
|
|
// deduplicate, keeping the right-most occurrence of a tag name
|
|
let mut i = 0;
|
|
|
|
while i < tag_vars.len() {
|
|
match (tag_vars.get(i), tag_vars.get(i + 1)) {
|
|
(Some((t1, _)), Some((t2, _))) => {
|
|
if t1 == t2 {
|
|
tag_vars.remove(i);
|
|
} else {
|
|
i += 1;
|
|
}
|
|
}
|
|
_ => break,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Find whether the current run of tag names is in the subs.tag_names array already. If so,
|
|
/// we take a SubsSlice to the existing tag names, so we don't have to add/clone those tag names
|
|
/// and keep subs memory consumption low
|
|
fn find_tag_name_run<T>(slice: &[(TagName, T)], subs: &mut Subs) -> Option<SubsSlice<TagName>> {
|
|
use std::cmp::Ordering;
|
|
|
|
let tag_name = &slice.get(0)?.0;
|
|
|
|
let mut result = None;
|
|
|
|
// the `SubsSlice<TagName>` that inserting `slice` into subs would give
|
|
let bigger_slice = SubsSlice::new(subs.tag_names.len() as _, slice.len() as _);
|
|
|
|
match subs.tag_name_cache.get_mut(tag_name) {
|
|
Some(occupied) => {
|
|
let subs_slice = *occupied;
|
|
|
|
let prefix_slice = SubsSlice::new(subs_slice.start, slice.len() as _);
|
|
|
|
if slice.len() == 1 {
|
|
return Some(prefix_slice);
|
|
}
|
|
|
|
match slice.len().cmp(&subs_slice.len()) {
|
|
Ordering::Less => {
|
|
// we might have a prefix
|
|
let tag_names = &subs.tag_names[subs_slice.start as usize..];
|
|
|
|
for (from_subs, (from_slice, _)) in tag_names.iter().zip(slice.iter()) {
|
|
if from_subs != from_slice {
|
|
return None;
|
|
}
|
|
}
|
|
|
|
result = Some(prefix_slice);
|
|
}
|
|
Ordering::Equal => {
|
|
let tag_names = &subs.tag_names[subs_slice.indices()];
|
|
|
|
for (from_subs, (from_slice, _)) in tag_names.iter().zip(slice.iter()) {
|
|
if from_subs != from_slice {
|
|
return None;
|
|
}
|
|
}
|
|
|
|
result = Some(subs_slice);
|
|
}
|
|
Ordering::Greater => {
|
|
// switch to the bigger slice that is not inserted yet, but will be soon
|
|
*occupied = bigger_slice;
|
|
}
|
|
}
|
|
}
|
|
None => {
|
|
subs.tag_name_cache.push(tag_name, bigger_slice);
|
|
}
|
|
}
|
|
|
|
result
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn register_tag_arguments<'a>(
|
|
subs: &mut Subs,
|
|
rank: Rank,
|
|
pools: &mut Pools,
|
|
arena: &'_ bumpalo::Bump,
|
|
stack: &mut bumpalo::collections::Vec<'_, TypeToVar<'a>>,
|
|
arguments: &'a [Type],
|
|
) -> VariableSubsSlice {
|
|
if arguments.is_empty() {
|
|
VariableSubsSlice::default()
|
|
} else {
|
|
let new_variables = VariableSubsSlice::reserve_into_subs(subs, arguments.len());
|
|
let it = new_variables.indices().zip(arguments);
|
|
|
|
for (target_index, argument) in it {
|
|
let var = RegisterVariable::with_stack(subs, rank, pools, arena, argument, stack);
|
|
subs.variables[target_index] = var;
|
|
}
|
|
|
|
new_variables
|
|
}
|
|
}
|
|
|
|
/// Assumes that the tags are sorted and there are no duplicates!
|
|
fn insert_tags_fast_path<'a>(
|
|
subs: &mut Subs,
|
|
rank: Rank,
|
|
pools: &mut Pools,
|
|
arena: &'_ bumpalo::Bump,
|
|
tags: &'a [(TagName, Vec<Type>)],
|
|
stack: &mut bumpalo::collections::Vec<'_, TypeToVar<'a>>,
|
|
) -> UnionTags {
|
|
if let [(TagName(tag_name), arguments)] = tags {
|
|
let variable_slice =
|
|
register_tag_arguments(subs, rank, pools, arena, stack, arguments.as_slice());
|
|
let new_variable_slices =
|
|
SubsSlice::extend_new(&mut subs.variable_slices, [variable_slice]);
|
|
|
|
macro_rules! subs_tag_name {
|
|
($tag_name_slice:expr) => {
|
|
return UnionTags::from_slices($tag_name_slice, new_variable_slices)
|
|
};
|
|
}
|
|
|
|
match tag_name.as_str() {
|
|
"Ok" => subs_tag_name!(Subs::TAG_NAME_OK.as_slice()),
|
|
"Err" => subs_tag_name!(Subs::TAG_NAME_ERR.as_slice()),
|
|
"InvalidNumStr" => subs_tag_name!(Subs::TAG_NAME_INVALID_NUM_STR.as_slice()),
|
|
"BadUtf8" => subs_tag_name!(Subs::TAG_NAME_BAD_UTF_8.as_slice()),
|
|
"OutOfBounds" => subs_tag_name!(Subs::TAG_NAME_OUT_OF_BOUNDS.as_slice()),
|
|
_other => {}
|
|
}
|
|
}
|
|
|
|
let new_variable_slices = SubsSlice::reserve_variable_slices(subs, tags.len());
|
|
match find_tag_name_run(tags, subs) {
|
|
Some(new_tag_names) => {
|
|
let it = (new_variable_slices.indices()).zip(tags);
|
|
|
|
for (variable_slice_index, (_, arguments)) in it {
|
|
subs.variable_slices[variable_slice_index] =
|
|
register_tag_arguments(subs, rank, pools, arena, stack, arguments.as_slice());
|
|
}
|
|
|
|
UnionTags::from_slices(new_tag_names, new_variable_slices)
|
|
}
|
|
None => {
|
|
let new_tag_names = SubsSlice::reserve_tag_names(subs, tags.len());
|
|
|
|
let it = (new_variable_slices.indices())
|
|
.zip(new_tag_names.indices())
|
|
.zip(tags);
|
|
|
|
for ((variable_slice_index, tag_name_index), (tag_name, arguments)) in it {
|
|
subs.variable_slices[variable_slice_index] =
|
|
register_tag_arguments(subs, rank, pools, arena, stack, arguments.as_slice());
|
|
|
|
subs.tag_names[tag_name_index] = tag_name.clone();
|
|
}
|
|
|
|
UnionTags::from_slices(new_tag_names, new_variable_slices)
|
|
}
|
|
}
|
|
}
|
|
|
|
fn insert_tags_slow_path<'a>(
|
|
subs: &mut Subs,
|
|
rank: Rank,
|
|
pools: &mut Pools,
|
|
arena: &'_ bumpalo::Bump,
|
|
tags: &'a [(TagName, Vec<Type>)],
|
|
mut tag_vars: bumpalo::collections::Vec<(TagName, VariableSubsSlice)>,
|
|
stack: &mut bumpalo::collections::Vec<'_, TypeToVar<'a>>,
|
|
) -> UnionTags {
|
|
for (tag, tag_argument_types) in tags {
|
|
let tag_argument_types: &[Type] = tag_argument_types.as_slice();
|
|
let new_slice = VariableSubsSlice::reserve_into_subs(subs, tag_argument_types.len());
|
|
|
|
for (i, arg) in (new_slice.indices()).zip(tag_argument_types) {
|
|
let var = RegisterVariable::with_stack(subs, rank, pools, arena, arg, stack);
|
|
subs.variables[i] = var;
|
|
}
|
|
|
|
tag_vars.push((tag.clone(), new_slice));
|
|
}
|
|
|
|
sort_and_deduplicate(&mut tag_vars);
|
|
|
|
UnionTags::insert_slices_into_subs(subs, tag_vars)
|
|
}
|
|
|
|
fn type_to_union_tags<'a>(
|
|
subs: &mut Subs,
|
|
rank: Rank,
|
|
pools: &mut Pools,
|
|
arena: &'_ bumpalo::Bump,
|
|
tags: &'a [(TagName, Vec<Type>)],
|
|
ext: &'a TypeExtension,
|
|
stack: &mut bumpalo::collections::Vec<'_, TypeToVar<'a>>,
|
|
) -> (UnionTags, Variable) {
|
|
use bumpalo::collections::Vec;
|
|
|
|
let sorted = tags.len() == 1 || sorted_no_duplicates(tags);
|
|
|
|
match ext {
|
|
TypeExtension::Closed => {
|
|
let ext = Variable::EMPTY_TAG_UNION;
|
|
|
|
let union_tags = if sorted {
|
|
insert_tags_fast_path(subs, rank, pools, arena, tags, stack)
|
|
} else {
|
|
let tag_vars = Vec::with_capacity_in(tags.len(), arena);
|
|
insert_tags_slow_path(subs, rank, pools, arena, tags, tag_vars, stack)
|
|
};
|
|
|
|
(union_tags, ext)
|
|
}
|
|
TypeExtension::Open(ext) => {
|
|
let mut tag_vars = Vec::with_capacity_in(tags.len(), arena);
|
|
|
|
let temp_ext_var = RegisterVariable::with_stack(subs, rank, pools, arena, ext, stack);
|
|
let (it, ext) = roc_types::types::gather_tags_unsorted_iter(
|
|
subs,
|
|
UnionTags::default(),
|
|
temp_ext_var,
|
|
);
|
|
|
|
tag_vars.extend(it.map(|(n, v)| (n.clone(), v)));
|
|
|
|
let union_tags = if tag_vars.is_empty() && sorted {
|
|
insert_tags_fast_path(subs, rank, pools, arena, tags, stack)
|
|
} else {
|
|
insert_tags_slow_path(subs, rank, pools, arena, tags, tag_vars, stack)
|
|
};
|
|
|
|
(union_tags, ext)
|
|
}
|
|
}
|
|
}
|
|
|
|
fn create_union_lambda<'a>(
|
|
subs: &mut Subs,
|
|
rank: Rank,
|
|
pools: &mut Pools,
|
|
arena: &'_ bumpalo::Bump,
|
|
closure: Symbol,
|
|
capture_types: &'a [Type],
|
|
stack: &mut bumpalo::collections::Vec<'_, TypeToVar<'a>>,
|
|
) -> UnionLambdas {
|
|
let variable_slice = register_tag_arguments(subs, rank, pools, arena, stack, capture_types);
|
|
let new_variable_slices = SubsSlice::extend_new(&mut subs.variable_slices, [variable_slice]);
|
|
|
|
let lambda_name_slice = SubsSlice::extend_new(&mut subs.closure_names, [closure]);
|
|
|
|
UnionLambdas::from_slices(lambda_name_slice, new_variable_slices)
|
|
}
|
|
|
|
fn check_for_infinite_type(
|
|
subs: &mut Subs,
|
|
problems: &mut Vec<TypeError>,
|
|
symbol: Symbol,
|
|
loc_var: Loc<Variable>,
|
|
) {
|
|
let var = loc_var.value;
|
|
|
|
while let Err((recursive, _chain)) = subs.occurs(var) {
|
|
// try to make a union recursive, see if that helps
|
|
match subs.get_content_without_compacting(recursive) {
|
|
&Content::Structure(FlatType::TagUnion(tags, ext_var)) => {
|
|
subs.mark_tag_union_recursive(recursive, tags, ext_var);
|
|
}
|
|
&Content::LambdaSet(subs::LambdaSet {
|
|
solved,
|
|
recursion_var: _,
|
|
unspecialized,
|
|
ambient_function: ambient_function_var,
|
|
}) => {
|
|
subs.mark_lambda_set_recursive(
|
|
recursive,
|
|
solved,
|
|
unspecialized,
|
|
ambient_function_var,
|
|
);
|
|
}
|
|
|
|
_other => circular_error(subs, problems, symbol, &loc_var),
|
|
}
|
|
}
|
|
}
|
|
|
|
fn circular_error(
|
|
subs: &mut Subs,
|
|
problems: &mut Vec<TypeError>,
|
|
symbol: Symbol,
|
|
loc_var: &Loc<Variable>,
|
|
) {
|
|
let var = loc_var.value;
|
|
let (error_type, _) = subs.var_to_error_type(var);
|
|
let problem = TypeError::CircularType(loc_var.region, symbol, error_type);
|
|
|
|
subs.set_content(var, Content::Error);
|
|
|
|
problems.push(problem);
|
|
}
|
|
|
|
fn generalize(
|
|
subs: &mut Subs,
|
|
young_mark: Mark,
|
|
visit_mark: Mark,
|
|
young_rank: Rank,
|
|
pools: &mut Pools,
|
|
) {
|
|
let young_vars = std::mem::take(pools.get_mut(young_rank));
|
|
let rank_table = pool_to_rank_table(subs, young_mark, young_rank, young_vars);
|
|
|
|
// Get the ranks right for each entry.
|
|
// Start at low ranks so we only have to pass over the information once.
|
|
for (index, table) in rank_table.iter().enumerate() {
|
|
for &var in table.iter() {
|
|
adjust_rank(subs, young_mark, visit_mark, Rank::from(index), var);
|
|
}
|
|
}
|
|
|
|
let (mut last_pool, all_but_last_pool) = rank_table.split_last();
|
|
|
|
// For variables that have rank lowerer than young_rank, register them in
|
|
// the appropriate old pool if they are not redundant.
|
|
for vars in all_but_last_pool {
|
|
for var in vars {
|
|
if !subs.redundant(var) {
|
|
let rank = subs.get_rank(var);
|
|
|
|
pools.get_mut(rank).push(var);
|
|
}
|
|
}
|
|
}
|
|
|
|
// For variables with rank young_rank, if rank < young_rank: register in old pool,
|
|
// otherwise generalize
|
|
for var in last_pool.drain(..) {
|
|
if !subs.redundant(var) {
|
|
let desc_rank = subs.get_rank(var);
|
|
|
|
if desc_rank < young_rank {
|
|
pools.get_mut(desc_rank).push(var);
|
|
} else {
|
|
subs.set_rank(var, Rank::NONE);
|
|
}
|
|
}
|
|
}
|
|
|
|
// re-use the last_vector (which likely has a good capacity for future runs
|
|
*pools.get_mut(young_rank) = last_pool;
|
|
}
|
|
|
|
/// Sort the variables into buckets by rank.
|
|
#[inline]
|
|
fn pool_to_rank_table(
|
|
subs: &mut Subs,
|
|
young_mark: Mark,
|
|
young_rank: Rank,
|
|
mut young_vars: Vec<Variable>,
|
|
) -> Pools {
|
|
let mut pools = Pools::new(young_rank.into_usize() + 1);
|
|
|
|
// the vast majority of young variables have young_rank
|
|
let mut i = 0;
|
|
while i < young_vars.len() {
|
|
let var = subs.get_root_key(young_vars[i]);
|
|
|
|
subs.set_mark_unchecked(var, young_mark);
|
|
let rank = subs.get_rank_unchecked(var);
|
|
|
|
if rank != young_rank {
|
|
debug_assert!(rank.into_usize() < young_rank.into_usize() + 1);
|
|
|
|
pools.get_mut(rank).push(var);
|
|
|
|
// swap an element in; don't increment i
|
|
young_vars.swap_remove(i);
|
|
} else {
|
|
i += 1;
|
|
}
|
|
}
|
|
|
|
std::mem::swap(pools.get_mut(young_rank), &mut young_vars);
|
|
|
|
pools
|
|
}
|
|
|
|
/// Adjust variable ranks such that ranks never increase as you move deeper.
|
|
/// This way the outermost rank is representative of the entire structure.
|
|
fn adjust_rank(
|
|
subs: &mut Subs,
|
|
young_mark: Mark,
|
|
visit_mark: Mark,
|
|
group_rank: Rank,
|
|
var: Variable,
|
|
) -> Rank {
|
|
let var = subs.get_root_key(var);
|
|
|
|
let desc_rank = subs.get_rank_unchecked(var);
|
|
let desc_mark = subs.get_mark_unchecked(var);
|
|
|
|
if desc_mark == young_mark {
|
|
let content = {
|
|
let ptr = subs.get_content_unchecked(var) as *const _;
|
|
unsafe { &*ptr }
|
|
};
|
|
|
|
// Mark the variable as visited before adjusting content, as it may be cyclic.
|
|
subs.set_mark_unchecked(var, visit_mark);
|
|
|
|
let max_rank = adjust_rank_content(subs, young_mark, visit_mark, group_rank, content);
|
|
|
|
subs.set_rank_unchecked(var, max_rank);
|
|
subs.set_mark_unchecked(var, visit_mark);
|
|
|
|
max_rank
|
|
} else if desc_mark == visit_mark {
|
|
// we have already visited this variable
|
|
// (probably two variables had the same root)
|
|
desc_rank
|
|
} else {
|
|
let min_rank = group_rank.min(desc_rank);
|
|
|
|
// TODO from elm-compiler: how can min_rank ever be group_rank?
|
|
subs.set_rank_unchecked(var, min_rank);
|
|
subs.set_mark_unchecked(var, visit_mark);
|
|
|
|
min_rank
|
|
}
|
|
}
|
|
|
|
fn adjust_rank_content(
|
|
subs: &mut Subs,
|
|
young_mark: Mark,
|
|
visit_mark: Mark,
|
|
group_rank: Rank,
|
|
content: &Content,
|
|
) -> Rank {
|
|
use roc_types::subs::Content::*;
|
|
use roc_types::subs::FlatType::*;
|
|
|
|
match content {
|
|
FlexVar(_) | RigidVar(_) | FlexAbleVar(_, _) | RigidAbleVar(_, _) | Error => group_rank,
|
|
|
|
RecursionVar { .. } => group_rank,
|
|
|
|
Structure(flat_type) => {
|
|
match flat_type {
|
|
Apply(_, args) => {
|
|
let mut rank = Rank::toplevel();
|
|
|
|
for var_index in args.into_iter() {
|
|
let var = subs[var_index];
|
|
rank = rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
|
|
}
|
|
|
|
rank
|
|
}
|
|
|
|
Func(arg_vars, closure_var, ret_var) => {
|
|
let mut rank = adjust_rank(subs, young_mark, visit_mark, group_rank, *ret_var);
|
|
|
|
// TODO investigate further.
|
|
//
|
|
// My theory is that because the closure_var contains variables already
|
|
// contained in the signature only, it does not need to be part of the rank
|
|
// calculuation
|
|
if true {
|
|
rank = rank.max(adjust_rank(
|
|
subs,
|
|
young_mark,
|
|
visit_mark,
|
|
group_rank,
|
|
*closure_var,
|
|
));
|
|
}
|
|
|
|
for index in arg_vars.into_iter() {
|
|
let var = subs[index];
|
|
rank = rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
|
|
}
|
|
|
|
rank
|
|
}
|
|
|
|
EmptyRecord => {
|
|
// from elm-compiler: THEORY: an empty record never needs to get generalized
|
|
Rank::toplevel()
|
|
}
|
|
|
|
EmptyTagUnion => Rank::toplevel(),
|
|
|
|
Record(fields, ext_var) => {
|
|
let mut rank = adjust_rank(subs, young_mark, visit_mark, group_rank, *ext_var);
|
|
|
|
for index in fields.iter_variables() {
|
|
let var = subs[index];
|
|
rank = rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
|
|
}
|
|
|
|
rank
|
|
}
|
|
|
|
TagUnion(tags, ext_var) => {
|
|
let mut rank = adjust_rank(subs, young_mark, visit_mark, group_rank, *ext_var);
|
|
// For performance reasons, we only keep one representation of empty tag unions
|
|
// in subs. That representation exists at rank 0, which we don't always want to
|
|
// reflect the whole tag union as, because doing so may over-generalize free
|
|
// type variables.
|
|
// Normally this is not a problem because of the loop below that maximizes the
|
|
// rank from nested types in the union. But suppose we have the simple tag
|
|
// union
|
|
// [Z]{}
|
|
// there are no nested types in the tags, and the empty tag union is at rank 0,
|
|
// so we promote the tag union to rank 0. Now if we introduce the presence
|
|
// constraint
|
|
// [Z]{} += [S a]
|
|
// we'll wind up with [Z, S a]{}, but it will be at rank 0, and "a" will get
|
|
// over-generalized. Really, the empty tag union should be introduced at
|
|
// whatever current group rank we're at, and so that's how we encode it here.
|
|
if *ext_var == Variable::EMPTY_TAG_UNION && rank.is_none() {
|
|
rank = group_rank;
|
|
}
|
|
|
|
for (_, index) in tags.iter_all() {
|
|
let slice = subs[index];
|
|
for var_index in slice {
|
|
let var = subs[var_index];
|
|
rank = rank
|
|
.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
|
|
}
|
|
}
|
|
|
|
rank
|
|
}
|
|
|
|
FunctionOrTagUnion(_, _, ext_var) => {
|
|
adjust_rank(subs, young_mark, visit_mark, group_rank, *ext_var)
|
|
}
|
|
|
|
RecursiveTagUnion(rec_var, tags, ext_var) => {
|
|
let mut rank = adjust_rank(subs, young_mark, visit_mark, group_rank, *ext_var);
|
|
|
|
for (_, index) in tags.iter_all() {
|
|
let slice = subs[index];
|
|
for var_index in slice {
|
|
let var = subs[var_index];
|
|
rank = rank
|
|
.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
|
|
}
|
|
}
|
|
|
|
// The recursion var may have a higher rank than the tag union itself, if it is
|
|
// erroneous and escapes into a region where it is let-generalized before it is
|
|
// constrained back down to the rank it originated from.
|
|
//
|
|
// For example, see the `recursion_var_specialization_error` reporting test -
|
|
// there, we have
|
|
//
|
|
// Job a : [Job (List (Job a)) a]
|
|
//
|
|
// job : Job Str
|
|
//
|
|
// when job is
|
|
// Job lst _ -> lst == ""
|
|
//
|
|
// In this case, `lst` is generalized and has a higher rank for the type
|
|
// `(List (Job a)) as a` - notice that only the recursion var `a` is active
|
|
// here, not the entire recursive tag union. In the body of this branch, `lst`
|
|
// becomes a type error, but the nested recursion var `a` is left untouched,
|
|
// because it is nested under the of `lst`, not the surface type that becomes
|
|
// an error.
|
|
//
|
|
// Had this not become a type error, `lst` would then be constrained against
|
|
// `job`, and its rank would get pulled back down. So, this can only happen in
|
|
// the presence of type errors.
|
|
//
|
|
// In all other cases, the recursion var has the same rank as the tag union itself
|
|
// all types it uses are also in the tags already, so it cannot influence the
|
|
// rank.
|
|
if cfg!(debug_assertions)
|
|
&& !matches!(
|
|
subs.get_content_without_compacting(*rec_var),
|
|
Content::Error | Content::FlexVar(..)
|
|
)
|
|
{
|
|
let rec_var_rank =
|
|
adjust_rank(subs, young_mark, visit_mark, group_rank, *rec_var);
|
|
|
|
debug_assert!(
|
|
rank >= rec_var_rank,
|
|
"rank was {:?} but recursion var <{:?}>{:?} has higher rank {:?}",
|
|
rank,
|
|
rec_var,
|
|
subs.get_content_without_compacting(*rec_var),
|
|
rec_var_rank
|
|
);
|
|
}
|
|
|
|
rank
|
|
}
|
|
|
|
Erroneous(_) => group_rank,
|
|
}
|
|
}
|
|
|
|
Alias(_, args, real_var, _) => {
|
|
let mut rank = Rank::toplevel();
|
|
|
|
for var_index in args.all_variables() {
|
|
let var = subs[var_index];
|
|
rank = rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
|
|
}
|
|
|
|
// from elm-compiler: THEORY: anything in the real_var would be Rank::toplevel()
|
|
// this theory is not true in Roc! aliases of function types capture the closure var
|
|
rank = rank.max(adjust_rank(
|
|
subs, young_mark, visit_mark, group_rank, *real_var,
|
|
));
|
|
|
|
rank
|
|
}
|
|
|
|
LambdaSet(subs::LambdaSet {
|
|
solved,
|
|
recursion_var,
|
|
unspecialized,
|
|
ambient_function: ambient_function_var,
|
|
}) => {
|
|
let mut rank = group_rank;
|
|
|
|
for (_, index) in solved.iter_all() {
|
|
let slice = subs[index];
|
|
for var_index in slice {
|
|
let var = subs[var_index];
|
|
rank = rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
|
|
}
|
|
}
|
|
|
|
for uls_index in *unspecialized {
|
|
let Uls(var, _, _) = subs[uls_index];
|
|
rank = rank.max(adjust_rank(subs, young_mark, visit_mark, group_rank, var));
|
|
}
|
|
|
|
if let (true, Some(rec_var)) = (cfg!(debug_assertions), recursion_var.into_variable()) {
|
|
// THEORY: unlike the situation for recursion vars under recursive tag unions,
|
|
// recursive vars inside lambda sets can't escape into higher let-generalized regions
|
|
// because lambda sets aren't user-facing.
|
|
//
|
|
// So the recursion var should be fully accounted by everything else in the lambda set
|
|
// (since it appears in the lambda set), and if the rank is higher, it's either a
|
|
// bug or our theory is wrong and indeed they can escape into higher regions.
|
|
let rec_var_rank = adjust_rank(subs, young_mark, visit_mark, group_rank, rec_var);
|
|
|
|
debug_assert!(
|
|
rank >= rec_var_rank,
|
|
"rank was {:?} but recursion var <{:?}>{:?} has higher rank {:?}",
|
|
rank,
|
|
rec_var,
|
|
subs.get_content_without_compacting(rec_var),
|
|
rec_var_rank
|
|
);
|
|
}
|
|
|
|
// NEVER TOUCH the ambient function var, it would already have been passed through.
|
|
{
|
|
let _ = ambient_function_var;
|
|
}
|
|
|
|
rank
|
|
}
|
|
|
|
RangedNumber(_) => group_rank,
|
|
}
|
|
}
|
|
|
|
/// Introduce some variables to Pools at the given rank.
|
|
/// Also, set each of their ranks in Subs to be the given rank.
|
|
fn introduce(subs: &mut Subs, rank: Rank, pools: &mut Pools, vars: &[Variable]) {
|
|
let pool: &mut Vec<Variable> = pools.get_mut(rank);
|
|
|
|
for &var in vars.iter() {
|
|
subs.set_rank(var, rank);
|
|
}
|
|
|
|
pool.extend(vars);
|
|
}
|
|
|
|
fn deep_copy_var_in(
|
|
subs: &mut Subs,
|
|
rank: Rank,
|
|
pools: &mut Pools,
|
|
var: Variable,
|
|
arena: &Bump,
|
|
) -> Variable {
|
|
let mut visited = bumpalo::collections::Vec::with_capacity_in(256, arena);
|
|
|
|
let pool = pools.get_mut(rank);
|
|
|
|
let var = subs.get_root_key(var);
|
|
match deep_copy_var_decision(subs, rank, var) {
|
|
ControlFlow::Break(copy) => copy,
|
|
ControlFlow::Continue(copy) => {
|
|
deep_copy_var_help(subs, rank, pool, &mut visited, var, copy);
|
|
|
|
// we have tracked all visited variables, and can now traverse them
|
|
// in one go (without looking at the UnificationTable) and clear the copy field
|
|
for var in visited {
|
|
subs.set_copy_unchecked(var, OptVariable::NONE);
|
|
}
|
|
|
|
copy
|
|
}
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn has_trivial_copy(subs: &Subs, root_var: Variable) -> Option<Variable> {
|
|
let existing_copy = subs.get_copy_unchecked(root_var);
|
|
|
|
if let Some(copy) = existing_copy.into_variable() {
|
|
Some(copy)
|
|
} else if subs.get_rank_unchecked(root_var) != Rank::NONE {
|
|
Some(root_var)
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn deep_copy_var_decision(
|
|
subs: &mut Subs,
|
|
max_rank: Rank,
|
|
var: Variable,
|
|
) -> ControlFlow<Variable, Variable> {
|
|
let var = subs.get_root_key(var);
|
|
if let Some(copy) = has_trivial_copy(subs, var) {
|
|
ControlFlow::Break(copy)
|
|
} else {
|
|
let copy_descriptor = Descriptor {
|
|
content: Content::Structure(FlatType::EmptyTagUnion),
|
|
rank: max_rank,
|
|
mark: Mark::NONE,
|
|
copy: OptVariable::NONE,
|
|
};
|
|
|
|
let copy = subs.fresh(copy_descriptor);
|
|
|
|
// Link the original variable to the new variable. This lets us
|
|
// avoid making multiple copies of the variable we are instantiating.
|
|
//
|
|
// Need to do this before recursively copying to avoid looping.
|
|
subs.set_mark_unchecked(var, Mark::NONE);
|
|
subs.set_copy_unchecked(var, copy.into());
|
|
|
|
ControlFlow::Continue(copy)
|
|
}
|
|
}
|
|
|
|
fn deep_copy_var_help(
|
|
subs: &mut Subs,
|
|
max_rank: Rank,
|
|
pool: &mut Vec<Variable>,
|
|
visited: &mut bumpalo::collections::Vec<'_, Variable>,
|
|
initial_source: Variable,
|
|
initial_copy: Variable,
|
|
) -> Variable {
|
|
use roc_types::subs::Content::*;
|
|
use roc_types::subs::FlatType::*;
|
|
|
|
struct DeepCopyVarWork {
|
|
source: Variable,
|
|
copy: Variable,
|
|
}
|
|
|
|
let initial = DeepCopyVarWork {
|
|
source: initial_source,
|
|
copy: initial_copy,
|
|
};
|
|
let mut stack = vec![initial];
|
|
|
|
macro_rules! work {
|
|
($variable:expr) => {{
|
|
let var = subs.get_root_key($variable);
|
|
match deep_copy_var_decision(subs, max_rank, var) {
|
|
ControlFlow::Break(copy) => copy,
|
|
ControlFlow::Continue(copy) => {
|
|
stack.push(DeepCopyVarWork { source: var, copy });
|
|
|
|
copy
|
|
}
|
|
}
|
|
}};
|
|
}
|
|
|
|
macro_rules! copy_sequence {
|
|
($length:expr, $variables:expr) => {{
|
|
let new_variables = SubsSlice::reserve_into_subs(subs, $length as _);
|
|
for (target_index, var_index) in (new_variables.indices()).zip($variables) {
|
|
let var = subs[var_index];
|
|
let copy_var = work!(var);
|
|
subs.variables[target_index] = copy_var;
|
|
}
|
|
|
|
new_variables
|
|
}};
|
|
}
|
|
|
|
macro_rules! copy_union {
|
|
($tags:expr) => {{
|
|
let new_variable_slices = SubsSlice::reserve_variable_slices(subs, $tags.len());
|
|
|
|
let it = (new_variable_slices.indices()).zip($tags.variables());
|
|
for (target_index, index) in it {
|
|
let slice = subs[index];
|
|
|
|
let new_variables = copy_sequence!(slice.len(), slice);
|
|
subs.variable_slices[target_index] = new_variables;
|
|
}
|
|
|
|
UnionLabels::from_slices($tags.labels(), new_variable_slices)
|
|
}};
|
|
}
|
|
|
|
while let Some(DeepCopyVarWork { source: var, copy }) = stack.pop() {
|
|
visited.push(var);
|
|
pool.push(copy);
|
|
|
|
let content = *subs.get_content_unchecked(var);
|
|
|
|
// Now we recursively copy the content of the variable.
|
|
// We have already marked the variable as copied, so we
|
|
// will not repeat this work or crawl this variable again.
|
|
match content {
|
|
Structure(flat_type) => {
|
|
let new_flat_type = match flat_type {
|
|
Apply(symbol, arguments) => {
|
|
let new_arguments = copy_sequence!(arguments.len(), arguments);
|
|
|
|
Apply(symbol, new_arguments)
|
|
}
|
|
|
|
Func(arguments, closure_var, ret_var) => {
|
|
let new_ret_var = work!(ret_var);
|
|
let new_closure_var = work!(closure_var);
|
|
|
|
let new_arguments = copy_sequence!(arguments.len(), arguments);
|
|
|
|
Func(new_arguments, new_closure_var, new_ret_var)
|
|
}
|
|
|
|
same @ EmptyRecord | same @ EmptyTagUnion | same @ Erroneous(_) => same,
|
|
|
|
Record(fields, ext_var) => {
|
|
let record_fields = {
|
|
let new_variables =
|
|
copy_sequence!(fields.len(), fields.iter_variables());
|
|
|
|
RecordFields {
|
|
length: fields.length,
|
|
field_names_start: fields.field_names_start,
|
|
variables_start: new_variables.start,
|
|
field_types_start: fields.field_types_start,
|
|
}
|
|
};
|
|
|
|
Record(record_fields, work!(ext_var))
|
|
}
|
|
|
|
TagUnion(tags, ext_var) => {
|
|
let union_tags = copy_union!(tags);
|
|
|
|
TagUnion(union_tags, work!(ext_var))
|
|
}
|
|
|
|
FunctionOrTagUnion(tag_name, symbol, ext_var) => {
|
|
FunctionOrTagUnion(tag_name, symbol, work!(ext_var))
|
|
}
|
|
|
|
RecursiveTagUnion(rec_var, tags, ext_var) => {
|
|
let union_tags = copy_union!(tags);
|
|
|
|
RecursiveTagUnion(work!(rec_var), union_tags, work!(ext_var))
|
|
}
|
|
};
|
|
|
|
subs.set_content_unchecked(copy, Structure(new_flat_type));
|
|
}
|
|
|
|
FlexVar(_) | FlexAbleVar(_, _) | Error => {
|
|
subs.set_content_unchecked(copy, content);
|
|
}
|
|
|
|
RecursionVar {
|
|
opt_name,
|
|
structure,
|
|
} => {
|
|
let content = RecursionVar {
|
|
opt_name,
|
|
structure: work!(structure),
|
|
};
|
|
|
|
subs.set_content_unchecked(copy, content);
|
|
}
|
|
|
|
RigidVar(name) => {
|
|
subs.set_content_unchecked(copy, FlexVar(Some(name)));
|
|
}
|
|
|
|
RigidAbleVar(name, ability) => {
|
|
subs.set_content_unchecked(copy, FlexAbleVar(Some(name), ability));
|
|
}
|
|
|
|
Alias(symbol, arguments, real_type_var, kind) => {
|
|
let new_variables =
|
|
copy_sequence!(arguments.all_variables_len, arguments.all_variables());
|
|
|
|
let new_arguments = AliasVariables {
|
|
variables_start: new_variables.start,
|
|
..arguments
|
|
};
|
|
|
|
let new_real_type_var = work!(real_type_var);
|
|
let new_content = Alias(symbol, new_arguments, new_real_type_var, kind);
|
|
|
|
subs.set_content_unchecked(copy, new_content);
|
|
}
|
|
|
|
LambdaSet(subs::LambdaSet {
|
|
solved,
|
|
recursion_var,
|
|
unspecialized,
|
|
ambient_function: ambient_function_var,
|
|
}) => {
|
|
let lambda_set_var = copy;
|
|
|
|
let new_solved = copy_union!(solved);
|
|
let new_rec_var = recursion_var.map(|v| work!(v));
|
|
let new_unspecialized = SubsSlice::reserve_uls_slice(subs, unspecialized.len());
|
|
|
|
for (new_uls_index, uls_index) in
|
|
(new_unspecialized.into_iter()).zip(unspecialized.into_iter())
|
|
{
|
|
let Uls(var, sym, region) = subs[uls_index];
|
|
let new_var = work!(var);
|
|
|
|
deep_copy_uls_precondition(subs, var, new_var);
|
|
|
|
subs[new_uls_index] = Uls(new_var, sym, region);
|
|
|
|
subs.uls_of_var.add(new_var, lambda_set_var);
|
|
}
|
|
|
|
let new_ambient_function_var = work!(ambient_function_var);
|
|
debug_assert_ne!(
|
|
ambient_function_var, new_ambient_function_var,
|
|
"lambda set cloned but its ambient function wasn't?"
|
|
);
|
|
|
|
subs.set_content_unchecked(
|
|
lambda_set_var,
|
|
LambdaSet(subs::LambdaSet {
|
|
solved: new_solved,
|
|
recursion_var: new_rec_var,
|
|
unspecialized: new_unspecialized,
|
|
ambient_function: new_ambient_function_var,
|
|
}),
|
|
);
|
|
}
|
|
|
|
RangedNumber(range) => {
|
|
let new_content = RangedNumber(range);
|
|
|
|
subs.set_content_unchecked(copy, new_content);
|
|
}
|
|
}
|
|
}
|
|
|
|
initial_copy
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn deep_copy_uls_precondition(subs: &Subs, original_var: Variable, new_var: Variable) {
|
|
if cfg!(debug_assertions) {
|
|
let content = subs.get_content_without_compacting(original_var);
|
|
|
|
debug_assert!(
|
|
matches!(
|
|
content,
|
|
Content::FlexAbleVar(..) | Content::RigidAbleVar(..)
|
|
),
|
|
"var in unspecialized lamba set is not bound to an ability, it is {:?}",
|
|
roc_types::subs::SubsFmtContent(content, subs)
|
|
);
|
|
debug_assert!(
|
|
original_var != new_var,
|
|
"unspecialized lamba set var was not instantiated"
|
|
);
|
|
}
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn register(subs: &mut Subs, rank: Rank, pools: &mut Pools, content: Content) -> Variable {
|
|
let descriptor = Descriptor {
|
|
content,
|
|
rank,
|
|
mark: Mark::NONE,
|
|
copy: OptVariable::NONE,
|
|
};
|
|
|
|
let var = subs.fresh(descriptor);
|
|
|
|
pools.get_mut(rank).push(var);
|
|
|
|
var
|
|
}
|
|
|
|
fn register_with_known_var(
|
|
subs: &mut Subs,
|
|
var: Variable,
|
|
rank: Rank,
|
|
pools: &mut Pools,
|
|
content: Content,
|
|
) -> Variable {
|
|
let descriptor = Descriptor {
|
|
content,
|
|
rank,
|
|
mark: Mark::NONE,
|
|
copy: OptVariable::NONE,
|
|
};
|
|
|
|
subs.set(var, descriptor);
|
|
|
|
pools.get_mut(rank).push(var);
|
|
|
|
var
|
|
}
|